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CORRELATION AND GROUP THEORY* 
BY D. J. STRUIK 

1. Introduction. The following considerations, that were 
first presented at the meeting of the American Mathematical 
Society at Amherst in September 1928, might seem rather 
trivial. Indeed, their essential elements are well known to all 
statisticians. I have, however, never seen an explicit statement 
of these principles and it might therefore be useful to give a 
short presentation.f 

2. The Groups of Correlation. Problems on correlation may 
be divided into three different groups. 

A. Problems in which comparison is made between quantities 
that can not be expressed in the same units. For instance 
the marriage rate and the foreign trade of a country. Here the 
marriage rate may be expressed in number of marriages per 
thousand of population and the foreign trade in dollars. Change 
in unit in both cases may be entirely independent. The marriage 
rate may be expressed in percentage, or per million of popula­
tion, the foreign trade in thousands of dollars, or in pounds 
sterling. If the two variables be denoted by x and y, I may just 
as well introduce variables x', y' defined by the equations 

(1) x' — \Xj y' — ixy, 

where X and /x are arbitrary independent constants. 
B. Problems in which comparison is made between quantities 

that can be expressed in the same units. For instance heights 
of fathers and heights of sons, age of husband and age of wife. 
Here the only reasonable change in the variables x and y is 
the same change of scale 

x' — \x, yf = \y, (X constant). 

C. To this type B, belong also problems in which the x and y 

* Presented to the Society, September 6, 1928. 
t A reference has been made by N. Wiener, Harmonic analysis and quantum 

theory, Journal of the Franklin Institute, vol. 207 (1929), pp. 525-534; particu­
larly p. 531. 
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are mere coordinates, as the study of bullet holes in a target 
or the measurement of stars on photographic plates. As in 
the previous problem, the coordinates x and y are generally 
taken as rectangular coordinates, and they then allow the addi­
tional transformation (a rotation of angle a) 

xf = x cos a + y sin a, 

yf — — x sin a + y cos a. 

3. The First Group. Let there be N points in the diagram, 
each with coordinates (xn, yn). Write 

X = — 2-jXny y = — ^ynj 

Çn ~ xn X) Y}n
 == yn y, 

N(T? = X)£n2, NVxy = XX*7n, N<Ty
2 = YlVn , 

and let crx and ay be the positive root of <rx
2 and ay

2. The elemen­
tary theory of correlation is the theory of invariants of the 
matrix 

11 2 
<J x GXÎ 

under the given groups of transformations. 
Take first the given affine transformation (1). Here 

x' — \x, y' = /j,y, 

in — X£n, Vn — Mn, 

a x = Xcrx, a xy = X/xc^y, a y = \x<Jy. 

The point (x, y) has therefore a geometric meaning : the mean 
of the distribution. The simplest rational invariant, is 

(T 2 

ri — ; f'2 — r2t 

<TX
2<Ty2 

The number 

r = 
<TxVy 

is also invariant and may be positive or negative depending 
on &xy. I t is the correlation coefficient. I t can easily be shown 
that r2£l. 
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Invariant lines in the figure are 
(a) those connecting the mean with the points (xn,yn); 
(b) the lines through the mean parallel to the x and y axes; 
(c) the lines 

G xy Cy 

o~x a x 

rj = £ = r— £. 
0~ xy G y 

These lines are regression lines. They are generally defined 
as the lines through the mean for which the sum of the squares 
of the distances of the points (x} y) to the line, measured in direc­
tion parallel to the x and y axes, is a minimum. This is also an 
affine definition, invariant under transformations (A).* 

4. Central Meaning of r. Every function of ax, ay and <jxy 

invariant under the transformations (1) is a function of r. In­
deed, such a function satisfies the condition 

f(\aXf tur„, X/Ao-sy) = ƒ 0 X) CTyj 0~ xy) . 

By a change of variables of functional determinant ^0 

i i _ a z v 

&X = &x, &y — Cy, Y — ' 
(TX(Xy 

This takes the form 

<£(\o-x, n<rv, r) = 0 0 * , <rV9 r), 

so that 0 as a function of crx and (sy is independent of those 
variables, which proves the theorem. Now r (or 1/r) is the 
simplest of those functions; in the practice of statistics it is to 
be preferred to CV( or C/V), C a constant F^O, because r runs 
from — 1 to + 1 . A line through the mean of invariant charac­
ter, depending only on ax, <rv, crxyi must have the equation 

rj = af, 

* The equation (in our geometric representation) of one regression line can 
be found in Laplace, Théorie Analytique des Probabilités, p. 318 and p. 326 of 
his Oeuvres, vol. 7 (éd. 1886). Laplace gets it, however, from considerations 
on errors of observation; he does not take two equivalent sets of variables as 
in the theory of correlation. 
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where a is a function of aZl ay, <xxy which is transformed as follows : 

a = — a , 
X 

Therefore 

a! a I acrz 

= = a pure function of r = 0(r), 
(Ty Vy 

so that 
(Ty 

a = —<j)(r). 

