
METHODS IN POINT SETS AND T H E THEORY 
OF REAL FUNCTIONS* 

BY HENRY BLUMBERG 

I t is known in psychology that in the succession of psycho­
physiological states there operates a so-called law of "facilitation 
through previous inhibition," which means that an inhibition 
prepares a reflex or an organic set for more intense activity 
when the inhibition is removed. Thus tensions produced on 
hearing discordant notes in music serve to heighten the aesthetic 
experience following upon the relief of these tensions. Even 
mathematicians are not quite free from this law; and so it hap­
pens, both in the career of individual mathematicians and in 
the history of the race of mathematicians as a whole, that there 
may be observed a phase in which the major quest, at least from 
one point of view, seems to be one of elaborate complexity of 
pattern, followed by a phase in which the primary concern is 
for directness and a return to elements. These phases, while 
perhaps organically antagonistic, as the psycho-physiological 
law mentioned implies, are, we may suppose, complementary 
in the larger life. 

It is my principal purpose in the present symposium lecture 
to deal with the latter of these two phases, necessarily charac­
terized by a heightened interest in clearness, intimacy, and 
economy. The lecture will consist almost entirely of illustra­
tions. These illustrations, chosen for the most part, as is appro­
priate, from things most familiar to me, will exemplify the 
emergence of method from procedure guided by this heightened 
interest in directness and economy. The illustrations will, how­
ever, as may be expected, deal not only with this first phase but 
also with the second, where the interest is in elaboration, one 
of our very objects being to indicate the passage from the so-
called elementary to the so-called involved. 

* An address presented at the invitation of the program committee at a 
Symposium held at the meeting of the Society in Chicago, April 18, 1930. 
This address presupposes only slight technical knowledge on the part of the 
reader, and is, for example, intelligible to mathematicians entirely unfamiliar 
with the theory of point sets. 
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While we shall not here at tempt a general formulation of the 
principles of method underlying the series of illustrations to be 
cited, it does appear upon reflection that there are indications 
of processes of research almost automatic in nature. At any 
rate, it cannot be doubted that it is of importance for mathe­
maticians to be intimately conversant with the processes that 
operate in their research and to be in a position consciously to 
distinguish results that can be obtained almost mechanically 
after a certain intimacy with the available tools from those that 
introduce a notable novum into our science. 

The first illustration, which is familiar to most of us, will 
exemplify what I call the cue of restricted choice] that is to say, 
sometimes we go certain ways because there isn't much choice. 
Suppose we want to think about classes or sets without par­
ticularizing the character of the elements, as when we think of 
special sets, for example, of sets of elephants or of points. Can 
we introduce distinctions in unspecialized sets? There does not 
seem to be much choice, and so the solution is not hard to find. 
For since the elements of the sets are in no way to receive special 
definition, we naturally seek possible distinctions in the abstract 
inner nature of a set, that is to say, in the relationship of a set 
to itself. Can we introduce a distinction in sets with reference 
to such an inner relationship? What relationship? The funda­
mental relationship belonging to the nature of a set is that of 
containing: the set S contains or does not contain an object e. 
The distinction will therefore be made with respect to this rela­
tionship of containing. Containing what? Since the elements 
are to be unspecified, we haven't much other choice for the 
"what" than the set itself. And so we are led to two types of 
set: (a) sets that contain themselves, like the class of all 
classes;* and (b) sets that do not contain themselves, like the 
set of integers, or virtually every set the unsophisticated person 
is likely to think of. With this distinction, elaboration leads 
us at once to consider the aggregate of sets of type (a) and the 
aggregate of sets of type (b). Let us call the first aggregate A 
and the second, B. The aggregate A, then, consists of sets S 
such that S contains itself as an element, and B of sets S such 
that S doesn't contain itself as an element. We ask im-

* We are not entering, in this naïve excursion, upon fine points of rigor. 
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mediately: Is A in A or in B? There seems to be nothing to 
prevent A1 s being in A nor its being in B, a curious and sus­
picion-arousing indeterminancy. Next, how about B? Suppose 
it is in A j then it satisfies the relationship S contains 5, that is, 
B contains B\ in other words, if B is in A, it is in B. Now 
suppose B is in B, then it has the characteristic property of the 
elements 5 of B, namely that S does not contain 5, hence B 
does not contain B, and therefore B is in A. Thus if B is in B 
it is in A, and if it is in A it is in B} and we are led to a con­
tradiction with Aristotelian logic. My purpose in repeating this 
familiar paradox is to indicate the almost mechanical way in 
which the course of its origin might be conceived. 

I shall next describe the simple way in which closed* point 
sets and other related sets may be thought of as originating. 
For brevity and simplicity, I shall, generally speaking, confine 
myself to linear sets, as they are in most cases adequate for 
illustrating the train of thought to be presented. Now if a 
linear set C is closed, its complement 0 with respect to the 
continuum, that is, the set of points of the continuum not be­
longing to C, is open, by which we mean that every point of 0 
lies in an interval all of whose points lie in 0. Now let us say 
that an interval has the property Q if it lies entirely in 0. Then 
by means of this property Q, we can characterize the sets C and 
0 by saying that every point of 0 is enclosable in an interval 
having property Q, and no point of C is so enclosable. In other 
words, if we define the interval property P a s complementary 
to the property Q, by which we mean that to say that I does not 
have the property Q is to say that I has the property P , then, in 
terms of this property P , we can characterize the points of C by 
saying that every interval containing a point of C has the 
property P . I t follows conversely, and just about as simply, 
that if P is a given interval property, then the totality of points 
x such that every interval containing x has the property P is a 
closed set. Every interval property thus leads to a closed set 
and every closed set is thus derivable from an interval property. 
This conclusion shows us how all closed sets are logically de­
rivable from interval properties, but the mere logical connec-

* A set is closed if it contains its limit points. The set of points l/nf {n 
= 1,2, • • •), is not closed, but it becomes so if the element 0 is added to the set. 



