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ON T H E W E D D E R B U R N NORM CONDITION 
FOR CYCLIC ALGEBRAS* 

BY A. A. ALBERT 

1. Introduction. Let F be any non-modular field, i a root of a 
cyclic equation in F of degree n and with roots 6r(i). Suppose 
that A is a cyclic algebra with basis 

iry8, (r, 5 = o, l , . . • , » - l ) , 
where 

yri = dr(i)yr, yn = y in F . 

J. H. M. Wedderburn has proved f that A is a division algebra 
if yr is not the norm, N(a), of any a in F(i) for every positive 
integer r less than w. I t has never been shown, however, tha t 
this condition is a necessary one; but the problem of finding 
complete necessary and sufficient conditions has been reduced to 
the case n a power of a single prime. $ 

In the present paper cyclic algebras of order sixteen with the 
corresponding cyclic quartic in its canonical form§ 

<Kco) s ci4 + 2K1 + A2)co2 + *>2A2(1 + A2) = 0 

such that v and A are in F, and r = 1+A2 is not the square of any 
quantity of F, are considered. The norm N(a) of a polynomial 
in i is a rather complicated quartic form in four variables, yet 
we can secure the result that y2 = N(a) if and only if y =a2—|82r 
for a and ]8 in F, a, curious property of cyclic quartic fields. 
When the above equation is satisfied the algebra A is expressible 
as a direct product of two generalized quaternion algebras. 
Necessary and sufficient conditions are secured that our alge­
bras A of order sixteen be division algebras, and it is shown that 
for the particularly interesting case where F is the field of all 
rational numbers the Wedderburn condition is necessary as well 
as sufficient. 

* Presented to the Society, December 30, 1930. 
t Transactions of this Society, vol. 15 (1914), pp. 162-166. 
Î See a paper by the author, On direct products, cyclic algebras, and pure 

Riemann matrices, to appear in the Transactions of this Society, January, 1931. 
§ See R. Garver, Quartic equations with certain groups, Annals of Mathe­

matics, vol. 29 (1928), pp. 47-51. 
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2. The Basic Theorem, Let F(x) be a cyclic quartic field. 
Then it is known (loc. cit.) that F(x) = F(i), where i satisfies the 
equation 

(1) <t>(o>) s co4 + 2VTO)2 + V2A2T = 0 , 

with r = 1 + A2 not the square of any quantity of F and 

(2) v * 0, r, A ^ 0 

all in F. Moreover if we define w by the equation 

(3) i2 = v(u — r) , 

then 

(4) u* = r, 0(i) = 4"(* + 1), 
A 

is the polynomial whose itératives i=d°(i) = 04(f), d(i)yd
2(i) = —i, 

Q*(i)=e(—i) = -6(i) give the four roots in F{i) of <£(co)=0. 
Every quantity of F{i) is expressible in the form 

(5) a = #i + a2i, (#i and a2 inF(w)), 

and a = 0 if and only if a\ — a* = 0. A quantity 

(6) #i == «i + «2^, («l and a2 in F), 

is zero if and only if a\ = a2 = 0 ; and similarly 

(7) ai2 — a2
2r 

vanishes if and only if ax = a2 = 0 by our restriction on r. 
We shall use repeatedly the following simple lemma. 

LEMMA 1. Every product of a finite number of scalar s of the 
forms 

(8) X2 - MV, 

(8') (X2 - M 2 T ) - S X2 - /*2r ^ 0, 

with X and JJL in F, is expressible in the form (8) for X and fi in F. 

The truth of this is evident since 

(Xi + ixiu){\2 + MU) = (Xi/xi + X2/*2r) + (XiM2 + X2/xi)^, 

and hence 
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(9) (Xi2 — M I 2 T ) ( X 2
2 — M22r) = (XiMi + X2M2T)2 — (X1/A2 + X 2 AH) 2 T; 

while if €=X2— J U V ^ O , then 

(10) €-i = e-
2€ = €~2(X2 - M

2r) = (Xe"1)2 - (Me"1)2?". 

Let us now assume that 7 ^ 0 is a scalar in F, such that 
y2 = N(a)f where a is in the cyclic field F(i). We may write 
a ( r )=a[0 r (*)] , (r = 0, 1, • • • ), whence a " = a ( - i ) . Then w' 
= — w; and if a\ is in JF(W) SO that a,\ has the form ai = ai+ce2w, 
we have ai = a( ' and 

(11) N{a1)=a1a{ a{' ai" = {aia{)* = (at-afr)K 

Let us write y2 = N(a)t where 

(12) a = a2 + aziy (a2 and a3 inF(«))« 

We shall first consider the case a3 = 0. Then a —a2 = az+aiu, 
and 

(13) T2 = W ~ <*42r)2. 

