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APOLARITY IN T H E GALOIS FIELDS 
OF ORDER 2«* 

BY A. D . C A M P B E L L 

Let us consider an ra-ary quadratic in the Galois fields of 
order 2n 

(1) 

where 

J\X\y #2> j Xm) — 7 jttijXjXj U, 

i, j = l , V " , w ; ; è i; an = 0 if j ^ i. 

If m is even, the discriminant of (1) isf 

0 012 dn ' ' ' din 

#12 0 #23 * * * #2w 
(2) A s 

# l m #2m #3m * * * 0 

If w is odd, the discriminant of (1) is*f 

2#11 #12 • * * # lm 

(3) A E * 
#12 2#22 ' * * #2w 

# lm #2m * * * 2 # w 

We note that in the expansion of (2) we shall have terms like 
2ai2a23#34 • * * #im = 0 modulo 2. Hence (2), when expanded, is 
of the form 

2 2 2 2 I 2 2 I 
#12#34#56 * * * # m - l m T" #13#24 • • • -f- • • • 

+ (#12#34#56 ' * * + #13#24 • • • + • • • ) 2 . 

Let us consider a pencil of m-ary quadratics 

(4) J^frbij + ixaiùXiXj = 0, 

with bij and a^ like an in (1). 

* Presented to the Society, December 28, 1931. 
t See A. D. Campbell, The discriminant of the m-ary quadratic in the Galois 

fields of order 2», Annals of Mathematics, (2), vol. 29 (1928), No. 3, pp. 395-398. 
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If m is even and we apply (2) to (4), we have 

( 5 ) { (\Z>12 + fMai2)(\bzi + M#3d) • • * (X^m- lm + M#m-lm) + * ' ' } 2 . 

If we equate to zero the square root of the coefficient of X2/xm_2 in 
(5), we obtain the invariant 

= 0. ( 6 ) 6 i 2 ( a 3 4 # 5 6 * ' 'am-lm+ ' ' ' ) + &13(#24#56 • • •-f- • • • ) - f 

If m is odd and we apply (3) to (4), we have 

2(\bu + M#n) ^12 + Atai2 • • • \bim + fxai 

(7) | ' 

A#lm + M#lm A#2m + /X#2w 2(Xbmm ~ r fA^mm) 

If we equate to zero the coefficient of Xjum-1 in (7), we obtain the 
invariant 

(8) 

where 

2-*bijAij — 0 , 

f, y = l , 2 , - " , f » ; ; ^ i; J/< = 0 if j ^ i, 

and where ^4^ is the cofactor of an in a determinant like (2), 
only with m odd. Thus we have 

i n 

0 #23 " ' * #2m 

#23 0 ' * * #3m 

#2w #3» 0 

#12 #13 

#23 0 

#2m #3m 

* # l w 

* #3m 

* 0 

, etc. 

We define the polar (or tangent) hyperplane of any point 
P' (xi , x{ , • • • , xm

f ) with respect to (1) by the equation 

(9) £—- Xi = 0, (i = 1, 2, • • • , w ) . 

To find the equation of (1) in hyperplane coordinates we seek 
the condition that the tangent hyperplane (9) shall be the same 
as 

(10) f jl&jXj — Uj 

and that (10) shall pass through P'. We get equations of the 
form 



54 A. D. CAMPBELL [February, 

(ii) 
pui + 2aux{ + auxi + • • • + aimxj = 0, 

^iOCi — 0. 

If m is even, the determinant of the coefficients of the equations 
(11), considered as equations in the unknowns p, •^1 j %2 > * * ' i 
Xm , vanishes identically because this determinant is then a 
skew-symmetric determinant of odd order (modulo 2). The 
vanishing of this determinant means that, for m even, the hyper-
plane (9) always passes through P' even when (9) is only a polar 
(and not a tangent) hyperplane with respect to (1). Therefore, 
for m even, we define the equation of (1) in hyperplane coordi­
nates as having the form 

(12) 

2 # i i #12 * * * a in 

#12 2#22 * * * #2» 

din #2» 

U2 

2an 

11m 

U2 

Urn 

0 

= J^A-jUiUj = 0, 

where A^ii^j) is defined as A a for (8) and A'ii = ̂  iî j^i, but 
Af.. — XA .. 