812 HENRY BLUMBERG [Dec, 

tion of ideas or mere logical unifications do not interest us here 
primarily. I t happens, however, tha t the genesis of closed sets 
from interval properties is a natural one. 

Here are some examples: Let S be a given linear set, and let 
/ have the property P , in notation I p , if I contains a point of S. 
In this case, the closed set C attached to the property P is the 
set of points x such that every interval containing x has the 
property P , that is, contains points of 5. In other words, C 
equals 5 + 5 ' , where S' is the derived set ( = set of limit points) 
of S. Thus the sum of a set S and its derived set S' is closed. 
Again, the linear set 5 being given, let Ip, if / contains an in­
finite number of points of 5 ; then we conclude that S', the set 
of limit points of S, is closed; or let JTP, if it contains a non-
denumerable subset of S] we then conclude that the set of con­
densation points* of 5 is closed. Again, if f(x) is a given 
function, let I p , if the saltus of ƒ in 1^ a fixed number k.\ 
Therefore, the set of points where the saltus of an arbitrary 
function is greater than or equal to k is a closed set. 

The usual presentation in treatises on point sets or real func­
tions seems to invite a separate effort of thought, though here 
not very great, of course, in showing that a set of a new type 
is necessarily closed. Here the purpose is shifted to that of list­
ing interval properties, and on a parallel list we shall have closed 
sets, since for every interval property we are assured of having 
an associated closed set, though of course, some may be of an 
especially trivial or uninteresting sort. 

In building sets of greater and greater complication, we begin 
with the interval, which is the simplest set. Using the processes 
of taking the logical sum and the logical product of sets, and 
the process of taking the complement of a set with respect to 
the continuum, we are led next to consider the sum of a sequence 
of open intervals. Such a sum is apparently an open set. The 
sum of a sequence of open sets is again an open set, so we do not 
go beyond open sets by repeated summation of open intervals. 

* A condensation point of 5 is a point every neighborhood of which con­
tains a non-denumerable subset of S. 

t The saltus of ƒ in ƒ is the upper boundary of ƒ in J minus its lower 
boundary in / . The saltus of ƒ at a point £ is the limit of ƒ in a variable interval 
enclosing £ and of infinitesimal length. 
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But we do get a new type of set by taking an infinite product of 
open sets, a j l r 0 n , which we write more briefly 0T . The comple­
ment of a set of type 0* is of type X)i°Cn, where Cn designates a 
closed set, which we similarly shorten to Ca. That the comple­
ment of an O* is a Ca follows from simple logic together with the 
fact that the complement of an open set is closed. These two 
new types of set, the 0* and the CV, may be thought of as coming 
immediately after the open and the closed sets in the order of 
increasing structural complexity. Now just as every closed set 
C may be regarded as attached to an interval property P , so 
every Ca may be attached to a sequence of interval properties 
{Pn\, n = 1, 2, • • • . in the precise sense that C<r=X)i°C'n, where 
Cn is the closed set attached to the interval property P n . We 
are thus prompted to make a list of sequences of interval proper­
ties, especially such sequences as will have attached to them 
sets Ca of particular interest. Of course, ingenuity may be 
requisite in securing such interesting CVs, for no general process 
or theorem can of itself lead automatically to its interesting 
implications. Still, it does make a difference whether we con­
sciously seek such interesting C7s or just stumble upon them, 
and even excellent mathematicians, in this extremely elemen­
tary business of the CVs, seem to have secured results in the 
latter manner, and as a consequence these results were regarded 
as of some complexity. Also, knowing this simple genesis of the 
CaS, we can without great difficulty add to the interesting CVs 
mentioned in the literature. 

I will now cite a number of examples of C</s arising from 
sequences of interval properties. 

Let f(x) be a given real function, and let IPn, if the saltus 
(defined above) of f(x) in I is greater than \/n. If f(x) is dis­
continuous at £, there must be an n such that the saltus of ƒ in 
every interval enclosing £ is greater than 1/w, that is to say, 
every I containing £ has the property P n ; £ thus belongs to the 
closed set Cn associated with Pw , and therefore to the C„ at­
tached to the sequence of properties {Pn}. All the points of 
discontinuity of ƒ(#) therefore belong to Ca. On the other hand, 
if £ belongs to CV, it must belong to some Cni and therefore, 
according to the relationship of interval property and its at­
tached closed set, every / containing £ has the property P„, 
that is to say, the saltus of ƒ > \/n in every interval containing £, 



814 HENRY BLUMBERG IDcc, 

and £ is therefore a point of discontinuity of ƒ. We conclude 
that the totality of points of discontinuity of an arbitrary func­
tion is identical with CV ; the set of points of discontinuity of an 
arbitrary function is of type CV. The converse of this result is 
also true, namely, that if S is any given set of type CV, there 
exists a function f(x) which is discontinuous at every point of S 
and continuous at every point outside of S. 

Let ƒ(#), as before, be an arbitrary real function, and let 7Pn, 
if the d-saltus* of f(x) in I is greater than 1/n. By reasoning as 
in the last example of the ordinary saltus, we conclude that the 
set of points of an arbitrary function where the d-saltus is differ­
ent from 0, we may call such points, points of ^-discontinuity, 
is of type Ca. And the converse follows here also. Similar results 
hold if the negligible set instead of being denumerable, as in the 
case of the d-saltus, is finite, or of Lebesgue measure 0,j and in 
all of these cases, as well as in some others, the converse holds 
also. 

Now, while I shall not speak here of the course of reasoning 
establishing the converse results, I will remark that although to 
the uninitiated, the proofs of the converse propositions may 
possibly appear more involved than the train of thought leading 
to the direct results, yet in fact they call only for a certain skill 
in workmanship which any student can be rather sure of secur­
ing if he applies himself in certain specific ways. 

