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ISOLATED SINGULAR POINTS OF 
HARMONIC FUNCTIONS* 

BY G. E. RAYNOR 

Bôcher has given several theorems relating to the nature 
of a harmonic function in the neighborhood of an isolated 
singular point.f E. PicardJ has proved two of the theorems 
given by Bôcher in the paper mentioned above. In both 
papers the following fundamental theorem occurs. 

If a function f(x, y) is continuous and harmonic every­
where in the interior of a closed plane region with the exception 
of an isolated point P in the neighborhood of which f(x, y) 
tends to plus infinity for every mode of approach to P, ƒ is of 
the form c log (l/r) + V in this neighborhood, where c is a 
positive constant, r the distance from (x, y) to P and V is a 
function harmonic everywhere in the neighborhood of P , 
including P itself. 

The analogous theorem for three-space is also proved in 
each paper. 

Picard's proof for the plane makes use of complex variables. 
However, as Bôcher points out, it is desirable to have an 
independent proof in order to follow out Riemann's idea 
of basing the theory of complex variables on the theory of 
real harmonic functions in two variables. Bôcher's discussion 
is general and applies to harmonic functions in any number 
of variables. However, both Bôcher and Picard, in the 
case of the theorem cited for three-space, apply Green's 
Formula to a region bounded partly by the surface 

ƒ(#> y y 2) == constant. 

* Presented to the Society, October 31, 1925. See also a paper by 
O. D. Kellogg, On some theorems of Bôcher concerning isolated singular points 
of harmonic functions, which is to appear in the next issue of the BULLETIN. 

t This BULLETIN, vol. 9 (1902-3), p. 455 ff. 
t BULLETIN DE LA SOCIÉTÉ DE FRANCE, vol. 52 (1924). 
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Now this involves an integral over this surface and further­
more the integral contains the normal derivative of ƒ on 
the surface. In order to make the discussion complete it 
would seem that some consideration of the nature of the 
surface f = c is necessary in order to know if df/dn has a 
meaning and if the integral exists. Such a discussion is of 
course possible but by no means simple. See, for example, 
the treatment of the analogous problem for Green's Function 
in the plane in Osgood's Funktioneniheorie* I t is the 
purpose of the present paper to obtain for the plane addi­
tional results, as well as those of Bôcher, but by a different 
method. Furthermore, most of the present discussion can 
be generalized at once to three-space. 

We suppose, then, that f(x, y) is a function harmonic 
everywhere in a plane region A except possibly at a single 
interior point P . We wish to study the nature of ƒ in the 
vicinity of P . 

About P as a center, and with radius fi, draw a circle 
C\ which lies entirely in the region .4. Also about P draw 
a second circle C2 with radius r 2 O i . Let V be the function 
which is harmonic everywhere in G and which on C\ coincides 
wi th / . This function we know exists and is given by Poisson's 
integral. In the following we shall indicate the region 
bounded by two concentric circles G and Q by the symbol 

Now the difference 

(1) f-V'^F 

is continuous and harmonic in C1C2 and is zero everywhere 
on Ci. Let r be the distance of any interior point (#, y) of 
G to P . Then the function 

1 1 
log log - s W(r) 

r n 
is evidently also harmonic in G G and takes the value 

* First edition, p. 588; 2d éd., p. 673. 
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zero on G. Since V' is given by Poisson's integral, we know 
that on Ci, dV''/dn exists and is continuous. Also since ƒ 
is harmonic on G its normal derivative also exists and is 
continuous there. Hence the same is true of the difference 
Fz=f— V'. The same is seen directly to be true of dW/dn. 
Also, since both W and F are harmonic on C2 their normal 
derivatives exist on this circle. 

Let us now apply Green's Formula to the region bounded 
by Ci and C2. We have 

r r dW dF~\ 
F W—\ds = 0, 

JCjL dn dnj 

where the normal derivatives are taken toward the interior 
of the region G C2. But on G, F and W are both zero, and 
hence 

r f dW dFl 
(2) I \F— - -W—\ds = 09 dn dnj 

or 

C dW r dh 
(3) F ds = W — 

Jc2 dn Jc2 dn 

dW r dF 
ds. 

dn 

But along C2 we have dW/dn = — 1/r which is constant on C2 

as is also W. Hence we have, substituting in (3), 

r C dF 
(4) Fds=-r2 W(r2) ds. 