For m odd, we define the equation of (1) in hyperplane coor­
dinates as having the form 

(13) 

0 

#12 

01m 

U\ 

012 * 

0 • 

02m * 

U2 ' 

' ' 01m 

* ' 02m 

• • 0 

• • um 

U\ 

u» 

ilm 

0 

SE YJAHU? = 0> 

where An is defined as for (8). We note that, for m even, there 
is no term in (5) of the form aX/xm-1. Even if we define apolarity 
as the relation given by the invariant (6), this has no simple 
geometrical meaning. 

For m odd, the equations 

(14) 
2011^1 + #12X2 + • • • + 0 l m # m = 0 , 

012#1 + 2#22#2 + 023^3 + • • • + 02m#m = 0, • • • , (modu lo 2) 

have a common solution, since the determinant of the coeffi-
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cients vanishes (being skew-symmetr ic and of odd order ) . 
Geometr ica l ly , th is means t h a t all t he polar and t a n g e n t hyper -
planes of (1) pass t h rough a common poin t P , for m odd. 

If P ( X i , X2, • • • , Xm) is th is common solution, we have 

Xi = k±A 11, X2 = kiAi2, • • • , Xm = k±A im, 

Xi = kiA 12, X2 = #2̂ 4 22, * ' * , Xm = k^Aim, 

Xi = kzA 13, e t c . 

B u t A H has t he form a n , being a skew-symmet r ic d e t e r m i n a n t 
of even order , like (2). Similar ly, A22 = «22, • • • ,4mm = i m . Also 
we h a v e 

2 klAi2 
X1X2 — ^i^2^4i2,-X'I == == ^i^4ii> 

^22 

hence Al2
z=A1iA22 = «n«22, so t h a t .412 = «11^22. B u t 

2 
X i = k2A 12 = ^2«n«22 = ^i^411 = ^ i « n ; 

therefore 

2 ki I / a n 
^ i«n = ^2«ii«22? and — = — — j 

k2 1/OÙ22 

so t h a t ki = c/an, and k2 = c/a22, where £ is an a r b i t r a r y con­
s t a n t . F ina l ly we h a v e 

c 2 
Xi = kiAu = a n = can, 

a n 

a n d X 2 = ca22. Similar ly 

2 2 2 &i l / « n 
-41»- = ana™, — = — y 

ki \/an 

so t h a t ki = c / a u and &»• = c/aa\ therefore Xi = can. 
F r o m t h e above discussion we see t h a t t he equa t ions (14) 

h a v e t he common solut ion 

(15) P ( X i , X 2 , • • • , Xm) = P { ( i 4 i 0 1 / 2 , 042 2)1 / 2 , • • • , (Ammyi*\, 

wi th A a defined as f or (8). If we call (8) the relat ion of apo la r i ty 
be tween t h e po in t q u a d r a t i c ^baXiXj — O and the quad ra t i c in 
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hyperplane coordinates given by (13), we see that (8) is the con­
dition that P(Xi=(Au)1/2) shall lie on the apolar quadratic 

Finally we note that if we expand (3) m times, first using 
the elements of the first column and their cofactors, then the 
elements of the second column and their cofactors, and in like 
manner to the last column, and if we then add our results and 
equate A to zero (removing the odd factor m), we get (3) in the 
form ^auA j<i = 0, where an and A a are the same as for (8). This 
shows us that for (1) to be a degenerate quadratic, when m is 
odd, the point P in (15) must lie on (1). There is no similar 
simple geometrical description when m is even and (1) is de­
generate. 

SYRACUSE UNIVERSITY 

A CLASS OF UNIVERSAL FUNCTIONS* 

BY GORDON PALL 

Let a, by c, d be integers, a 7^0. The function ƒ (x, y) defined by 
the equation 

(1) f(x} y) — axy + bx + cy + d 

will be called universal if f(x, y) represents all integers for in­
tegral values of x and y. 

THEOREM 1. A necessary and sufficient condition f or (1) to be 
universal is that 

(2) b=±lorc=±l (mod a), 

or a = 6, 5—+3, c= ±2 (mod 6), or vice versa f or b and c\ 

The sufficiency is evident. For, if b = ± 1+Ba, 

f(x, - B) = ± x + d - Be. 

* Presented to the Society, December 28, 1931. 
t The writer was led to the exceptional form 6xy+3x-}-2y as in the analysis 

below, but through an oversight he thought it did not represent 7. The error 
was, fortunately, pointed out by W. L. G. Williams before this paper went to 
press. 


