ON THE APPLICATION OF THE THEORY OF IDEALS TO DIOPHANTINE ANALYSIS*

1. Introduction. About three years ago \dagger Professor Dickson stated a certain conjectured theorem, and he has recently published a proof of it. \ddagger

After having examined a proof of the same theorem by the author of this article, Professor Dickson suggested the investigation of a more general equation than the one which he had considered, and the following pages contain the results of this investigation.
2. Rings. Let us consider any algebraic number field $k(\theta)$ of degree n. Let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ be a fundamental system of integers of $k(\theta)$ so that every integer of the field can be represented by the fundamental form

$$
\begin{equation*}
x_{1} \gamma_{1}+x_{2} \gamma_{2}+\cdots+x_{n} \gamma_{n} \tag{1}
\end{equation*}
$$

in which the $x_{1}, x_{2}, \ldots, x_{n}$ are rational integers.
By a ring R in $k(\theta)$ we understand a set of integers which is closed with respect to addition, subtraction, and multiplication, and which contains the rational integers. Let $\varrho_{1}, \varrho_{2}, \ldots, \varrho_{n}$ be a fundamental system of R. As above, we shall call

$$
\begin{equation*}
x_{1} \varrho_{1}+x_{2} \varrho_{2}+\cdots+x_{n} \varrho_{n} \tag{2}
\end{equation*}
$$

the fundamental form of R. Every element of R is represented once and only once by (2) when the $x_{1}, x_{2}, \cdots, x_{n}$ are given rational integral values.

Since $\varrho_{1}, \varrho_{2}, \ldots, \varrho_{n}$ are integers in $k(\theta)$, they can be represented by (1), and we shall suppose that
(3)

$$
\begin{equation*}
\varrho_{i}=r_{i 1} \gamma_{1}+r_{i 2} \gamma_{2}+\cdots+r_{i n} \gamma_{n}, \quad(i=1,2, \ldots, n) \tag{3}
\end{equation*}
$$

[^0]The absolute value of the determinant $\left|r_{i j}\right|$ of the system (3) shall be called the index of the ring, and shall be denoted by A. Since any product of integers of R belongs to R the product

$$
\varrho_{1}^{s_{1}} \cdot \varrho_{2}^{s_{2}} \cdots \varrho_{n}^{s_{n}}, \quad s_{i} \geqq 0, \quad(i=1,2, \ldots, n)
$$

can be represented by (2), and we shall write
(4) $\varrho_{1}^{s_{1}} \cdot \varrho_{2}^{s_{2}} \cdots \varrho_{n}^{s_{n}}=C_{s_{1} s_{2} \ldots s_{n}}^{(1)} \varrho_{1}+C_{s_{1} s_{2} \ldots s_{n}}^{(2)} \varrho_{2}+\cdots+C_{s_{1} s_{2} \ldots s_{n}}^{(n)} \varrho_{n}$.

This equation uniquely defines the rational integers $C_{s_{1} s_{2} \ldots s_{n}}^{(i)}$.
Let us next consider any k integers $\alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{k}$ from R, and let

$$
\boldsymbol{\alpha}^{(i)}=a_{1 i} \varrho_{1}+a_{2 i} \varrho_{2}+\cdots+a_{n i} \varrho_{n}, \quad(i=1,2, \ldots, k)
$$

We may then write the product

$$
\begin{equation*}
\alpha^{\prime} \cdot \boldsymbol{\alpha}^{\prime \prime} \cdots \alpha^{(k)}=\sum B_{s_{1} s_{2} \ldots s_{n}} \varrho_{1}^{s_{1}} \cdot \varrho_{2}^{s_{2}} \cdots \varrho_{n}^{s_{n}} \tag{5}
\end{equation*}
$$

where the summation extends over all terms for which $s_{1}+s_{2}+\cdots+s_{n}=k$, and

$$
B_{s_{1} s_{2} \ldots s_{n}}=\sum a_{1 i_{11}} \cdots a_{1 i_{1 s_{1}}} \cdot a_{2 i_{21}} \cdots a_{2 i_{2 s_{2}}} \cdots \cdot a_{n i_{n s_{n}}} .
$$

That is, $B_{s_{1} s_{2} \ldots s_{n}}$ is the sum of all possible products formed by taking s_{1} elements from the first column, s_{2} from the second, s_{3} from the third, etc., and so chosen that no two elements belong to the same row in the matrix

$$
m=\left\|\begin{array}{cccc}
a_{11}, & a_{21}, & \ldots, & a_{n 1} \\
a_{12}, & a_{22}, & \ldots, & a_{n 2} \\
\cdots & \cdots & \cdots & \cdots \\
a_{1 k}, & a_{2 k}, & \ldots, & a_{n k}
\end{array}\right\|
$$

If in (5) we now replace the power-products $\varrho_{1}^{s_{1}} \cdot \varrho_{2}^{s_{2}} \cdots \varrho_{n}^{s_{n}}$ by their expressions as furnished by (4), we have

$$
\begin{equation*}
\alpha^{\prime} \cdot \alpha^{\prime \prime} \cdots \alpha^{(k)}=A_{1} \varrho_{1}+A_{2} \varrho_{2}+\cdots+A_{n} \varrho_{n} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i}=\sum B_{s_{1} s_{2} \ldots s_{n}} C_{s_{1} s_{2} \ldots s n}^{(i)} \tag{7}
\end{equation*}
$$

the summation extending over all $s_{1}, s_{2}, \ldots, s_{n}$ whose sum is k.
The A_{i}, for whose computation a definite process is thus given, are rational integers. They will be used in the application whose consideration is the object of this paper.
3. Ideals in R. The conductor of a ring is an ideal f in $k(\theta)$ such that the product of any integer of $k(\theta)$ by f belongs to R.* By a ring ideal we shall understand an ideal in R as defined by Bachmann.t That is, an ideal $I^{(R)}$ of R is a set of integers of R such that the sum and difference of 'any two integers of the set belong to the set; the product of any integer of the set by any integer of R belongs to the set; and the greatest common divisor of f and the moduli thus defined is the ring R.

