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ON THE WEDDERBURN NORM CONDITION
FOR CYCLIC ALGEBRAS*

BY A. A. ALBERT

1. Introduction. Let F be any non-modular field, ¢ a root of a
cyclic equation in F of degree # and with roots 67(z). Suppose
that 4 is a cyclic algebra with basis
1y, (r,s=0,1,---,n—1),
where

yri = 07(d)y", y» = vy inF.

J. H. M. Wedderburn has provedt that 4 is a division algebra
if 47 is not the norm, N(a), of any @ in F(z) for every positive
integer 7 less than #. It has never been shown, however, that
this condition is a necessary one; but the problem of finding
complete necessary and sufficient conditions has been reduced to
the case # a power of a single prime.

In the present paper cyclic algebras of order sixteen with the
corresponding cyclic quartic in its canonical form§

o(w) = ot + 20(1 + A2)w? 4 »2A2(1 + A2) =0

such that» and A are in F, and 7 =14A?is not the square of any
quantity of F, are considered. The norm N(a) of a polynomial
in 7 is a rather complicated quartic form in four variables, yet
we can secure the result that y2= N(a) if and only if vy =a?—32r
for o and B in F, a curious property of cyclic quartic fields.
When the above equation is satisfied the algebra 4 is expressible
as a direct product of two generalized quaternion algebras.
Necessary and sufficient conditions are secured that our alge-
bras 4 of order sixteen be division algebras, and it is shown that
for the particularly interesting case where F is the field of all
rational numbers the Wedderburn condition is necessary as well
as sufficient.

* Presented to the Society, December 30, 1930.

t Transactions of this Society, vol. 15 (1914), pp. 162-166.

} See a paper by the author, On direct products, cyclic algebras, and pure
Riemann matrices, to appear in the Transactions of this Society, January, 1931.

§ See R. Garver, Quartic equations with certain groups, Annals of Mathe-
matics, vol. 29 (1928), pp. 47-51.
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2. The Basic Theorem. Let F(x) be a cyclic quartic field.
Then it is known (loc. cit.) that F(x) = F(z), where ¢ satisfies the
equation

€)) ¢(w) = w? 4+ 2vrw? 4+ A2 = 0,

with 7=1-+A? not the square of any quantity of F and
2) v 0, 7, A#0

all in F. Moreover if we define # by the equation

3 @ =v(u—1),

then

@ W=, 0 =+,

is the polynomial whose iteratives 2 =0(2) =04(z), 0(¢), 6*(3) = —1,
0%(2) =0(—1¢) = —0(¢) give the four roots in F(z) of ¢(w)=0.
Every quantity of F(z) is expressible in the form

(5) ¢ = a1+ a.1, (e1 and aq in F(u)),
and a=0if and only if &1 =a;=0. A quantity

(6) a1y = a1 + amu, (o1 and @ in F),
is zero if and only if oy =, =0; and similarly

©) af — a7

vanishes if and only if @y =a2 =0 by our restriction on 7.
We shall use repeatedly the following simple lemma.

LeMMA 1. Every product of a finite number of scalars of the
forms

®) N = i,

(8" (A2 — pir)7, A — uir £ 0,

with X\ and p in F, is expressible in the form (8) for N and u in F.
The truth of this is evident since

(A1 mam) (Ng + pon) = (Nur + Aapar) + iz + Nopr)n,
and hence
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) A\ = wlf)(N? = p’7) = (Napr + Nopar)® — (aa + Nopin) 7
while if e =N2—pu27 50, then
(10) €l = e2% = e2(\2 — u27) = (A1) — (uel)?r.

Let us now assume that y>%0 is a scalar in F, such that
4?=N(a), where a is in the cyclic field F(s). We may write
a”=alf7()], (»=0, 1,---), whence a’’=a(—14). Then u’
= —y; and if a; is in F(u) so that a; has the form a; =a;+ s,
we have a;=a/’ and
(11) N(a)=araf af’ al’' =(a1a!)?= (a2 —a’r)2
Let us write ¥2=N(a), where
(12) a = as + asi, (as and a3 in F(u)).