For 
0 ( r ) = r and ^(r) = l / r 

we find the regression lines. Their equation is the simplest of 
those in which <jxy enters. 

5. The Correlation Ellipses. The regression lines and the lines 
parallel to the x and y axes form an involution. We arrange 
these lines in such a way that £ = 0 is conjugate to 

and t] = 0 is conjugate to 

(Jy 

Cfx 

Then the equation of the involution is 

££i rfoi + iiv) mi _ 

(T x & xy &y 

The double lines of this involution are imaginary and asymp­
totes of the ellipses 

e 2fHn t v2 

= const., 
2 2 

(T x 0"x^y &y 

o r 
(Ty2%2 — 2<Fxy%ri + ax2*}2 = c o n s t . 
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In such a way the correlation ellipses are obtained. Their 
equation in line coordinates u, v is 

v£u2 + 2<rxyuv + <ry
2v2 = const. 

The regression lines are the lines conjugate to the axis direc­
tions with respect to the correlation ellipses. 

The arrangement of the four lines in pairs is arbitrary. But 
the two other combinations would lead either to a set of conic 
sections without <rxy in their equation or to a set with equation 
obtainable from the equation of the correlation ellipses by 
changing r into l/r. This last set has real asymptotes and their 
equation is 

— const. 
2 2 

(J y CfxffyV & x 

The conic sections form a set of hyperbolas. The condition r 
— 0 leads here to asymptotes parallel to the x and y axes. The 
equation of the correlation ellipses in line coordinates shows, 
however, that the first curves are the natural ones. (See §8.) 

6. The Second Group. In problems of type B, all invariants 
of problem A remain invariants. There are, however, new ones. 
To these belong, in particular, the symmetry axes of the corre­
lation ellipses. This is geometrically obvious, as our only trans­
formations are similarity transformations that keep the x and 
y axes in their place. I t can easily be verified that the angle 0 
which the axis of symmetry make with the x axis is determined 
by the equation 

1 1 

(Tx <Ty 

tan 20 = ; 
2r 

G x$y 

and this expression is unaltered by the transformation 

x' = \x} y' = X^. 

If the x and y axes are orthogonal, the symmetry axes of the 
correlation ellipses are also defined by the property that the 
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sum of the squares of the orthogonal distances of the points 
(xm yn) to this line is a minimum. In fact, let 

y = mx + n 

be the line satisfying this property; then 

^ (yk - mxk — n)2 

4>(m, n) = 2L, 7T~t 
k=i m2 + 1 

must have a minimum value. This gives 

dó dó 
= 0 , = 0, 

dm dn 
or 

^(m2 + i)(yic — mxk — n)xk + (yk — mxk — n)2m = 0, 

^2(m2 + l)(yk — mxk — n) = 0 . 

These equations give 
y — mx — n = 0, 

which shows that the line must pass through the mean and 

m axy 

1 — m2 <T£ — <T£ 

which, by means of the substitution 

2m 
tan 20 = J 

1 — m2 

passes into the previous equation for tan 20.* 
If the x and y axes are not perpendicular to each other, the 

symmetry axes do not lose their invariant character. They are, 
however, not the lines corresponding to the symmetry axes in 
the case that x and y are plotted orthogonally. The symmetry 
axes pass into lines that can easily be determined by an affine 
transformation from the figure in orthogonal axes, if the direc­
tion and scale of the old and new x axes coincide, and the 
direction and scale of the new y axis are given. 

* See, for example, K. Lundmark and W. J. Luyten, On the determination 
of the colour-equivalent of a star, etc., Monthly Notices of the Royal Astronomi­
cal Society, vol. 82 (1922), pp. 495-509; particularly p. 505. 
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7. The Third Group. In problems of type C the invariant 
lines and numbers are those of type B that remain invariant 
under a rotation of the axes. That means that in such a diagram 
the symmetry axes, depending only on the position of the points 
(xn, yn) with respect to the mean, keep an invariant meaning.* 
But regression lines and coefficient of correlation have no mean­
ing in this case, as they depend on the choice of x and y axes. 
The quantity 

& xy &x Gy 

is an invariant under rotation, but not under a change of scale. 
The equation has therefore an invariant meaning (perfect cor­
relation) . 

8. Partial Correlation. In problems with more variables we 
have analogous properties.! In type A, the variables xi, x2t 

x$, ' * * , Xfi are affected in this way through a change of scale 

X\ = Xi#i, xi = X2X2, X3 = X3X3, * * * , Xn — XnXn, 

where Xi, X2, X3, • • • , Xn are constants. 
The object of the elementary correlation theory is here the 

matrix 
1 en 

0"12 

1 0"ln 

(712 ' ' 

^ 2 2 * 

0"2n * 

* 0"2n 

&nn 1 

where 

N 

1 
xi = — 2*ixh (sum on all points). 