Let $I^{(R)}$ be any ideal of R, and let $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \ldots, \boldsymbol{\beta}_{n}$ be a fundamental system of $I^{(R)}$. Since the β_{i} belong to R, they can be represented by the form (2). If we write

$$
\begin{equation*}
\boldsymbol{\beta}_{i}=b_{i 1} \varrho_{1}+b_{i 2} \varrho_{2}+\cdots+b_{i n} \varrho_{n}, \quad(i=1,2, \ldots, n) \tag{8}
\end{equation*}
$$

then the norm of $I^{(R)}$ in R, which we shall denote by $N_{R}\left(I^{(R)}\right)$, is the absolute value of the determinant $\left|b_{i j}\right| .+$

If $\boldsymbol{\alpha}=e_{1} \boldsymbol{\beta}_{1}+e_{2} \boldsymbol{\beta}_{2}+\cdots+e_{n} \boldsymbol{\beta}_{n}$ is an integer in $I^{(R)}$, and if we apply (8), we have $\alpha=a_{1} \varrho_{1}+a_{2} \varrho_{2}+\cdots+a_{n} \varrho_{n}$, where (9)

$$
a_{i}=b_{1 i} e_{1}+b_{2 i} e_{2}+\cdots+b_{n i} e_{n}, \quad(i=1,2, \ldots, n)
$$

whose matrix is the conjugate of that of (8).
In order to distinguish between ideals in R and ideals in $k(\theta)$, we shall speak of them as ring ideals and field ideals, respectively. Principal ring ideals will be designated by [λ], where λ is an integer of R, and principal field ideals by $\{\lambda\}$, where λ is an integer of $k(\theta)$.

To every ideal $I^{(R)}$ of R there corresponds a field ideal I obtained by forming the product of $I^{(R)}$ and the unit ideal of $k(\theta)$; and if I is any ideal of $k(\theta)$ which is relatively prime to f, the numbers of I which belong to R constitute a ring ideal $I^{(R)}$ whose corresponding field ideal is I. The norm $N(I)$ of I is equal to the norm $N_{R}\left(I^{(R)}\right)$ of $I^{(R)}$ in R.§ The index Δ of R is divisible by the conductor f of R. $\|$

[^1]Two ideals $I_{1}^{(R)}$ and $I_{2}^{(R)}$ shall be called equivalent when R contains two integers α_{1} and α_{2} which are relatively prime to f, and $\alpha_{2} I_{1}^{(R)}=\alpha_{1} I_{2}^{(R)}$.* Equivalent ideals constitute a class.

For any given ring ideal $I^{(R)}$ there is an ideal $J^{(R)}$ such that the corresponding field ideal J is relatively prime to any given field ideal T and the product $I^{(R)} \cdot J^{(R)}$ is a principal ideal in R.

To prove this, we make use of the fact that an ideal $J_{1}^{(R)}$ exists, such that $J_{1}^{(R)}\left(I^{(R)} \cdot T_{2}^{(R)}\right)=\left[\lambda_{1}\right]$, a principal ideal in $R . t$ Here T_{2} is used to denote the product of the distinct prime factors of T which are relatively prime to f, and $T_{2}^{(R)}$ is used to denote the corresponding ring ideal.

Let T_{1} be the product of the distinct prime factors of T which are divisors of f. Then $J_{1}^{(R)} \cdot T_{2}^{(R)}$ is relatively prime to T_{1}. For, since $J_{1}^{(R)}$ and $T_{2}^{(R)}$ are ideals in R, their product is an ideal in R. Hence this product is prime to f, and therefore also to T_{1}, which is a factor of f. There exists in $k(\theta)$ an ideal J_{2} which is relatively prime to T_{2}, such that $J_{2} \cdot I \cdot f=\left\{\lambda_{2}\right\} \cdot \neq$ Since λ_{2} is divisible by f, it is an integer in R. I is the field ideal corresponding to the given ring ideal $I^{(R)}$.

Since λ_{1} and λ_{2} both belong to R, their sum $\lambda_{1}+\lambda_{2}$ belongs to R, and since λ_{1} and λ_{2} are both divisible by $I^{(R)}$, there exists an ideal $J^{(R)}$ such that $I^{(R)} \cdot J^{(R)}=\left[\lambda_{1}+\lambda_{2}\right]$. §

That λ_{1} is divisible by $I^{(R)}$ is seen by its definition. Moreover, λ_{2} is divisible by I and belongs to R and hence also to $I^{(R)}$; it is therefore divisible by $I^{(R)}$. Hence $\lambda_{1}+\lambda_{2}$ is divisible by $I^{(R)}$.

The $J^{(R)}$ thus defined is such that the corresponding field ideal J is relatively prime to T. For, since $I^{(R)} \cdot J^{(R)}=$ [$\lambda_{1}+\lambda_{2}$], by multiplying both members by the unit ideal of $k(\theta)$, we have $I \cdot J=\left\{\lambda_{1}+\lambda_{2}\right\}$. Now λ_{1} / I is relatively prime

[^2]to T_{1} and is divisible by T_{2}, and λ_{2} / I is relatively prime to T_{2} and is divisible by T_{1}. Hence, if p is any prime factor of T and hence a factor of T_{1} or T_{2}, either λ_{1} or λ_{2} is divisible by $I p$, but not both. Hence their sum is not divisible by $I p$, and therefore $\left\{\lambda_{1}+\lambda_{2}\right\} / I$ is not divisible by any prime factor of T. It follows that J is relatively prime to T. In the application to Diophantine equations this theorem will be used with $T=\{\Delta\}$.
4. Decomposable Forms. If $x_{1} \boldsymbol{\beta}_{1}+x_{2} \boldsymbol{\beta}_{2}+\cdots+x_{n} \boldsymbol{\beta}_{n}$ is the fundamental form of the ideal $I^{(R)}$, then $N\left(x_{1} \beta_{1}+x_{2} \beta_{2}+\cdots\right.$ $+x_{n} \beta_{n}$) is a form of degree n in the n variables $x_{1}, x_{2}, \ldots, x_{n}$, with rational integral coefficients. The highest common factor of the coefficient of this form is the norm of the ideal $I^{(R)}$ in R. Hence
(10) $N\left(x_{1} \beta_{1}+x_{2} \beta_{2}+\cdots+x_{n} \beta_{n}\right)=N_{R}\left(I^{(R)}\right) F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a unit form decomposable in R.*

The following theorem is a modified form of one given by Bachmann.t The modifications are made so as to apply to ideals in R, and also for the equivalence as we have defined it.

If $J^{(R)}$ is any ideal of R and $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a unit form obtained as above from an ideal $I^{(R)}$ of the class reciprocal to that of $J^{(R)}$, then there exist rational integers e_{1}, e_{2}, \ldots, e_{n}, such that $N_{R}\left(J^{(R)}\right)=\left|F\left(e_{1}, e_{2}, \ldots, e_{n}\right)\right| ;$ and, conversely, any rational integer $F\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ represented by the decomposable form $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is in absolute value the norm of an ideal of the class reciprocal to that of $I^{(R)}$ provided $e_{1} \boldsymbol{\beta}_{1}+e_{2} \boldsymbol{\beta}_{\mathbf{2}}+\cdots+e_{n} \boldsymbol{\beta}_{n}$ is prime to f.

