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The relation (9) follows by comparing (6) with the identity 

Wt = [l + 22>2(-1)"1 \l + 4 j^$(n)L 
L a=l J L n=l J 

the second factor on the right being the algebraic expression 
of the well known theorem which gives the number of 
representations of n as a sum of two integer squares. 
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1. Introduction. Let 8 be any surface referred to its 
lines of curvature. With every point M of 8 we associate 
the trihedral of the surface, taking the #-axis of the trihedral 
tangent to the curve v = const. We consider the congruence 
of lines I parallel to the #-axis? the normal to 8, which pierce 
the a?i/-plane at the point (£, t]L, 0).t The equations of I are 
x = ?, y = f]1} and the coordinates of any point on I are 
(1) x = Ç, y = fi±9 z = t, 

where t is the distance on I measured from the point (J, fju 0). 

2. Condition for a Normal Congruence. If there be a sur­
face normal to the congruence we must have 
(2) dz = dz-\-piydv — qxdu = 0,$ 

dv 
for all values of —. Using (1) equation (2) becomes 

(3) -~~du-Jr—-dv-\-piy1dv — qSdu = 0; 
ou ov 

hence 
/ J \ dt . ^ dt . ~ 
(4) ^-^ = 0> âr+** = 0 -

* Presented to the Society, May 3, 1924. 
f The notation used in this paper is the same as in Eisenhart's 

Differential Geometry of Curves and Surfaces) see pp. 166-176. 
t Eisenhart, p. 170. 
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The condition of integrability is 

dv [du] ~ 'du [dv 

Hence from (4) we must have 

d% . .dq [ dfj! . dpt 

which reduces to* qr\xr—p^r—jpi^t+îïi^i — 0. This 
may be written in the form 

(5) (qii—pi&ir + rt) = 0. 

Conversely, when (5) is satisfied, the function t as given 
by (4) satisfies (3), and hence there exists a single infinity 
of parallel surfaces normal to the lines I. If qr\x — p ^ = 0, 
the surface S is minimal.t Hence we have the following 
theorem. 

THEOREM I. A necessary and sufficient condition that the 
congruence of lines I be normal is that S be a minimal 
surface, or else that r -\-r1 = 0. 

3. Equation of the Curves defining the Developables. As itf, 
the vertex of the trihedral, is displaced along some curve C 
on 8 the locus of I is a ruled surface of the congruence; 
we seek the equation of the curves C for which the locus 
of I is developable. For I to generate a developable sur­
face the displacement of some point on I must be in the 
direction of the line; hence for that point 

(6) dx = dy = 0. 

By means of (I), equations (6) take the forms % 

(7) 

as 
—- du — rjxrdv + %du + tqdu — rji (rdu + rtdv) = 0, 
ou 

H, 
dv 

The elimination of t between these two equations gives 

%r1du-{--T^dv-{-/r]1dv — tptdv-^Çirdu-j-^dv) = 0. 
dv 

* Eisenhart, p. 168, formulas (48), and p. 170, formulas (55). 
t Eisenhart, p. 174, formulas (73). 
X Eisenhart, p. 170. 
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the following equation of the curves on S defining the 
developable surfaces of the congruence: 

(8) qW + rjdu2 + [pi (~ + £ - f l i r ) 

+ Q \~^ + *it + ?n ) I dudv —i?i^i (r + n) ^'2 = 0. 

dv 
The elimination of the ratio — between equations (7) gives 

the following equation for the distances along I to the 
focal points: 

(9) mt*+ [Pl {^+ S-?1r) -q(^ + m + ?*ï)] * 

~~ (U + ?~ ,ir) ( Ï + ^ + Sri) ~^l (r + nf = °' 
The condition that equation (8) define an orthogonal 

system is* 
£2iV/i (r + rt) — ̂ gg (r -f Ti) = 0, 

which may be written 
(10) (OTi—.PiSKr + rï) = 0, 
since ?, ^ 4= 0. Since (10) is identical with (5) we have 
the following theorem. 

