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we see that any term which does not correspond to an 
absolute permutation of the n indices i, j , • • •, k contains 
an element from the main diagonal and is therefore zero. 
The value of a term corresponding to an absolute permu­
tation is + 1 or — 1 according as the permutation is even 
or odd. The value of D is therefore the difference between 
the number of even absolute permutations, Ne, and the 
number of odd absolute permutations, No, that is 

(1) Ne—No = (—ly-Hn—l). 

Moreover we have* 

(2) Ne + N0 = n\Z-—r--

From (1) and (2) Ne and N0 can be calculated. 
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1. Introduction. If a = (apq) is a matrix of order n 
whose elements are ordinary complex numbers, the absolute 
value of a is defined as Y^apqaPq, where a = (ïïpq) is 
the matrix whose coefficients are the conjugates of the 
corresponding coefficients in a; we shall denote it here 
by [a], a special symbol being convenient since the absolute 
value of a scalar matrix I is not \X\ = mod X but n1/2\X\. 
This definition has been freely used by writers on differential 
equations; but, in spite of this, its properties with regard 
to multiplication have seemingly escaped notice, or are 
at least not well known. 

* Cf. Seelhoff, ARCHIV DER MATHEMATIK UND PHYSIK, (2), vol. 1, 

p. 100. 
t Presented to the Society, May 2, 1925. 
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The principal properties of [a] are as follows: 

(1) La+ 61 ^ Lal + L&l, 
(2) W = nl'2\l\7 \ 

(3) 1**1 = 1*11*1, I (A S c a l a r ) 

(4) Lafcl < Lall&l. 

Relation (4), which is the only one which is not obvious, 
follows immediately from the identity 

[a]2[b]2 = ^aVr~dVr^hSql)sq 
2>r qs 

= j Z L é \ 2 jeLj\M,prUsq ttpsVrq) \MprOsq üpsUrgJi j^i^pr^rq^jdps^sqh 
pq 1 rs r s J 

whence, seeing that the terms of the first summation within 
the braces are real and positive, we have 

[a]2[b]2 >]£ ^aprbrq^âpsksq = [ah]2. 
pq r s 

The equality sign holds in (4) only when ars and brs have 
the form ars = lrfs, brs = jtMV 

Similar matrices do not in general have the same 
absolute value; \bab~~1} and [a] are the same however if 
b = uc, where ca = ac and u is a unitary matrix. * 

2. Negative Powers of a Matrix. As pointed out by 
Schur, [a]2 may be defined as the trace of a"'a, which is 
a positive Hermitian matrix and therefore has positive 
real roots, say gu g2, • • -, fjn* If 

sr=2ffv Pr=2i9i92—9r> s = s1=[a\2, p^pn = fdeta|2, 

* Cf. Schur, Über die characteristischen Wurzeln einer linearen 
Substitution, MATHEMATISCHE ANNALEN, vol. 66 (1909), pp. 488-510, 
pp. 490, 492. Since replacing a matrix by a similar one corresponds 
to a change of coordinates when the matrix is regarded as a linear 
transformation, it follows from Schur's work that, when the element­
ary divisors of a are simple, [a] has its minimum value when a is 
represented as a diagonal matrix, that is, in its normal form; and it 
seems probable that the normal form also gives the minimum value even 
if the elementary divisors aie not simple. 
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then it follows readily from the inequality connecting the 
arithmetic and geometric means that* 

( r ) p W n ^ J P r ^ ^ - r ( r — l ) s r . 

whence 

(5) 

If Cr(a) is the rth compound of a,f pr = [Cr(a)]2\ hence, 
if we put a for the determinant of a, (5) becomes 

(6) Ify \a\»i» £ [Cr(a)f £ r"fyz\)lar. 

Now a"1 = Cn-i(a)/cc, provided cc^O; hence 
(n—4) 

(7) n 1 ' 2 1a | - ^ <; La"1] < (n—1) 2 Lal^VI«I• 

This inequality enables us to deal with expressions con­
taining negative powers of a matrix. The following in­
equality is, however, sometimes more convenient. Since 
aa~x = 1, it follows from (4) that 

(8) ^ ^ - [ O P 

and, sincej a = eloga, ar1 = e~loga, both [a] and [a-1]' 
are less than or equal to e[loga]. 