Another example of a theorem that emerges from a suitable 
definition of a sequence of interval properties is one that in­
volves the notion of bounded grade. For instance, for a function 
z =f{xy y) of 2 variables, we understand by the grade correspond­
ing to 2 points A = (£, rj) and B = (x, y) of the x^-plane the ab­
solute value of the difference of the JS'S at A and B divided by the 

* The d-saltus of f(x) in I is the saltus of ƒ in I on the understanding that 
denumerable sets are negligible ; tha t is to say, it is the lower boundary of the 
numbers s(I—D), where s(I—D) is the saltus of ƒ in the set I —D, D being an 
arbitrary denumerable subset of I. 

f The Lebesgue exterior measure of a set S, lying in (a, b), is the lower 
boundary of the length sum of a set of intervals, finite or infinite in number, 
containing all the points of S as interior points; the Lebesgue interior measure 
of S equals b—a minus the exterior measure of the complement of S. If the 
interior measure of S equals the exterior measure of S, this number is the 
measure of 5, and S is then said to be measurable. If the interior and exterior 
measures are different, 5 is non-measurable. 
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distance between A and B ; and f(x, y) is said to be of bounded 
grade at A, if a constant k exists such that for all points B 
sufficiently near A the grade corresponding to the pair of points 
A and B is less than k. With this notion of bounded grade, we 
can, with the aid of a little elementary geometry, define a 
sequence of properties Pn such that the associated Ca is precisely 
the set of points of bounded grade.* And so we have the result 
that the set of points at which an arbitrary real function is of 
bounded grade is of type CV. The converse theorem holds here 
also. 

I turn next to the consideration of existence proofs in the 
more elementary parts of the theory of point sets and real 
functions. There are many methods of proof available for such 
existence theorems, for example, the method of the Dedekind 
cut, or of the Bolzano-Weierstrass theorem, etc., which have 
received attention, for example, in Professor Hildebrandt's lec­
ture on The Borel theorem and its generalizations.] I wish here 
to speak only of two of these methods, that of the descending 
interval property and the one based on the inductive principle. 
We say that the interval property P is a descending interval 
property, if it is such that whenever it holds for an in­
terval ƒ and / is the sum of a finite number of intervals 
Iv, (*> = 1, 2, • • • , n), whether overlapping or not, then it must 
hold for at least one Iv. For example, if S is a given infinite set, 
let us say that Ip, if / contains an infinite subset of S. This 
property P is then a descending interval property. By means 
of the fundamental theorem of the Dedekind theory that every 
Dedekind cut (A, B) in the system of real numbers has either a 
last in A or a first in B, we can see immediately that if P is a 
descending interval property, and I has the property P (here 
we want / to mean a closed interval) then this property P is 
localized at one point at least of 7, localized in the precise sense 
that there exists a point £ of I such that every neighborhood 
of £ contains an interval I having the property P . Now it can 
be easily shown that all localizable properties can be attached 
to descending interval properties; that is to say, all theorems 

* These properties must now be thought of as referring to the 2-dimensional 
analog of the linear interval; for example, to the set of interior points of circle. 

t This Bulletin, vol. 32 (1926), p. 423. 
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asserting the existence of a point of a certain character can be 
deduced from the fact that a descending interval property hold­
ing for an interval is necessarily localized at some point of 7. 
Again, the interest here is not that of exhibiting logical de­
ducibility, but rather the genesis of existence theorems from 
interval properties. This time, however, the property is not 
unrestricted, as in the case of the genesis of theorems on closed 
sets, but must be descending, so that we are here invited to 
make a special list of interval properties, the descending in­
terval properties, knowing that for every property on this list 
we shall have a corresponding existence theorem. For example, 
we have seen that if Ip means that 7 contains an infinite subset 
of a given set S, then 7 is descending; therefore, if 7P , P is 
localized at some point £ of 7, tha t is to say, is a limit point of S. 
In other words, the theorem attached to this particular de­
scending property is the Bolzano-Weierstrass theorem, that an 
infinite set lying in a closed interval has at least one limit point. 
Again, if fix) is any given function, let Ip if the variation* of ƒ 
in 7 is infinite. Clearly this is a descending interval property. 
The attached theorem says that if ƒ is of infinite variation in 7, 
there is a point £ of 7 such that ƒ is of infinite variation in every 
interval containing £. Or let 5 be any linear point set, and let 7 P 

if 5 is non-measurable in 7; again, P is a descending interval 
property, and we conclude that a non-measurable set has at 
least one point of non-measurability, the meaning of the latter 
term being given by the very process of attaching an existence 
theorem to a descending interval property. 

I t seems that even mathematicians working in point sets or 
real-variable theory are not always fully conscious of such a 
natural common genesis of these existence theorems. Indeed, 
occasionally, as for example in a recent volume of the Funda-
menta Mathematicae, we have an article by a well known 
mathematician containing essentially nothing more than a new 
example of a descending interval property, and one not re­
motely accessible. And the proof of the theorem which we would 
attach to this descending interval property is given in this 
article in detail. 

* The variation of ƒ in the interval / = (a, b) is the upper boundary of 
S ? |/(*v) —f(xv-i) | for all possible partitions a = xo<Xi<x2 • • • <xn — b of 
{a, b). 
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We now come to consider the inductive principle. I t does not 
appear to have been remarked in so many words, but it is true 
that the inductive principle holds just as well for a linear order,* 
subject to no further restriction, as for the special orders which 
are called normal, that is to say, orders which, like the set of 
positive integers, have the property that every subset has a first 
element. 

