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FUNCTIONAL INVARIANTS,

WITH A CONTINUITY OF ORDER p, OF ONE-
PARAMETER FREDHOLM AND VOLTERRA
TRANSFORMATION GROUPS*

BY A. D. MICHAL

1. Object of the Paper. In the present paper sufficient
conditions are given for the invariance of functionals
Sly@d), v @), y" (=), - - -, yP(z)] with a Volterra variation
under given arbitrary Fredholm groups

31

(1) oylx) = [j H (x, s)y(s)ds]éa
0

with a kernel H(x,s) of the typet

(2) H(x,s) = n(x)y(s).

These sufficient conditions are given in the form of func-

* Presented to the Society,, October 7, 1924.

+ In this BuLreTIN, vol. 30 (July, 1924), pp. 338-344, the writer
considered analytic functionals f[y(z}),y'(r)] admitting Fredholm
groups (1). In the process of finding sufficient conditions for invariance,
a certain amount of specialization on the kernel H (x,s) was necessary.
The specialization however was erroneously made more than necessary
due to an error in formula (16). The reader will verify the statement
that the corrected formula (16) becomes

Siu(Ery ooy tisbigay oo oy tiga, B)
= (—1Y () @ (ti4r—1) @ Fitn—s)+ ++ @(bit1) firn, olbigr, Bigzy ooy biprn, By by oo i),
With the aid of this corrected formula, we can show readily that the
kernel H(x,s) will have to be of the form z(x)¢(s) and hence

o) =) / d?lfft) . Consequently the fi+'s need not be symmetric in

all their arguments. Theorem II of the cited paper becomes true
when the above changes are introduced.

In the cited paper we also need to make the following correction:
substitute ‘It is sufficient that” for the wording “We may now apply
Lemma 2 of I.D.LV.; doing so we find” immediately preceding
equation (12).
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tional equations with partial functional derivatives. Of
special interest are the linear functionals in which case
necessary as well as sufficient conditions for invariance
are given. We further demonstrate a theorem which shows
the unique role played by a linear functional of y(v) and
y'(r) that admits a given arbitrary Volterra group of
transformations

3) Oy(x) = [J;wH (z,8)y(s) ds] da

with
H(s,s) + 0.

2. A Sufficient Condition for Invariance. We proceed
to prove the following theorem.

TuroreM I. A sufficient condition that a jfunctional
Sly o), y'(w5), -+, yP(z0)] with a Volterra wvariation and
continuous functional derivatives admit a given arbitrary
Fredholm group of tramsformations (1) with a kernel H (x,s)
of type (2) (q(x) being assumed® to be such that all the
79 (x)/q(x)'s are continuous in the interval 0,1) s that it
satisfy the completely integrable jfunctional equation with
partial functional derivatives

__ 1@ _a'® oy 2P
(4') fy(t) — 7 (t) fy'(t P (t) jy"(t) 7 (t) y(P)(t)7
where fo(t) represents the partial functional derivative of
Sly, o'y ", - yP1 with vespect to y@ (v) taken at the point t,
and where

oen — A (t)
@) —_— AN

* To shorten the statements of the theorems that follow in this
paper we shall always assume this restriction on the %(x) found in
the Fredholm kernel (2). Moreover it is scarcely necessary to state
here that we assume that the derivatives of 7(x) up to and including
the pth derivative exist or else our functional equations will have no
meaning.
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ProoF. A necessary and sufficient condition that
Sfly, o, -+, y®P] admit a given arbitrary Fredholm group (1)
with a kernel 7(x)yw(s) is that

1
af[y’ ?/,, Y ?/(p)] = 6af [fy(t)ﬂ(t)£ ’P(S)?/(S) ds

1
0
1
+/f,On'(®) ﬁ w(s)y(s)ds +

1
Foe £ 1) f w<s>y<s>ds] it = 0.
Hence it is sufficient that
720/,O+ 2", O+ 1"Of, O -+ 72? A f & =0,

which can be written in the form (4).

