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THREE BOOKS ON RELATIVITY 

The Mathematical Theory of Relativity. By A. S. Eddington. Cam­
bridge, University Press, 1923. VI + 247 pp. 

The Meaning of Relativity. By Albert Einstein. Translated into 
English by E. P. Adams. Princeton University Press, 1923. 123 pp. 

The Theory of General Relativity and Gravitation. By L. Silberstein. 
New York, Van Nostrand, 1922. IV + 141 pp. 
In attempting a combined review of these three books, I do not wish 

to give the impression that each does not merit extensive consideration. 
However, there are necessarily many points of similarity, and by pointing 
these out and emphasizing the differences I may be able to give an 
idea of the character of each book. Eddington's book is by far the 
most comprehensive and contains practically all of the mathematical 
treatment appearing in the other books, but the latter contain many 
helpful and stimulating observations and interpretations. 

Einstein recalls in his first lecture some of the more fundamental 
ideas and equations of pre-relativity physics, and converts them into 
tensor form. In the second lecture the equations for the same physical 
concepts as interpreted in special relativity are given tensor form. 
This should be particularly helpful to those, who, not being entirely 
familiar with mathematical processes, have tried to acquire a knowledge 
of tensor analysis from the general treatments, such as was given by 
Einstein in his 1916 paper, and is largely followed in the books under 
discussion (Eddington, Chapter 2; Einstein, Lecture 3 ; Silberstein, 
Chapter 3). After following the first two lectures the reader begins to 
feel that, as Eddington says (3), "our knowledge of conditions in the 
external world, as it comes to us through observation and experiment, 
is precisely of the kind which can be expressed by a tensor and not 
otherwise. " He may not yet be prepared to agree with the last part 
of this statement, but as he comes to appreciate the effective use which 
Einstein has made of tensor calculus in his general theory of relativity, 
he is forced to the conclusion that here is a great contribution to 
mathematical physics. Scientists may agree or not with Einstein's inter­
pretation of his equations as regards the character of physical space and, 
in particular, the significance of the well known crucial tests of his theory, 
but they cannot afford to ignore the guidance of tensor calculus in their 
attempts to give mathematical formulation to the results of experiment. 

The postulates and ideas of special relativity are set forth, more or 
less briefly, by all three authors in preparation for the transition to 
general relativity. In their generalized form the postulates may be 
stated in the explicit form: 
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1. Everything connected with location which enters into observational 
knowledge—everything we can know about the configuration of events— 
is contained in a relation of extension between pairs of events; this 
relation is called the interval and its measure is denoted by ds ; in any 
system of coordinates ds2 = ^gt, dx* dx3, where gf. are functions of the 
coordinates which describe the metrical relations of the space-time 
continuum and also the gravitational field. 

2. The path of a freely moving particle, whether in the presence or 
absence of a gravitational field, but not in an electromagnetic field, 
is a geodesic of the quadratic form ds2. 

3. The track of a light-wave satisfies the condition ds = 0. (Ed. 10, 
36; S. 20; E. 71, 87, 102.) 

The generalization consists in replacing inertial, or Galilean, systems 
by general systems of coordinates and in interpreting the #'s as potentials 
of the gravitational field. As a first step in this and other generali­
zations, we have Einstein's postulate: 

4. For infinitely small regions there will be an inertial system (i. e. 
a local reference system for which the #'s have the Galilean values) 
relative to which the laws of special relativity are valid. (E. 70; S. 12.) 
However, the assumption underlying the generalization is Einstein's 
"principle of equivalence". Eddington (40) considers the latter to be 
"a hypothesis to be tested by experiment as opportunity offers"; . . . 
"as a suggestion rather than a dogma admitting of no exceptions." 
Under the guidance of this principle Einstein was led to the postulates: 

5. Inertial mass and gravitational mass are identical. 
6. The law of gravitation for empty space is Ry = 0, or Ry = Xg$, 

where X is a very small constant. It may be that this is equivalent 
to the "principle of equivalence," in other words, that the principle 
breaks down for all other curved worlds. 