We shall first consider the case a;=0. Then ¢=a:=as+oun,
and

13) v? = (a2 — asl7)?
This equation in a field F implies that
(14) vy =+ (a8 — adr).

If y=af —adTt, we have expressed v in the form

(15) v =ao — @1

with o and B in F, the result desired. Since 7=1-4A?, we have
(16) —1=A%—7,

Hence if y=— (af —al7), then y=(A2—7) (o —al7); and, by
Lemma 1, ¥ has again the desired form (15).
Next let a320. Then, if a3 =N\s+N\4u, a1 =0as5'a,, we have

(17) N(a) = N[aa(al + i)] = ()\32 - )\427')2N(01 + 1«) .
Let §=y(\2 —A27)"L. Then
(18) 82 = y2(\g — N37)72 = N(a1+ 7).

But if b=a,-+1, then 8= (bd"’) (bb’’)’ so that if w=238[(bd"")"]"?,
then § =6"=w'bd’’. It follows that §2=w w’N(b) =w w’s% Hence

19 ww =1, w = bb"s"1, bb"” = dw,
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where w=>0b""0"1=§+&u is in F(u). If ai=on+aeu, a; and
«s in F, we have, by (3),

oo’ = af — i = a + a7 + 2a1000 — v(u — 7)

(a2 + a1 + v7) + Qoiaz — »)u.

From the linear independence of 1 and % this implies
(20) al + a7t + vr = 681, 2a103 — v = 0.
We obtain 2ai0er —y7 =8&7, and by addition

(21) a? + 2on00 + att = 8(§1 + &o1).

Since 1 —7=—A2 if we complete the square in (21), it be-
comes

(22) (a1 + asr)?2 4 a2 (t — 72) = (o1 + as1)? — (@2l)?r

= 8(k1 + &)

Consider now the equation ww’ =1, or
(23) 8 —Er=1 Er=E+DE-1).
Let {4—1=2m, &+1=2¢. Then
(24) dom = £P7.
Suppose first that £&-+1=0 so that ¢=0 and &=0. Then
&4&r=§=—1=A2 —71. Hence in this case we have
(25) E1 4 far = N2 — N7, (As and N¢ in F).

Next let £+150, so that ¢50; and let us define € by the equa-
tion

(26) 20€ = £,.

Then (24) gives 407 =40%€r, whence

27 T = €eaT.
But2(c—m)=&+1—(&—1) =2, whence

(28) l=0¢—7=0—¢éor = o(1 — é¥r).

Since 1 —é*r#0, using Lemma 1, we have
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(29) o = B¢ — B2, (81 and B2 in F),
so that &, =m+o0=0(1+¢€7), and

£14 o1 = o[(1 + &) + 2er] = o[(1 + er)2 — (ed)?r]

30
(30) = (B2 — B27)[(1 + er)? — (eA)?r] = \& — \éT,

for \s and N\¢ in F, by Lemma 1. Hence in all cases (25) is
satisfied.
If we now put 83 =a;+710s, Bs=Aa, (22) becomes

(31) 6(Ns® — Né7) = B — BT,

Suppose first that 32 —B27=0, whence B3=8:=0. Then our
definitions above of B; and B, evidently give ay=a2=0, and
(20) take the form v =48&;, —v =08£,. Squaring each side of both
these, we may write v2r2=2082£2, v?r =§2E#7, whence, by subtrac-
tion and the use of the relations 1=§2 —§27, 7=1+4A2 we
obtain

(32) p27r? — 27 = T(¥2A2%) = §2(¢2 — &Pr) = 82,
Then 7= (6v—1A-1)?2, which is a contradiction since r is not the
square of any quantity of F. Hence B2 —B27#0. Thus

A¢ —A&75%0 has an inverse in F which has the form N2 —Aé7 by
Lemma 1, and we may write

(33) v =6\ — A7) = (A& — MET)(N? — NET) (B2 — i)
= (a2 - ﬁ27'),

again using Lemma 1. We have proved in all cases the first part
of the following statement.