Paul Lévy* has treated extensively the integrability
conditions and the Cauchy problem for functional equations
with partial functional derivatives in the case of functionals
of two independent functions. Cauchy problems and
integrability conditions for equations of type (4) involving
functionals of p functions can be considered by an extension
of Lévy’s work.

We now consider the functional equation

®) S, = 01@) Ly (&) + 92O fr (&) + -+« + gp—1(D) S, (B).

Assume that each of the p functional arguments yy(z), ys(%),
-+ yp(7) is expressed in terms of two parameters A and w.
Let d; be the variation operator when 4 changes and let
0, be the variation operator when w changes. By an
obvious extension of Lévy’s work, it can be shown that
a necessary and sufficient condition that the functional
equation (5) be integrableT is that

* Cf. his book Legons d’Analyse Fonctionnelle, Part II.

T Cf. Lévy’s book, § 78, Part I; note at the end of Chapter I, Part IT;
8§ 45, Part II. Lévy assumes the existence of a solution in getting
his integrability conditions. In our case, however, it is possible to
get explicit solutions by a direct computation. See § 4 of this paper.

22



338 A. D. MICHAL [July,

(6) 6;46Af[?/17 Yoy oy Z/p] = 6l 6/zf[?/17 Yoyoy ?/p] .

A necessary and sufficient condition* that the integrability
condition (6) hold is that % be adjointyto Ky, (k,q=1,2,---, p),
where Fg stands for the linear functional of dyx found in
the expression for dfy, (?).

If for y,(2) = yop(v), flys, y2,---, yp] is a given arbitrary
functional of yy,¥s, -+ -, yp—1, thenthe fy,({)’'s ((=1,2,-- ., p—1)
are known for y,(v) = yop(v) and hence the linear functionals
Erg(kyq = 1,2,..-,p—1) are known and are furthermore
respectively adjoint to the Eg's. To compute the Ep's
and the Ej's( =1,2,.--,p), we take the variation of both
sides of (5). Doing so, we get

(1) 0fy, () == (D Ofy. () + g2 (D f (D) + -+ - + gp—1 (D) Ay, (B),
an identity in 0y, 0ys, -+, Oyp.
Consequently on equating terms in dy;, we get
Epi[aZ/i(T)/t] a f/1(t)E1i[‘;?/i(T)/t] "]‘,OQ(t)Eziwyi(T)/t] +
<+ gp-1(8) Ep—1,4l0yi(2) 1], (i = 1,2,--+,p).
From (8) we see that the Ep’s (i=1,2,...,p—1) are given
in terms of known linear functionals. Hence, imposing the
condition that &j; be adjoint to Kip(i = 1,2,..-,p—1), we
get from (8)
9) Eyloy:(0)/t] = Eulgidyi/t|+ Eilgsdyilt] +
ook By palgpadylt, o= 1,2,--,p—1).
Finally in order that the integrability conditions (6) be
surely satisfied we must have K,p[dy,(¢)/t] self-adjoint.
On substituting the expression for E;y, as given in (9), in
the expression for Ay, in (8), we can see with a little
computation that E,, is automatically self-adjoint. Hence
the functional equation (5) is completely integrable. Since
p can be any positive integer, it follows that (4) is also

a completely integrable equation. This completes the proof
of our theorem.

(8)

* This condition can readily be found by computation.
T For a definition of adjointness see Lévy’s book, § 78, Part L.
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The following corollaries are immediate.

COROLLARY 1. There is one and only one solution fly,y',y",
<o, D] of (4), regarded momentarily as a functional of p + 1
independent arguments, such that for a given initial func-
tional value of the first argument

y(@) = yo(o),
SFly,y' sy yP] has arbitrary values as a functional of
its last p arguments y' (v),y" (v),- -+, y® (7).
COROLLARY 2. There always exist functionals f[y(vt),y' (z0),
< Y P ()], with a Volterra wvariation, admitting a given

arbitrary group of Fredholm transformations (1) with a
kernel of type (2).