This equation in a field F implies that 

(14) 7 = ± («3
2 - a4

2r) . 

If y=a£ —air, we have expressed 7 in the form 

(15) 7 = «2 - /32T 

with a and /3 in F, the result desired. Since r = 1+A2, we have 

(16) - 1 = A2 - r . 

Hence if 7 = — (a3
2 — a4

2r), then 7 = (A2 —r) (a3
2 —OL?T) ; and, by 

Lemma 1, 7 has again the desired form (15). 
Next let a35^0. Then, if a3=X3+X4w, ai = a3

_1a2, we have 

(17) N{a) = N[az{ax + i)] = (X3
2 - X4

2r)2J\T(tfi + f). 

LetS=7(X3
2~X4

2r)-1 . Then 

(18) Ô2 = 72(X3
2 - X4

2r)~2 = iy(fl! + i). 

Butiî b=a!+i, then ô2 = (bbff) (bb")' so that if w = ô[(bb")']~l, 
then S = 8' = w'&6". I t follows that ô2 = ww'N(b) =ww'ô2. Hence 

(19) W = 1, w = M"*-1, 66" = ôw, 
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where w = bb,/ô~1 = ^i+^2u is in F(u). If a i=a i+a 2 w, <*i and 
a2 in F, we have, by (3), 

bb" = a !2 — i2 = ai2 + «22T + 2ai«2^ — K^ — r) 

= («l 2 + «22T + I>T) + (2«iÛ!2 — ?)#• 

From the linear independence of 1 and u this implies 

(20) a? + a2
2r + vr = ££i, 2aia2 — v = 8£2. 

We obtain 2aia2r — VT = Ö^2T, and by addition 

(21) «i2 + 2aia2T + air = ô(^i + ?2T) . 

Since 1—T=—A 2 , if we complete the square in (21), it be­
comes 

(22) (ax + a2r)2 + a2
2(r - r2) = (ai + OL2T)2 - (a2A)2T 

Consider now the equation ww' = 1, or 

(23) if - tfr = 1, £2
2r = (fc + l)(fc - 1). 

Let ^ i ~ l = 2 ^ , ^ + 1=20-. Then 

(24) 4(77r = £2
2r. 

Suppose first that £ i + l = 0 so that cr = 0 and £2 = 0. Then 
£i+£2T = £i = — 1 = Ai2 — r. Hence in this case we have 

(25) f i + £2r = X6
2 - X6

2r, (X6 and X6 in F). 

Next let £ i + l 5^0, so that cr^O; and let us define e by the equa­
tion 

(26) 2<T6 = {a. 

Then (24) gives 4cr7r = 4(72e2T, whence 

(27) T = eVr. 

But 2(cr —IT) = & + 1 — (Ci — 1) =2 , whence 

( 2 8 ) 1 = <7 — 7r = CT — €20T = <r(l — € 2 r) . 

Since 1 — e2r p^O, using Lemma 1, we have 
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(29) <r = j(3i2 - j82
2r, fa and 02 in F), 

so that ei = 7r+o- = (7(l + €2r), and 

*i + far = er[(l + €2r) + 2er] = cr[(l + er)2 - (eA)2r] 

= fa2 - &2r) [(1 + er)2 - (eA)2r] = X6
2 - X6

2r, 

for X6 and X6 in F, by Lemma 1. Hence in all cases (25) is 
satisfied. 

If we now put ft = cei+ra:2, J84=ACK2, (22) becomes 

(31) 5(XÖ
2 - X6

2r) = ft2 - /34
2r. 

Suppose first that ft2 — j84
2r = 0, whence /33 =/34 = 0. Then our 

definitions above of 183 and ft evidently give cei = a2 = 0, and 
(20) take the form VT = S£i, — v = S£2. Squaring each side of both 
these, we may write Ï>2T2 = Ô2£I2, P2T = 52£2

2T, whence, by subtrac­
tion and the use of the relations l=£i2— £2

2T, T = 1 + A 2 , we 
obtain 

(32) V2T2 - v2r = T(V2A2) = d2(^2 - £2
2r) = Ô2. 

