
19*7-1 CONNECTED POINT SETS 685 

CONCERNING CONNECTED AND REGULAR 
POINT SETS* 

BY G. T. WHYBURN 

In this paper an extension will be given of a theorem of the 
author'sf which states that if A and B are any two points 
of a continuous curve M, and K denotes the set of all those 
points of M which separate} A and B in M, then K+A+B 
is a closed set of points. I t will be shown that if A and B 
are any two points of any connected and regular (connected 
im kleinen) point set M, and K denotes the set of all those 
points of M which separate A and B in M, then K+A+B 
is a closed and bounded set of points. This extended theorem 
is applied to show that a simple continuous arc may be de­
fined as a connected and regular point set which is irredu-
cibly connected! between some two of its points. 

THEOREM 1. If A and B are any two points of a connected 
and regular point set M, and K denotes the set of all those points 
of M which separate A and B in M, then K+A+B is a closed 
and bounded set of points. 

PROOF. I shall first show that K+A+B is closed. Sup­
pose, on the contrary, that there exists a point P which does 
not belong to K+A+B but which is a limit point of K. 
Then there exists a sequence of points S= Fi, F2, F3, • • • , 

* Presented to the Society, San Francisco Section, June 18, 1927. 
t G. T. Whyburn, Some properties of continuous curves, this Bulletin, 

vol. 33 (1927), pp. 305-308. 
t The points A and B of the connected point set M are said to be 

separated in M by the point X of M provided that M—X is the sum of two 
mutually separated point sets containing A and B respectively. 

§ A connected point set M is said to be irreducibly connected between 
two of its points A and B provided that no proper connected subset of M 
contains both A and B. See N. J. Lennes, American Journal of Mathe­
matics, vol. 33 (1911), p. 308. See also Knaster and Kuratowski, Sur les 
ensembles connexes, Fundamenta Mathematicae, vol. 2 (1921), p. 206. 
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belonging to K and having P as its sequential limit point. 
Each point Ft- of this sequence separates M into two mutually 
separated sets Ma(Yi) and Mb(Yi) containing A and B 
respectively. Either there exists a subsequence W of 5 
such that if Y is any element of W, then Mb(Y) contains at 
least one point of W, or there does not exist any such 
sequence. 

CASE I. Suppose there exists a subsequence W of S such 
that if Y is any point of W, then Mi(Y) contains at least 
one point of W. Let X\ denote one of the elements of W. 
Then Mb(Xi) contains at least one point of W. Let X2 denote 
one such point of W which belongs to Mb(Xi). Likewise 
Mb(X2) contains at least one point X$ of W, and Mb(Xs) 
contains at least one point X4 of W, and so on. This process 
may be continued indefinitely, giving an infinite subsequence 
V = Xi, X2, Xz, • • • , of S. Now since for each positive 
integer i, Ma(Xi)+Xi is connected and does not contain 
Xi+i [for Xi+i belongs to Mb(Xi)], therefore Ma(Xi)+Xi 
is a subset of Ma(Xi+i). I t follows that the points of the 
sequence V are all distinct, and hence P is the sequential 
limit point of this sequence. 

Now let 
00 

E= J^M^Xi), F = M - E. 
t = l 

Since for each positive integer i, M = Ma(Xi)+Xi + Mb(Xi), 
and Ma(Xi)+Xi is a subset of Ma(Xi+i), it is clear that 
U— X)^! Xi is a subset of E and that F is identical with the 
set of points common to all of the sets Mb(Xi). Now no 
point of F, save possibly P (in case P belongs to M), is a limit 
point of E. For suppose some point Q of F, distinct from P , 
is a limit point of E. Then since Q is neither a point nor a 
limit point of U, there exists a circle C having Q as center 
and which neither contains nor encloses any point of U. 
But since M is regular at Q, and Q is a limit point of E, there 
exists a point Z of E which can be joined to Q by a connected 
subset I oî M lying wholly within C, There exists an integer 
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k such that Z belongs to Ma(Xk). But Q belongs to every 
set Mb(Xi) and hence belongs to Mb(Xk). But since I is 
connected and does not contain Xk, it follows that Ma(Xk) 
and Mb(Xk) are not mutually separated, contrary to hy­
pothesis. Therefore no point of F, save possibly P , is a limit 
point of E. Furthermore, no point whatever of E is a limit 
point of P. For if Q is any point of E, then for some positive 
integer j , Ma(XQ) contains Q, and since Mb(Xj) contains 
P, and Ma(Xj) and Mb(Xj) are mutually separated, it follows 
that Q is not a limit point of P. 

Now M = P + P, and if P does not belong to M, then E and 
P are mutually separated sets, contrary to the fact that M 
is connected. And if P does belong to M, then M—P = E 
+ (F—P) is the sum of two mutually separated sets E 
and F—P containing A and B respectively. Hence P 
separates A and B in M and therefore belongs to K, con­
trary to supposition. Thus, in this case, the supposition that 
K+A +B is not closed leads to a contradiction. 

