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FREQUENCY LAWS SHOWING STABILITY WITH
REFERENCE TO THE GEOMETRIC MEAN
AND OTHER MEANS*

BY E. L. DODD

1. Stability with Reference to the Arithmetic Mean. The pur-
pose of this paper is to extend to various means the conception
of stability as developed by Lévyt with reference to the arith-
metic mean. The best known functions showing this stability, as
mentioned by Lévy, are the Gaussian or normal probability
function and the Cauchy function (a/7)(a2+x2)~1. For this
stability, the probability function or distribution of the arithmet-
ic mean must have essentially the same form as that of individ-
ual variates. Indeed, in the Cauchy case, the distributions are
identical. But in general, the distribution of the arithmetic mean
contains the parameter 7.

Lévy takes ¢(#) as a characteristic function, and writes
(1) () = log6(t) = — (co+ ca) | £],
where
(2) ¢ >0, [cl| <|cotanra/2|,0 < a = 2,7 = (— 1) sgnt.

If, now, X; is an individual variate, and if Prob signifies
probability that, then

3) Prob{x<X¢<x+dx} = f(x)dx, (1=1,2,---,mn),
where, if we use 7z in an exponent to signify (— 1)V/2, we write

1 ©
(4) f(x) = f(x: Coy C1, a) = ;f ehmtq&(t)dt'

m™

—0

Using F for the cumulative function, we find

(5) Prob {X; < u} = F(u, cq, ¢1, a) = f ) f(x)dx.

* Presented to the Society, December 28, 1931.
t Calcul des Probabilités, Chap. 6; Comptes Rendus, vol. 176 (1923), pp.
1118-1122, and pp. 1284-1286.
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If now S is the sum of #» independent variates X;, the log-
arithm of the characteristic function of .S is #ny(¢) ; and hence its
probability function or density takes the form f(x, ncy, nei, ).
For the arithmetic mean, 4, it follows that nf(nx, nc,, nci, o) is
the density of distribution. Hence

6) Prob {A < u} = F(nu, ncy, ney, a).

2. Extension of Stability. To define* a mean M of n independent
variates Y, I shall suppose here that

x=£(y)

is a continuous increasing function of y. Its inverse y=0(x) will
then exist, and we may set

1 n
© w=o[— Tun]

n 1
I shall now regard the cumulative probability or frequency func-
tion F as stable with reference to the general mean M, if from
(8) Prob {V; < v} = F[£(v), co, ¢1, @,
we can conclude that
9) Prob {M < v} = F[n&(v), nco, ney, al.

A more general definition of stability might be framed, but the
foregoing is adequate for this paper.

To show that (8) and (9) are satisfied when M is defined by
(7), we need only set

(10) X, =8Yy), u=¢tw); Y:i=0X;, v=~0u).

Then, from (5) and (6), noting that £ is an ¢ncreasing function,
we have

(11) Prob {V; < v} = Prob {Xi < u} = Flu, c, c1, al;

(12) Prob {M < v} = Prob {4 < u} = F[nu, nco, nci, ).

* I defined a somewhat more general mean in my paper Functions of meas-
urements under general laws of error, Skandinavisk Aktuarietidskrift, vol. 5
(1922), p. 141,
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3. Particular Means. The geometric mean G of n positive va-
riates V;is given by

1 n
(13) G= (V1-Vy -+ -V)Un,  logG=— D log¥s;
n 1

and thus (8) and (9) apply with M =G, £(v) =log v, v>0. We note
in this case that # = £(v) =log v permits « to take on all real val-
ues, although v is restricted to positive values.

The cube root of the average cube of variates Y; is a special
case, with p =3, of

(14) M =|B|"?sgn B, B =

§i)—a

Z| Yi\psgnyi: b4 >0,
1

where sgn Y;=—1, 0, 41, according as Y is negative, zero, or
positive. Here, in (14), Y is not restricted to positive values. The
case of p=2 is a signed root-mean-square. For the general case
(14), we take £(v) = [v l” sgn v, to obtain (8), (9).

4. Stability for Symmetrical Distribulions. If in (1) we take
¢1=0, ¢o=c, then (4) becomes

1 0
(15) f(x) = f(x, ¢, ) = —f e~°" cos txdt.

In this case, f(—x) =f(x), and the distribution is symmetrical,
with mode at the origin. The further specialization =1 or
a=2,gives the Cauchy or the Gaussian distribution, respectively.
In what follows we merely require, as before, 0 <a=<2, with
c>0.

We shall also introduce a total frequency function

(16) T(u,c, o] = fuf(x)dx =2 fuf(x)dx, u=0.

Then if g(x, ¢, o, ©) is the frequency density for the sum of #
independent variates X,

1 0

an gz, ¢, a, n) = — f et cos tadt = wlef(nVey, ¢, a),
T Jo

as may be seen by a change of variables nt*=7% Then, passing

to the arithmetic mean 4, by changing x into nx, dx into ndx,

we obtain
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(18) Prob { | 4| < u} = T[n*1eu, ¢, al.

From the definition (16), it is seen that T'[u, ¢, a] is an in-
creasing function of #, a function, indeed, that approaches
unity (certainty) when # approaches infinity. Thus, from (18),
with 1<a =2, and n>1,

Prob { |4 |<u}>T[u, ¢, a]=Prob { |X;|<u}.

Suppose, now, that when # measurements of a quantity have
been made, we postulate a {rue value for the measured quantity.
Sometimes this true value is actually ascertainable; for example,
if ten balls have been drawn from an urn containing white and
black balls, and w are found to be white, the ratio w/10 is a
measurement of an ascertainable proportion of white balls in the
urn. By translation, now, suppose the origin moved to the true
value. Thus, if in the above urn 409, of the balls are white,
X =w/10—40. The X’s may now be called errors. The inequality
obtained above,

Prob {|4]|<u}>Prob {|X:|<u},

now tells us that the arithmetic mean 4 is more likely to fall in-
side a fixed interval about the true value zero than is an indi-
vidual measurement X;; and in this sense, 4 is more reliable
than X;when 1 <a =2.0On the other hand, 4 .is less reliable than
X when 0<a<1. These facts regarding the arithmetic mean are
not new.

5. The Geometric Mean, with Symmetric Distribution. Let G
be defined as in (13); but taking a positive number a, suppose
that

(19) X; = 10g (Y@/d), (1' =1, 2; Y ”);
with X ; subject to (15). We have

(20) log (G/a) = —; 3 log (V/a),

where log (G/a) =4 in (18). It follows that

(21)  Prob { | log (G/a)l <u} = Tn*Yeu, ¢, al, u 2 0.
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Then, with # =log v as before, but now with »=1, since #=0,
a

(22) Prob {— <G< av} = T[n'-t=log v, ¢, a].
v

If we further postulate that e is the true value, G is less
reliable than an individual measurement Y if 0<a <1, but
more reliable, if 1<a=2. Moreover, with 1 <a=2, if ¢>0 is
arbitrarily small, and v=1-+¢, we may take » large enough so
that it is asymptotically certain that G will be confined to an
arbitrarily small interval about the true value a.

6. Another Illustration. As an added requirement, let us sup-
pose that in the definition of M in (7) the function £ is odd:

(23) §—Yy) = — T, =) = — &@);
8(— Xi) = — 6(X)), 60(— u) = — 0(u).

Then, from (10), the inequality |X.:|<u becomes |¥:|<uv.
Thus, if

(24) Prob { | Vi| < v} = T[t@),¢,a], v20,
it follows that
(25) Prob { | M| < v} = T[n-Yeg(a), ¢, ).

Means of the form (14) are included here.
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