The elements of the correlation matrix are transformed by the 
formula 

* See, for example, J. L. Coolidge, An Introduction to Mathematical Prob­
ability, Oxford, 1925, p. 144. 

t See, for example, Yule, An Introduction to the Theory of Statistics, 6th 
éd., 1922. 
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An invariant expression is the form 

cr\?u£ + 2(Ti2UiU2 + • • • + cTnn^n — ^(TjkUjUk, (sum on all j , k), 

where Uk are hyperplane coordinates, so that 

XiUi + X2U2 + • • • + XnUn = 1 

represents the equation of a hyperplane in the xi, x2, • • • , 
xn space. The hypersurfaces 

C n ^ i 2 + 2(7i2UiU2 + • • * + VnnUn = COnst. 

represent the correlation quadrics in hyperplane coordinates. 
In point coordinates, taken from the mean, £1, £2, • • • , £n, they 
have the equation 

0 

{1 

it 

in 

fc 
(TU 

an 

£2 • 

CTj.2 * 

0"22 ' 

• ^ 1 

' ö"lw 

• ö"2n 

&nn 

The rank of the matrix determines the shape of the correlation 
quadric. 

The regression hyper planes* are the hyperplanes conjugate to 
the coordinate axes with respect to these quadric surfaces. They 
are n in number, and their equations are obtained by replacing 
one row of a's in the determinant of the a's and equating the 
result to zero, for instance, 

ii 

0"12 

(Tin 

£2 • 

022 * 

• • i n 

' ' Ö*w2 

&nn 

* See Laplace, Theorie Analytique des Probabilités, éd. 1886, p. 327, etc. 
Laplace, however, only deals with errors of observations, not with equivalent 
sets of variables. 
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If we call S** the minor of <r4& in the determinant of the cr's 
this equation takes the form 

2iiÉi + 2iiÉ2+ • • • +2mÉ« = 0. 

The partial correlation coefficients are of the form 

2,-jfc 

The transformation formulas for the 2's are of the form 

2,'A; — 

x„2 •ijk) 

from which the invariant character of r^ immediately follows. 
The sum of the squares of the distances from the points to 
the regression planes is in the case of the plane mentioned 
above 

( T n 0*12 ' ' ' «Tin 

A£l —" 2l2^2 — 2x3^3 Z/lnÇn) 

Ö"12 CT22 ö*2n 

ö"ln 

Sn2 
ö"22 * ' ' CT2n 

CT2n ' ' ' <Tr 

All functions of the <rik invariant under the given affine transfor­
mation are functions of the r3-k. 

Indeed there are n(n + l)/2 quantities 07&, and n(n —1)/2 
independent quantities r^- Since we have 

n(n + 1) n(n — 1) 
= n, 

2 2 
we can introduce into every function of the quantities 07& 
the Tjk as new independent variables, leaving the quantities 
Vjjij — li - - • , n) unchanged. In the new function the quanti­
ties (Tjj change independently, so that invariance of that func­
tion means independence of the quantities 07/, and therefore 
only dependence on the quantities />. 



878 N. H. McCOY [Dec, 

As dual partial correlation coefficient we might take the in­
variant numbers 

All invariant functions of the quantities a3-k are also functions 
of the quantities p/& only. But the quantities pjT{ have not the 
simple relation to the regression hyperplanes. 

In problems of type B in more variables the symmetry axes 
of the correlation quadric come into consideration. 

In problems of type C the regression planes and the corre­
lation coefficients lose their sense, but not the symmetry axes. 
Here the theory becomes the well known theory of quadratic 
matrices under orthogonal substitutions with the unessential 
modification that similarity transformations are also per­
mitted. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

NOTE ON T H E E X I S T E N C E OF A POSITIVE FUNCTION 
ORTHOGONAL TO A GIVEN SET OF FUNCTIONS* 

BY N. H. McCOYf 

Let the finite set of functions: 

{//O)}: M*)> Mx)> ' ' ' > Mx) 
be continuous and linearly independent on the closed interval 
X, {aSx^b). With reference to this set of functions, L. L. 
Dines % has shown the equivalence of the following properties: 

(A) Every linear combination of the functions changes sign 
on X. 

(B) There exists a positive continuous function orthogonal to 
each function of the set on X. 
A sufficient condition for the set {//(x)} to have properties 
(A) and (B) has also been given by Dines. § It is in a form 

* Presented to the Society, September 11,1930. 
f National Research Fellow. 
t A theorem on orthogonal functions with an application to integral inequali­

ties, Transactions of this Society, vol. 30 (1928), pp. 425-438. 
§ On completely signed sets of functions, Annals of Mathematics, vol. 28 

(1926), pp. 393-395. 