CASE II . Suppose 5 contains no subsequence PFsuch that 
if Y is any element of W, then Mb(Y) contains at least one 
point of W. Then no matter what subsequence W of S we 
take, W contains some point F such that Ma(Y) contains all 
the points of W except Y. Hence the sequence S itself con­
tains a point Xi such that Ma(Xi) contains all the points of 
5 except Xi. Let Si be the subsequence of 5 obtained by 
omitting the point Xi from S. Then Si contains a point X2 

such that Ma(X2) contains all the points of Si except X2. 
Let S2 be the sequence obtained by omitting from Si the 
point X2. Then S2 contains a point Xz such that Ma(Xz) 
contains all the elements of S2 except X3. This process may 
be continued indefinitely, giving an infinite sequence of 
points V = Xi, X2, Xz, • • • , which is a subsequence of S. 
For each positive integer i, every point of the sequence Si 
belongs to the set Ma(Xi). Then since, for each i, Mb(Xi) 
+Xi is connected and does not contain Xi+i [for -X\-+i is 
an element of Siy and hence belongs to Ma(Xi)], therefore 
Mb(Xi)+Xi is a subset of Mh(Xi+i). I t follows that the 
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points of the sequence V are all distinct, and hence P is the 
sequential limit point of this sequence. 

Let 
00 

£ = J^Mb(Xi)9 F = M - E. 

Then by an argument similar to that given under Case I, 
with the sets Ma(Xi) and Mb(Xi) interchanged, it is shown 
that in this case the supposition that K+A+B is not closed 
leads to a contradiction. Therefore the set K+A+B is 
closed. 

I shall now show that the set K+A+B is bounded. If 
K exists at all, it is clear that there exists a point 0 not be­
longing to M. Let T be an inversion of the plane about the 
point 0 . As M is regular, then T(M) also is regular. Now 
T(K) is identically the set of points in T{M) which separate 
T(A) and T(B) in T{M). Therefore, by the proof given 
above, T(K) + T(A) + T(B) is a closed set of points. Since 
this set of points does not contain 0, there exists a circle 
T(C) with O as center and neither containing nor enclosing 
any point of the set T(K) + T(A ) + T(B). Then since the 
exterior of the circle T(C) is the image of the interior of the 
circle C, the set of points K+A+B lies wholly within the 
circle C and therefore is bounded. This completes the 
proof of the theorem. 

THEOREM 2. If the connected and regular point set M is 
irreducibly connected between some two of its points A and B, 
then M is a simple continuous arc from A to B. 

PROOF. Let K denote the set of all those points of M 
which separate A and B in M. Then since M is irreducibly 
connected between A and B, it follows by a theorem due 
to Knaster and Kuratowski* that K = M— (A+B). Hence 
K+A+B = M. But by Theorem 1, K+A+B is closed and 
bounded. Therefore M is closed and bounded and irre-

* Sur les ensembles connexes} loc. cit., p. 219, Theorem 19. 
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ducibly connected between A and B, and hence satisfies 
all the conditions of Lennes'* definition of a simple con­
tinuous arc from A to B. 

The chief interest in the above definition of a simple con­
tinuous arc lies in the fact that in its statement nothing 
is said concerning the closure or the boundedness of the 
set in question. This result for the case of the arc is related 
to results obtained by R. L. Wilderf for the case of a simple 
closed curve. Wilder found that definitions of a simple closed 
curve could be given in which the closed and bounded 
conditions were replaced, or modified, by adding the con­
dition of regularity. 

THE UNIVERSITY OF TEXAS 

NOTE ON T H E FOURIER DEVELOPMENT OF 
CONTINUOUS FUNCTIONS^ 

BY A. H. COPELAND 

If we have given a function, ƒ(/), which is continuous and 
periodic, this function is not necessarily developable in a 
Fourier series, but by a monotone change of variable it 
becomes so. We shall prove in fact the following theorem. 

THEOREM. If a function, f(t), is continuous and periodic 
with period b — a, then there exists a monotone continuous f unc­
tion, t = t(6), transforming the interval (0, 2T) into the interval 

* N. J. Lennes, loc. cit. Hallett has shown that the condition of 
boundedness in Lennes' definition is superfluous. See G. H. Hallett, Jr., 
Concerning the definition of a simple continuous arc, this Bulletin, vol. 25 
(1919), pp. 325-326. The same result was published two years later by 
Knaster and Kuratowski in their paper Sur les ensembles connexes, loc. cit., 
p. 224, Theorem 27. 

t See an abstract of a paper On the definition of simple closed curve, 
this Bulletin, vol. 32 (1926), p. 123. See also p. 591. 

I Presented to the Society, April 16, 1927. 