THEOREM 1. 4 scalar v#0in F has the property
(34) v? = N(a)
for a in F(3), a cyclic quartic field, if and only if
(35) v = a? — B, (a and B in F),

where F(u) is the quadratic subfield of F(i) defined by (1) and (3),
and u*=r.

Moreover, when v =ca?—8%r, we have N(a+8u) = (a2—p327)?2
=+2, which is the converse in the preceding theorem.



306 A. A. ALBERT [April,

Suppose now that y=a2—B2% and y2=N(b). If a =a+Bu, so
that vy =aa’, we have ¥2=N(a) = N(b). It follows that 50 and

N(ab=') =1, a =wb, where N(w)=1. Thus we have the follow-
ing corollary.

COROLLARY 1. Lety=aa’, where a is in F(u). Then v2=N(b)
for b in F(2) if and only if b is the product of a by a unit of F(3).

Since —1=dd’, where d is given in (16) and is in F(u), we
have also the following result.

COROLLARY 2. The scalar v2= N(b) for b in F(i) if and only if
— =ee’ for ein F(u).

3. The Wedderburn Norm Condition. For a cyclic algebra of
order sixteen Wedderburn’s condition becomes

v # N(a), (r=1,2,3).

It is easily shown* that if v or 4% were a norm then 4 would
not be a division algebra. Hence the only possible case is
v¥2=N(a). By Theorem 1 this implies that ¥y =a?—82r. Con-
sider the sub-algebra

Z = (3”, uy'), (r = 0,12, 3),

an algebra of order eight with yu= —uy, y*=v, u?=7 in F,
yiu=uy? We shall write

(36) s=(e+ D)y, t = i(ar+ y?), a1 = g —Bau,

where we have used Corollary 2 to write

(37) —y=ce, e =81+ B, (BiandfB;inF),
and have

since A%q'=(u+1)(—u+1)=—(14+A%)4+1=—A2 We shall
compute

st = [(e + y)y]liCar + ¥)] = (e + yD)qi(a)’ + 32y
igle — yB(ay' + y9)y = ig[(ea’ — v) + (¢ — ar)gy?] y,

since ya =a’y for every a of F(i) and y% = —sy?. Now

I

* See the author’s paper On direct products, etc., loc. cit.
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g(ea’ — v) = qled’ + ee’) = eq(a)’ + ¢')

= eq[B1g’ + Beu + B1 — Bau] = Brelgq’ + q] = Bie(g — 1).
Also

gle—ai) =q[(Bi+Bsu) — (Big’ +Bau) | =Bi(g+1).
It follows that
(39) st = Baife(g — 1) + (g + 1)y*]y.
We have similarly
ts = [i(a1 + )] [(e + ¥)y] = i[(are + ) + (a1 + 2]y,

a1 + v = aie — e = 3[(319 — Bou) — (B1 — ﬂzu)] = Pie(¢ — 1),

while a1+ e=01g—Bu+ P14+ B =F1(g+1). We then obtain im-
mediately from (39)

(40) st =ts.
Consider the linear sets
(41) B = (1, u,s, us), C=(1, 9% ¢, %),

over F. We have the relations
(42) su = — wus, ty? = — y2%; uy? = y*u, ut = tu, sy? = y¥s,st = is,

so that every quantity of B is commutative with every quantity
of C. We now show that

