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A TRIAD OF RULED SURFACES DEFINED 
BY RECIPROCAL POLARS* 

BY A. F. CARPENTER 

As an application of the theory of triads of ruled surfaces f in 
projective differential geometry, we shall consider here a sys­
tem defined as follows. Let lyz be any line element of a general 
ruled surface RyZf the points Py, Pz being the flecnodes of lyg. 
The defining system of differential equations for Ryz will have 
the form 

y" + puz' + quy + quz = 0, 

z" + p2iy' + q<ny + Q22Z = 0, 

where differentiation is with respect to a parameter x and where 
pi2=2qi2, p2i=2q2i. 

The planes osculating the flecnode curve C of Ryz at Py, P» 
intersect in a line Z^, the points P$, P<t> of which are those in 
which 1+$ is cut by the tangents to C at the respective points Pz, 
Py. The expressions for x//, 4> are 

(2) ï = p\2z' + quz, 4> = p2\y' + q2\y. 

The polar reciprocal of l^ with respect to the linear complex 
which osculates Ryz along lyz is the line lve, the points PV} Pe of 
which are given by the expressions 

(3) rj = ^122' + pup2iy + quz, 6 = p2iy' + q2\y + pitpiiz. 

The points Py, Pf, Pn are collinear, as are also the points PZf P^, P$. 
A set of three lines lyz, Z^, lvo, as thus defined, corresponds to 

each value of the parameter x and determines in this way three 
ruled surfaces Ryz, R^, Rve. From (1), (2) and (3) we obtain the 
defining system of differential equations for this triad of ruled 
surfaces.% I t is 

* Presented to the Society, June 13,1931. 
t A. F. Carpenter, Triads of ruled surfaces, Transactions of this Society, 

vol. 29 (1927), pp. 254-275. Hereafter denoted by the symbol T. 
% T, p. 256. 
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ƒ = - f2iy + X2i<A, ^ ' = 3f 12^ + (a — #i2)<£ ~ afl, 

2' = - ^12^ + 7Ti2 ,̂ <£' = (0 - # 2 l )^ + 3r2l<^ - JOT/, 

(4) y = xi27T2i(r; — ^ ) , rj' = py — pup2iaz + 3ri297, 

2 = 7ri27r2i(0 — 0) , 0' = — pi2p2iPy — pz + 3r2ifl, 

where* 

#12#21« = #12^22 — #12#12 + 3^12, 

pl2p2lP = #21011 — #21021 + 3021> 

# = #12021 — #21012, ?Ti2#12 = 7T21#21 = 1 , 

#12^12 = 012, #21^21 = 0 2 1 . 

The three lines lyz, fa, lne determine a quadric Q. On each of 
these lines there will be two points such that tangents at these 
points to the respective surfaces Ryz, R^, Rtf will t>e lines of 
that regulus of Q whose lines intersect lyz, fa, l^. These points 
are found by factoring the respective quadratic covariantsf 

(6) #2i3>2 — #i2^2, jö^2 — acj>2
} I3rj2 + 2p7Ti2T2irjd — ad2. 

In this connection we remark that the first of these covariants de­
termines the complex points of lyz.% 

On each of the lines lyz, fa, lne lie two points at which inter-
sector tangents§ to the surfaces Ryz, R^, RnQ will also be 
tangents to the respective surfaces R^, Rne, Ryz. These points 
are given by the respective covariantsf 

(#21<* - pl*P)yZ, PW2 ~ €i<t>2), 

pTurj2 + (#21« — #120)^ - #7T2102. 

If the invariant p2ia—#12j8^0, then from the first expression in 
(7) it follows that the intersector tangents to Ryz at theflecnodes of 

* We shall assume that pn and P21 do not vanish identically, that is, that 
neither branch of the flecnode curve of Ryz is a straight line. 

t T, p. 269 et seq. 
î A. F. Carpenter, Ruled surfaces whose flecnode curves have plane branches, 

Transactions of this Society, vol. 16 (1915). 
§ E. P. Lane, Ruled surfaces with generators in one-to-one correspondence, 

Transactions of this Society, vol. 25 (1923). 
T T, p. 269 et seq. 
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lvz are tangent to R^. If p2ia — pufi = 0, then the intersector tangents 
to Ryz at all points of lyz are tangent to 2?^. This conclusion can be 
verified in the following way. 