Then T = (ÔJ/""1A~1)2, which is a contradiction since r is not the 
square of any quantity of F. Hence ft2 — ft2T^0. Thus 
X(? — X6

2r 7^0 has an inverse in F which has the form X?2 — X8
2r by 

Lemma 1, and we may write 

(33) y = ô(X3
2 - X4

2r) = (X3
2 - X4

2r)(X7
2 - X8

2r)(ft2 - ft2r) 

= ( a 2 - / 3 2 r ) , 

again using Lemma 1. We have proved in all cases the first part 
of the following statement. 

THEOREM 1. A scalar y 9e 0 in F has the property 

(34) 72 = N{a) 

for a in F(i)} a cyclic quartic field, if and only if 

(35) y = a2 - $2ry (a and 0 in F), 

where F(u) is the quadratic sub field of F(i) defined by (1) and (3), 
and U2=T. 

Moreover, when y=a2—fi2Ti we have N(a+(3jj,) = (a2—P2T)2 

= 72, which is the converse in the preceding theorem. 
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Suppose now that 7 = a2 — /32r and y2 — N(b). If a^a+fiu, so 
that y=aaf, we have 72 = N(a) =N(b). I t follows that 0=^0 and 
NÇab"1) = 1, a — wb, where N(w) = 1. Thus we have the follow­
ing corollary. 

COROLLARY 1. Let y=aa', where a is in F(u). Then y2 = N(b) 
for b in F(i) if and only if b is the product of a by a unit of F(i). 

Since — l=ddf, where d is given in (16) and is in F(u)} we 
have also the following result. 

COROLLARY 2. The scalar y2 = N(b) for b in F(i) if and only if 
—y=-ee' for e in F(u). 

3. The Wedderburn Norm Condition. For a cyclic algebra of 
order sixteen Wedderburn's condition becomes 

yr^N(a), (r = 1 ,2 ,3) . 

I t is easily shown* that if 7 or yz were a norm then A would 
not be a division algebra. Hence the only possible case is 
y2 = N(a). By Theorem 1 this implies that 7 = a 2 —/32r. Con­
sider the sub-algebra 

Z = (yr> uyr), (r = 0, 1, 2, 3), 

an algebra of order eight with yu=—uy, y = 7 , U2 = T in F, 
y2u—uy2. We shall write 

(36) s = (e + y2)y, t = i(ax + y2), ax = $xq -fou, 

where we have used Corollary 2 to write 

(37) - 7 = ee', e = 0i + p2u, (@i and 02 in F), 

and have 

(38) yi = 6{i)y, 6(i) = qi, q = &r*(u + 1), qq' = - 1, 

since A2gg' = (w + l ) ( - « + l ) = - ( 1 + A 2 ) + 1 = - A 2 . We shall 
compute 

st = [(e + y2)y][i(ai + y2)] = (e + y2)qi{ax
f + y2)y 

= iq(e - ;y2)(a/ + ;y2);y = ig[(ea' - 7) + (e - ai ' )??2]?, 

since ya=afy for every a of F(i) and y 2 i= — iy2. Now 

* See the author's paper On direct products, etc., loc. cit. 
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q(ea' — 7) = q(ea' + eef) = eq(ax + e') 

= eq[^qf + 0%u + & - &«*] = 0ie[qq' + q] = j M « - 1). 

Also 
g(«-<n') =2[(ft+ft«0 - (ftg' +&«)] = /3i(g+l). 

I t follows that 

(39) st = pxi[e(q - 1) + (g + l)y2]y. 

We have similarly 

ts = [i(ai + y2)][(e + y2)y] = i[{axe + 7) + {ax + e);y2];y, 

aie + 7 = ai* ~ ee' = e[(0ig - M — (£1 - ft**)] = 0i«(? - 1), 

while a i + ^ = j8ig—j82W+j8i+j82w=i8i(g+l). We then obtain im­
mediately from (39) 

(40) st = ts. 

