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THE EQUATION OF THE EIGHTH DEGREE* 
BY A. B. COBLE 

1. Introduction. The progress of mathematics as a whole 
is occasionally brought to our attention by the appearance 
of some notable book or memoir in which the resources 
of the subject are brought from various fields to bear upon 
a central problem. An early instance of this is the Ikosaeder1 

of Klein—the forerunner of the Klein-Fricke series. The 
first two chapters of this book furnish an introduction to 
group theory which is as yet unsurpassed. A later example 
is the book of Hudson on Kummer^s Quartic Surface.2 This 
surface, remarkable in itself, is more remarkable for the 
breadth of the theories which attach to it. Central problems 
in these two books are respectively the quintic and the 
sextic equation. It is true that Hudson assumes the solution 
of the sextic when needful, but his book furnishes the 
geometric background for this solution. 

Around the sextic equation there cluster the geometric 
theory of the Weddle and Kummer surfaces and of certain 
modular three-ways in #4 as well as the analytic theory 
of the hyperelliptic integrals and functions of genus two, 
a complex in which the methods of algebra and group theory 
have constant play. For the most part the allied geometry 
is within the spaces of our experience, and with the corres­
pondingly small number of variables the methods of 
ordinary analytic geometry are effective. The analytic func­
tion theory is also fairly manageable by direct methods. 
"When, however, we seek to extend this field of ideas to 
equations of higher even degree complications develop 

* Address as retiring chairman of the Chicago Section of this Society, 
presented to the Society at the meeting in Cincinnati, December 28, 
1923. This is an outline of an investigation pursued under the auspices 
of the Carnegie Institution of Washington, D. C. References to a bib­
liography at the close of this paper are indicated by arabic numerals. 
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rapidly. The surfaces or manifolds involved lie in spaces of 
high dimension and are defined by many rather than one 
equation. The analytic theory is correspondingly difficult. 
Some solid ground there is, particularly in the theta func­
tions, but not enough to form a basis for a closely knit 
theory. 

It is the purpose of this paper to exhibit certain points 
of view, certain modes of approach to the general problem, 
and certain analytic methods which can be applied success­
fully to the octavic and in most cases to equations of even 
degree, 2p-\-2. An indication there will be of a general 
theory which is fairly coherent and perhaps not more vague 
than is inevitable with generalizations of this character. 

It should be remarked that the solutions here sought 
for these equations are solutions in terms of hyperelliptic 
modular functions and not the solutions of Klein in terms 
of the form problems of linear groups, which perhaps are 
more desirable but certainly are less accessible. 

2. Two Linear Systems of Irrational Invariants, {a). The 
given equation defines three sets of points each set on a 
rational norm-curve in its space. Thus the sextic defines 
the set Ql of points qi, . . . , qQ on a line Si, the set Rl 
of points n , . . . ? n on a conic N in S2, and the set St 
of points si, . . . , s& on a space cubic curve Ns in S*. Simi­
larly the octavic defines sets of eight points, Ql, RÎ, Si on 
respectively the line Si, the space cubic curve N* in S&, and 
the rational norm quintic curve Nb in £5. In general the 
equation of even degree 2^ + 2 defines the sets Qlp+2 on 
Si, RlP+2 on Np in Sp, and S%+\ on N2*"1 in £2 p- i . We 
shall take all of these norm curves Nk in Sjc in the simple 
parametric form, xi = t\i == 0, . . . , k), and assume that 
the parameters h, . . . , fe^+2 of the points of each set are 
either the roots of the given equation or are projective to 
these roots. We observe that for the extreme sets Q2P+2? 
Stp+l the norm curve requirement imposes no conditions 
on the points since on fe + 3 points in general position in 
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8k there is a unique norm curve Nk. The intermediate set 
jfifp+2 is special due to (p — l)2 conditions that its points 
shall lie on Np. The extreme sets also furnish one of the 
simplest examples of associated sets (8 Theorem 10). 