Proceeding from these postulates, Eddington (83-90) and Silberstein 
(92-100) derive the Schwarzschild solution of the equations Rtj = 0 
for a radially symmetric field and obtain the equations of the geodesies 
which are identified with the paths of the planets about the sun; from 
these are derived Einstein's formula for the motion of the perihelion 
of Mercury; Einstein (105-07) merely states these results. Eddington 
adds to Postulate 3 the requirement that the tracks of light be geodesies; 
and, by allowing ds to approach zero in the preceding discussion, he 
obtains the formula for the deflection of light; Silberstein gives 
a similar derivation and also states that it is a consequence of Fermat's 
principle, as shown by Levi-Civita and de Sitter. Einstein does not 
assume that the paths of light are geodesies. He adheres to Postulate 3 
and derives (103) the formula for deviation of light from an approximate 
solution of the equations 
(1) Ry — %gijR = —kTy. 
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From this solution he determines the value of the constant k and upon 
it he bases also his conclusion concerning the shift of spectral lines; 
the discussion of this question by Eddington and Silberstein is based 
on the expression ds2 = (1 — 2m/r) dt2, obtained from the Schwarzschild 
form for an atom at rest or practically so. 

Before giving the results for planetary motion as stated above, 
Einstein (88) considers an approximate solution somewhat after the 
manner of his 1916 paper. Silberstein (35-8) follows a similar course 
and obtains the equations given by Einstein with added terms. He 
thinks that Einstein failed to obtain these "through a too-hasty com­
putation of the Christoffel symbols." It seems to be a question rather 
of what is meant by "first approximation." As interpreted by Einstein 
in both places these added terms vanish. In any case the interpretation 
of these terms as due to an acceleration exerted upon the frame of 
reference by a velocity field cgu (i = 1, . . . , 4) is interesting. 

Einstein's derivation (90-94) of equations (1), as a generalization of 
the Laplace-Poisson equation, 
(2) â <p = 4 knp, 

is one of the most interesting parts of the book. The tensor T#, the 
energy-momentum tensor of matter, "includes in itself the energy 
density of the electromagnetic field and ponderable matter", . . . "It 
is only the circumstance that we have not sufficient knowledge of the 
electromagnetic field of concentrated charges that compels us, pro­
visionally, to leave undetermined in presenting the theory the true 
form of this tensor." However, in accordance with special relativity, 
the principle of conservation of momentum and energy is expressed by 
the vanishing of the divergence, that is 

This and Postulate 4 serve as a guide in the determination of the 
left-hand member of (1). Einstein does not say that this is equivalent to 

(4) T? = 0 

in general coordinates, where the subscript indicates covariant differ­
entiation, but he explicitly states (91) "we shall have to assume (4) 
as valid." We wish to emphasize that there is an assumption involved 
in replacing ordinary derivatives of special relativity by covariant 
derivatives in general relativity—it is the assumption that in applying 
Postulate 4 the coordinates at the point are geodesic. Eddington (119) 
makes the transition from (3) to (4) by an appeal to the "principle 
of equivalence." Since the components gy are interpreted as the 
potentials of the gravitational field—a fundamental assumption of the 
Einstein theory—the generalization of equation (2) requires of the left-
hand member of (1) that it contain no differential coefficients of gy 
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higher than the second, that it be linear and homogeneous in the second 
differential coefficient, and that its divergence be zero. Einstein states 
without proof that the only tensor of the second order satisfying the 
first two conditions is By + agy R, in the usual notation, where a is 
an arbitrary constant.* He then shows that the third condition requires 
that a = —1/2, and in doing so makes use of a particular type of 
geodesic coordinates at a point. In view of his assumption mentioned 
above, he is then justified in his statement that the vanishing of the 
divergence is proved for any system of coordinates. Eddington (119) 
and Silberstein (81) establish the same result by making use of the 
four fundamental identities 

#*.. — i ILL 

So far as I know, these identities were first established by Levi-Civita 
(RENDICONTI LINCEI, 1917, p. 388) in a general way by means of the 
identities of Bianchi; Eddington's proof (115) is based upon the use of 
geodesic coordinates. 

