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FREQUENCY LAWS SHOWING STABILITY WITH 
R E F E R E N C E TO T H E GEOMETRIC MEAN 

AND OTHER MEANS* 

BY E. L. DODD 

1. Stability with Reference to the Arithmetic Mean. The pur­
pose of this paper is to extend to various means the conception 
of stability as developed by Levy f with reference to the arith­
metic mean. The best known functions showing this stability, as 
mentioned by Levy, are the Gaussian or normal probability 
function and the Cauchy function (a/x)(a2+jc2) - 1 . For this 
stability, the probability function or distribution of the arithmet­
ic mean must have essentially the same form as that of individ­
ual variâtes. Indeed, in the Cauchy case, the distributions are 
identical. But in general, the distribution of the arithmetic mean 
contains the parameter n. 

Levy takes <j>{t) as a characteristic function, and writes 

(1) iKO = log 0(0 = - (co + cii) | * K 

where 

(2) co > 0, | a | è | Co tan T<X/2 | , 0 < a ^ 2 J = ( - 1)1/2 sgn t. 

If, now, Xi is an individual variate, and if Prob signifies 
probability that, then 

(3) Prob {x < Xi < x + dx) = f(x)dx, (i = 1, 2, • • • , n), 

where, if we use i in an exponent to signify (— 1)1/2, we write 

(4) ƒ(*) = ƒ(*, co, a, a) = — f er*°*4>(t)dt. 

Using F for the cumulative function, we find 

ƒ M 

f(x)dx. 
- 0 0 

* Presented to the Society, December 28, 1931. 
t Calcul des Probabilités, Chap. 6; Comptes Rendus, vol. 176 (1923), pp. 

1118-1122, and pp. 1284-1286. 
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If now 5 is the sum of n independent variâtes Xi} the log­
arithm of the characteristic function of S is n\f/(t) ; and hence its 
probability function or density takes the form ƒ(x, nc0f nc±, a). 
For the arithmetic mean, A, it follows that nf{nx, nc0, nci, a) is 
the density of distribution. Hence 

(6) Prob {̂ 4 < u) = F(nu> nc^ nch a). 

2. Extension of Stability. To define* a mean Moin independent 
variâtes Yi} I shall suppose here that 

x = £(y) 

is a continuous increasing function of y. Its inverse y = d(x) will 
then exist, and we may set 

(7) M = e\- ttord]-
Ln i J 

I shall now regard the cumulative probability or frequency func­
tion F as stable with reference to the general mean M, if from 

(8) Prob {Yi < v) = F[£(v), c0, d, a], 

we can conclude that 

(9) Prob {M < v} = F[n£(v), nc0, nch a]. 

A more general definition of stability might be framed, but the 
foregoing is adequate for this paper. 

To show that (8) and (9) are satisfied when M is defined by 
(7), we need only set 

(10) Xi = Z(Yi), u = it(v); Yi^diXi), v = d(u). 

Then, from (5) and (6), noting that £ is an increasing function, 
we have 

(11) Prob {Yi < v] = Prob {Xi < u) = F[u, c0, ch a]; 

(12) Prob {M < v) = Prob {A < u} = F[nu, nc0) nch a], 

* I defined a somewhat more general mean in my paper Functions of meas­
urements under general laws of error, Skandinavisk Aktuarietidskrift, vol. 5 
(1922), p. 141. 
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3. Particular Means. The geometric mean G of n positive va­
riâtes Yi is given by 

(13) G={YVY, Ynyi^ log G = — £ log F<; 
n i 

and thus (8) and (9) apply with M — G,£(v) =\ogv, v > 0 . We note 
in this case that u = £(v) =log v permits u to take on all real val­
ues, although v is restricted to positive values. 

The cube root of the average cube of variâtes Ft- is a special 
case, with p = 3, of 

1 n 

(14) M = | B \llp sgn 5 , 5 = — £ | F< \* sgn F<, ƒ> > 0, 
w i 

where sgn F» = — 1, 0, + 1 , according as Yi is negative, zero, or 
positive. Here, in (14), Yi is not restricted to positive values. The 
case of p = 2 is a signed root-mean-square. For the general case 
(14), we take £(i;) = |u \p sgn v, to obtain (8), (9). 