(&). Invariants of a set of points in 8k are formed from 
the determinants of the coordinates of Zr+1 points selected 
from the set, which are combined in such a way that each 
term is of the same degree in each point. This degree is 
the degree of the invariant. Such invariants are rational 
or irrational according as they are or are not unaltered 
under permutation of this points (4I §3). The sets Qlp+2 
and i2fp-f 2 have linear invariants which are linear com­
binations with constant coefficients of products of the 
respective types 

(I) 

(A): 

(B): 

(12)(34) • • • (2p + 1 , 2p + 2), (ij) = 

(12...,2> + l)(j> + 2 , . . . , 

(i\i% • • • ip+i) = 

ti 1 
tj 1 

5 

2p + 2), 

* C 1 - ! 
4> fP~ -1 1 

The various products of either type are linearly related 
in many ways by the usual determinant identities. The set 
Stp^-l contributes nothing new to this invariant theory 
since its determinants are proportional to the complemen­
tary determinants of its associated set Q-2j?+2 (4I (25)). 

(c). Obviously if the roots U of the given equation are 
known the numerical values of the invariants (A) are easily 
found. Conversely if the numerical values of the invari­
ants (A) are known the roots U of the given equation may 
be found by rational processes. Thus from (12) (34) (56) 
. . . (2jp + l, 2p + 2) and (14) (32) (56) . . . (2jp + l? 2j9 + 2) 
we find by division the double ratio (13|24). If we take 
t[, t-2, t% to be 0, 1, oo the values of these double ratios 
determine the remaining roots 4 . . . , tójp+2 of an equation 
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projective to the given equation. The procedure for finding 
the transformation which converts the known roots tr into 
the required roots t of the given equation is a known exer­
cise in binary forms. We shall therefore henceforth regard 
the determination of the values of the invariants (A) as a 
"solution" of the given equation. 

(d). The numerical values of the invariants (B) are in 
immediate relation to hyperelliptic modular functions of 
genus p. The basis notation5 for these is very convenient. 
We divide the numbers 1, 2, . . . , 2p + 2 into equivalent 
complementary sets and name the half periods by an even 
number of subscripts as in Pi,2, ...,2k = JFWi,..., 2^+2; 
the even theta functions of first order by a number of sub­
scripts of the form jp + ü 4ft; and the odd functions of 
the first order by a number of subscripts of the form 
i? + l±2(2ft+l) /(fc = 0, 1, . . . ) . The simplest set of 
modular functions are the values of the even functions for 
the zero arguments. When, however, the functions are 
hyperelliptic all of these values vanish except the ones with 
p-\-1 subscripts (6pp. 456-464). The non-vanishing values 
are connected with the invariants (B) by the remarkable 
relations 

(2) *.( l ,2, . . . , i? + l)(p + 2 , . . . , 2p + 2) = ^ ï . . . l l ,+i((0)), 

where € is a properly adjusted sign (for p = 2, cf. 4I, 
p. 194; for p = 3, 5p. 111). 

(e). If then we find rational expressions for the invariants 
of type (A) in terms of those of type (B) we have a solution 
of the given equation in terms of hyperelliptic modular 
functions. I shall return in § 3 to a discussion of these 
relations. Meanwhile let us seek for a natural and easily 
extensible way of introducing the theta functions themselves 
into the discussion. For this purpose the set of points Sif+2 
plays the important role. 

3. The Generalized Weddle p-way and the Hyperelliptic 
Kummer p-way. (a). Given a general set of i t+ 3 points 
s±, s2, . . . , sk-i-z in Su we define, by isolating a pair of points 
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sly s2, a Cremona involution J12 of order ft, projective to 
the type x\ = \lxi (i — 0, 1, . . . , ft) which interchanges 
the points sl9 s2 and has F-points at the remaining ft+1 
points of the given set. By considering the effect of these 
involutions upon the directions about the points of the 
given set we find that they generate a group for which 
the following generational relations hold: 

/o\ -?12^84 = -*18^24 == -*14-?28 = -*1234? 