(43) s? = (e+ y9(¢' + 932 = [(ee +7) + (e + ¢)y*]y* = 281y,
since e+e’ =20, ee’ = —v. Also
2 = i%(a; — y?) (a1 + »?) = *(ad — v)
= 2[B2¢® — 28:8squ + BFT + B — B7]
= 87 (¢* + 1) — 2B182qui?,
since Y= —ee’. We have also ¢2=»(x—7), so that
2g=vA Y (u—71) (u+1)=A"w(r—74u—ur)
=A"Yu(l—7) =A""Yu(—A%) = —Avu.
Moreover, we know that
22+ 1) = 2[A2(r 4+ 2u+ 1) + 1] = A22[2u+ 7+ (1 +A?)]
= A 2(u — 1)(u+ 1) = A2t — 72 = — 7,
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Hence

(44) 12 = 21B1(BA — B1).
We shall assume at this point that

(45) B1 5 0, B2A — B1 50,

for otherwise either s2=0 or =0, and 4 is evidently not a divi-
sion algebra since from their form neither s nor ¢ is zero. As a
consequence, a2 —v#0 has an inverse in F(«) and e?—vy 0 has
an inverse in F(u) since £2=142(a:? —v) 50, while if

e2—y=et—ee' =0,
then e(e—e’) =2B:6=0, contrary to the hypothesis that (§;5%0,

so that e>#0 has an inverse in F(u#). The sets B and C are
generalized quaternion algebras over F, since in B

u? =171, s*= 2By, su = — us,
while in C

()2 =7, 12 = 1B:1(B:A — B1), y% = — ty?,

and evidently from the form of s and ¢ the quantities 1, u, s, us
are linearly independent in F, and the quantities 1, ¥2, ¢, y% are
linearly independent in F, when 7%y# (o, 3=0, 1, 2, 3) form a basis
of A. The linear set BC= CB of all sums of all products of quan-
tities of B and quantities of C is an algebra, since a product

< Z)\:bnGD\)( ;b%@u) = g(bl)\b%) (61nCau)

is in BC because for every N and u the quantities b1)\bz, are in B
and Ci\Cq, arein C. Now B(C contains F(u) and hence (y —a2)™},
(y—e?)~1. Since BC contains s, ¢, e, a1, ¥%, and is an algebra, it
contains

(v — a®)7'(#y* — axt) = (v — a)Mi(ary* + v — o — a1y?)

= (v —a?) Wy — a)i =1,
and

(v — e)7Uy% — es) = (v — )7 (y%e + v) — ey — et]y
=@ —e) Ny —e)y=y.

But then BC contains the basis of 4 and has order sixteen. It
follows that 4 is the direct product of B and C.
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THEOREM 2. Let v*= N(a) for some a of F(i) so that —vy =ee’,
where e =L1+Bou and B1 and Be are in F. Let $1%0, BA#Py, a set
of mecessary conditions that A be a division algebra. Then the
cyclic algebra A is the direct product of two generalized quaternion
algebras B=(1, u, s, us), C=(1, j, ¢, jt), with y*=j, su= —us,
tj=—jt, and

(46) ut =171, s2=28y =0, j2 =1, 82 =p = 20811(BA — B1).

Consider now the direct product of any two generalized quater-
nion algebras B and C. It is known that d in B has the property
that d?is in Fif and only if

(47) d= )\114 + )\23 + >\3MS, a2 = Q1 = )\12T + )\220' - )\320'T,

with N\;, A; and N3 in F. Similarly if fis in C then f2is in F if and
only if

(48) f = Ngj 4 Nat -+ Nejt, f2= Q2 = N2y + Nlp — Névp

for Ny, Ns, and Ng in F. Suppose first that Q= Q1 — Qs s a null form,
that is, that we can make Q=0 for values of Ay, - - - , N\¢ in F not
all zero. Define d by (47) and f by (48) for the particular \;
we have used to make Q vanish. Since 4 is the direct product of
B and C, the quantitiesd —f and d4-f are both not zero when the
\; are not all zero. But d—f)(d+f)=d*—1?=01—Q.=Q=0.
Hence in 4 a product of two non-zero quantities is zero and 4 is
not a division algebra.