To state the inductive principle for the general linear order 
just defined, we need to know the meaning of segment of a linear 
order. Segment is the abstraction of interval. The subsets 5 of 
the linear order 0 is said to be a segment of 0, if 5 is such that 
if a and b are two elements of 5 and c an element of 0 between 
a and ô, then c belongs to 5. S is said to be an initial segment of 
0 if it is such that if b is an element of 5, and a an element of 0 
preceding B, then a belongs to 5. I want to say specifically that 
1 shall regard the null set 0, that is to say, the set tha t has no 
elements at all, as an initial segment of 0. We must further­
more define what we mean by an extension of an initial segment 
5 of O. E is said to be an extension of the initial segment 
5 ( ^ 0 , 0 ) , if E is a segment of 0 having at least one element in 
common with 5 and at least one element in common with C(S), 
the complement of 5, that is, the set of elements of 0 not 
belonging to 5.f If 5 = 0, an extension of 5 means simply any 
initial segment of 5 different from 0, and if 5 = 0, an extension 

* A linear order is an abstraction suggested by the particular order of 
points on a straight line. A set 0 conjoined with a relationship of rank—the 
abstraction of coming before in time or in place or in magnitude—which we 
denote by the curved inequality sign —? is said to be a linear order, if the follow­
ing uniqueness and transitivity properties hold : 

Uniqueness: For every pair of elements a, b of 0 one and only one of the 
three relationships a—ib, a = b, b—ia holds. 

Transitivity: If a—lb and H e , then a—lc. 
Examples of linear order are the set of integers arranged in the order of 

ascending magnitude; the set of real numbers arranged in order of descending, 
magnitude; the set of positive integers where the rank relationship is de­
fined as follows: the integer wHw 2 , if the number of prime factors of n% is 
less than tha t of w2; and in case the number of prime factors is the same, then 
n\—<n<L, if ni<fi2 in the ordinary sense. The first two orders are not normal, 
tha t is to say, not every subset has a first element, not even the set itself, but 
the last one is. 

t This form of definition of extension is chosen with reference to its ap­
plicability to the w-fold order; see below. 



818 HENRY BLUMBERG [Dec, 

of 5 means a final segment of 5 different from 0, final segment 
being defined similarly to initial segment. The inductive princi­
ple for linear order may now be stated as follows : 

Let 0 be a given linear order, and P a given property such that 
if S is an initial segment of 0 for all the elements of which P is 
valid, then there exists an extension E of S such that P is valid for 
all the elements of E;P must then hold for all the elements of 0. 
In other words, if we call a property of the character just de­
scribed an inductive property, then we can say that an inductive 
property necessarily holds for all the elements of 0. 

The agreement that a null set shall count as an initial seg­
ment permits us to characterize the inductive property by 
means of a single mark, instead of two, as is usually done, and 
this, I think, is not an artificial simplification, but one con­
sonant with the nature of induction. The proof of the inductive 
principle for ordered sets is, of course, not difficult. 

A normally ordered set, as we have said before, is one such 
that every subset of it has a first element. In particular, if S is 
an initial segment of a normally ordered set, it is localized by 
an element e of S, namely the first element of 0 not in S. In 
the case of normally ordered sets, it is therefore appropriate to 
understand by an extension of an initial segment of 5 merely the 
set consisting of this first element e not in S. The inductive 
principle for normally ordered sets therefore takes the form: If 
the validity of a property P for the elements preceding ef what­
ever e may be, implies its validity for e, then P holds for every 
element of 0. 

If 0 is the set of points in the linear interval (a, b), then an 
initial segment 5 of 0 is always localized in the sense that there 
is a last element in S or a first element outside of 5. The in­
ductive principle for a linear interval (a, b) then takes the 
following special form: If the validity of a property P for all 
the elements <£ of (a, b) implies its validity for the elements 
of some interval containing £ as an interior point, then P holds 
for all the elements of (a, b). For example, the Borel covering 
theorem, which also is essentially an existence theorem, is 
an immediate corollary of this special form of the inductive 
principle. 

One can therefore list existence theorems of the type here con­
sidered either by listing descending interval properties or in­
ductive point properties. 
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The question comes up : Can the inductive principle be ap­
plied to w-dimensional space? Or to put it more generally, 
to an n-îo\d order? By an n-fold order is understood a system 
of abstract "points" in which a point e is given by n coordinates, 
e = (ei, e<i, - - - , en), but the coordinates are not necessarily 
magnitudes in the ordinary sense, but elements in n given linear 
orders, Oi, 02, • • • , 0n. The way the inductive principle can 
be extended to an n4o\d order is as follows. I shall, for sim­
plicity, speak of the double order. The orders Oi and 02, 
are, then, any two given linear orders, and the double order 
0 = ( 0 i , 02) consists of all pairs (ei, e2), where e\ belongs to Oi, 
and e2 to 02. By an initial segment of 0 we understand a double 
order S= (Si, S2), where Si is an initial segment of Oi, and S2 

an initial segment of 02, and by an extension of S we mean the 
double order (£1, £2) , where £1 is an extension of Si, and £ 2 of 
S2. With these definitions of initial segment and extension for 
the double order, the inductive principle, as stated before for 
the linear order, takes on definite meaning for the double order, 
and as so stated, is correct, though the patterning of the proof 
that seems requisite is somewhat more elaborate than in the 
case of the linear order. 

Mathematical induction, then, is simpler and more powerful 
than is generally supposed. 

An ^o-fold order is one in which the elements e have ^ 0 co­
ordinates eu et, • • • , belonging respectively to ^0 linear orders 
0i, 02, • • • . In the time in which I have had opportunity to 
reflect upon the problem of the inductive principle for the 
^o-fold order, I have not found for it a satisfactory, valid form. 