Consider the linear sets 

(41) B = (1, u, s, us), C = (1, y\ t, y2t), 

over F. We have the relations 

(42) su = — ^s, ty2 = — y2t\ uy2 = y2u, ut = tu, sy2 = y2s, st = ts, 

so that every quantity of B is commutative with every quantity 
of C. We now show that 

(43) s2=(e + y2){e' + y 2 ) / = [{eef + 7) + (e + e')y2]y2 = 20 l T , 

since e+e' = 2/3x, ee' = —7. Also 

/2 = f 2 ( a i _ y 2 ) ( a i + 3,2) = i 2 ( f l l 2 _ 7 ) 

= *2[/?iV - 2 0 ! / ^ + /52
2r + 0!2 - 022r] 

= W(<Z2 + 1) - 2p1p2qui2, 

since 7 = — ee'. We have also i2=v(u — r ) , so that 

i2q = vàrl{u — r) (u + 1) =A~1i>(r — r + w — wr) 

= A - 1 ^ M ( 1 — T) =A- 1 r a ( -A 2 ) = —AJ>W. 

Moreover, we know that 

i2(g2 + 1) = i2 [A~2(T + 2u + 1) + 1 ] = A"2;2 [lu + r + (1 + A2) ] 

= 2*>A-20* - T)(U + T) = 2vA~2(r - r2) = - 2*>r. 



308 A. A. ALBERT [April, 

Hence 

(44) t2 = 2yrj81(foA-0i). 

We shall assume at this point that 

(45) ft * 0, ftA - ft ^ 0, 

for otherwise either s2 = 0 or t2 = 0, and A is evidently not a divi • 
sion algebra since from their form neither s nor / is zero. As a 
consequence, a? — y 9*0 has an inverse in F(u) and e2 —7^0 has 
an inverse in F(u) since t2 = i2(a£ —y) ^ 0 , while if 

then e(e — ef) = 2fte = 0, contrary to the hypothesis that ftj^O, 
so that e 9^0 has an inverse in F(u). The sets B and C are 
generalized quaternion algebras over F, since in B 

u2 = T, s2 = 2ft7, 51/ = —us, 
while in C 

(3,2)2 = y} t2 = 2^ft(f tA ~ ft), ƒ* = ~ ty', 

and evidently from the form of 5 and / the quantities 1, u, s, us 
are linearly independent in F, and the quantities 1, y2, t, yH are 
linearly independent in F, when iayP (a, j8 = 0 ,1 , 2, 3) form a basis 
of A. The linear set .BC= CB of all sums of all products of quan­
tities of B and quantities of C is an algebra, since a product 

is in ^ C because for every X and /x the quantities &I\&2M are in J3 
and CIXGM are in C. Now 5 C contains F(u) and hence (y—a? ) ~ l , 
(7 —e2) -1. Since .BC contains s, t, e, ai, y2, and is an algebra, it 
contains 

(7 — a?)~l{ty2 - ait) = (7 - a£)-li(aiy2 + 7 — #i2 - a^2) 

= (7 - ^i2)_ 1(7 — ai2)i = », 
and 

(7 —• e2)~l(y2s — es) = (7 — e2)*~1[(y2e + 7) — ey2 — e2]y 

= (7 — e2)~l(y — e2)y = y. 

But then 3 C contains the basis of A and has order sixteen. I t 
follows that A is the direct product of B and C. 
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THEOREM 2. Let y2 = N(a) for some a of F(i) so that —y=ee', 
where e = j3i+j32u and ft and /32 are in F. Let ft^O, j82A= ĵ3i, a set 
of necessary conditions that A be a division algebra. Then the 
cyclic algebra A is the direct product of two generalized quaternion 
algebras B = (l, u, s, us), C = ( l , 7, t, jt), with y2=j, su=—us, 
tj = —jt, and 

(46) u2 = r, s2 = 2/3IT = o-, f = 7, I2 = P = 2^1r(/32A - jffi). 

Consider now the direct product of any two generalized quater­
nion algebras B and C. I t is known that dm B has the property 
that d2 is in F if and only if 

(47) d = \xu + \2s + \*us, d2 = Qx = Xi2r + \2
2<r - \ 3

2ÖT, 

with Xi, X2 and X3 in F. Similarly if ƒ is in C then / 2 is in F if and 
only if 

(48) ƒ = x4y + x5/ + x6y*, f2 = Q2 = X4
2T + X6

2P - X 6
2

TP 

for X4, X5, and Xe in F. Suppose first that Q = Qi — Q2 is a null form, 
that is, that we can make Q = 0 for values of Xi, • • • , Xe in F not 
all zero. Define d by (47) and ƒ by (48) for the particular X» 
we have used to make Q vanish. Since A is the direct product of 
B and C, the quantities d — ƒ and d+f are both not zero when the 
X» are not all zero. But (d-f) (d + f) =d2-f2 = Qi-Q2 = Q = 0. 
Hence in A a product of two non-zero quantities is zero and A is 
not a division algebra. 