Conversely, let Q not be a null form. Then, in particular, Q;
and Q, are not null forms and B and C are known* to be division
algebras. The algebra I' whose quantities have the form
X =ux1+xou, where x; and x, are in C, has a division sub-algebra
C and the property that if we define ¥’ =x for every x of C, then
u?=rin C, x"'=(x")' =uxu—?=x for every x of C. But then
T'is knownt to be a division algebra if and only if 7#x’x =«2 for
any x of C. But 7 is in F and if 7=x2 then, since x is an f of
(48),and #is a d of (47), we have Q=0 for \; =1, a contradiction
of our hypothesis that Q was not a null form.

Define X’ =x,—xu, for every X of I', and we will have
X' =sXs"1, X""=s2Xs?2=X, s!=0¢ in F. Then it is known

* See L. E. Dickson, Algebren und ihre Zahlentheorie, p. 47, for the condi-
tion ¢ # £2 — £27, equivalent to the condition we have stated.
t A theorem of L. E. Dickson, ibid., pp. 63—-64.
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(Dickson, loc. cit.) that A, whose quantities have the form
X + Vs, is a division algebra when T is one if and only if

s?2=X'X for any X of T'.

Butif s2=X'X, (x1—x9u) (1 +x0u) =x2 —x2 7+ (X100 — X018 =0
we have

(49) o = xf" - x«fr, X1Xe2 = X2¥1.

First let x; and x; be in F. Then Q is a null form when we take
M=0, No=7%, Ns3=x1, Ma=Ns=Ng =0, since O=07(c+x27—2x2)
=021+ (1%2)% —x2 0T, a contradiction. Next let x; be in F but
xe not in F. Then x?>r=x% —0¢ is in F and x,7 is an f of (48)
while (x37)2= Qs =x27—07 so that Q is a null form for Q.= (x.7)%,
M =x1, Aa=0, \3=1. The only remaining case is where x; is not
in F. If x2 were in F so that x; would be an f of (48), then x;x,
=x9%, implies that xy=£-+nx, £ and 7 in F, since in a general-
ized quaternion division algebra the only quantities com-
mutative with a non-scalar quantity x are scalar coefficient
polynomials in x. But x> is in F so that =0 or £=0. When
7 =0, then x,2=£7+0 and Q; =Q1=£E7+1% — Oor, a contradic-
tion of our hypothesis. When £=0 then x,=7%x; and xZ —x?7
=x,2(1—n%r). But by Lemma 1 we have (1 —#?r)~1=062 — 8’7
and x? =Q; =002 —o78# = (4, a contradiction. We have finally
come to the case where neither x; nor its square is in F. We
then have, where f is given by (47) and f2=Q., that x;=N;+f
with A75£0 in F. As before the relation x;xy=2x.x; implies that
%2 is a polynomial in x;. But now we may write x.=£-47f. Now

22 — 227 = N2+ 20f + Q2 — (82 + 2&nf + 9%Q2)T = 0.
It follows that 2\;—2&n7=0, so that \;=£&nr and

o= g2 — £7 4+ Q(1 — 9°7) = (Q2 — £7)(1 — 7’r).
The quantity (1—%%7)>£0 has an inverse 8¢ — 827 with §; and
8: in F by Lemma 1, and Q,— £2r =¢(82 —8£7), so that we have
Q2 =8 +0d2 —0782 =(Q1. We have again shown that if 4 were
not a division algebra, then Q would be a null form, a contradic-
tion of our hypothesis. Hence A4 is a division algebra and we
have proved the following theorem
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THEOREM 3. A direct product A =BXC of two generalized
quaternion algebras B=(1, u, s, us), C=Q1, j, t, jt) with u?=r,
s?=0, su=—us, j2=v, B=p, tj = —ji, ts a division algebra if and
only if the quadratic form

(50) Q = (A7 + NlPo — Nor) — Ay + Mo — N vp)
in the variables N1, Ny, - - - , Ne in F, is not a null form.