The tensor Ty for an electromagnetic field alone was written by 
Einstein in his 1916 paper (§ 20) in the form 

(5) Tj = - Fja Fia + i Ô) Fafi Fa^ 

where F.a is the curl dy>Jdxa—d<pa/dxjr of the electromagnetic potential, 
«̂  are the Kronecker deltas, and 

Fafi = = gai g/3j F^ 

using the conventional notation. In his second lecture (53) he shows 
that this expresses the principles of energy and momentum as developed 
by Maxwell, and that the four-dimensional formulation of special re­
lativity serves as the guide to the amalgamation into a tensor. By 
similar considerations Maxwell's equations are written in the tensor form 

[dF* dFjk BFM 
dxk + dx* + da* ~~ °' 

(6) d ,_ , ... _ , dx* ,„..v dx{ 

where p0 is the proper density of electricity and (F^)j is the covariant 
derivative. (Cf. Ed. 170-5; S. 106-113.) In this generalization from 
special relativity by means of Postulate 4, there is the added assumption 
that the coordinates are geodesic. Applying covariant differentiation 
to (5), we have (Ed. 182; S. 121) for the divergence of T 

(?) rç = Wir 
Thus the divergence vanishes in regions outside of charged particles, 

* For a proof the reader is referred to Weyl, Space, Time and Matter, 
p. 315; also Birkhoff, Relativity and Modern Physics, pp. 209-221. 
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"the only regions in which we can believe that we have the complete 
expression for the energy tensor", according to Einstein (55). The ex­
pression in the right-hand member of (7) is the ponderomotive force 
four-vector which replaces the electric force vector in the equations of 
electrostatics, when these equations have been put in tensor form. These 
equations were derived for special relativity by Einstein in his 1905 
paper and again in his second lecture (52). They agree to a high 
degree of accuracy with the results of experiments on /î-particles; 
and, when written in the form for general relativity, they show that 
the paths of an electron are not geodesies. Eddington (189) "wants 
to know what the electron is trying to accomplish by deviating from 
a geodesic". He considers the field outside the electron and assumes 
that the field within the electron counterbalances it; he then concludes 
that an electron in an external field of force having the acceleration given 
by the equations referred to is "a miracle", whatever that may mean. 

As previously remarked, Einstein obtained an approximate solution 
of equations (1) and therefrom reached the conclusions concerning 
physical phenomena which have become generally known. These solu­
tions were based on the assumption that the potentials gy have the 
Galilean values at infinity and differ little from these values in the 
neighborhood of matter. In 1917 he presented his views on the so-
called cosmological problem. Mach held that the inertia of any particle 
depends upon the whole matter in the universe. If this is true, then 
(1) "the inertia of a body must increase when ponderable masses are 
piled up in its neighborhood; (2) a body must experience an accelerating 
force when neighboring masses are accelerated, and, in fact, the force 
must be in the same direction as the acceleration; (3) a rotating hollow 
body must generate inside itself a 'Coriolis field', which deflects moving 
bodies in the sense of a rotation, and a radial centrifugal field as well" 
(E. 110). Einstein obtained an approximate solution, involving each 
of these effects, but of magnitude too small to be tested by experiment; 
in doing so he was led to make the hypothesis that the physical universe, 
as distinguished from the space-time continuum, is spherical and closed, 
and he proposed suitable expressions for the functions g%j and for the 
tensor Ty which were in keeping with this hypothesis. We cannot 
here discuss adequately the merits and demerits of this proposal, and 
of the one suggested by de Sitter; the reader will find this done fully 
by Eddington (155-168) and by Silberstein (124-137). 