-*1234-?56 = -M285-*46 = * * ' = -A.28456? 

Hence they generate an abelian group of order 2fe+2, Gl+2, 
all of whose elements are involutory. We observe, how­
ever, an essential difference between the odd and even 
values of ft. When ft is odd and therefore ft + 3 even, say 
2jp + 2, there is one element of the group, namely 

(4) I = il28 . . . , 2p+2 

which is symmetrically related to the given set of 2p -f 2 
points, $$+2 (cf. 4 n , p. 369). We define the Weddle jp-way, 
Wp, in #2jp-i, to be the locus of fixed points of the in­
volution L That there is such a locus of fixed points and 
that it can be expressed parametrically by means of hyper-
elliptic functions we proceed to prove by a process which 
is new to the literature. 

(&). The two common canonical forms of the hyperelliptic 
algebraic plane curve of genus p are first the form 

(5) y2 = a0{x—h) . . . {x—t2p+<u, 

commonly used for the development of the hyperelliptic 
integrals ; and secondly the curve Hp of order p + 2 with 
a jp-fold point at 0 and 2p-\-2 contacts ru T2, . . . , *%>+* 
of tangents from 0. To the so-called "superposed points" 
x, ±2/ of (5) there correspond the pairs of points on Hp 

on a line through 0. These pairs constitute the unique g\ 
on Hp invariant under all birational transformations. The 
form (5) depends upon 2p—1 "moduli" or "birational in-

20 
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variants''. On the other hand the curve Hp has 3p — 1 
absolute projective constants. Hence the oo3^ -1 projectively 
distinct curves Hp divide into oo2^-1 birationally distinct 
classes, each class containing oo^ curves. The oo^ curves 
Hp in each class are birationally equivalent and it may 
be shown that the curves of a given class may all be ob­
tained from a given curve of the class by selecting on this 
given curve a _p-ad of points and transforming this jp-ad 
into the p-fold point of the transform. This may in fact 
be done by Cremona transformations of the entire plane. 
However, each selected _p-ad determines its "superposed" 
^-ad and either one of a pair of superposed j?-ads leads to 
the same transformed curve. Thus the two aggregates— 
(1) the oo^ projectively distinct but birationally equivalent 
curves Hp\ and (2) one of the curves Sp and the oo^ pairs 
of superposed _p-ads on it—are birationally equivalent. In 
the next section we connect the first aggregate with the co^ 
points on the Weddle Wp; and in the following section the 
second aggregate with the variables of the attached theta 
functions and thereby obtain the desired parametric ex­
pression of Wp. 

(c). Each of the oo^ curves Hv has a j^-fold point 0 
and (2p + 2) branch points T1} T2, •••> ^2^+2 which make 
up a set of points, Ttp+z* The associated set lies in 
S2P-1 and by virtue of a property (8j). 1) of such associated 
sets the points in #2#—1 which correspond to T±, • • •, ^ + 2 
can be identified with the fixed set SÎp+l. Then as Hp 

varies in the <X>P system the point P in #2p—1 which 
corresponds to 0 in the plane runs over a j)-way in 
Süp-i. In order to identify this j?-way with the Weddle 
Wp we observe that Hp is a locus of fixed points of a 
Jonquière Cremona involution Jp and therefore the set 
Tip+3 is congruent to itself under Jp. Moreover Jp is a 
product of Jonquière quadratic involutions e/0(O, ri9 r2), 
Jo(0> T3> T*\ • • • . Hence (cf. 4II, p. 361) the associated 
set in S2p-i is congruent to itself under the product of 
the involutions I12, -Z34, ••• , i. e. under J . Since the 
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P-points of I are all in the set S%+\ the point P is a 
fixed point of I and therefore a point of Wp. Conversely 
for each point P on Wp we have an associated set T ^ + 3 
and a curve Hp. The known7 relations satisfied by the set 
Tlp + z lead to geometric conditions on P. Thus for ^ = 2 
the six branch points r are on a conic and therefore P 
is the vertex of a quadric cone on St— the usual defi­
nition of W2. When p = 3 the eight points T and O are 
the base points of a pencil of cubics, whence P and the 
8 points of Si are on & pencil of elliptic sextics in S& 
(3pp. 17-18). 