I now return to the consideration of the descending interval 
property, and will indicate how a natural elaboration of the 
idea contained in it leads to results of an apparently consider­
able degree of sophistication, results which, however, are in 
reality not far removed in thought process from such simple 
things as we have so far considered. 

Suppose we try to extend the Bolzano-Weierstrass theorem 
to function space, where by function space we understand here 
the ensemble of real, continuous functions defined in an interval 
(a, b). This ensemble by itself does not define a space, since by 
space we mean more than a mere class of elements, the word 
space implying an interconnection between the elements. One 
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way of introducing such an interconnection in function space 
is to define the distance between two points of function space, 
that is to say, the distance between two continuous functions 
fi(x) and fï(x). There are various ways of doing this, but sup­
pose we adopt the following definition : The distance between 
fi(x) and f2(x) is max \fi(x) —fiipc) | as x ranges over (a, b). In 
terms of distance, we can define the sphere in function space 
having c(x) as center and r as radius as the set of points f(x) 
whose distance from c(x) is <r. Sphere thus signifies interior 
of a sphere. In terms of distance we can also define limit point 
of a set: f(x) is said to be a limit point of £ if every sphere con­
t a i n i n g / ^ ) contains an infinite number of points of S; sphere 
thus takes the place of interval in the linear case. Now to extend 
the Bolzano-Weierstrass theorem to function space is to ask un­
der what general conditions an infinite set 5 has a limit point. In 
the linear case, the only condition attached to S is that 5 be 
bounded, and clearly the Bolzano-Weierstrass theorem be­
comes false if this condition is dropped. This condition of 
boundedness is surely necessary also in the case of function 
space, that is to say, 5 must be, as we say, uniformly bounded, 
which means that there is a fixed constant k such that \f(x) \ <k 
for all ƒ s of S and all x's of (a, 6). Is this condition of uniform 
boundedness also sufficient? Clearly not, as the example 
(a, 6) = (0, 1), S= {xl,n}, » = 1, 2, • • • , shows. 

Let us examine the simplest case of a subset S of function 
space which does possess a limit point, namely the case of a 
sequence of functions fn(x) having only a single limit point ƒ (x). 
Every sphere containing ƒ (x) contains all but a finite number of 
the ƒ„(#). Let R be a sphere with center f(x) and radius e. Then 
if (a, ]8) is a subinterval of {a, b), the saltus in (a, /?) of every 
fn(x) which lies in R cannot exceed the saltus of f(x) in (a, j8) 
by more than 2e; and since outside of R we have only a finite 
number of elements of S, we conclude from the fact that a con­
tinuous function defined in a closed interval is uniformly con­
tinuous, that the set S is equicontinuous. This means that 
for every e > 0 , there exists a ô > 0 such that \fn(xi) —fn{x<z) \ <e 
for all n's and for all pairs of numbers xi, X<L such that 
\x\ — X21 < S. Now upon slight reflection it can be seen that if 

S is any given infinite subset of function space, instead of just 
a sequence of functions with a unique limit, then, though S is 
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restricted to being uniformly bounded, there will always be 
infinite subsets of it without limit points unless this condition 
of equicontinuity is imposed, equicontinuity really signifying 
nothing more than another type of boundedness. I t can be 
shown that the method of the descending interval property, 
for example, can be readily extended to function space as we 
have denned it; and by means of this method, we can prove 
that if S is an infinite set of points of function space subject to 
the two boundedness conditions, namely uniform boundedness 
and equicontinuity, then S necessarily has a limit point. And 
the argument is similar to the one for the Bolzano-Weierstrass 
theorem. Following this direction of elaboration, we can go on 
to measurable functions,* for example.f The distance between 
two measurable functions f±(x) and f2(x) may then be defined 
according to the following rough idea: The two functions are 
not far away from one another if they do not differ much from 
each other except possibly in a set of slight measure. This rough 
idea when rigorously stated takes the following form : Let p be a 
number such that \fi(x) —fv,(x) | < p except in a set of measure 
<p\ p may then be regarded as an upper estimate for the dis­
tance between f± and ƒ2. Then if d is the lower boundary of all 
such p's, d is the distance between/i and/2 . With this definition 
of distance between two measurable functions, the convergence 
of the sequence of measurable functions fn(x) to the function 
f(x) may be seen to mean what is usually termed convergence 
on the average. Now the analogy with continuous functions 
readily shows us how to extend, in a natural manner, the notions 
of uniform boundedness and equicontinuity to this space of 
measurable functions. The method of the descending interval 
property is valid, and by means of it the Bolzano-Weierstrass 
theorem can be proved. 

Lastly, in the matter of existence theorems, I may mention 
that the line of elaboration here sketched carries through, in a 

* f{x) is said to be measurable, if for every real number k, the set •£/>*, 
which is the set of #'s such that f(x)>k, is measurable. It follows that the 
sets Ef^k, E/<k, Ek</< 1, Ek</^i, where/ is also an arbitrary real number, are 
measurable. 

t See Fréchet, Sur les ensembles compacts de fonctions mesurables; Funda-
menta Mathematicae, vol. 9(1927), p. 25. 
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certain sense, to a space consisting of functions which are en­
tirely unconditioned, this by means of a general method for 
such extensions which I shall speak of at the close of the lecture. 