Let $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be the fundamental system of $I^{(R)}$ from which the form $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is obtained, and let $I^{(R)} J^{(R)}$ $=[\gamma]$. Then $\gamma=e_{1} \boldsymbol{\beta}_{1}+e_{2} \boldsymbol{\beta}_{2}+\cdots+e_{n} \boldsymbol{\beta}_{n}$, and $|N(\gamma)|=N_{R}\left(I^{(R)}\right) \cdot N_{R}\left(J^{(R)}\right)=N\left(e_{1} \beta_{1}+e_{2} \boldsymbol{\beta}_{2}+\cdots+e_{n} \boldsymbol{\beta}_{n}\right)$

$$
=N_{R}\left(I^{(R)}\right)\left|\boldsymbol{F}\left(e_{1}, e_{2}, \ldots, e_{n}\right)\right|
$$

and hence

$$
N_{R}\left(J^{(R)}\right)=\left|F\left(e_{1}, e_{2}, \ldots, e_{n}\right)\right|
$$

[^3]Conversely, if $F\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is any rational integer represented by $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ corresponding to the ring ideal $I^{(R)}$, then

$$
N_{R}\left(I^{(R)}\right) F\left(e_{1}, e_{2}, \ldots, e_{n}\right)=N\left(e_{1} \beta_{1}+e_{2} \beta_{2}+\cdots+e_{n} \boldsymbol{\beta}_{n}\right)
$$

But if $e_{1} \boldsymbol{\beta}_{1}+e_{2} \boldsymbol{\beta}_{2}+\cdots+e_{n} \boldsymbol{\beta}_{n}$ is prime to $f,\left[e_{1} \boldsymbol{\beta}_{1}+e_{2} \boldsymbol{\beta}_{2}\right.$ $\left.+\cdots+e_{n} \beta_{n}\right]$ is a principal ideal in R; and, since it is divisible by $I^{(R)}$, there exists in the reciprocal class an ideal $J_{1}^{(R)}$ such that

$$
J_{1}^{(R)} \cdot I^{(R)}=\left[e_{1} \beta_{1}+e_{2} \beta_{2}+\cdots+e_{n} \boldsymbol{\beta}_{n}\right] .
$$

Hence we may write

$$
\left|N\left(e_{1} \beta_{1}+\cdots+e_{n} \boldsymbol{\beta}_{n}\right)\right|=N_{R}\left(J_{1}^{(R)}\right) N_{R}\left(I^{(R)}\right)
$$

whence it follows that

$$
N_{R}\left(J_{1}^{(R)}\right)=F\left(e_{1}, e_{2}, \ldots, e_{n}\right)
$$

If $e_{1} \boldsymbol{\beta}_{1}+e_{2} \boldsymbol{\beta}_{2}+\cdots+e_{n} \boldsymbol{\beta}_{n}$ is not prime to F and if I is the field ideal corresponding to $I^{(R)}$, then

$$
\{\gamma\}=\left\{e_{1} \beta_{1}+e_{2} \beta_{2}+\cdots+e_{n} \beta_{n}\right\}
$$

is divisible by I, and $\{\gamma\} / I=J_{1}$ is a field ideal which is not relatively prime to f. The method used above will show that the absolute value of $F\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is the norm of J_{1}.
5. Application to Diophantine Equations. We shall now turn our attention to the application of the foregoing facts regarding rings and ring ideals to the solution in rational integers $\xi_{1}, \xi_{2}, \ldots, \xi_{n} ; u_{1}, u_{2}, \ldots, u_{k-2}$ of the equation (11) $\quad N\left(\xi_{1} \varrho_{1}+\xi_{2} \varrho_{2}+\cdots+\xi_{n} \varrho_{n}\right)=u_{1} \cdot u_{2} \cdots u_{k-2}$, where as before $\varrho_{1}, \varrho_{2}, \ldots, \varrho_{n}$ is a fundamental system of any ring R in $k(\theta)$.

Let us suppose that we have a set of integers satisfying (11). Since $\varrho_{1}, \varrho_{2}, \ldots, \varrho_{n}$ is a fundamental system of $R, \gamma=\xi_{1} \varrho_{1}+\xi_{2} \varrho_{2}+\cdots+\xi_{n} \varrho_{n}$ is an integer of $k(\theta)$. We shall suppose it resolved into its ideal prime factors. There are s distinct factors. We shall denote them by $p_{1}, p_{2}, \ldots, p_{s}$. Let us suppose that the first s_{1} of these are relatively prime to f. Let $p_{1}^{\lambda_{11}}$ be the highest power of p_{1} which is a factor of γ and whose norm is a factor of u_{1}; $p_{1}^{\lambda_{12}}$ the highest power of p_{1} which is a factor of $\gamma / p_{1}^{\lambda_{11}}$ and
whose norm is a factor of $u_{2} ; p_{1}^{\lambda_{13}}$ the highest power of p_{1} which is a divisor of $\gamma / p_{1}^{\lambda_{11}}+\lambda_{12}$ and whose norm is a divisor of u_{3}; and so on, until finally $p_{1}^{\lambda_{1 k-2}}$ is the highest power of p_{1} which is a divisor of $\gamma / p_{1}^{\lambda_{11}+\lambda_{12}+\cdots+\lambda_{1 k-3}}$ and whose norm is a factor of u_{k-2}.

We next consider the prime ideal p_{2} in the same way, and we let $p_{2}^{\lambda_{21}}$ be the highest power of p_{2} which is a divisor of γ and whose norm is a divisor of $u_{1} / N\left(p_{1}^{\lambda_{11}}\right) ; p_{2}^{\lambda_{22}}$ the highest power of p_{2} which is a divisor of $\gamma / p_{2}^{\lambda_{21}}$ and whose norm is a divisor of $u_{2} / N\left(p_{1}^{\lambda_{12}}\right)$; and we continue in this way until finally $p_{s_{1}}^{\lambda_{s_{1} k-2}}$ is the highest power of $p_{s_{1}}$ which is a divisor of $\gamma / p_{s_{1}}^{\lambda_{s_{1}}+\lambda_{s_{1}}+\cdots+\lambda_{s_{1},-3}}$ and whose norm is a divisor of $u_{k-2} / N\left(p_{1}^{\lambda_{1 k-2}} \cdot p_{2}^{\lambda_{2 k-2}} \cdots p_{s-1}^{\lambda_{s-1} k-2}\right)$.