We may now apply Theorem 3 and our previous results to
obtain complete necessary and sufficient conditions that a cy-
clic algebra be a division algebra. We first assume that 7?2
= N(a) for some a in F(). If y=0, then —y =062 —f27 with
B1=P2=0, and the form Q may be defined. If ¥5£0, then by
Corollary 2 we can again define the form Q with

0 =201v,0=2v7B1(BA —By).
Suppose first that Q is a null form. If y=0, then »*=0
while v is not zero and 4 is not a division algebra. If
v#0 but B;=0 or B.A—pB;=0, then again, as we have seen,
A is not a division algebra. The only other case is where
Theorem 2 can be applied and, by Theorem 3, 4 is again not a
division algebra. Conversely let Q be not a null form. Then
obviously from our definition of Q as above and the fact that
we have the coefficients of Q all not zero in a non-null form,
v5#0, BA B, 8170, and again A4 is the direct product of B and
C; we may again apply Theorem 3, and 4 is a division algebra.

THEOREM 4. Let A be a cyclic algebra with basis i*y*, (\, p =0,
1, 2, 3), where i is a rool of the cyclic quartic

o(w) = wt + 2v70w? 4 »?A2 = 0

with T=1+A% v#0, A#0 n F, and T not the square of any
element in F. Also

0(2) =qi,gA =14 u, 2 =v(u—1),yi =00)y,y* =vinF.

Suppose that v* is the norm of a quantity of F(7) so that we have
—y=B¢ —B27 with B1rand B2 in F. Then A is a division algebra
if and only if the form

Q = N7 + N — Nom — ANy — Mo + N vp

with o =2Bvy, p =2Bwr(BA —B1) does not vanish for any Ay, - - -
N6 not all zero and in F.

’
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The only other case is 2% N(a). Then obviously v~ N(e)
since otherwise y2= N(a?), a contradiction. If y®=N(a), then
either =0, whence y%*=N(0), a contradiction, or else y0,
V8 =42y4= N(a?), v2= N(ay™), again a contradiction. Hence the
condition ¥2# N (a) is equivalent to the Wedderburn norm condi-
tion. We have also shown the former condition equivalent to
the condition v —ee’ for any ¢ of F(u). We thus have proved
the following theorem

THEOREM 5. Let all the hypotheses of Theorem 4 be satisfied
except that now ¥v25%~ N(a) for any a of F(3), or, what is the same
thing, —+ is not expressible in the form B2 —B27, B1 and P2 in F.
Then the cyclic algebra A is a division algebra.

We shall finally pass to the case where F is the field R of all
rational numbers. Quadratic forms have been studied in detail
for this case and it has been shown that every indefinite quadra-
tic form in five or more variables is a null form.* The numbers
7, 0, —or all have the same sign only when all are negative. If
they are all negative and v, p, —vp are also all negative then 7
and —+ have opposite signs so that Q =Q;—Q; is an indefinite
quadratic form. In the other cases obviously Q is indefinite,
providing that its coefficients are all not zero. When some of the
coefficients of Q are zero then, by making all the other variables
zero and those with zero coefficients not zero, we can make Q zero
so that Q is a null form. When none of the coefficients of Q is
zero then Q is an indefinite quadratic form in six variables and
hence is a null form. Hence in every case the cyclic algebra 4
is not a division algebra when the hypotheses of Theorem 4 are
satisfied. We havet the following result.

THEOREM 6. When F=R, the field of all rational numbers, the
Wedderburn norm condition for cyclic algebras of order sixteen is
necessary as well as sufficient.

CoLuMBIA UNIVERSITY

* For the first complete proof of this theorem see L. E. Dickson, Studies
in the Theory of Numbers.

t We also have here a new short proof of the author’s theorem that a direct
product of two rational generalized quaternion division algebras is never a
division algebra, by using the above proof that when Q is a null form A is not
a division algebra. This theorem was first proved by the author and published
in the Annals of Mathematics, vol. 30 (1929), pp. 621-625.



