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hyperplane coordinates given by (13), we see that (8) is the con­
dition that P(Xi=(Au)1/2) shall lie on the apolar quadratic 

Finally we note that if we expand (3) m times, first using 
the elements of the first column and their cofactors, then the 
elements of the second column and their cofactors, and in like 
manner to the last column, and if we then add our results and 
equate A to zero (removing the odd factor m), we get (3) in the 
form ^auA j<i = 0, where an and A a are the same as for (8). This 
shows us that for (1) to be a degenerate quadratic, when m is 
odd, the point P in (15) must lie on (1). There is no similar 
simple geometrical description when m is even and (1) is de­
generate. 
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A CLASS OF UNIVERSAL FUNCTIONS* 

BY GORDON PALL 

Let a, by c, d be integers, a 7^0. The function ƒ (x, y) defined by 
the equation 

(1) f(x} y) — axy + bx + cy + d 

will be called universal if f(x, y) represents all integers for in­
tegral values of x and y. 

THEOREM 1. A necessary and sufficient condition f or (1) to be 
universal is that 

(2) b=±lorc=±l (mod a), 

or a = 6, 5—+3, c= ±2 (mod 6), or vice versa f or b and c\ 

The sufficiency is evident. For, if b = ± 1+Ba, 

f(x, - B) = ± x + d - Be. 

* Presented to the Society, December 28, 1931. 
t The writer was led to the exceptional form 6xy+3x-}-2y as in the analysis 

below, but through an oversight he thought it did not represent 7. The error 
was, fortunately, pointed out by W. L. G. Williams before this paper went to 
press. 
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By replacing x by y — h and y by y — k, we can vary the coeffi­
cients b and c modulo a. By altering the sign of x or y or both 
we get a, b, c of like sign. By changing the sign of ƒ we get a > 0. 
Finally the constant d may be dropped without affecting the 
generality. Hence ƒ is reduced to a form in which 

(3) 0 ^ b ^ \a, 0 ^ c g \a, d = 0. 

The process of reduction does not change the absolute value of 
either b or c (mod a). Hence the theorem will follow if proved 
for forms satisfying (3). 

The theorem is evident for (3) if a — 1, 2, 3, 4 or if either & or c 
is equal to 1 or 0. Hence we may suppose a^5, & ^ c ^ 2 . If 
| # | ^ 2 , 1371 ̂ 2 , then 

I ax;y + bx + cy | ^ 2a 

by (3). If x or 3/ has the values —1,0, 1 the only values of ƒ which 
may equal 1 or 2 are a — b — c, &, c. Hence a-~b — c = l, and c = 2, 
whence either 

a = 5, £ = c = 2; or a = 6, Z> = 3, c = 2. 

In the first case ƒ fails to represent 3. In the second case ƒ is 
evidently universal, since 

6xy + 3x + 2y + l = (3x + l)(2y + l), 

and 3x + l represents either 2h or — 2 \ 
We consider an extension to functions (1) which are ^ 0 for 

all integers x, y^0. Evidently these occur if and only if a > 0 , 
b ̂  0, c è 0, d ^ 0. Then ƒ (x, y) represents 0 for integers ^ 0 if and 
only if d = 0, and then represents 1 only if b or c is 1. Writing 

a = a, j8 = 6, £ = # + 1, q=y + l, 

we have the following result. 
THEOREM 2. Let a, fi denote integers, ce>0, j3^0. T/̂ e only func­

tions of the type (1) which represent only positive integers f or posi­
tive integers £ and 77, and represent all such integers for such £ 
and r), are 

(4) <K£, 17) = ft + (« - l ) t t ~ l)fo - 1) + G8 - 1)({ - 1), 

and <j>(rj, £ ) . 

The function obtained from (4) with j3 = 1, namely 

(5) * (*,30 s *y + (« - 1) (* - 1) (y - 1), 
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is of special interest in view of the property 

(6) HH^y y)> *) = M*, t(y> *)) • 

If we call \l/(x, y) the a-product of x and y and denote it alterna­
tively by x O y, then 

x O y — y O x, (x O y) O z = x O (y O z), 

and the positive integers may be studied under «-multiplication. 
We have 10y = y, so that 1 acts as identity element. We call the 
positive integer y > 1 an «-prime if its only divisors under a-
multiplication are 1 and y. For example, 2, 3, 4, 6, 7, 9, 10, 12, 15, 
16, 19, • • • are 2-primes; but 5, 8, 11, 13, 14, 17, 18, • • • are 
2-composite since, if a = 2, 5 = 2o2, 8 = 2o3, • • • ,13 = 3o3, • • •. 
For any a there are infinitely many a-primes. 

I t is easy to see that «-decomposition (apart from order) into 
a-primes is unique if and only if a = l, 2. That it is unique if 
a = 2 is plain from the equivalence of the equations 

n = 2xy - x - y + 1, In - 1 = (2x - l)(2y - 1). 

I t follows also from the equivalence that p is a 2-prime if and 
only if 2p — 1 is an ordinary prime. 

If a = 3, however, 4o8 = 2ol9 but 2, 4, 8 and 19 are distinct 
3-primes. I t is easy to construct the ideal divisors, restoring 
unique factorization. Generally, the theory is equivalent to that 
of the set of numbers ax + l, x = 0, 1, 2, • • • , under ordinary 
multiplication. 
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