We shall now write

$$
P_{i}=p_{1}^{\lambda_{1 i}} \cdot p_{2}^{\lambda_{2 i}} \cdots p_{s_{1}}^{\lambda_{s_{1} i}}, \quad(i=1,2, \ldots, k-2)
$$

From the construction of the P_{i}, we see that γ is divisible by the product $P_{1} \cdot P_{2} \cdots P_{k-2}$, and that u_{i} is divisible by $N\left(P_{i}\right)$. We shall therefore write

$$
Q=\frac{\{\gamma\}}{P_{1} \cdot P_{2} \cdots P_{k-2}},
$$

and

$$
u_{i}=\mu_{i} \cdot N\left(P_{i}\right)
$$

Let us next write $Q=P_{k-1} \cdot P_{k}$ where P_{k} is the largest factor of Q all of whose prime divisors are divisors of f. We then have

$$
\{\gamma\}=P_{1} \cdot P_{2} \cdots P_{k}
$$

where $P_{1}, P_{2}, \ldots, P_{k-1}$ are prime to f, and P_{k} contains no prime factor excepting factors of f. By (11), we have then

$$
\begin{aligned}
|N(\gamma)| & =N\left(P_{1}\right) \cdot N\left(P_{2}\right) \cdots N\left(P_{k}\right)=\left|u_{1} \cdot u_{2} \cdots u_{k-2}\right| \\
& =\left|\mu_{1} \cdot \mu_{2} \cdots \mu_{k-2}\right| N\left(P_{1}\right) \cdot N\left(P_{2}\right) \cdots N\left(P_{k-2}\right) .
\end{aligned}
$$

Hence

$$
N\left(P_{k-1}\right) \cdot N\left(P_{k}\right)=\left|\mu_{1} \cdot \mu_{2} \cdots \mu_{k-2}\right|
$$

Let us separate each μ_{i} into two factors μ_{i}^{\prime} and $\mu_{i}^{\prime \prime}$ such that

$$
\begin{aligned}
N\left(P_{k-1}\right) & =\left|\mu_{1}^{\prime} \cdot \mu_{2}^{\prime} \cdots \mu_{k-2}^{\prime}\right|, \\
N\left(P_{k}\right) & =\left|\mu_{1}^{\prime \prime} \cdot \mu_{2}^{\prime \prime} \cdots \mu_{k-2}^{\prime \prime}\right| .
\end{aligned}
$$

Since the $P_{1}, P_{2}, \ldots, P_{k-1}$, are all relatively prime to f, to each $P_{i},(i<k)$, there corresponds a ring ideal whose norm in the ring is equal to the norm of P_{i} in $k(\theta)$. Let $P_{i}^{(R)}$ be the ring ideal corresponding to P_{i}. Let $I_{i}^{(R)}$ be an ideal from the reciprocal class. According to $\S 3, I_{i}^{(R)}$ can be so chosen that the corresponding field ideal I_{i} is relatively prime to $\{\Delta\}$. We shall suppose that $I_{i}^{(R)}$ has been so chosen. Let $\beta_{1}^{(i)}, \beta_{2}^{(i)}, \ldots, \beta_{n}^{(i)}$ be a fundamental system of $I_{i}^{(R)}$, and let $F_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the corresponding decomposable form. Then, by $\S 4$, we have

$$
N_{R}\left(P_{i}^{(R)}\right)=N\left(P_{i}\right)=\left|F_{i}\left(e_{1}^{(i)}, e_{2}^{(i)}, \ldots, e_{n}^{(i)}\right)\right|
$$

and hence

$$
\begin{align*}
& u_{i}=\varepsilon_{i} \cdot \mu_{i}^{\prime} \cdot \mu_{i}^{\prime \prime} F_{i}\left(e_{1}^{(i)}, e_{2}^{(i)}, \ldots, e_{n}^{(i)}\right) \tag{12}\\
&(i=1,2, \ldots, k-2),
\end{align*}
$$

where ε_{i} is 1 or -1. Since $I_{i}^{(R)}$ and $P_{i}^{(R)}$ belong to reciprocal classes, $I_{i}^{(R)} \cdot P_{i}^{(R)}=\left[\alpha^{(i)}\right]$. Hence, since $\left[\alpha^{(i)}\right]$ is divisible by $I_{i}^{(R)}$, we have

$$
\begin{aligned}
\boldsymbol{\alpha}^{(i)} & =e_{1}^{(i)} \beta_{1}^{(i)}+e_{2}^{(i)} \beta_{2}^{(i)}+\cdots+e_{n}^{(i)} \boldsymbol{\beta}_{n}^{(i)} \\
& =a_{1 i} \varrho_{1}+a_{2 i} \varrho_{2}+\cdots+a_{n i} \varrho_{n}, \quad(i=1,2, \ldots, k-1)
\end{aligned}
$$

Since P_{k} contains no prime factors except such as are factors of f, let us suppose that J is the smallest field ideal (i. e., the field ideal containing the fewest prime factors) whose product with P_{k} is divisible by f, and let M_{1} be the smallest rational integer which is divisible by J. Let $M_{2}=N(I)$, where $I=I_{1} \cdot I_{2} \cdots I_{k-1}$.

The ideal I is relatively prime to the principal ideal $\{\Delta\}$. Hence, since Δ is a rational integer, M_{2} and Δ are relatively prime. Since M_{2} is divisible by I, we can choose I_{k} such that $I \cdot I_{k}=\left\{M_{2}\right\}$, and I_{k} is then relatively prime to Δ, and hence also to f, which is a divisor of Δ.

Since $\{\gamma\}=P_{1} \cdot P_{2} \ldots P_{k}, P_{k}$ belongs to the class reciprocal to that of $P_{1} \cdot P_{2} \ldots P_{k-1}$. But I belongs to the class reciprocal to that of $P_{1} \cdot P_{2} \cdots P_{k-1}$. Hence P_{k} and I belong to the same class, and P_{k} and I_{k} belong to reciprocal classes. Therefore $P_{k} I_{k}=\left\{\bar{\alpha}^{(k)}\right\}$.