I shall now speak of a theorem on unrestricted functions of 
two variables which yields a theorem on arbitrary functions of 
one variable every time we are given an interval function, that 
is to say, a relation which attaches to every interval a number, 
like the saltus of a given function in an interval I. Let, then, 
2=/(x , y) be a given real function of two variables, and s any 
straight line in the rry-plane,—I am taking the simplest case. 
Suppose we consider the behavior of f(x, y) as (x, y) approaches 
5 from the same side of 5 along two given directions di^d^ If 
P is a point of s, we denote by upa the lim sup /(x, y) as (x, y) 
approaches P along d\ similarly lPd will denote the lim inf f(x, y) 
as (x, y) approaches P along d. Now suppose P is a point of 5 
such that Ipd^k, where k is a given number; then there is a 
segment QnP having the direction d\ such that ƒ (x, y) >k — \/n 
at all points of QnP> From Qn draw QnRn in the direction d2 

meeting 5 in Rn. Let us say that a point V of s has the character 
(k, n) if we can find a point U a t distance <\/n from it such 
that UV has the direction di and f(x, y)>k — \/n at U. Clearly 
if QnP is taken small enough—and to have the functional value 
at all the points of it > k — \/n we can take it as small as we 
please—every point in the closed interval PRn except possibly 
P will have the character (k, n). Now a point V of 5 which has 
the character (k, n) for all positive integers n is a point such 
that as near it as we please we can find a U, with UV in the 
direct ion^, such that ƒ >k — l/n at U. This means that Uvd2^k. 
There is a theorem of Young—proved almost immediately from 
the fact that the linear continuum contains a set, namely that 
of the rational numbers, which is denumerable and dense in it— 
which goes as follows: Let J— {i} be a given set of closed in­
tervals lying on a straight line; and e such that it is an end point 
of at least one I of / , but an interior point of no / of / . Then the 
totality of such points e is at most denumerable. We have re­
marked before that if QnP is small enough, every point of PRn 

with the possible exception of the end point P is of character 
(k, n). By looking into the situation a bit more, we can, with 
the aid of this theorem of Young, arrive at the following con­
clusion : If k is a given number, then the points P of s such that 



193°-] POINT SETS AND REAL FUNCTIONS 823 

hd^k and upd2<k constitute a set which is at most denumer-
able. Another easy step, depending again upon the denumer-
ability and denseness of the rational numbers, and we come to 
the following theorem:* Let £=/(x, y) be a given arbitrary 
function of two variables; s any straight line in the (x, y) plane; 
and d\ and ^2 two directions of approach to 5 from the same 
side of it. Then for every point P of s, with the possible excep­
tion of a denumerable number, we have uPd1^lpd2- In other 
words, if we call the pair of numbers (lPd, uPd) the interval of 
approach of ƒ(#, y) at P along the direction d, then our result 
can be stated in this way: At every point of s, with the possible 
exception of a denumerable set, the interval of approach along 
d\ overlaps or abuts the interval of approach along d2. I shall 
call this result the theorem on approach. Clearly this theorem 
becomes false if d\ and d2 are taken on different sides of s, for 
then d\ does not cross di, and it is precisely on the crossing of 
two different directions on the same side of a line that the valid­
ity of the theorem on approach depends. 

The theorem on approach is exhaustive in a certain sense, 
but I shall not stop here to explain this further. 

Now suppose, in particular, the straight line 5 is the 45° line 
of the x;y-plane; and f(x, y) is a symmetric function in its argu­
ments. Then as far as the functional values of ƒ(#, *y) are con­
cerned, it is the same to approach 5 vertically downward as to 
approach it horizontally to the left. The upshot of this fact is 
the following corollary of the theorem on approach: If ƒ(#, y) 
is a given symmetric function, then for all x, with the possible 
exception of a denumerable set, we have lim sup ƒ(#, x ± 0 ) ^ 
lim inf f(x, x + 0). 

Now to have a symmetric function ƒ (x, y) is to have a function 
of an interval 7 = ( x , y), if we only understand, as is natural, 
tha t the interval (y, x) is not different from the interval (x, y), 
so that this corollary of the theorem on approach yields a 
theorem for every interval function. Again we are invited to 
make a list,—this time of interval functions—and in a natural 
way, we rediscover a variety of results which have appeared 
from time to time in the literature without revealing a common 

* See Fundamenta Mathematicae, vol. 16 (1930), p. 17. 
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origin, and we also obtain new applications of interest. I shall 
give some examples. 

If the symmetric function of our corollary is the difference 
quotient (J(x)—f(y))/(x — y), we obtain the theorem of G. C. 
Young, tha t the upper right (left) derivative of an arbitrary 
function is greater than or equal to the lower left (right) deriva­
tive except possibly at a denumerable number of points. 

Another illustration. Let ƒ(#) be a given real function. If 
(£, rj) is a real interval, and p and q two real numbers such that 
p>q, let u(J\ £, f]\ p, q) represent the upper boundary in (£, rj) 
of those values of ƒ (x) that lie between p and q. By using this 
function of the interval (£, rj) for all possible pairs of rational 
numbers p>q, we arrive at the following theorem of W. H. 
Young. 

If f(x) is an arbitrary real function, then there exists a set D, 
which is at most denumerable, such that if £ is a point not in D, 
every point in the (#, y) plane on the line x = £ which is a limit 
of the points of the curve y = ƒ(x) from the right (left) is also 
a limit of these curve points from the left (right). 

We can readily obtain, from our point of view, interesting 
extensions of this theorem of Young. 

One other example. Let (£, rj) and (p} q) have the same mean­
ing as in the preceding example, and let f be a real number 
between 0 and 1. By u(f; £, rj; p, q\ r) we understand the upper 
boundary of the same set of points as before, except that now, 
in computing this upper boundary, we are privileged to neglect 
any subset in the interval (£, rj) which is of relative exterior 
measure <r\ tha t is to say, we may neglect a set of Lebesgue 
exterior measure <r(rj — £); u(ƒ;£,??; p, q\ r) is thus, to be more 
accurate, the lower boundary of the set of upper boundaries 
corresponding to all possible such negligible subsets of exterior 
measure <r(rj — £). By considering this function of the interval 
(£, rj) for all possible pairs of rational numbers p<q, and for r 
varying and approaching 0, we secure a series of theorems for 
unrestricted functions, one of which is a theorem due to 
Kempisty. For its statement we need to know the meaning of 
upper metric limit and lower metric limit of a function f(x) a t 
the right or left of a point £. By the upper metric limit of ƒ (a?) 
at the right of £, we mean the lower boundary of all numbers a 
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such that the (exterior) metric density* of the set of x's for 
which x > £ and f(x) >a [we denote this set by E(x >£;ƒ(#) >a)] 
is 0 at £; similarly, the lower metric limit at the right of £ is 
the upper boundary of all numbers a such that the (exterior) 
metric density of the set E(x>%) f(x) <a) is 0 at £; and in the 
same way, we define the upper metric limit and lower metric 
limit at the left of £. The theorem of Kempisty may now be 
stated as follows: For every real function, the upper metric 
limit at the right (left) is greater than or equal to the lower 
metric limit at the left (right) except possibly at a denumerable 
number of points. 