3. Linear Functionals Continuous of Order p; Necessary
and Sufficient Conditions.* Of special interest are the linear
functionals with a Volterra variation; i.e., functionals of
the form

ot | royont [ foyoat
(10)

1
ot J: Forn(Dy®@ @) dt,

where p denotes any positive integer or zero; and all the
JS{#)’s are assumed continuous functions of #in the interval (0, 1).
We shall demonstrate the following theorem.

THEOREM II. A mecessary and sufficient condition that
a linear functional (10) of continuity order p admit a given
arbitrary group of Fredholm transformations (1) with a
kernel of type (2)T is that it satisfy the completely integrable
Junctional equation

Fu = =10 g0

7(?) 7(?)

®(¢) o(?)
n
e m—— 7 {P)(t)+—
7@ * 7(9) ’
* Of. G. C. Evans, The Cambridge Colloguium, 1916, Lecture III, § 3.
T We further restrict ourselves in this theorem to kernels of type (2)
with %(x) & 0 in the interval (0, 1).

22¢

(11)
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where (%) is a given arbitrary continuous function satisfy-
ing the equation

(12) J;lw(t)dt = 0.

Proor. Kvidently a necessary and sufficient condition
for invariance is that

U:y(s) ¥Gs) dSJ [ J:{fy(t)ﬂ(t) +fy ' () +
oo fyo (O 7P ()} dt] =0

in y. Hence it follows, since ¥(s) = 0* and since all the
functional derivatives of fly, y', y",---, y®] are point func-
tions, that

J; {fr@Ou@O+ Ly D0’ @)+ -+ /o Oy? (D)} dt = 0,

a condition which evidently can be expressed in the form
of the functional equation (11)t.
The following important theorem is immediate.

TaEOREM III. Given any continuous function o(t) such
that (12) holds, and given the initial conditions in the
Cauchy problem for equation (11), then there is one and
only one linear functional (10) of continuity order p admitting
a given arbitrary Fredholm group of transformations (1)
with a kernel of type (2) and taking on the given imitial
conditions.

We remark here that since ¥(s) does not enter into the
final conditions for invariance for the linear as well as for
the non-linear functional, there is an infinitude of Fredholm
groups (1) with a kernel of type (2) leaving one functional,
of the types considered, invariant.

* For if ¢(s) = 0, then our transformation degenerates into the
identical one and hence there is no problem.

1 Equation (11) can readily be shown to be completely integrable
by a slight modification of the reasoning involved in treating equation (4).
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4. Explicit Expressions for the Functional Invariants.
To get explicit expressions for the functional invariants,
we can assume fly,y',y", -+, y®] to be expansible in a series
of functionals. For instance we can assume fly,y’, 4", -+, y®]
to be an analytic functional of its p + 1 functional arguments
y (@), y’ ), y" (@), .-, y® () and then by a reasoning similar
to that found in ome* of the writer’s papers, recurrence
formulas can be computed yielding the desired functional
invariants in terms of the given initial conditions. Kor the
sake of brevity, we here give only a simple illustration.

Consider the problem of finding the functional jf{y(z),
y' (@), v @) of the form

21

Iofioo(t)y(t)dt+ 0./61o(t)?/l(t)dt+ j Joor () y" (1) dt

0

+ 21 !‘[fol J:ﬁoo(tu t)y (t) y (t) dt dts

1 1
-+ £ ﬁﬁgo(ﬁ; t)y’ (t)y’ () dt, dts
1 o1
(13) +Jo Jo Jooz (t, to)y” (&) y" (8) dt, dts
1

*1

+ 2]; o Siro (b, te)y () y' (8) Aty diy
i
T2 Jo J;fm (t1, ta)y () y" (fs) dty dty

1 /2
T 241; Io Jou (b, ta)y' (t)y” (t)dt, dt2]

admitting a given arbitrary Fredholm group of trans-
formations (1) with a kernel of type (2).