Let us now write $\bar{\alpha}=\alpha^{\prime} \cdot \alpha^{\prime \prime} \ldots \alpha^{(k-1)} \cdot \bar{\alpha}^{(k)} \cdot M_{1}$. Since $\overline{\boldsymbol{\alpha}}^{(k)} M_{1}$ is divisible by $J P_{k}$, it is divisible by f, and hence $\bar{\alpha}$ is an integer in R. In fact, $\bar{\alpha}^{(k)} \cdot M_{1}$ belongs to R, and we may therefore write

$$
\overline{\boldsymbol{\alpha}}^{(k)} \cdot M_{1}=\bar{a}_{1 k} \boldsymbol{o}_{1}+\bar{a}_{2 k} \varrho_{2}+\cdots+\bar{a}_{n k} \varrho_{n} .
$$

Moreover

$$
\{\bar{\alpha}\}=P_{1} \cdot P_{2} \cdots P_{k} \cdot I_{1} \cdot I_{2} \cdots I_{k} \cdot M_{1}=\left\{\gamma M_{2} M_{1}\right\}
$$

and hence $\bar{\alpha}$ and $\gamma M_{1} M_{2}$ differ only by a factor which is a unit in $k(\theta)$. Then let us write $\bar{\alpha}=E \gamma \cdot M_{1} \cdot M_{2}$. But since $\overline{\boldsymbol{\alpha}}^{(k)} M_{1}$ is divisible by $f, E \cdot \overline{\boldsymbol{\alpha}}^{(k)} \cdot M_{1}$ is also divisible by f, and hence belongs to R. Then, if we put $E \bar{\alpha}^{(k)}=\alpha^{(k)}$, we may write

$$
M_{1} E \bar{\alpha}^{(k)}=M_{1} \alpha^{(k)}=a_{1 k} \varrho_{1}+a_{2 k} \mathbf{Q}_{2}+\cdots+a_{n k} \mathbf{Q}_{n}
$$

and since $\left\{\bar{\alpha}^{(k)}\right\}=\left\{\alpha^{(k)}\right\}$, we have $P_{k} I_{k}=\left\{\alpha^{(k)}\right\}$, and

$$
\alpha=\alpha^{\prime} \cdot \alpha^{\prime \prime} \ldots \alpha^{(k)} M_{1}=\gamma \cdot M_{1} \cdot M_{2}
$$

We therefore have

$$
\begin{aligned}
M_{1} M_{2} \gamma & =M_{1} M_{2}\left(\xi_{1} \varrho_{1}+\xi_{2} \varrho_{2}+\cdots+\xi_{n} \varrho_{n}\right) \\
& =\prod_{i=1}^{k}\left(a_{1 i} \varrho_{1}+a_{2 i} \varrho_{2}+\cdots+a_{n i} \varrho_{n}\right)
\end{aligned}
$$

and using the notations of $\S 2$, we have

$$
\begin{equation*}
\xi_{i}=\frac{A_{i}}{M_{1} \cdot M_{2}}, \quad(i=1,2, \ldots, n) \tag{13}
\end{equation*}
$$

Here the A_{i} are polynomials in the $a_{j i},(j=1,2, \ldots, n$; $i=1,2, \ldots, k$, which upon application of (9) to the elements standing in the first $k-2$ rows of the matrix of $\S 2$ as they occur in the A_{i}, gives an expression for the ξ_{i} in terms of the parameters $e_{j}^{(i)}$ which occur in the expressions for u_{i}, and the elements of the last two rows of the matrix which are implicitely involved in the u_{i} in the factors μ_{i}^{\prime} and $\mu_{i}^{\prime \prime}$.

We have thus by means of (12) and (13) obtained a general form for the solution of (11). We shall next see that all such expressions, when the parameters are given rational integral values, constitute a solution of (11).

Substituting for $\xi_{1}, \xi_{2}, \ldots, \xi_{n} ; u_{1}, u_{2}, \ldots, u_{k-2}$ their values
as given by (12) and (13) in (11), we have the equation

$$
\begin{equation*}
\frac{N\left(A_{1} \varrho_{1}+\cdots+A_{n} \varrho_{n}\right)}{M_{1}^{n} \cdot M_{2}^{n}}=\prod_{i=1}^{k-2} \varepsilon_{i} \mu_{i}^{\prime} \mu_{i}^{\prime \prime} F_{i}\left(e_{1}^{(i)}, e_{2}^{(i)}, \ldots, e_{n}^{(i)}\right) . \tag{14}
\end{equation*}
$$

Since
$M_{2}=I \cdot I_{k}, N\left(I_{i}\right)=N_{R}\left(I_{i}^{(R)}\right),\left|\mu_{1}^{\prime} \cdot \mu_{2}^{\prime} \cdots \mu_{k-2}^{\prime}\right|=N_{R}\left(P_{k-1}^{(R)}\right)$, and $P_{k-1}^{(R)} \cdot I_{k-1}^{(R)}=\left[\alpha^{(k-1)}\right]$, a principal ideal in R, we can write (14) in the form

$$
\begin{align*}
& N\left(A_{1} \varrho_{1}+A_{2} \varrho_{2}+\cdots+A_{n} \varrho_{n}\right) \tag{15}\\
& =M_{1}^{n} M_{2}^{n-1} N_{R}\left(I_{k-1}^{(R)}\right) \mu_{1}^{\prime} \cdot \mu_{2}^{\prime} \cdots \mu_{k-2}^{\prime} \prod_{i=1}^{k-2} \varepsilon_{i} \mu_{i}^{\prime \prime} N_{R}\left(I_{i}^{(R)}\right) \\
&
\end{align*}
$$

But

$$
\begin{aligned}
N_{R}\left(I_{i}^{(R)}\right) F_{i}\left(e_{1}^{(i)}, e_{2}^{(i)}, \ldots, e_{n}^{(i)}\right) & =N\left(e_{1}^{(i)} \beta_{1}^{(i)}+\cdots+e_{n}^{(i)} \beta_{n}^{(i)}\right) \\
& =N\left(a_{1 i} \varrho_{1}+a_{2 i} \varrho_{2}+\cdots+a_{n i} \varrho_{n}\right) .
\end{aligned}
$$

Also

$$
\begin{aligned}
& N_{R}\left(I_{k-1}^{(R)}\right) \cdot\left|\mu_{1}^{\prime} \cdot \mu_{2}^{\prime} \cdots \mu_{k-2}^{\prime}\right|=N_{R}\left(I_{k-1}^{(R)}\right) N_{R}\left(P_{k-1}^{(R)}\right) \\
&=N\left\{\alpha^{(k-1)}\right\}=\varepsilon^{k-1} N\left(\alpha^{(k-1)}\right) \\
&=\varepsilon_{k-1} N\left(a_{1 k-1} \varrho_{1}+a_{2 k-1} \varrho_{2}+\cdots+a_{n k-1} \varrho_{n}\right)
\end{aligned}
$$

