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ON THE NUMBER OF ELEMENTS OF A GROUP 
WHICH HAVE A POWER IN A GIVEN 

CONJUGATE SET* 
BY LOUIS WEISNER 

1. Introduction. A fondamental theorem on abstract 
groups is Frobenius' theorem: The number of elements in 
a group of order g whose nth powers belong to a given 
conjugate set is zero or a multiple of the greatest common 
divisor of g and n. In this paper, I will prove the following 
theorems, which are also concerned with the number of 
elements having a power in a given conjugate set. 

THEOREM 1. The number of elements of a group whose 
nth powers are in a given conjugate set is either zero, or 
a multiple of the number of elements in the conjugate set. 

THEOREM 2. In a group of order g, the number of elements 
which have a poiver in a given conjugate set of elements of 
order n is a multiple of the greatest divisor of g that is 
prime to n. 

An interesting deduction from Theorem 2 is the following 
theorem. 

THEOREM 3. In a group of order g, the number of elements 
whose orders are multiples of n is either zero, or a multiple 
of the greatest divisor of g that is prims to n. 

2. Proof of Theorem 1. Let tu t2, • • •, tx be the elements 
of a group G which satisfy the equation tn — s1} and let 
the conjugates of 8± under G be s±, s2, • • •, sm. There exist 
elements u±, u2, • • •, um in G such that 

^Tlmi = 8v (« = 1,2, . . . , m). 
Since C = sl7 

(uï~\ui)n == uIlsu = sv 

* Presented to the Society, February 28, 1925. 
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Hence there are exactly x elements of G whose nth 
powers are si. If ufH^ = u^Hbuk7 then, raising both 
members to the nth power, we have 

lt-iSUi = u^su^ 

or Si = sjc, whence i = k. It follows that ta = hj whence a = b. 
The distinct elements of G whose nth powers are con­

jugate to s1 are therefore 
-u (a = I, 2, • - • , x\ 

and their number is mx. 

3. Proof of Theorem 2. Suppose, first, that the conjugate 
set consists of only one element s, which is therefore 
invariant under the group G. Let k be the greatest divisor 
of g that is prime to n; and let ta = s. 

CASE 1: a prime to n. If aar = 1 (modn), then t = sa\ 
An element u of 6r of order m prime to n, being com­
mutative with s, is commutative with t. Hence 

(tu)xm = sa'xmuxm = s, 
where xa'm = 1 (modn). Hence s is a power of tu. 

By Frobenius' theorem, G contains Ik (I integral) elements 
whose orders divide k. Denote these elements by Ui, • • •, uiu-
We have just proved that the only elements of G satisfying 
the equation ta — s, where a assumes all values prime n, are 

«> •*-. C 1 1 ; : : : : * ' " ) . 
where cl9 • • •, c^n) are the integers not greater than n and 
prime to n. These elements are distinct;* hence their 
number is a multiple of k. 

CASE 2: a not prime to n. Let a = n^b, where b is 
the greatest divisor of a that is prime to n. We may 
write t = Ut2 , t where ^ and ^ are powers of t, and 
the order of t2 is the greatest divisor of the order of t that 
is prime to n, while the order of tx is a multiple n2 of n 
which is not divisible by a number prime to n (except 

* W. Burnside, Theory of Groups, 1911, § 16. 
f Burnside, loc. cit. 
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unity). If the order of t2 is c, then the order of t is 
n2c. Since s = tnib = tfHfb, we may write 

(2) sn = t^tf1^ = 1, 
whence 

Hence c is a divisor of wwi& and therefore of 6. It follows 
from (2) that s = t™lb. If a, of order m prime to n, is 
commutative with £, and if m'm = 1 (mod n2), then 
/'g^ Ĉ  ^yn'mmj) === •fmfmnxbymfmn1b —— ^n±b -— g^ 

Hence s is a power of txu. 
Let n^h be the order of the normaliser N of t in G 

and let gln^ki = n^h, where kx and k2 are the greatest 
divisors of n3h and w4&2 respectively that are prime to n 
and hence to n2. The number of elements of N whose 
orders are prime to n is of the form akx\ denote these 
elements by 
( 4 ) Wi , • • • , Ucikf 

It follows from (3) that s is a power of 

(5) tiUi, • • • , ^.Waft-

It is noteworthy that t2 is in (4) and hence t = tit2 is in 
(5). Let t{ =w~~1t1w be a conjugate of ^. Since 5 is in­
variant under G, 

t[n^h = w~1f^>w = w~xsw = s. 