* For r =• n this inequality, which is an extension of Hadamard's 
expression for the maximum of the absolute value of a determinant, 
is given (loc. cit., p. 496) by Schur, who also derives a number of 
other interesting inequalities. 

f It must be remembered here that the order of Cr(a) is IH, so 
that, if for example a = l, then [Cr(a)]2 = \Z\ and not n. Reference» 
to the literature of compound matrices will be found in Pascal, 
REPERTORIUM DER HÖHEREN MATHEMATIK, vol. 1, pp. 138-146. 

+ An elementary discussion of the logarithm of a matrix is given 
by the author, The automorphic transformation of a bilinear formr 

ANNALS OF MATHEMATICS, (2)? vol. 23 (1921), pp. 122-125. 
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3. Infinite Series and Products of Matrices. The use 
of (4) makes the discussion of infinite series and products 
of matrices somewhat more compact than is the case 
with the usual methods.* We shall give here only a few 
elementary illustrations. 

If ar (r = 0, 1, 2, • • •) is an infinite sequence of matrices 
and x a variable matrix, and we set [ar] = ccT} [x] = £, 
then ^arx

r converges absolutely if ^[arx
r] converges, 

and hence also when ]£ctr& ' is convergent. In particular, 
ex ^\gx>xr/r\ converges for every matrix x and [ex)^e[x\ 
Similarly log (l-\-x) =2T(—l)r~~1xr/r converges for [x] < 1. 
Here, however, the condition is much too strong; for, if 
x = 1/3, say, then [x\ = nll2/3, which is greater than 1 
if n > 9, while the series converges absolutely in the 
ordinary sense. A better form of the condition in this 
and similar cases is [#c]/|cl < 1? where c is some non-
singular matrix. Any criterion of this sort has distinct 
limitations; for it is not difficult to show that all that is 
necessary for the convergence of ]£arx

r is that the series 
converge when x is replaced by the ordinary absolute 
value of the root of x of greatest absolute value. 

4. Examples. The following examplest illustrate the 
application to infinite products. Let c be an arbitrary 
matrix, and set 

Pm = (1 + at) (1 + a2) • • • (1 + am), 
(9 ) Qm = (1 + M) (1 + [a2]). •. (1 + [am]) ; 
then 
(10) LPm — l l ^ Q m — K ^ r i — i , 

* For applications to differential equations, for example, reference 
may be made to Schlesinger, Vorlesungen iiber lineare Differential-
gleichungen, Leipzig, 1908, pp. 86-90, 41-42. 

f The inequalities given here are those required in proving the 
existence of a solution of a system of linear differential equations 
by the method of successive approximations; cf. Schlesinger, loc. cit., 
pp. 3-16. 

20* 
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(H) [Pmc]£es^[cl, 
7)1 m 

(12) [Pltl -Pk]<Qm-Qk<Z M e%Va*\ 
k 

It is sufficient here to give the proofs of (10) and (11). 
Expanding (9), we have 

p p<.q p<q<cr 

therefore 

[Pm—l]<^[ap] + ^[ap\[aq]-\-'-- = Q w — 1 , 
p p<q 

[Pmc] S (1+ 2[ap] + 2 l«* l [ag] + • • •) [c] = Qm[c\. 
p V<-0. 

As another example we may take the proof of the 
existence of a solution of the differential equation 

(13) % = ax, 

where a = a0 + ax t + a21
2 -\ is a matrix which is ana­

lytic in the scalar variable t at t = 0. Let C be the circle 
of convergence of the series for a, that is, if L̂ rl = «v; then 
<*(f) = £<*rtr converges in G\ and set x = ]?xrt

r in (13). 
Comparing like powers of t we get 

sx8 = aoXs-~i-\-aixs-2-] \-as—i%o, 

so that s[x8] < «oUk-il + «iL^s-2l + h «s~l[#ol. Let 

£o = La*>l, W)^=he^ait)di = X£rtr, then d£ldt = a(f)$, 

so that s%s = «o^- i + «i&-2H h a s- i?o. It follows 
that L̂ sl < ?s5 f° r if this is true for s = 1, 2, • • •, i—1, 
then 

i[xî\^2aAxi-j-^\S2aj^i-J-l = tèi* 
j J 

The series for x therefore also converges in C and X Xçy 
when t = 0. 
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