Suppose that we had not started with the six postulates previously 
set down, but had merely taken the first one, which may be interpreted 
roughly as saying that the physical world (space-time) is a Kiemannian 
manifold of four dimensions with a fundamental tensor gy. From this 
tensor others may be derived, such as Bij, Biju, and so on. Accepting 
the fundamental principle of relativity that physical laws are expressible 
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by tensor equations, the next step is to find these equations by a 
principle of identification with the results of experiment. If, as 
Eddington (119) says, we take "the view that energy, stress and mo­
mentum belong to the world and not to some extraneous substance in 
the world, we must identify the energy-tensor with some fundamental 
tensor of the world". Since the divergence of Rij— IgyR vanishes, 
it is natural to try the equation (1) and see what happens. The left-
hand member vanishes only when By = 0 ; this, then, is the condition 
for empty space. From (1) it can be shown that the path of a particle 
in empty space is a geodesic (Ed. 127). By identifying geodesic coor­
dinates at a point with the Galilean coordinates of special relativity, 
Eddington (178) shows that the path of a light-pulse is a geodesic; 
it is a question, however, whether this proof is not equivalent to the 
assumption involved in the identification. We shall not consider the 
further consequences of this point of view, but will turn our attention 
to the more general world-geometry, as developed by Weyl and Eddington. 

Weyl and Eddington consider a general four-dimensional continuum 
in the sense of Analysis Situs and define an affine connection for the 
manifold by means of forty functions I)k, symmetric in j and h. By 
considering the change in a general vector A1 as it undergoes a parallel 
displacement round a small circuit, they are led to a tensor of the 
fourth order *BJM which is a generalization of the Eiemann tensor. 
When this tensor is contracted for i and £, the resulting tensor is the 
sum of a symmetric tensor Rjk and the curl of a vector <pi. Eddington 
puts Rjk = tyjk, where À is a universal constant and takes 

ds2 = gijdxldx^ 

as the metric of the space; he leaves the functions 1% perfectly general, 
which is equivalent to having an arbitrary tensor JBT}*, symmetric in 
j and k. Weyl, on the other hand, specializes his geometry by expressing 
the T's as certain functious of the components of a symmetric tensor #y, 
their first derivatives, and the components of a vector, which is equi­
valent to <fi mentioned above.* 

Before we proceed further with the development of this geometry 

* Eddington's world-geometry is essentially the same as the Geometry 
of Paths as developed by Veblen and myself in a number of articles 
in volumes eight and nine of the PROCEEDINGS OF THE NATIONAL 
ACADEMY, and by me in the ANNALS OF MATHEMATICS, vol. 24 (1923). 

This geometry is not equivalent to the more restricted type considered 
by Weyl, as Eddington states (243). Furthermore, the equations of the 
paths are fundamental, which has a bearing on Eddington's remark (216): 
"I t may be asked whether there is any other way of obtaining tensors, 
besides the consideration of parallel displacement round a closed circuit. 
I think not . . . " 
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it is advisable to consider its relation to the actual space of physical 
phenomena. Eddington (197) says "Two possible ways of generalizing 
our geometric outlook are open. It may be that the Riemannian geometry 
assigned to actual space is not exact; and that the true geometry is 
of a broader kind leaving room for the electromagnetic potential vector 
to play a fundamental part and so receive geometric recognition as one 
of the determining characters of actual space." . . . "The alternative is 
to give all our variables, including the electromagnetic potential, a suit­
able graphical representation in some new conceptual space—not actual 
space." . . . "We have then to distinguish between Natural Geometry, 
which is the single true geometry in the sense understood by the 
physicist, and World Geometry, which is the pure geometry applicable 
to a conceptual graphical representation of all the quantities concerned 
in physics." The latter is Eddington's idea of the significance of his 
geometry and of Weyl's; Weyl at first held that his geometry was the 
geometry of actual space, but according to Eddington (198, 208) he now 
holds to the latter view also. Commenting upon the theory of electro-
magnetism leading to equation (7), Einstein (108) says "This inclusion 
of the theory of electricity in the scheme of the general theory of 
relativity has been considered arbitrary and unsatisfactory by many 
theoreticians. Nor can we in this way conceive of the equilibrium of 
the electricity which constitutes the elementary electrically charged 
particles. A theory in which the gravitational field and the electro­
magnetic field enter as an essential unity would be much preferable." 
He reiterates this statement in his latest paper (PEEUSSISCHE AKADEMIE 
DER WISSENSCHAFTEN 1923, pp. 82-38) in which he undertakes to pre­
sent such a theory. However, he gives no indication that, in adopting 
Eddington's geometry for the basis of his work, he feels that the geo­
metry is merely a graphical representation of the physical world. On 
the contrary the idea that he is dealing with the actual world seems 
to be fundamental in all of his writings concerning the theory of relativity. 