Now there are exactly akx elements in G whose orders are 
prime to n and which are commutative with t[. Denoting 
these by u[, • • • , uaim, it follows that s is a power of 

(6) tiui, • • • , tiu'akt. 

Moreover, no element in (6) is equal to an element in (5).* 
There being nji2 conjugates of tu we obtain anjctk2 elements 
of which s is a power. Observing that k = ktk2 is the 
greatest divisor of g prime to n, it follows that tt and its 
conjugates give rise in the manner described abov'e to a 

Burnside, loc. cit. 
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multiple of k elements of which s is a power. These elements 
are evidently distinct from those obtained under Case 1. 

If s is a power of T and r is not one of the elements 
already obtained, let r = T1T2, where the order of r2 is 
the greatest divisor of the order of x that is prime to n. 
Then TX and its conjugates give rise to a multiple of k 
elements of which s is a power. Let TXV be one of these 
elements, and, if possible, let it be equal to an element 
in (5), say r±v — ttu = v. Since the order of u and the 
order of v are both equal to the greatest divisor of the 
order of w that is prime to n, we must have T± = tt, v = u. 
This is not the case, and hence TX and its conjugates give 
rise to a multiple of k new elements of which s is a power. 

The theorem now follows under the assumption that s 
is invariant under G. 

Suppose next that the conjugate set consists of powers 
of s, so that (s) is invariant under G. Denote the con­
jugates of s by 

(7) s* . . . , s*, fo = 1), ( r > l ) . 

Let Hy of order fa, be the normaliser of s in G\ and let k 
be the greatest divisor of h that is prime to n. The number 
of elements in H of which s is a power is a multiple 
of k, which we denote by Ik. Since clf • • •, cr are prime 
to n, sCl, •••, sCr are powers of these same Ik elements. 
Hence H contains exactly Ik elements which have a power 
in (7). If t has a power in (7), so has tCi (i — 1, 2, • • •, r). 
Hence the number of elements of G which have powers 
in (7) is a multiple of r. The order of G is g = rh\ for 
GIS is simply isomorphic with the group obtained by 
establishing an isomorphism of s with scK • • •, s% and is of 
order r. The number of elements of G which have powers 
in (7) is a multiple of r and a multiple of k and is therefore 
a multiple of the greatest divisor of g that is prime to n. 

Finally, suppose the conjugate set of elements does not 
consist of the powers of one of them. The elements in 
the conjugate set may be separated into subsets 
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(81) « ? , - • • , 4r> (fii = D> 
(82) * ? , - • • , # , (r>D, 

(8m) * £ > • • • > *m> 0 » > 1 ) , 
such that any two elements in the same subset are powers 
of each other, whereas no element is a power of an element 
in another subset. 

Let Hi, of order h, be the normaliser of (s*), (i = 1, • •., m). 
An element of G which has a power in (8*) is commutative 
with the elements of (Si) and hence is in Hi. Therefore 
Hi contains all the elements of G which have powers in 
(Si). Since the elements of (Si) form a complete set of 
conjugates under Hi, the number of elements of G which 
have powers in (Si) is Xh, where X is an integer, and Jc 
is the greatest divisor of h that is prime to n. If t has 
a power in (Si), t cannot have a power in (Sj), (i 4= J)-
For if tx = sc

{ and W = sf, then tx and P are of the 
same order n, so that each is a power of the other, 
whence i = j . It follows that the number of elements 
of G which have a power in (8) is Xkg/h, and this number 
is evidently a multiple of the greatest divisor of g that 
is prime to n. 

4. Proof of Theorem 3. If the group G contains an element 
of order n, separate the elements of order n into complete 
sets of conjugates, which we denote by Ci, •••, Cx. Of 
these, we select a subset C±, • • •, Cy, such that no element 
in d has a power in Cj (i 41 i)? (hj — 1? • • • ? y\ Every 
element of G whose order is a multiple of n has a power 
in one and only one of the sets 6\, . • •, Cy\ and the order 
of every element which has a power in one of these sets 
is a multiple of n. Since the number of elements of G 
which have a power in d is a multiple of the greatest 
divisor of g that is prime to n, it follows that the number 
of elements of G whose orders are multiples of n is a 
multiple of the greatest divisor of g that is prime to n. 

UNIVERSITY OF KOCHESTER 