4. Stability for Symmetrical Distributions. If in (1) we take 
ci = 0, c0 = c, then (4) becomes 

1 r0 0 

(15) f(x) = ƒ(*, c, a) = — I e~ct<x cos to*. 
7T Jo 

In this case, f( — x) =f(x), and the distribution is symmetrical, 
with mode at the origin. The further specialization a = l or 
a = 2, gives the Cauchy or the Gaussian distribution, respectively. 
In what follows we merely require, as before, 0<ce^2 , with 
c>0. 

We shall also introduce a total frequency function 

f(x)dx = 2 I f(x)dx, u ^ 0. 
-u J o 

Then if g(x, c, a, n) is the frequency density for the sum of n 
independent variâtes Xi, 

1 f00 

(17) g(x9 c, a, n) = — I e~nct<x cos txdt = n-llaf{n~llax, c, a), 
7T Jo 

as may be seen by a change of variables nta—ra. Then, passing 
to the arithmetic mean A, by changing x into nx, dx into ndx, 
we obtain 
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(18) Prob { | A | < u\ = T[nl~^u, c, a]. 

From the definition (16), it is seen that T[u, c, a] is an in­
creasing function of u, a function, indeed, that approaches 
unity (certainty) when u approaches infinity. Thus, from (18), 
with 1 < a ^ 2 , and n>l, 

Prob { \A \<U) >T[U, C, a ] = P r o b { \Xi\<u}. 

Suppose, now, that when n measurements of a quantity have 
been made, we postulate a true value for the measured quantity. 
Sometimes this true value is actually ascertainable; for example, 
if ten balls have been drawn from an urn containing white and 
black balls, and w are found to be white, the ratio w/10 is a 
measurement of an ascertainable proportion of white balls in the 
urn. By translation, now, suppose the origin moved to the true 
value. Thus, if in the above urn 40% of the balls are white, 
X = w/10 — 40. T h e X ' s may now be called errors. The inequality 
obtained above, 

Prob { |̂ 4 | < « } > P r o b {\Xi\<u}, 

now tells us that the arithmetic mean A is more likely to fall in­
side a fixed interval about the true value zero than is an indi­
vidual measurement X»; and in this sense, A is more reliable 
than Xi when 1 <a^2. On the other hand, .4 is less reliable than 
Xi when 0 <a < 1. These facts regarding the arithmetic mean are 
not new. 

5. The Geometric Mean, with Symmetric Distribution. Let G 
be defined as in (13); but taking a positive number a, suppose 
that 

(19) Xi = log (Yi/a), (i = 1, 2, • • -, »), 

with Xi subject to (15). We have 

(20) log(G/a) = - 2 > g ( F < / a ) , 
n 

where log (G/a) =A in (18). I t follows that 

(21) Prob { | log (G/a) | < u) = T[nl~li"u, c, a], u ^ 0. 
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Then, with u = \og v as before, but now with v^l, since u^O, 

(22) Prob <— <G < av> = Tin1-"" log v, c, a]. 

If we further postulate that a is the true value, G is less 
reliable than an individual measurement F,-, if 0 < a < l , but 
more reliable, if K a g 2 , Moreover, with K a | 2 , if e > 0 is 
arbitrarily small, and z> = l + e, we may take n large enough so 
that it is asymptotically certain that G will be confined to an 
arbitrarily small interval about the true value a. 

6. Another Illustration. As an added requirement, let us sup­
pose that in the definition of M in (7) the function £ is odd: 

(23) * ( - F < ) = - £ ( 7 , ) , « - t O = - { ( 0 ; 

tf(- XO = - 0(X;), 0 ( - «) = - ff(«). 

Then, from (10), the inequality |X»-|<w becomes | F* | O . 
Thus, if 

(24) Prob { | Yi | < v} = r[{(»), c, a], v ^ 0, 

it follows that 

(25) Prob { | M | < v} = r f » 1 - 1 ^ » ) , <;, a ] . 

Means of the form (14) are included here. 
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