I shall next speak of certain properties of real functions which 
can be obtained, according to a definite procedure, from certain 
properties of linear sets. I shall take first a simple example for 
which the reasoning can be presented, I think, even in such a 
lecture as this without burdening the listeners. Suppose 5 is 
any given linear set. Then we shall say that a point x of S is 
densely approached by S, if there is an interval I containing 
x in which 5 is dense, f I t is easy to see that those points of S 
which are not densely approached by 5 constitute a nowhere 
dense set. % For suppose N is this subset of points of S at which 
we do not have dense approach. A fortiori, then, no point of N is 
densely approached by N; that is to say, there is no interval I 
containing a point of N in which N is dense, in other words, 
every interval containing a point of N contains a subinterval 
in which there are no points of N, which amounts to saying 
that N is a nowhere dense set. Now obviously, the sum of a 
sequence of nowhere dense sets need not be nowhere dense. 
But in the sequel we shall be interested only in such types r of 
set that if Si, S2, • • • , Sn, • • • is a sequence of sets of type r, 
then the sum of the sequence must also be of type r. § The type 
of nowhere dense set therefore does not suit our present purpose. 

* The (exterior) metric density of a set S at a point x is the limit (if it 
exists) of me(SI)/l, where me(SI) means the exterior Lebesgue measure of 
the set of points common to 6* and 7, as the interval I, containing x, varies 
in any manner with its length / infinitesimal. 

f S is dense in I if every subinterval of I contains points of S. 
t S is nowhere dense in the continuum if there is no interval in which 

it is dense; that is, every interval contains a subinterval having no points of S. 
§ A more general formulation can be made in which this property is not 

required. 
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However, we can help ourselves if we define an exhaustible 
set as a set which is representable as the sum of a sequence of 
nowhere dense sets. It then follows from the fact that a double 
sequence can be rearranged as a single sequence, that the sum 
of a sequence of exhaustible sets is exhaustible. I will remark 
in passing that an exhaustible set acts like a set poor in elements, 
in the descriptive, that is to say, non-metric portion of the 
theory of point sets. An exhaustible set never exhausts the 
continuum, that is to say, the complement of an exhaustible set 
is not empty. In fact the complement of an exhaustible set is 
itself not exhaustible; and it is easy to show this, but I shall 
not stop to do so. 

Returning now to the given linear set 5, we have seen that 
the points of S which are not densely approached by S con­
stitute a set which is nowhere dense. We can now say that 
these points constitute a set which is exhaustible, and this is 
exactly what we want to say, because exhaustibility reproduces 
itself upon infinite summation. 

This property of every linear set S, namely the exhaustibility 
of the set of points of 5 at which the approach is not dense, we 
shall now utilize to derive a property of an unrestricted func­
tion. We shall say that the point (£,ƒ(£)) is densely approached 
by the curve y=f(x), or that the approach of f(x) is dense at £, 
if for every pair of real numbers k, I such that &<ƒ(£) </ , the 
set Ek<f<i has dense approach at £. Evidently, in the definition 
of dense approach of a function at a point, we may confine 
ourselves entirely to rational numbers k, I. We then have, in 
all, only a denumerable number of sets Ek</<i to deal with, and 
since each of these linear sets has dense approach at all of its 
points except possibly at the points of an exhaustible set, and 
since there are in all only a denumerable number of such linear 
sets, we conclude that the totality of exceptional points is the 
sum of a sequence of exhaustible sets and therefore itself ex­
haustible. This yields the following theorem. 

An arbitrary function has dense approach everywhere except 
possibly at the points of an exhaustible set. 

The converse result, as may be briefly shown, holds also; that 
is to say, if E is an arbitrarily given, exhaustible set, a function 
exists which does not have dense approach at the points of E 
but has dense approach at every point of the complement of E. 
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Now underlying the method we have here sketched for ob­
taining the theorem on general functions concerning dense ap­
proach, there is a procedure for passing from properties of sets 
to properties of functions. We may formulate this procedure, 
in one aspect, as follows : let R be a relationship of a set S to 
a point x of it of such a sort that if S is any given set, then 5 has 
the relationship R to every point of it with the possible excep­
tion of a set E of type r. Moreover, we assume that the sum of 
a sequence of sets of type r, is of type r, and additionally, that a 
subset of a set of type r is of type r. Then with this relationship 
R we associate as follows a relationship Rf of a function f(x) 
to a point £. We say f(x) has the relationship R' to £ if for all 
k <ƒ(£) <l the set Ek<f<i has the relationship R to £. With this 
understanding, we can say that f{x) has the relationship R' to 
x at all points x with the exception of a set of points of type r. 

From this point of view we derive such results as the follow­
ing: 

An arbitrary function is inexhaustibly approached, in a 
sense that can be readily surmised, everywhere except possibly 
at the points of an exhaustible set. 

An arbitrary function is quasi-continuous almost every­
where,* that is to say, everywhere except possibly in a set of 
Lebesgue measure zero. 