Conversely, let Q not be a null form. Then, in particular, Qi 
and Q2 are not null forms and B and C are known* to be division 
algebras. The algebra T whose quantities have the form 
X =Xi+x2u, where Xi and x2 are in C, has a division sub-algebra 
C and the property that if we define x' =x for every x of C, then 
U2 = T in C, x / / = (^ /) ,=^2^w"~2=: :^ f ° r every x of C. But then 
T is knownf to be a division algebra if and only if r 9e X X ~~~ X for 
any x of C. But r is in i? and if r — x2 then, since x is an ƒ of 
(48), and u is a d of (47), we have Q = 0 f or Xi = 1, a contradiction 
of our hypothesis that Q was not a null form. 

Define X ' = # i — x2u, for every X of T, and we will have 
X'=sXs~\ X"=s2Xs-2 = X, s2 = a in F. Then it is known 

* See L. E. Dickson, Algebren und ihre Zahlentheorie, p. 47, for the condi­
tion a 5̂  £i2 — £2V, equivalent to the condition we have stated, 

t A theorem of L. E. Dickson, ibid., pp. 63-64. 
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(Dickson, loc. cit.) that A, whose quantities have the form 
X+ Ys, is a division algebra when T is one if and only if 

s2 = X,XîoranyXoîT. 

But if s2 = X'X, (xi — X2u)(xx+X2u) =x? —X£T+(XIX2 — X2XI)U = <T 

we have 

(49) a = #i2 — X22T, ^1X2 = #2# i . 

First let x\ and #2 be in F. Then Q is a null form when we take 
\i=<r, X2=r^2, X3=Xi, X4=X5=X6 = 0, since 0 = <TT((T+X?T--X?) 
= (r2T+(r^2)V — #I2OT, a contradiction. Next let #i be in JF but 
X2 not in F. Then #2

2T = #I2 — o* is in F and #2r is an ƒ of (48) 
while (#2r)2 = Q2 = #i2r —or so that <2 is a null form for Q2 = Ow)2, 
Xi = Xi, X2 = 0, X3 = 1. The only remaining case is where xi is not 
in F. If Xi2 were in F so that Xi would be an ƒ of (48), then Xix2 

= x2Xi implies that X2 = ^ + rjxi, £ and t\ in F, since in a general­
ized quaternion division algebra the only quantities com­
mutative with a non-scalar quantity x are scalar coefficient 
polynomials in x. But #2

2 is in F so that rj = 0 or £ = 0. When 
rj = 0, then Xi2 = £2r+cr and Q2 = Qi = £2r + IV — Ocrr, a contradic­
tion of our hypothesis. When £ = 0 then x2 = r;xi and x? —X£T 
= XI2(1 — TI2T). But by Lemma 1 we have (1—772r)~1 = 51

2 — S2
2r 

and x? =Ç2=(jS1
2 — <xrôi =Qu a contradiction. We have finally 

come to the case where neither xi nor its square is in F. We 
then have, where ƒ is given by (47) and / 2 = (?2, that # i = X 7 + / 
with X 7 ^0 in F. As before the relation XiX2 = x2^i implies that 
x2 is a polynomial in xi. But now we may write x2 = £+??ƒ. Now 

atf - *22 r = X7
2 + 2X7/ + Q2 - (£2 + 2 ^ / + v2Q2)r = (7. 

I t follows that 2X7 — 2£T7T = 0 , SO that X7 = £7?r and 

The quantity (1—rç2r)^0 has an inverse 5x
2 — 52

2r with Si and 
52 in F by Lemma 1, and Q2 — £2T =cr(Si2 —S2

2r), so that we have 
Ö2 = £2T+O'S1

2 —cjTÖi =Qi. We have again shown that if -4 were 
not a division algebra, then Q would be a null form, a contradic­
tion of our hypothesis. Hence A is a division algebra and we 
have proved the following theorem 
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THEOREM 3. A direct product A=BXC of two generalized 
quaternion algebras B = (l, u, s, us), C = ( l , j , t, jt) with U2=T} 

S2 = <T, su=—us,j2=y, t2 = p, tj= —jt, is a division algebra if and 
only if the quadratic f or m 

(50) Q = (Xx2r + X2
2(T - \3

2<7T) - (X4
2

T + X5
2p - X6

2YP) 

in the variables Xi, X2, • • • , Xe in F, is not a null form. 