THEOREM II. If the congruence of lines I he normal the 
developables are represented on S by an orthogonal system. 

We note from (8) that if the congruence be normal by 
virtue of the relation r-\-?\ = 0 the curves defining the 
developables are the lines of curvature. 

4. Asymptotic Lines on the Normal Surfaces. Let C be 
any curve on S through M, the vertex of the trihedral, 
and let I and l± be the lines of the congruence corre­
sponding to M and M1} a neighboring point on C. As Mx 

approaches M along C the foot on I of the common per­
pendicular to I and lx approaches a certain limiting position 
called the central point of the generator I. The locus of 
the central points is the line of striction of the ruled surface 

* Eisenhart, p. 80. 
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defined by C. We wish to determine the distance along I 
to the line of striction of this ruled surface. 

To this end we consider a second trihedral T0* with 
vertex at some fixed point in space, whose x0-, y^-, and 
^o-axes are in every position parallel to the x-, y-, and 
£-axes of the moving trihedral. Eelative to the trihedral 
T0 the coordinates of the point on the unit sphere cor­
responding to I are (0, 0, 1). As the vertex of the moving 
trihedral is displaced along C the absolute displacements 
of the point (0, 0, 1) in the directions of the axes of the 
trihedral T0 will be the variations experienced by the 
direction-cosines of I If these variations are denoted by 
dec, dft, öy, we h a v e t da = qdu, oft = — p t d v , ay — 0, 

since for the motion of the trihedral T0 the translations ? 
and fjt are zero. The direction-cosines of l± relative to the 
trihedral at If are therefore qdu, —ptdv, 1. The displace­
ment of the central point on I must be orthogonal to both 
I and lt. Hence for that point we must have ôz = 0, 
qduôx—pxdvöy-\-dz = 0. Combining these equations we 
get qdudx—pxdvày = 0, which becomes 

qdu I —— du — tjirdv + tda + qtdu — ijxrdu — ri^r^dv I 

—Pidvyêr^du^-^dv^ri1dv-\-h*duJrïr1dv—tp±dv\ = 0. 

This may be written in the form 

(11) q ( ~ + ? + qt — niA du2— (qfjt + pJ)(r + r±)dudv 

—Pi (^~ + 1i + ^ — ^ ) Av* = °' 

When the value of dvldu which determines the curve C is put 
in this equation we have an equation in t which determines 
the distance along I to the line of striction of the ruled 
surface defined by C. Conversely, given t a function of u 

* Eisenhart, p. 168. 
t Eisenhart, p. 170. 
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and v, the equation (11) determines two curves on S, though 
not necessarily real, which define two ruled surfaces of the 
congruence for which t is the distance to their lines of 
striction. 

We suppose that the congruence is normal by virtue of 
the relation r + n = 0. Hence equation (11) is of the form 

ir (te, v)da2 — M(u, v)dv2 = 0, 

and consequently represents a system of curves symmetri­
cally placed relative to the lines of curvature. Now the 
normals to a surface along the asymptotic lines form ruled 
surfaces for which the asymptotic lines are the lines of 
striction.* Hence we have the following theorem. 

THEOREM III. If the congruence of lines I be normal by virtue 
of the relation r + rt = 0, the curves on S which represent 
the asymptotic lines on the normal surfaces form a system 
which is symmetrically placed relative to the lines of curvature. 

5. Minimal Surf aces. We now suppose that 8 is a minimal 
surface with the parameters of the lines of curvature so 
chosen that the linear element of the surface has the formt 

(12) * ? 2 = Q(du2 + dv% 

where Q is the absolute value of each principal radius. 
Hence we have£ 

(13) 

Pi 
D" 1 

D 

VG I/, — ? 

VE Vq 

BQ 

\=^VE dv 

YE 9W 2? 

* Eisenhart, p. 268, Ex. 14. 
f Eisenhart, p. 253. 
X Eisenhart, p. 174. 
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When the values of ?, fju q, pu r, riy as given in (13) are 
substituted in (9), it is readily seen that the coefficient 
of t vanishes. Hence we have the following theorem. 

