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NOTE ON A FUNDAMENTAL LEMMA CONCERNING 
T H E LIMIT OF A SUM* 

BY H. J. ETTLINGER 

In a recent paper* the author presented a proof of a lemma 
which is of fundamental importance in the theory of the Rie-
mann integral. I t is the purpose of this note to replace the 
proof of Case I of the above paper by the present one which 
treats the case of unequal subintervals. The theorem by means 
of which this proof is completed is of interest in itself, and 
admits of certain generalizations, one of which will be stated 
in the sequel. 

A horizontal function of index n, h (x% n), is a function de­
fined on an interval I=(a^x^b) in such a manner that it is 
possible to divide / i n t o n subintervals I(i, n), {i~ 1, 2, • • -,n), 
so that h(x, n) = h*n^constant, at all interior points of I(i, n). 
In addition, we define hÇa, n)=hin and h(b, n)z=hnn. Let 
x(i, n) be the w —1 distinct internal points of division which 
subdivide I and together with a = x(0, n), b = x(n, n) form 
the subdivisions, I(i, n), whose lengths are Ain = x(i, n) 
— x(i—l, n). We shall define the value of h(x, n) at the 
internal points of division x(i, n) to be that value of the 
pair of numbers At-W, ft«+i,n, whose numerical value is the 
larger. Furthermore, let 

n 

ƒ W = J2 fon Ain • 

The fundamental lemma may now be restated as follows : 
Let h(x, n) be a sequence of horizontal functions on I for 

w = l, 2, • • • . Let h(x, n) be bounded for all values of n and for 

* Presented to the Society, September 10, 1925. 
* An elementary proof of a fundamental lemma concerning the limit 

of a sum, this BULLETIN, vol. 29 (1923), pp. 219-223. 
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all values of x in 7, and let lining h(x, n)=0 for each fixed x 
in 7. Then lining f(n) = 0. 

We shall prove this lemma only for the special case (Case I 
of the earlier paper) that \h(x, n + 1) \ S \h(x, n) |. From 
this case, the general case follows in accord with the proof 
given before. Let 

1-1 

We have 

7(»)à|/(»)|èo, 
and 

7(f i+D^7(f i ) . 

We shall show that given any e>0 , there exists a positive 
integer, N€, such that \h(x, n)\<e, for every x in I and 
n}zN€. Then f(n) <e(b — a) for n^N€. Hence ƒ(n), and also 
f in) y approach zero as a limit, as n increases without limit. 

THEOREM. Given any e>0 , there exists an N€ such that 
\h(x, n)\ < e for every x in I and n ^ N€. Suppose the theorem 
false for the interval 7. Let L(i, n) be the subintervals into 
which 7 is divided by adjacent pairs of points x(i,j), i = 
1, 2, • • • , j — 1, j = l , 2, • • • , n. If the theorem is false for 
the interval 7, it must be false for at least one of the sub-
intervals 7,(1, 2), 7,(2, 2). Let L(i2, 2) be the first left hand 
one of these. If the theorem is false for L(i2, 2), it is false for 
at least one of the subintervals L(i, 3) of L(i2, 2). Call the 
first left hand one of these L(i3y 3). Continuing this process, 
we obtain a monotonie non-increasing sequence of intervals, 
L(in, ri), which have therefore either a common interval L or 
at least a common point, x. If x be regarded as representing 
either the common point, or one of the points of L, all of which 
have a common h(x, n), then since h(x, n) approaches zero as a 
limit as n increases indefinitely, \h(x, n)\ <e for n greater 
than a certain positive integer N9. This contradicts the hypo-
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thesis that the theorem is false for 7, and establishes the 
desired result. 

The above theorem may be stated otherwise as follows. 
If the sequence of horizontal functions h(x, n) satisfying the 
conditions of the lemma approach the zero limit function 
monotonically, they must approach it uniformly. I t follows 
as a corollary from this theorem that if we have a series of 
"interval" functions, such that f(x, n) is a single-valued 
continuous curve in each subinterval, and if the sequence of 
functions approach a continuous limit function monotonically 
for each fixed x in I} then the approach to the limit function 
is uniform with respect to x. In particular, the sequence of 
"interval" functions may be a set of functions fn(x) each of 
which is continuous in I. 

UNIVERSITY OF TEXAS 

NOTE ON RATIONAL PLANE CUBICS* 

B Y C . A. NELSON 

1. Introduction. Many constructions have been devised 
for a rational plane cubic. One of the most interesting of 
them is due to Zahradnik* who noticed that the familiar 
construction for the cissoid of Diodes could be extended so 
as to generate any rational plane cubic. It is as follows : 
Take any conic C, a fixed point O on C, and a fixed line b. 
Any line I through O meets C a second time at P , and b 
at Q. On I lay off a segment O M equal to and in the sense PQ. 
The locus of the point i f is a rational plane cubic R with double 
point at 0 . The tangents to R and 0 are the joins of 0 to 
the two points in which b meets C. 

Niewenglowski* showed a bit later that this same con­
struction may be applied to R, using a second fixed line dis-

* Presented to the Society, September 10, 1925. 
+ Zahradhik, Cissoidalcurven, ARCHIV DER MATHEMATIK UND PHYSIK, 

vol. 56, p. 8. 
J Niewenglowski, Sur les courbes d'ordre n à point multiple d1 ordre n — 1, 

COMPTES RENDUS, vol. 80 (1875), p. 1067. 