Weyl, Eddington, and Einstein identify the vector <pi of their 
geometries with the electromagnetic potential. Eddington (208) says 
it is "the electromagnetic potential because that is the way in which 
we choose to represent the potential graphically." He also identifies 
Rijdx{dx^ = 0 as the equation of light-pulses, but he does not prove 
that this is a consequence of the former identification. In other words, 
it seems to me that if Eddington's view of graphical representation is 
adopted and one identification is made, the other must be established. 
It seems reasonable that in some way <p% is connected with the electro­
magnetic potential, but if one is dealing with actual space is it in fact 
the electromagnetic potential itself, or if one is making a graphical re­
presentation, is that the best interpretation to place upon <pfi Recently 
I gave (PEOCEEDINGS OF THE NATIONAL ACADEMY, June, 1923) another 
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identification of <pi based upon the equations of a moving electron. In 
the present state of the theory, a statement that this is the correct 
interpretation would be dogmatic. I mention it merely for the purpose 
of pointing out that if it is found that the conclusions of Weyl, Eddington, 
and Einstein are not in accordance with physical phenomena, as they 
become more clearly understood, the difficulty may be due to their 
identification of the vector <pi. 

It would not be proper to bring this review to a close without 
saying something about the Hamiltonian principle of action. Lorentz 
and Hubert seem to have been the first to try to take over this 
principle from classical mechanics and determine its bearing upon general 
relativity. Einstein considers it in his 1916 paper (§ 15) and later in 
the same year made a more extensive study of it. Silberstein (88) 
feels that "the importance of the Hamiltonian principle seems to be 
unduly overestimated," and Eddington, who gives (131-144) a full dis­
cussion of it, together with what he calls the Hamilton derivative, says 
(138) "We have thus to remember that when a writer begins to talk 
about action, he is probably going to consider impossible conditions 
of the world. (That does not mean that he is talking nonsense—he 
brings out the important features of the possible conditions by compar­
ing them with the impossible conditions)/' There are two distinct 
methods of approaching this question. One is to build up an integral 
such that on equating its variation to zero, known results are obtained. 
This is what Weyl has done (Space, Time, and Matter, pp. 209-216; 
pp. 230-237). The other is to start with the idea that an integral can 
be found which will be the philosopher's stone to reveal the hidden 
treasures of the physical world. Thanks to the guiding hand of the 
tensor calculus the search for such an integral (if it exists) is not a 
game of blind man's buff. Weyl (295) chooses an integral and discusses 
the consequences of the choice, although he questions whether his action-
principle is realized in nature exactly in the form chosen. Eddington 
(232) suggests and considers several integrals, one of which Einstein 
develops in his recent paper in such a manner as to obtain an expression 
for the .T's in terms of a tensor % and a vector y. The results of these 
theories await verification. It may be that one of them is the hoped-for 
omnium gatherum with or without the correct identification. 
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