We may now apply Theorem 3 and our previous results to 
obtain complete necessary and sufficient conditions that a cy­
clic algebra be a division algebra. We first assume that y2 

= N(a) for some a in F(i). If 7 = 0, then —7=/3i2 — J32
2T with 

j3i=/32 = 0, and the form Q may be defined. If 7 ^ 0 , then by 
Corollary 2 we can again define the form Q with 

cr = 2j817,P = 2^Ti81(i82A-i8i). 
Suppose first that Q is a null form. If 7 = 0 , then y = 0 
while y is not zero and A is not a division algebra. If 
7 ^ 0 but j8i = 0 or j82A—/3i = 0, then again, as we have seen, 
A is not a division algebra. The only other case is where 
Theorem 2 can be applied and, by Theorem 3, A is again not a 
division algebra. Conversely let Q be not a null form. Then 
obviously from our definition of Q as above and the fact tha t 
we have the coefficients of Q all not zero in a non-null form, 
7 7^0, ftA^jSi, j8i7^0, and again A is the direct product of B and 
C; we may again apply Theorem 3, and A is a division algebra. 

THEOREM 4. Let A be a cyclic algebra with basis ixy*> (X, M = 0, 
1,2,3), where i is a root of the cyclic quartic 

<JKCO) = co4 + 2vro)2 + V2A2T = 0 

with r = l+A 2 , V5*0, AT^O in F, and r not the square of any 
element in F. Also 

6(i) = qi, qA = 1 + u, i2 = v{u — T), yi == 0(i)y, 3>4 = y in F. 

Suppose that y2 is the norm of a quantity of F(i) so that we have 
—y =/3i2 — j82

2r with /3i and /32 in F. Then A is a division algebra 
if and only if the form 

Q = Xi2r + X2
2or — X3

2or — X4
27 — X5

2p + X6
27P 

with <7 = 2/3i7, p = 2j81^r(/32A—ft) does not vanish f or any Xi, • • • , 
X6 not all zero and in F. 
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The only other case is y29^N{a). Then obviously y?£N(a) 
since otherwise y2 — N(a2), a contradiction. If y3 = N(a), then 
either 7 = 0, whence y2 = iV(0), a contradiction, or else 7 ^ 0 , 
76 = 7274 = N(a2), 72 = N(ay~l), again a contradiction. Hence the 
condition y2 ^ ^ ( a ) is equivalent to the Wedderburn norm condi­
tion. We have also shown the former condition equivalent to 
the condition y^ — eef for any e of F(u). We thus have proved 
the following theorem 

THEOREM 5. Let all the hypotheses of Theorem 4 be satisfied 
except that now y27^N(a) for any a of F(i), or, what is the same 
thing, —y is not expressible in the form ft2 — j82

2r, ft and fa in F. 
Then the cyclic algebra A is a division algebra. 

We shall finally pass to the case where F is the field R of all 
rational numbers. Quadratic forms have been studied in detail 
for this case and it has been shown that every indefinite quadra­
tic form in five or more variables is a null form.* The numbers 
r, a, -—or all have the same sign only when all are negative. If 
they are all negative and 7, p, — yp are also all negative then r 
and —7 have opposite signs so that Q = Qi — Q2 is an indefinite 
quadratic form. In the other cases obviously Q is indefinite, 
providing that its coefficients are all not zero. When some of the 
coefficients of Q are zero then, by making all the other variables 
zero and those with zero coefficients not zero, we can make Q zero 
so that Q is a null form. When none of the coefficients of Q is 
zero then Q is an indefinite quadratic form in six variables and 
hence is a null form. Hence in every case the cyclic algebra A 
is not a division algebra when the hypotheses of Theorem 4 are 
satisfied. We havef the following result. 

THEOREM 6. When F = R, the field of all rational numbers, the 
Wedderburn norm condition for cyclic algebras of order sixteen is 
necessary as well as sufficient. 
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* For the first complete proof of this theorem see L. E. Dickson, Studies 
in the Theory of Numbers. 

t We also have here a new short proof of the author's theorem tha t a direct 
product of two rational generalized quaternion division algebras is never a 
division algebra, by using the above proof tha t when Q is a null form A is not 
a division algebra. This theorem was first proved by the author and published 
in the Annals of Mathematics, vol. 30 (1929), pp. 621-625. 