THEOREM IV. If S be a minimal surface with the para­
meters of the lines of curvature so chosen that the linear 
element has the form (12), the congruence of lines I is normal 
and has for its middle envelope the given minimal surface. 

The minimal surface S is therefore the mean evolute of 
each of the normal surfaces. 

6. Envelope of a Two-Parameter Family of Surfaces. Let 
S be any surface referred to any parametric system. With 
every point M of S we associate the trihedral of the surface, 
giving the cc-axis its most general orientation relative to 
the curve v = const. Let 

(14) Fix, yj z, u, v) = 0 

be the equation relative to the trihedral at M of some 
surface 2 . We consider the envelope of such a two-para­
meter family of surfaces. 

The characteristic is defined by (14) and the equations 

(15) 
dx du dy du dz du du ' 

dx dv dy dv dz dv dv 

Since the characteristic is fixed in space, we must have 

dx = dx -\- idu + li dv + {qdu + q± dv) z — (rdu -f rt dv) y = 0, 
óy = dy + fjda -\-fjxdv-\- (rdu + rxd\i)x—(pdu -\-pidv)z = 0, 
ôz = dz -\-{pdu-\~p1dv)y—(qdu-}-q1dv)x = 0, 

dv 
for all values of -—• Hence 

du 

(16) 

dx 
du 
dx 
dv 

<r dy 

— pz-

= P i * -

dz 
-rx — n, ~r~-

du 
dz 

= QX—py, 

=qix-piy. 

file://-/-fjxdv-/-
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By (16), equations (15) become 

[dF. dF. , 
— (ry — qz — Ç) + j-{pz—rx — ij) 

(17) dF dF 

-fa fay—w—^+™9TT to*—rix—vi) 
, dF. ,,$F a 

The coordinates (x, y, z,) of the characteristic are therefore 
given by equations (14) and (17). 

7. Applications. As an application, consider the envelope 
of certain two-parameter families of planes. We choose 8 
as any surface referred to its lines of curvature, and choose 
the a?-axis of the trihedral tangent to the curve v = const. 
Consider the two two-parameter families of planes 
(18) x = ?, 
and 
(19) y = *]!. 
Por the family of planes (18), equations (17) become 

(20) ry — qz —1~ -^ = 0, ny + ^r = 0. 

Hence solving equations (18) and (20) the coordinates of 
the characteristic of the planes (18) are 

(21) xx =g, yi= — ^ - , zt = — . 

Por the family of planes (19), equations (17) become 

(22) ra+S^i = 0, pxz— rtx — r\x ^ = 0. 

The solution of equations (19) and (22) gives the following 
for the coordinates of the characteristic of the planes (19): 
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Let us now assume the relation 

(24) r + n = 0. 

Then, from (21) and (23), we have 

x± = x2 = £, yt = y2 = Vu 

(25) 
Zl 

x2 = 

HXr — 

- S, 

- £ -

yi 

~ du 

Pi 

Hence when the relation (24) holds, the characteristics of 
both families of planes lie on the line I Moreover, when 
the relation (24) holds the roots of equation (9) are 

tva\ 4 du dv 
(26) ti = , t2 = . 

q p± 

Hence, since U and t2 are identical with z1 and z2 in (25) 
we have the following theorem. 

THEOREM V. If S he a surface referred to its lines of 
curvature for which the relation r + rx = 0 holds, the enve­
lopes of the two families of planes x = % and y = fji are 
the two focal sheets of the normal congruence of lines I. 

The planes (18) and (19) are therefore the focal planes 
of the congruence. From (8), the curves defining the deve­
lopables are the lines of curvature. Hence from (7), 

ftr-g--

for v = const., and 

fri + * + -âT 
< - * - - , 

for u = const. Consequently the planes a? = 5 and ?/ = % 
envelope the focal sheets determined by the developables 
v = const, and u = const., respectively. 

Y A L E U N I V E B S I T Y 