This result can be directly extended to many-valued func­
tions. We may, indeed, allow f(x) to take on kx values at xy 

this number kx being any number between 1 and c, the cardinal 
number of the continuum, and varying with x in any manner. 
If f(x) is such an arbitrary, many-valued function, then there 
exists a set Z of Lebesgue measure zero such that if £ is a point 
not belonging to Z, and (£, ƒ(£)) is any one of the points of the 
curve y =ƒ(#) on the line x = £, then y = f(x) is quasi-continuous 
at £. 

Going on a step from this point, we can reach the following 
result, but we must first explain what we mean by positive 
approach and full approach of a curve y=f(x) at a point (£, 77), 
which, this time, may or may not belong to the curve itself. 
The curve y =f(x) is said to approach the point (£, rj) positively 

* The function ƒ is quasi-continuous at £, if the set Ek</< 1 is, for every pair 
of real numbers k <ƒ(£) <l, of exterior metric density 1 at £. 
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if for every k<rj<l, the set Ejc<f< i is not of metric density 0 at £ ; 
and the approach is full at (£, rj) if for every k<rj<l the metric 
density of Ek<f<i equals 1. Then we can state the following 
theorem. For every f unction ƒ (x), the points £ of the sort that 
there is even a single rj such that (£, rj) is positively but not 
fully approached by the curve y =f(x) constitute a set of meas­
ure zero. 

I shall speak lastly of a theorem that enables us in various 
interesting cases to derive properties of unrestricted functions 
from properties of measurable functions; and since measurable 
functions are in certain essential respects not far removed from 
continuous functions, we thus have a challenge, every time a 
property of continuous functions is presented, to extend it to 
arbitrary functions. 

The theorem I have in mind may be formulated as follows. 
If fix) is any given function, there exist two measurable f unctions 
mi(x) and m^ix) such that the set of points xfor which fix) <m\(x) 
is of measure zero; likewise the set of points xfor which f (x) >m2(x) 
is of measure zero. Moreover, at every point of both y = mi(x) and 
y = m2(x), with the exception of a set of measure zero, the metric 
approach of y =f(x) is full. 

We shall call the functions m\(x) and m^{x) the measurable 
boundaries of fix) ; and the theorem just stated we shall call the 
theorem on the measurable boundaries. 

More can be said, in a similar sense, concerning the nature 
of fix) between its measurable boundaries, but I shall not stop 
for this here. 

The theorem on the measurable boundaries gives us much 
insight into the structure of an arbitrary function, and it is for 
this reason that it is of considerable utility. For instance, there 
is a theorem of Vitali which says that every measurable function 
is equal to a function of class two except at points of a set of 
measure 0.* This theorem has been generalized to arbitrary 
functions by Sierpiflski and Saks f by an argument of some 
length. By means of the theorem on the measurable boundaries, 

* A continuous function is of class zero; if ƒ is not continuous but the limit 
of a sequence of continuous functions, it is of class one; if not of class one, but 
the limit of a sequence of functions of class one, it is of class two; and so on. 

t Fundamenta Mathematicae, vol. 11 (1928), p. 105. 
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we can derive this generalization of Vitali's theorem almost at a 
glance. Also the theorem of Bolzano-Weierstrass generalizes in 
this way, under a certain form, to unconditioned functions. 
Another example is that of the rather exhaustive results of 
Den joy on derivatives, first proved for continuous functions, 
and later extended by G. C. Young to measurable functions. 
When these results of Denjoy are extended to unrestricted func­
tions, we secure a result of apparently great profundity but 
really not as enormously removed, as one might from the out­
side suppose, from simple things. This result may be stated as 
follows: At every point P = (£, ƒ(£)) °f a n arbitrary curve 
y—fix), with the exception of a set of £'s of measure zero, the 
directions of approach to P along the curve lie either in a 0° 
angle—case of the existence of the derivative; or in an angle of 
180°, but not less; or in an angle of 360°, but not less.* 

I will remark in closing that there are ways of search in 
mathematics very different from those indicated in the present 
lecture. For example, an eminent mathematician once told me 
that he had obtained nearly all of his important results "at the 
point of the pen," as he put it; that is to say, not by persever-
ingly seeking a conceptual envisagement of utmost simplicity, 
but, as it were, allowing his mathematico-psychophysiological 
set to determine the course of action of his brain and hand, just 
as musical compositions have been sometimes created. Most 
of the time, he said, nonsense resulted, but now and then he was 
guided to beautiful things. 

There are no a priori reasons for assuming that there are not 
still other quite different modes of search; there are, indeed, 
positive indications of such. 

This lecture was concerned with the mode in which discursive 
thinking by means of concepts attains its end in mathematics. 
A similar analysis, not without promise, is conceivable for the 
mode tha t operates "at the point of the pen," and for the study 
of this mode, access to private notes would be invaluable. 

Surely illustrations of method similar to those here selected 
can be found in other mathematical fields. To become aware of 

* See S. Saks, Sur les nombres derives des fonctions, Fundamenta Mathe-
maticae, vol. 5 (1924), p. 98, where the extension of Den joy's results to arbi­
trary functions is made by means of an independent course of reasoning. 
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these methods is, of course, not in itself an end, but a means 
toward increasing one's agility in the use of processes, and per­
haps even a guide toward new possible modes of search. To 
achieve such consciousness of process should be of particular 
interest to those just entering upon the serious pursuit of our 
fascinating science. In this connection, it may be helpful to 
reflect that the embarrassment which mathematics produces in 
certain quarters comes rather from the extensiveness of its 
domain than from the inherent difficulty of its processes. 

The present study points to the possibility of higher unifica­
tions in mathematics from the point of view of process rather 
than content or logical concept; in other words, unifications not 
from the point of view of conceptual structure but from the 
point of view of a behavioristic psychology. 
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