Jc2 Jc2 dn 

But by a well known theorem on harmonic functions 

r dF r dF r dF 
J ds = I ds + I ds = 0, 

JCiC2 dn JCi dn Jc1 dn 

and hence (4) can be written 

c r dF 
(5) I Fds = r2W(r2) I ds. 

Jc, Jci dn 
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Let us set 
1 r dF 

— ds = 
2irJCi dn 

We have then from (5) the result that the function F satis­
fies the integral equation 

(6) I Fds = 27rr2 ( log log — ) 

where C2 is any circle with P as center, and radius r%<ri. 
Now the general solution of (6) is easily seen to be 

F = c (log log — ) + $(x,y), 
\ r2 rj 

where 

(7) f $(x,y)ds = 0 

and for our ])urposes $ must be harmonic in C. Substi­
tuting in (1) we have 

(8) 

ƒ = c ( log - - log—) + Hx,y) + V' 

1 
c log - + $(o?,y) + 7 , 

where 7== 7 ; —clog (1/Vi). Since the form of ƒ is of course 
independent of any circle as Ci the form (8) holds at any 
interior point of C\ except P . Furthermore, on Ci, * = 0. 

Point P will in general be a singular point of $, and we 
shall show as a matter of fact, unless $(#, y) = 0 , that in the 
neighborhood of P the function $ will tend toward both 
plus infinity and minus infinity, that is, that there will 
exist a mode of approach to P along which $ will tend 
toward plus infinity and also a mode of approach to P for 
which it will tend to minus infinity. Furthermore, the same 
statement will be seen to be true concerning the sum 

1 
c log - + $ . 

r 
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To prove this, let us write <J> in the form 
1 

(9) $ = - ¥ ( * , y ) . 
r 

It is clear that in the open region bounded by G and P the 
function ^(x, y) is continuous. We shall now define two 
functions fi(x, y) and/2(x, y) in this open region as follows: 

fi(%,y) = ^f(^,y) at points where ty(%9y) ^ 0, 

Mx,y) = 0 " " " *(x,y) < 0 , 

M*,y) = * ( * , y ) " " " *(*,y) ^ o, 
M*,y) = 0 " " " *(*,y) > 0 . 

From the continuity of ty(x, y) it is clear that /i and ƒ2 are 
continuous in their region of definition. We have thus 

(10) *(*,y) = Mx,y)+Mx,y). 

From (7), since 1/r is constant on any circle with P as 
center we have 

fc*(x,y)ds = 0, 

where C is such a circle interior to G. Hence 

(11) fcM*,y)ds + Jcf2(x,y)ds = 0 

or in polar coordinates, with P as pole, and any fixed line 
through P as polar axis, 

/»2ir X»2T 

(12) I / K $ + I hdd = 0 

for any value of r. Consider now an arbitrary circle C3 with 
P as center and radius fz<r\. The expression* 

1 c 1 C cos<£ 
(13) ff(*,y) = I # < f c - - I $ <fc 

27Tr3 JC2 7T JC3 J 

* Goursat, Cours d'Analyse Mathématique, vol. 3, p. 222. 
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defines a function U which is harmonic at any point (x, y) 
exterior to C3 and is such that as the point (x, y) approaches 
a point on C3, U(x, y) approaches the value of <ï> at that 
point. In the above integrals d is the distance from (x, y) 
to a variable point M on C, and cj> the angle betwen d and 
the radius of C3 drawn to M. 

By (7) the first of these integrals is zero, and hence 

1 r cos0 1 r2r cos<£ 
U(x,y) = I 3> ds = * dB. 

7rJcs d irJod 
Substituting the value of ^ from (10) we obtain 

1 r2r cos<6 1 r2r cos<f> 
(14) U(x,y) = - - fi—de--\ H — dB. 