Let u=y+\z be the expression for the general point on lyz 

and let us choose for system of reference the tetrahedron 
PyPzP pPa, where the unit point is so chosen that all coordinates 
of the four vertices are zero except yi = z2 —pz =tf"4 = 1, and where 

(8) p = 2y' + pi&, <r = 2*' + pny. 

Then with the help of equations (4) and (8) the equation of the 
tangent plane to Ryz at Pu is found to be 

(9) \%z — XA = 0. 

This plane cuts l^ in the point Pv, where 

V = \f/ + k(j>, p2ik\ = pX2. 

The equation of the tangent plane to R^ at Pv is, similarly, 

p2ià\x1 — puPx2 — (pnP + 2q2iaX)x3 + (pliàK + 2gi2/3)x4 = 0, 

and the point Pu lies on this plane for all values of X, if, and 
only if, p2ia — pi2(3^0. 

In a previous paper by the author* it was proved that the 
osculating planes of the flecnode curve, the complex curve and 
the harmonic curve of Ryz a t the points in which these curves 
cut any line element lyZl will form an axial pencil if, and only if, 
p2ict — pvS = 0. In view of what precedes we may state the follow­
ing theorem. 

THEOREM 1. If the planes osculating the flecnode curve, the 
complex curve, and the harmonic curve of a general ruled surface R 
at the points of intersection of these curves with each line element of 
Rform an axial pencil, then R and the ruled surface S generated 
by the axis of this pencil of planes are the focal surfaces of the con­
gruence of intersector tangents of R {or S) with respect to S(or R). 

If the invariant p^O, then from (6) and (7) it results that the 
two points of fa at which lines of Q are tangent to R^ are also the 
points at which intersector tangents of R^ are tangent to Rve. If 
£==0, then the intersector tangents to -R^ at all points of l^ are 

* A. F. Carpenter, A theorem on ruled surfaces, this Bulletin, vol. 34 (1928), 
pp. 479-481. 
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tangent to 2?^. This can be verified as above. But if p^O, then 
Ryz is identically self-dual.* We can sum up these results in the 
following statement. 

THEOREM 2. Let the planes osculating the flecnode curve of a 
general ruled surface R at the two points of intersection of this 
curve with a line element I of R intersect in s, and let t be the polar 
reciprocal of s with respect to the linear complex osculating R along 
I. Then if R is identically self-dual, the two ruled surfaces S and T 
generated by s and t will be the focal surfaces of the congruence of 
inter sector tangents of S {or T) with respect to T (or S). 

If both p2ia — pi2^ = 0 and p = 0, then the third covariant of 
(7) vanishes identically. Under these conditions, Ryz is a 
quadric. t 

Two of the intersector tangents of Ryz at points of lyz must be 
asymptotic tangents of Ryz. We find these points as follows. In 
order that the curve Cu generated by Pu be an asymptotic 
curve of Ryz, X must satisfy the differential equation 

(10) 2X' + p2i\2 - pu = 0. 

By the use of (4) and (10), we find 

(11) u' = — r2Xy — |(^2iX2 + 2r12\ — p12)z + TT^X^ + TT2I0. 

Now the asymptotic tangent at Pu will cut l^ if u'+pu is linear 
in yp and <£. I t follows that 

u— r2\ = 0, ^2iX2 — 2juX + 2r12\ — pu = 0, 

and therefore 

(12) p21\* - 2(f2i - m)\ - pu = 0. 

The values of X from (12) determine the two values of u sought. 
The corresponding quadratic covariant is found to be 

(13) p21y
2 + 2(r2i - r12)yz - p12z

2 = 7r2iPQ, 

where 

P = p2iy +Uz,Q = p21y +Vz, U = r2i -r12 + r, V = r21 — r12 — r} 

r = [(r2i - rX2y + pi2p2i]
112-

* E. J. Wilczynski, Projective Differential Geometry, p. 144; p is a factor of 
the invariant. 