(d). Consider now a fixed curve Hp and a j9-ad of points 
on it which correspond to the points {x±\ , (xp) on (5). 
On the Riemann surface of (5) select p paths of integration 
from the fixed branch point t± to (xt), . . . . , (xp) respectively. 
If v stands in succession for one of the p normal integrals 
of the first kind and we set 
(6) v^-\ yvte*> = u> 

then to within multiples of the periods the p-ad defines a 
value system u = ut, . . . , up and conversely u defines as 
a solution of the inversion problem a p-ad (ah), . . . , (xp). 
Superposed jo-ads give rise to ±w. The particular j9-ad at 
the point O is determined by u — d. In this way to a point 
P on Wp we attach parameters ± d. We readily find (the 
exposition in 6Chap. 10 is convenient here) that the in­
volutions 7i2, which in the planar field are represented by 
JoiPj ri> r2)> transform Wp into itself and are given in terms 
of the parameters by the simple relations 
(7) df = d + Tv12 

where TV12 is a particular half period. We still have to 
account, on the Weddle j?-way, for the 22p singular points 
and the 22^ singular tangent spaces of the Kummer^-way. It 
is more convenient to illustrate these by the relatively simple 
cases of the sextic and octavic for p = 2, 3 respectively, 

(e). When p = 2 the six branch points rl9 . . . , n of H2 

with node at 0 are on a conic and the discriminant con-
20* 
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dition (cf. 8§ 13) that ru T2, r3 are on a line implies also 
that T4, T6, T& are on a line. Then we find as in (d) that the 
even function ©123(d) — ©456W) vanishes. The corresponding-
condition on the associated set Si, P of the set T\ is that 
P is on a plane with sln s2, s3 and s4, s6, s6 or that P i s on 
a quadric section of W2 by the pair of planes s± s2 %, s± s& SQ. 
On transforming this condition on T? by J"o(0, rl9 r2); on 
Si, P by Ji2 ; and on ©123(d) by (7) we find a second type of 
discriminant condition which is satisfied when rs approaches 
coincidence with 0; when P approaches coincidence with 
ss in a direction on the quadric cone with node at ss and 
simple points at the other points of #3, or P is on the 
quadric section of W2 by this cone; and finally when the 
odd function 08(d) vanishes. In this fashion we conclude 
that the quadric sections of W2 by quadrics on St are re­
presented by the plane sections of the surface K2 obtained 
by setting the coordinates equal to four linearly independent 
theta squares, i. e. of the Kummer surface. If four points 
T19 ..., T4 are on a line, d = 7r56, one of the fifteen proper 
half periods, and the point P of W2 is on the line §5 sQ. 
Finally if P is on the cubic curve iV̂ 3 through Si the set 
T? is on a conic (8Theorem 10) and H2 is this conic doubly 
covered while d = 0. In fact d = 0 implies that a pair 
of the g\ are nodal parameters which can happen only for 
a doubly covered conic for which the pairs of g\ are the 
doubly covered points and 0 is any of these double points. 
This is of course the indeterminate case for the inversion 
problem. 

When p = 3 the four linearly independent quadrics on 
Si above are replaced by 8 = 2^ linearly independent cubic 
spreads with nodes at Si and containing the norm curve 
N° on /Ss; and these map W$ on the generalized Kummer 
Ks of hyperelliptic type. The 22* = 64 singular tangent 
spaces arise from the 8 cubic spreads (cones) with respect­
ively a triple point at one of the eight points of SÎ and 
double curve Nb\ and the 56 degenerate cubic spreads 
which break up into an #4 on five of the eight points and 
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a quadric on these five with nodes at the other three. 
These are connected with the 64 theta squares as above. 