Let us suppose that the signs of $\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{k-2}^{\prime}$ have been so chosen that the sign of their product is the same as the sign of $N\left(\alpha^{(k-1)}\right)$ and hence $\varepsilon_{k-1}=+1$. If we now put $\varepsilon=\varepsilon_{1} \cdot \varepsilon_{2} \cdots \varepsilon_{k-2}$, we may write (15) in the form

$$
\text { 6) } \begin{align*}
& N\left(A_{1} \varrho_{1}+A_{2} \varrho_{2}+\cdots+A_{n} \varrho_{n}\right) \tag{16}\\
= & \varepsilon M_{1}^{n} M_{2}^{n-1} \mu_{1}^{\prime \prime} \cdot \mu_{2}^{\prime \prime} \cdots \mu_{k-2}^{\prime \prime} \prod_{i=1}^{k-1} N\left(a_{1 i} \varrho_{1}+\cdots+a_{n i} \varrho_{n}\right) .
\end{align*}
$$

Since $M_{2}=I \cdot I_{k}=N(I)$, we have

$$
M_{2}^{n}=N(I) N\left(I_{k}\right)=M_{2} N\left(I_{k}\right)
$$

and hence $M_{2}^{n-1}=N\left(I_{k}\right)$. Also $\left|\mu_{1}^{\prime \prime} \cdot \mu_{2}^{\prime \prime} \cdots \mu_{k-2}^{\prime \prime}\right|=N\left(P_{k}\right)$, and therefore
(17) $M_{1}^{n} M_{2}^{n-1}\left|\mu_{1}^{\prime \prime} \cdot \mu_{2}^{\prime \prime} \cdots \mu_{k-2}^{\prime \prime}\right|=M_{1}^{n} N\left(I_{k} \cdot P_{k}\right)=N\left\{M_{1} \alpha^{(k)}\right\}$

$$
=N\left\{a_{1 k} \varrho_{1}+a_{2 k} \varrho_{2}+\cdots+a_{n k} \varrho_{n}\right\} .
$$

For, since $M_{1} \alpha^{(k)}$ is divisible by f, it belongs to R. As above, we shall now affix signs to the $\mu_{i}^{\prime \prime}$ so that the sign
of their product is the same as the sign of $N\left(\boldsymbol{\alpha}^{(k)}\right)$. Then we have

$$
M_{1}^{n} \cdot M_{2}^{n-1} \mu_{1}^{\prime \prime} \cdot \mu_{2}^{\prime \prime} \cdots \mu_{k-2}^{\prime \prime}=N\left(a_{1 k} \rho_{1}+a_{2 k} \rho_{2}+\cdots+a_{n k} \varrho_{n}\right) .
$$

We may now write (16) in the form
$N\left(A_{1} \boldsymbol{\varrho}_{1}+A_{2} \grave{\varrho}_{2}+\cdots+A_{n} \boldsymbol{o}_{n}\right)=\varepsilon \prod_{i=1}^{k} N\left(a_{1 i} \boldsymbol{\varrho}_{1}+a_{2 i} \boldsymbol{o}_{2}+\cdots\right.$
$\left.+a_{n i} \varrho_{n}\right)$,
which, by $\S 1$, is seen to be an identity if $\varepsilon=+1$.
Hence, with the signs of the μ_{i}^{\prime} and $\mu_{i}^{\prime \prime}$ properly chosen, and ε_{i} so chosen that their product is +1 , all numbers obtained by (12) and (13) are solutions of (11). We observe, however, that the expressions for $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ are fractional in form. Hence we must next determine under what conditions they are integral, that is, we must determine what conditions must be imposed on the μ_{i}^{\prime} and $\mu_{i}^{\prime \prime}$ in order that the solutions shall be integral, or in other words, that γ shall belong to R.

From the development, it follows that, for

$$
\gamma=\frac{A_{1} \varrho_{1}+A_{2} \varrho_{2}+\cdots+A_{n} \varrho_{n}}{M_{1} M_{2}},
$$

$M_{1} \cdot M_{2} \cdot \gamma$ is an integer in R and

$$
\{\gamma\}=\left\{\frac{A_{1} \varrho_{1}+A_{2} \varrho_{2}+\cdots+A_{n} \varrho_{n}}{M_{1} M_{2}}\right\}=P_{1} \cdot P_{2} \cdots P_{k}
$$

is a principal ideal of the field. Since the product of any integer of the field by Δ is an integer of R, we know that

$$
\frac{A_{1} \Delta \varrho_{1}+A_{2} \Delta \varrho_{2}+\cdots+A_{n} \Delta \varrho_{n}}{M_{1} M_{2}}
$$

is an integer of R. Hence it is equal to $C_{1} \varrho_{1}+C_{2} \varrho_{2}+\cdots$ $+C_{n} \varrho_{n}$, where $C_{1}, C_{2}, \ldots, C_{n}$ are rational integers. But the representation by the fundamental system is unique; hence

$$
\frac{A_{i} \Delta}{M_{1} M_{2}}=C_{i}
$$

Since M_{2} is relatively prime to Δ, this says that A_{i} is divisible by M_{2}; hence (13) will not give fractions with factors of M_{2} in the denominator.

We have defined J as the smallest ideal whose product with P_{k} is divisible by f, and M_{1} as the smallest rational integer divisible by J. Let $M_{1}=M_{1}^{\prime} \cdot M_{1}^{\prime \prime}$, where M_{1}^{\prime} is the smallest factor of M_{1} such that $M_{1}^{\prime} P_{k} I_{k}=\left\{\gamma^{(k)}\right\}$, when $\gamma^{(k)}$ is an integer of R. If we then choose $\alpha^{(k)}$ in $P_{k} \cdot I_{k}=\left\{\alpha^{(k)}\right\}$ such that $M_{1} \alpha^{(k)}=M_{1}^{\prime \prime} \gamma^{(k)}$, which is always possible since

$$
M_{1}^{\prime \prime}\left\{\gamma^{(k)}\right\}=M_{1} P_{k} I_{k}=M_{1}^{\prime} M_{1}^{\prime \prime}\left\{\alpha^{(k)}\right\}
$$

we see that the $a_{1 k}, a_{2 k}, \ldots, a_{n k}$ are all multiples of $M_{1}^{\prime \prime}$ since $\gamma^{(k)}$ belongs to R. We thus see that the A_{i} are all divisible by $M_{1}^{\prime \prime}$ and only factors of M_{1}^{\prime} can occur in the denominators of the numbers furnished by (13).