t Wilczynski, loc. cit., p. 150. 
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The two points in which these asymptotic tangents cut l^ are 
given by 7ri2Xi^+7r2i0, 71-12X2̂ + 2̂1$, where Xi, X2 are the roots of 
(12), and the corresponding covariant is found to be 

(14) p2rf* - 2(r2l - r12)H - p12^ = T12CD, 

where C — p2i\p — Vc/>, D—p2$ — U<j>. 
By proceeding as above we find, for the points of lyz a t which 

asymptotic tangents to Ryz cut lnd, the covariant 

(15) ^2i^2 - 2(f2i — r12)yz - p12z
2 = TT21RS, 

where R = p2iy— Uz, S — p2iy— Vz, and for the points in which 
these tangents cut l^ the covariant 

(16) p21rj2 + 2(r« - r12)rj6 - p126
2 = T21AB, 

where A = p2ir}+Vd, B=p21t} + U6. 
By comparison of (13), (14), (15), (16) it results that the line 

lyz is cut by those faces of the tetrahedron A BCD opposite the ver-
tices Ay B} C> D in the respective points P, <2, i?, S. It is also seen 
that Pyj Pz separate harmonically both pairs of points Pt R and 
Q,S. 

Since r2\ — f12 = 0 implies p^O, and conversely, it results that 
if Ryz is identically s elf-dual the asymptotic tangents to Ryz at 
the complex points of lyz intersect both R^ and Rve and are thus 
rulings of the quadric determined by lyZ) /^, lve. 

There exist, in general, for the three lines lyz, l^, lve, two closed 
intersector sequences of order one.* The pairs of points in which 
these lines are cut by these sequences are given by the re­
spective covariants 

p2iafiy2 + p(iri2a + ir2iP)yz — pi2afiz2, 

(17) pnafiyp2 — P(T12CX + 7T2i/5)̂ </) — pi2a$(j>2, 

pnPV + p{j\2a + 7T2ijÖ)?70 — p2iOL2d2. 

The existence of a closed intersector sequence of order two is 
assured by the vanishing of the invariant 

(18) piri2TT2i(p2ia — puff), 

and this closure property holds for all such sequences. From 
(18) it follows that, under the conditions of either Theorem 1 or 
Theorem 2, all intersector sequences of order two are closed. 

* T, pp. 272, 273. 
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All intersector sequences of order three will be closed if the 
invariant 

pKpW + PI2P2) + 2ps
12pl1a>(3> 

vanishes. This can happen either if p = 0, a = 0 (or j3 = 0), or 
a = 0, j8 = 0. In the first case one branch of the flecnode curve of 
Ryz is plane, (a = 0), and R^ degenerates into the tangents of a 
plane curve. In the second case both branches of the flecnode 
curve of Ryz are plane and R^ degenerates into a straight line. 

I t is obvious that in the preceding developments the order of 
the lines lyz, / ^ , lnd can be reversed without in any way affecting 
results. The analysis would be based upon a system of first-
order equations of the same type as (4), (5) and obtainable from 
(4), (5) by simple processes. 

THE UNIVERSITY OF WASHINGTON 

NOTE ON T H E REDUCIBILITY OF ALGEBRAS 
WITHOUT A F I N I T E BASE* 

BY M. H. INGRAHAM 

I t is the purpose of this note to discuss the reducibility of 
linear associative algebras which are not assumed to possess a 
finite base. J. H. M. Wedderburn,f in seeking to generalize 
certain theorems on the structure of an algebra, has considered 
algebras in which restrictions are placed upon the character of 
the idempotent elements. The summations involved in his 
study need not be finite. This seems to be one natural line of 
attack. 

J. W. YoungJ has approached the subject from the point of 
view of the groups involved. His definition of a finite algebra is, 
however, unsatisfactory, not being sufficiently restrictive. 

I have studied infinite algebras in connection with the results 
that can be obtained by a use of the "axiom of choice" and the 
theory of transfinite ordinals. This note, however, does not 

* Presented to the Society, December 31, 1928. 
t J. H. M. Wedderburn, Algebras which do not possess a finite base, Trans­

actions of this Society, vol. 26 (1924), pp. 395-426. 
Î J. W. Young, A new formulation for general algebras, Annals of Mathe­

matics, vol. 29 (1927), pp. 47-60. See particularly p. 60. 