(ƒ). Naturally we must have, in order to obtain specific 
analytic results such as (2), some analytic method for the 
hyperspace cases. Since the given equation defines in#2#-i 
the set Slp^-l and the norm curve N2*"1 on it, or if one 
prefers the N2p~x with the set 8%^.\ on it, it is convenient 
to refer the points of the space to this norm curve. The 
case p = 2 is perhaps too special to be fairly illustrative, 
but I cannot go into the higher cases here. Let the para­
meters t of the six points of #6 on N* be given by the 
binary sextic (at)6 = 0; and let the three osculating planes 
of N8 which meet in a point a of S3 be given by the binary 
cubic 

(atf = (a'tf = . . . = 0. 
Then, if 

^ = ^ + 2 ^ + ^ 
is an arbitrary quadratic, fis an arbitrary constant, we 
have, in 
(8) fi*(*a)\aa')* + (aa')2(afi)(a'fi) = 0, 
for variable fi8, fio, fit, fi2 the web of quadrics on #6 in 
variables the coefficients of the variable cubic 
(at)8. The polarized form of (8) in variables a, b is 
(9) fis(aa)\ab)B + (ab)\afiY]bfi) = 0. 
If we assume that the quadric (8) has a node at a, then 
in (9) the coefficients of 60? &i, b2, b$ vanish giving rise to 
four equations bilinear in a and fi. If from these we elimi­
nate the fi'$ we have the quartic equation in variables a 
of the Weddle surface W2. If, however, we eliminate the 
a's we have the quartic equation in variables fi of the 
Kummer surface K2 as an envelope. H. P. Baker has given 
these equations as four-row determinants (9p. 65 and p. 56). 
Baker remarks (9p. 60) that K is a simultaneous invariant 
of the quadratic (fit)2 and the sextic (atf. Strictly speaking 
this is not so, because of the non-homogeneity in the coeffi­
cients. However K can be written 
(10) K = Kofit +Kji +K2fil +Kzfiz +Kh 
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where the Ki are such simultaneous invariants. From the 
degrees and to some extent from the form we infer at once 
that these coefficients must be numerical multiples of re­
spectively: the catalecticant of (atf; the apolarity invariant 
of (fit)2 and the quadratic covariant of (atf of degree 3; 
the apolarity invariant of [(fit)2}2 and (aaf)\at)2(aftf, to­
gether with the product of {fifi)2 and (aaff\ the apolarity 
invariant of (atf and [(fit)2]3; and [(fifi'f]2. Similarly the 
surface W is a simultaneous invariant of (at)6 and (atf 
which from the degrees must evidently be the apolarity 
invariant of (atf with the product of (atf and its cubic 
covariant, i. e. 

(11) W= (aay(a'a")(aa)(a"af(a"'af = 0. 

(g). The extension of this method to further cases con­
stitutes a remarkably neat application of many phases of 
the theory of binary forms. Let me give one illustration. 
For p — 3 and given Si, a point in S6 is determined by 
a binary quintic (atf = (a'tf = • • •. The catalecticant of 
this quintic, 

determines a one-parameter (t) system of cubic spreads 
with N5 as a double curve and triple point at t Thus for 
t = h, . . . , t8 we have respectively the eight cubic cones 
mentioned in 5. The existence of this system leads to the 
following theorem. 

THEOREM. The Kummer 3-ivay in S7 with 64 singular 
points and 64 singular tangent spaces has in the hyperelliptic 
case an additional configuration of 64 SB''s each with the 
following property: An 8B contains 8 singular points and 
is contained in 8 singular tangent spaces. The eight points 
lie on a cubic curve in the 8S with parameters tly . . . , £8 

and they lie three at a time on the remaining 56 singular 
tangent spaces. 