We can, without any loss of generality, assume figo(f1,%2),
Jozo(ti, ) and fooe (8,%:) to be symmetric in # and ¢,. We
further assume that all the fix’s are continuous functions
of all their arguments.

* Integro-differential expressions invariant under Volterra’s group of
transformations, ANNALS OF MATHEMATICS, vol. 26, p. 181 (March, 1925).
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From our previous theory we see that for invariance it
is sufficient that fly(z0), ¥ (v0), v” (z0)] of type (13) satisty
the completely integrable functional equation

1 @, "(t) .
Agssume the initial condltlons for this equation to be given for
y(@ =0

in the form

S0,/ (0), y" (w0)] == ffom(t)?/ () dt + fﬁ)m Oy @) at

(15) U J Sozo(t, 1)y ()Y () dt, dt.

+f J fO())(tIJ ts )J”(t )J/,(t))dtl dts

+ 2£ ﬁﬁm (t, )y ()Y (L) dh diz]-

Calculating the partial functional derivatives of f[y (%),
y' (#3), 4" (x0)] and substituting them in the functional equation
(14) we get, on equating coefficients of similar terms in
y, v, and y”, the unique determination of the four un-
known fi;’s in terms of the five initially known fi's.
Thus we get after computation

fun® = =L foo0— LD o),
Fuoltst) = =L fostt, 00— T g0,
far(tt) = =T fosty 0= B om0,
Fuon 1,1 — ’;—(%)— T oot )
i Zi((t?)) T o 80 TS a0
p A0 ) by

7(t) q(t)
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5. Functional Invariants of Volterra Groups. 1t is of
interest at this point to give certain results as regards
linear functionals of continuity order p of type (10) which
admit a given arbitrary one-parameter Volterra group of
infinitesimal transformations.

The author has treated extensively in another paper*
the problem of finding functionals fly(zc), ¢'(z0)] which
admit a given arbitrary Volterra group of transformations
defined by (3).

In particular it was shown that a necessary and sufficient
condition that a linear functional fTy(+7), 7' (z9)] of the type

a6 gt [ Awvwart [ Aoy

(fi(®) and f5(¢#) assumed continuous in (0,1)) admit a given
arbitrary Volterra group of transformations (3) with H (s,s) £ 0
is that it satisfy the completely integrable functional equation

1
an Fr® — |, D050,
where . /
L(s, ) :JS (s, “f}I!((%”,?v')) dr’ — %%Ti%’ r=s,
= 0, r<_s,
and where % (s,s') is the reciprocal kernel of
1 8H(@,s)

o H(s,s) or

It was also shown that there are no linear functionals

fot ) SOyt

(f(f) assumed continuous in (0,1)) other than constants,
which admit a given arbitrary Volterra group of trans-
formations (3) with H(s,s) 4 0.

With these facts in mind we proceed to prove the
following theorem.

* Integro-differential expressions, loe, cit.
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THEOREM IV. The linear functionals (16) are the only
linear functionals (10) other than constants that can admit
a giwen arbitrary Volterra group of tramsformations® (3)
with H(s,s) + 0.

The proof of this theorem can be made to depend on
the following lemma.

LeEMMA. Let Fy(x), Fy (x),---, Fx(z) be continuous functions
i the interval (0,1). If

1
(18) J; [Fo(@y @) + Fi(@)y () + - - 4 Fr(@)y®(@)]lde = 0

Jor all possible forms of the function y(x), having a con-
tinuous kth derivative y®(x) in (0, 1), then it is necessaryt
that Fi(x) exist and be continuous wm (0,1) and that
Fi(0) = Fi(1) = 0.

Proor. Assume
y(0) = y(1) = ¢y (0) = y'(1) =
P y(k"l)(o) = y(k“l)(l) = ().