In the first part of this article, we have seen that all integral solutions of (11) can be expressed by (12) and (13). In the proof as given, for $i<k$ the

$$
e_{1}^{(i)} \boldsymbol{\beta}_{1}^{(i)}+e_{2}^{(i)} \boldsymbol{\beta}_{2}^{(i)}+\cdots+e_{n}^{(i)} \boldsymbol{\beta}_{n}^{(i)}=a_{1 i} \boldsymbol{\varrho}_{1}+a_{2 i} \boldsymbol{\varrho}_{2}+\cdots+a_{n i} \boldsymbol{\varrho}_{n}
$$

were all relatively prime to f. Hence the product

$$
\mathrm{II}=\prod_{i=1}^{k-1}\left(a_{1 i} \varrho_{1}+a_{2 i} \varrho_{2}+\cdots+a_{n i} \varrho_{n}\right)
$$

is also relatively prime to f. The integer II belongs to R. Hence if
$\left(a_{1 k} \varrho_{1}+\alpha_{2 k} \varrho_{2}+\cdots+a_{n k} \boldsymbol{\varrho}_{n}\right) I I=\prod_{i=1}^{k}\left(a_{1 i} \varrho_{1}+a_{2 i} \boldsymbol{\varrho}_{2}+\ldots+a_{n i} \varrho_{n}\right)$ should have all its coefficients, when it is written as a linear function of $\varrho_{1}, \varrho_{2}, \ldots, \varrho_{n}$, divisible by some factor $M_{1}^{(8)}$ of $M_{1}^{\prime}=M_{1}^{(3)} \cdot M_{1}^{(4)}$ it would follow that

$$
\frac{a_{1 k} \boldsymbol{\varrho}_{1}+a_{2 k} \boldsymbol{\varrho}_{2}+\cdots+a_{n k} \boldsymbol{\varrho}_{n}}{M_{1}^{\prime} \cdot M_{1}^{\prime \prime}} M_{1}^{(4)} \cdot \mathrm{II}
$$

would be an integer of R.
Hence the product of

$$
\frac{a_{1 k} \varrho_{1}+a_{2 k} \varrho_{2}+\cdots+a_{n k} \varrho_{n}}{M_{1}^{\prime} \cdot M_{1}^{\prime \prime}} M_{1}^{(4)}
$$

by II, or by any integer divisible by f, would be an integer of R. But II belongs to R, and the principal ideal [II]
is relatively prime to f. Hence there exists an integer C in R and an integer D in f such that $C \cdot \Pi+D=1$.*

Since C II belongs to R, the products of

$$
\frac{a_{1 k} o_{1}+a_{2 k} o_{2}+\cdots+a_{n k} o_{k}}{M_{1}^{\prime} \cdot M_{1}^{\prime \prime}} M_{1}^{(4)}
$$

by $C I$ and by D, and hence also the sum of these products, belong to R. Therefore

$$
\frac{a_{1 k} g_{1}+a_{2 k} o_{2}+\cdots+a_{n k} \varrho_{n}}{M_{1}^{\prime} \cdot M_{1}^{\prime \prime}} M_{1}^{(4)}
$$

is an integer in R. But $\left\{\alpha^{(k)}\right\}=P_{k_{k}} I_{k}$, and

$$
M_{1}^{\prime} \cdot M_{1}^{\prime \prime} P_{k} I_{k}=\left\{a_{1 k} \varrho_{1}+a_{2 k} \varrho_{2}+\cdots+a_{n k} \varrho_{n}\right\}
$$

Hence

$$
M_{1}^{(4)} P_{k} I_{k}=\left\{\frac{a_{1 k} \varrho_{1}+a_{2 k} \boldsymbol{\varrho}_{2}+\cdots+a_{n k} \varrho_{n}}{M_{1}^{\prime} \cdot M_{1}^{\prime \prime}} M_{1}^{(4)}\right\}
$$

where the integer determining the principal ideal belongs to R. But we have assumed that M_{1}^{\prime} is the smallest factor of M_{1} such that when $M_{1}^{\prime} P_{k} I_{k}=\left\{\gamma^{(k)}\right\}$ the $\gamma^{(k)}$ belongs to R; hence $M_{1}^{(4)}=M_{1}^{\prime}$, i. e., $M_{1}^{(3)}=1$.

Therefore M_{1}^{\prime} will always occur as a denominator in the numbers furnished by (13), and integral solutions are possible only when $M_{1}^{\prime}=1$. Consequently, in order to have integral solutions, $\alpha^{(k)}$ must be an integer of R.

We have seen that $a_{1 k}, a_{2 k}, \ldots, a_{n k}$ are all divisible by $M_{1}^{\prime \prime}$. Hence if we put $a_{i k} / M_{1}^{\prime \prime}=C_{i k}$ we shall have

$$
\gamma^{(k)}=C_{1 k} \varrho_{1}+C_{2 k} \varrho_{2}+\cdots+C_{n k} \varrho_{n} .
$$

The matrix obtained from m in $\S 2$ by replacing the $a_{i k}$ by the $C_{i k},(i=1,2, \ldots, n)$, shall be denoted by m^{\prime}.

From the theory of the correspondence between ideals and decomposable forms, we know that to a class of ideals corresponds a class of forms. Any form of the class can be obtained by proper choice of the base of the ideal, from any ideal of the corresponding class of ideals by the method of $\S 4$. Moreover, the numbers represented by any form of the class can be represented by every form of the class.

Let γ be any integer of R. Suppose that the principal field ideal $\{\gamma\}$ is separated into the product $T \cdot P_{k}$ of two field

[^4]ideals such that T is relatively prime to f, and that P_{k} contains no prime factors except such as are divisors of f. Let $T^{(R)}$ be the ring ideal corresponding to T. From the reciprocal class in R, select an ideal $I^{(R)}$ whose corresponding field ideal I is relatively prime to $\{\Delta\}$. Let $N(I)=M_{2}$. Then M_{2} is relatively prime to Δ, and hence also to f, which is a divisor of Δ. Therefore $I_{k}=\left\{M_{2}\right\} / I$ is relatively prime to f, and the corresponding ring ideal $I_{k}^{(R)}$ belongs to the class reciprocal to that of $I^{(R)}$.

Since $I^{(R)}$ and $T^{(R)}$ belong to reciprocal classes in R, we have $I^{(R)} T^{(R)}=[\alpha]$. Multiplying both members of this equation by the unit ideal of $k(\theta)$, we have $I \cdot T=\{\alpha\}$. It is easily seen that I_{k} and P_{k} belong to reciprocal classes. Hence $I_{k} \cdot P_{k}=\left\{\gamma^{(k)}\right\}$. We shall next see that the integer $\gamma^{(k)}$ belongs to R.