We observe then that the generalization of the conies 
in the singular tangent planes of the Kummer K2 is in 
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part the 2-ways in the singular tangent sections of K$, and 
in part the cubic curves in the 64 SgS, each curve con­
taining an intermediate set JB®. 

A fuller development of these ideas leads quite naturally 
to the proof of the formula (2) which connects the invariants 
(B) and the theta fourth powers. To these modular relations 
I shall briefly return. 

4. The Modular Spreads Associated with the Invariants 
(A) and (B). (a). The number of invariants (B) is |(2^+?). 
I have shown (4I(10)) that only v = ^^iVù of these 
are linearly independent. Similarly the number of invariants 
(A) is (2p + 2)!/(p +1)!2^+ 1 . I shall show in a forthcoming 
paper which will elaborate the indications presented here 
that the number of linearly independent invariants (A) is 
likewise v. Thus the invariants (A) and (B) lie in linear 
systems of the same dimension v—1 and it is sufficient to 
know the values of v independent invariants of either system 
in order to obtain all of them. They are of course subject 
also to many relations of higher degree. By means of either 
linear system the totality of birationally distinct binary 
{2p + 2)-ics is mapped upon the points of a "modular spread" 
M2p-i of dimension 2p— 1 in #,_i . 

(6). For the invariants (A) we secure the mapping by 
fixing all but one of the points of the set S2p+2 at a con­
venient "base" and allowing the last one to vary over#2p-i. 
Then the invariants (A) become spreads of order p with 
(p — l)-fold points at the fixed base points and this linear 
system maps the space S2p-i upon M2p-i. To the permuta­
tion group of the roots of the underlying binary (2jp + 2)-ic 
there corresponds, in #v_i, a collineation group of order 
(2p + 2)!; Cm9 under which M2p~i is invariant; in S2p-i, 
however, the Moore cross-ratio group which is generated 
by (2p+l) ! permutations of the fixed base points and an 
additional Cremona involution with 2p of the fixed base 
points as i^-points and the remaining one a fixed point (cf. 
for the sextic 10§ 1). 
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For the invariants (B) attached to the set R%+2 we 
select v independent ones as coordinates in Sv—i and then 
And that the permutation of the roots or of the points of 
the set JR leads likewise to a collineation group Cn\ in Su-i. 
It is the obvious thing to make such a selection of coor­
dinates that the collineation groups Cn\ and Cf

n\ attached 
respectively to the systems (A) and (B) shall coincide. 
Furthermore in order to distinguish between the two 
mappings we map by the system (A) upon the points of 
&—i and by the system (B) upon the Sv-2's in 8v-lt 

(c). For the sextic, v = 5 and the modular spread M* 
in #4 is a cubic three-way, the map of Ss by quadrics on 
5 points. By proper choice of the quadrics Ms takes the 
form ,2fs=1#$ = 0 where ,2JŒ la* = 0. The collineation 
Ce i is then merely the permutations of the six coordinates a*. 
By proper choice of the invariants (B) the planar sets of 
6 points on a conic, RÎ, are mapped upon the #s's of Sé, uu..., 
uQ where ^t = iUi = 0 ^n s u c ^ a w a y ^ a ^ ^he elation 

is satisfied. Here then the mapping is such that the in­
variants (A), (B) of the same binary sextic give rise to 
point and tangent space at the point of the same modular 
spread (i0(33)). 

For the octavic, v = 14, and the geometry is hardly 
suitable for hasty exposition. Thus the modular spread 
attached to the invariants (A) is an Mf of order 40 and 
dimension 5 in S18. We have, however, in the formula 

(12) €(ij)(M)(mn){op) = &ïjia&ijmn&ijop, 

where € is a properly chosen sign, the expression of the 
invariants (A) as uniform modular functions which are in 
immediate algebraic relation with the invariants (B). For de­
tailed study the tactical relations exhibited by E. H. Moore11 

are most advantageous. 
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