Then making use of a well known formulai and by an
evident use of Dirichlet’s formula, we get

(19)

w1 *1
j y® () [Fk(t) +j {Fk—l(x) + Fr—a (@) (x—1) +
(20)
.-+ F (x) — 0 -4 Fy(x) ( t)kwl}(lx]dt =0
' (k 2)! E—D! ]
for all ¥ of our hypotheses satisfying (19). It follows$
therefore that

* We note, without any further statement, that whenever we shall
need the pth extended Volterra group of transformations, we shall
assume that all the derivatives of H (x,s) and H(s,s) that are found
in this extended transformation exist and are continuous.

T The reader can, without difficulty, push the argument until
necessary and sufficient conditions on all the F;(f)’s are found by
successive applications of our lemma and by successive valid integrations
by parts; but the lemma as stated is sufficient for our purpose.

1 Of. Hadamard, Calcul des Variations, vol. I, p. 201.

§ Cf. Hadamard, loc. cit.
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lh) = — j {j () + Frea(x) (x—1) +

21 ---’JrFl(x)-(“ i - {)2)7’ + Fo(x )((k ’)1)7}

+Zo‘l‘ll(l—‘t)"l‘zz(l"‘t)z’l”"“i’lk l(l—t)k 17

where the /s are arbitrary constants. The derivative of
the right hand side of (21) exists and is continuous in (0, 1)
and hence the derivative Fy(f) of Fj(f) exists and is con-
tinuous in (0,1). Dropping now the restrictions (19) and
caleulating Fj(¢) from (21) we proceed as follows. We
substitute the expression for F%(f) in (18) and perform the
now valid integration by parts. Carrying out k—1 valid
successive integrations by parts starting with the term
involving »*V(f) and ending with the resultant term
involving y'(¢), we get, on putting

y(©0) = y(1) =y (0) Y (1) =
— J(kA2)(0) — y(kf—vz)(l) = 0,

(23) [1"’,C(t)y"‘*”(t)]}J =0

for all y’s satisfying (22). In order that (23) may hold
it is necessary and sufficient that F(0) = Fi(1) = 0.
This completes the proof of our lemma.

A necessary and sufficient condition that a linear func-
tional (10) admit a given arbitrary Volterra group of
transformations (3) is that

IO ly(@®) 7 () +y' () he (2) +
ooy @D hpa () -y PG H (8 fpa (D] dE = 0

in y, where h;(t) (¢ =1,2,-..,p—1) are easily calculated
expressions whose explicit form is not necessary to the
argument. On applying the lemma just proved we conclude
that it is necessary that the derivative of H(¢,?)fp+1(t)
exist and be continuous and that

H(1,1)fp+1(1) = H(0,0)fp+1(0) = 0.

d

(22)

e
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Since by hypothesis H(t,t) £ 0, we conclude that the
derivative of fp+1(f) exists and is continuous and that
Jp1(1) = fp+1(0) = 0. Hence it is necessary that the linear
functional of continuity order p reduce, by an integration by
parts, to a linear functional of continuity order p—1. The
lemma applied again to this new functional reduces it to a
linear functional of continuity order p—2. Applying the
lemma successively in such a manner, we finally get, as a
necessary condition for invariance, the result that the ori-
ginal linear functional of continuity order p has to reduce at
least to a linear functional of continuity order one. This
result coupled with the existence theorems cited in the
beginning of § 5, establishes our theorem.

Tur Rice INsTITUTE

ON THE DISTRIBUTION OF QUADRATIC
AND HIGHER RESIDUES*

BY H. S. VANDIVER

1. Introduction. In the present paper theorems will be
obtained regarding the distribution of quadratic and higher
residues. Special cases of the theorems yield results con-
cerning the class number of quadratic forms of determinant
(—d) where d = 3 (mod 4).

2. Comgugate Sets of Residues. In a previous articlet the
writer considered the notion of conjugate set in a finite
algebra. Applied to the finite algebra represented by the
residue classes of a rational integer as modulus, we may
define a comjugate set of residues of the modulus m to be
a set
1) Gyy Qay ~voy

* Presented to the Society, October 28, 1916.
T ANNALs or MaTHEMATICS, (2), vol. 18 (1917), p. 106.