We have $T \cdot P_{k}=\{\gamma\}$ and γ was chosen an integer of R. Since M_{2} is a rational integer, $M_{2} \gamma$ belongs to R. Since $I^{(R)}$ was chosen from the class reciprocal to that of $T^{(R)}$ in R, α belongs to R and is relatively prime to f. We may write

$$
I_{l_{k}} P_{k}=\frac{\left\{M_{2}\right\}}{I} \cdot P_{k}=\frac{\left\{M_{2}\right\} T \cdot P_{k}}{I \cdot T}=\left\{\frac{M_{2} \gamma}{\alpha}\right\}=\left\{\gamma^{(k)}\right\}
$$

and hence we may write $\gamma^{(k)}=M_{2} \gamma / \alpha$. Therefore $\gamma^{(k)} \cdot \alpha$ belongs to R; and, if α is any integer of $[\alpha], \gamma^{(k)} \cdot a$ belongs to R. Also if b is any integer of $f, \gamma^{(k)} . b$ belongs to R and therefore $\gamma^{(k)}(a+b)$ belongs to R. But since [α] is relatively prime to f, a and b may be so chosen that $a+b=1$. Hence $\gamma^{(k)}$ belongs to R.

We may now sum up the result of the investigation as follows. Let $k(\theta)$ be any algebraic number field of degree n, and $\varrho_{1}, \varrho_{2}, \ldots, \varrho_{n}$ a fundamental system of a ring R whose conductor is f and index Δ. Select any integer γ from R and separate the principal ideal $\{\gamma\}$ into two factors $T \cdot P_{k}$, where T is relatively prime to the conductor f, and where P_{k} contains no prime factors except divisors of f. Let $T^{(R)}$ be the ring ideal corresponding to T, and $I^{(R)}$ an ideal from the reciprocal class in π whose corresponding field ideal I is relatively prime to $\{\Delta\}$. Let $M_{2}=N(I)$, and $I_{k}=M_{2} / I$.

Then

$$
I_{k} \cdot P_{k}=\left\{\gamma^{(k)}\right\}=\left\{C_{1 k} \varrho_{1}+C_{2 k} \varrho_{2}+\cdots+C_{n k} \varrho_{n}\right\}
$$

since, as we have seen above, $\gamma^{(k)}$ belongs to R.
Select $k-2$ rational integers $\mu_{1}^{\prime \prime}, \mu_{2}^{\prime \prime}, \ldots, \mu_{k-2}^{\prime \prime}$, such that their product has the same sign as $N\left(\gamma^{(k)}\right)$, and an absolute value equal to $N\left(P_{k}\right)$.

Next select $k-1$ ideals $I_{1}, I_{2}, \ldots, I_{k-1}$ whose product is I. As before, let $I_{i}^{(R)}$ be the ring ideal corresponding to I_{i}. Let $F_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right),(i=1,2, \ldots, k-2)$, be the decomposable forms corresponding to the ideals $I_{i}^{(R)},(i=1$, $2, \ldots, k-2)$. Choose an ideal $P_{k-1}^{(R)}$ from the class reciprocal to that of $I_{k-1}^{(R)}$ and let
$P_{k-1}^{(R)} \cdot I_{k-1}^{(R)}=\left[\alpha^{(k-1)}\right]=\left[a_{1 k-1} \varrho_{1}+a_{2 k-1} \varrho_{2}+\cdots+a_{n k-1} \varrho_{n}\right]$. Next select $k-2$ rational integers $\mu_{1}, \mu_{2}^{\prime}, \ldots, \mu_{k-2}^{\prime}$ whose product has the sign of $N\left(\alpha^{(k-1)}\right)$ and the absolute value $N\left(P_{k-1}\right)$. Then for rational integral $e_{j}^{(i)},(i=1,2, \ldots, k-2$; $j=1,2, \ldots, n$), and $\varepsilon_{i}=+1$ or -1 , such that $\varepsilon_{1} \cdot \varepsilon_{2} \cdots \varepsilon_{k-2}$ $=+1$ the numbers

$$
\begin{array}{lr}
u_{i}=\varepsilon_{i} \mu_{i}^{\prime} \cdot \mu_{i}^{\prime \prime} F_{i}\left(e_{1}^{(i)} \cdot e_{2}^{(i)} \cdots e_{n}^{(i)}\right), & (i=1,2, \cdots, k-2) \\
\xi_{i}=\frac{A_{i}}{M_{2}}, & (i=1,2, \cdots, n)
\end{array}
$$

constitute a solution of the equation

$$
N\left(\xi_{1} \varrho_{1}+\xi_{2} \varrho_{2}+\cdots+\xi_{n} \varrho_{n}\right)=u_{1} \cdot u_{2} \cdots u_{k-2}
$$

The A_{i} are computed as in $\S 2$ from the matrix

$$
m^{\prime}=\left\|\begin{array}{llll}
a_{11}, & a_{21}, & \ldots, & a_{n 1} \\
a_{12}, & a_{22}, & \ldots, & a_{n 2} \\
\ldots & \ldots & \ldots & \\
a_{1 k-1}, & a_{2 k-1}, & \ldots, & a_{n k-1} \\
c_{1 k}, & c_{2 k}, & \ldots, & c_{n k}
\end{array}\right\|
$$

when the $a_{i j}$ in the first $k-2$ rows of the matrix are obtained from the $e_{j}^{(i)}$ by means of $k-2$ sets of equations such as (9), one set for each of the ideals $I_{i}^{(R)},(i=1,2, \ldots, k-2)$.

By the same method, all solutions of the given Diophantine equation may be obtained.

[^0]: * Presented to the Society, December 29, 1923.
 \dagger L. E. Dickson, A new method in Diophantine analysis, this Bulletin, vol. 27, No. 8 (May, 1921), p. 353.
 \ddagger L. E. Dickson, Integral solutions of $x^{2}-m y^{2}=z w$, this Bulletin, vol. 29, No. 10 (Dec., 1923), p. 464.

[^1]: * Bachmann, Zahlentheorie, p. 136.
 \dagger Bachmann, loc. cit., p. 363.
 \pm Bachmann, loc. cit., chapter 2, p. 74.
 § Bachmann, loc. cit., chapter 9, No. 2.
 || Bachmann, chapter 4, p. 136.

[^2]: * Bachmann uses the restricted equivalent in which $\operatorname{sgn} N\left(\alpha_{1}\right)=\operatorname{sgn} N\left(\alpha_{2}\right)$.
 \dagger Bachmann, loc. cit., p. 398.
 \ddagger Bachmann, loc. cit., p. 221.
 § Bachmann, loc. cit., p. 369.

[^3]: * Bachmann, loc. cit., chapter 10, No. 6.
 \dagger Bachmann, loc. cit., p. 429.

[^4]: * Bachmann, loc. cit., p. 367.