But / i and ƒ2 are of constant sign and hence applying the 
first theorem of the mean for integrals to (14) we have 

1 (T COS01 c 2T 

(is) u(x,y) = - ;{[W l~j j j / l Jö 

r cos^n r2r ) 

' 0 

where [m cos((j>/d)] indicates a mean of cos (<fi/d). But by 
(12), (15) becomes 

1 ([" cos<£~| r cos<£~n r2ir 

Let/i(r3 , d) indicate the maximum value of/i on C3. Then 

. , If cos ó l f cos 011 _ 

(16) \U(x,y)\ :g 2 | ^ 1 - - J - ^ 2 ~ - J | Mr„e)-

Suppose now that / i approaches zero as r3 approaches 
zero. Then,since for any point on G, [?ncos (<j>/d)] is bounded, 
I U(x, y) | can be made less than e/4 at all points on G by 
taking r3 sufficiently small, r3 = r3 , say. Now on C8, <ï> and 
U are equal, while on G, <£ = (). Hence in the region G G , 
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$ will differ from U by less than e/2. Now consider any 
point (a, b) except P , interior to G. We can take r3 so 
small that (a, b) lies in GC3 . Also by (16), r3 can be taken 
so small, Yz — r" say, that U(a, b)<e/2. Hence by taking 
r% equal to the smaller of ri and r{' we have 

I *(o,b) | < € . 

Since e is any arbitrarily small number and (a, b) is any 
point in G except P , we have the result that if / i approaches 
zero as rz approaches zero, \F is identically zero in G. 

Therefore, unless 4> = 0, there must be a mode of approach 
to P for which / i remains greater than some positive 
constant Ci, or in other words for which $ remains greater 
than ci/r. In the same manner we can prove that there 
exists a mode of approach to P for which $ remains less 
than — c2/r where Ci is a positive constant. 

Suppose the constant c in (8) is positive. I t is easy to 
prove that 

r i <*n 
lim c log = — co 
r .oL r r J 

and hence for some mode of approach to P 

lim c log - + $(x,y) = — oo . 
r-»o L r J 

In the same way, if c is negative, for some mode of approach 
to P 

lim c log - + $(x,y) 
r+0 L f J + «>. 

We can now formulate the following theorems. 

THEOREM I. In the neighborhood of an isolated singular 
point P , a harmonic function f(x, y) is of the form 

f(x,y) = clog-+ $(x,y) + V{x,y) 
r 
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where c is a constant, r the distance from (x, y) to P, $(x, y), 
unless it is identically zero, harmonic in the neighorhood of 
P and such that there exist modes of approach to P for which 
the sum clog ( l / f ) + $ tends towards plus infinity and also 
toward minus infinity) and V is harmonic everywhere in the 
neighborhood of P, including P. 

THEOREM I I . If a harmonic function f (x, y) is bounded 
in the deleted neighborhood of an isolated singular point, it 
is in this neighborhood equal to a function which is harmonic 
in this neighborhood and also at P, and the singularity can 
be removed by defining ƒ (P) to be equal to lim f(x, y) as (x, y) 
approaches P . 

For the constant c and the function <£ must be identically 
equal to zero i f / is bounded and we h a v e / = F i n the neighbor­
hood of P . 

THEOREM I I I . If a harmonic function tends toward plus 
infinity (minus infinity) in the neighborhood of an isolated 
singular point, it is of the form f = clog (l/r) + V where c is 
a positive (negative) constant and V is harmonic everywhere 
in this neighborhood, including P . 

For by Theorem I, $ must be identically zero in this case. 

THEOREM IV. A harmonic function f(x, y) cannot have an 
isolated singular point P which is such that for certain modes 
of approach to P, f(x, y) tends toward plus infinity (minus 
infinity) and remains finite for all other modes of approach to 
P . 

For if §(x, y)^0, we have the case described in Theorem 
III , while if $(x, y) is not identically zero, Theorem IV 
follows from Theorem I. 
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