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AN INTRODUCTORY ACCOUNT OF THE ARITH­
METICAL THEORY OP ALGEBRAIC NUMBERS 

AND ITS RECENT DEVELOPMENTS * 

BY L. J . MORDELL 

1. Introduction. In dealing with the subject of my lecture, 
I might have considered it from a purely logical point of view, 
and developed it in all its beauty in this manner. I think, 
however, it will be of more interest to you if I introduce it 
from the historical standpoint. Its beginnings date from 
Euler, who attempted to prove Fermat's statement, that the 
only integer solutions of the equation y2 + 2 = xz were x = 3* 
y = zh 5, by putting x = a2 + 262 and taking 

y + V"̂ ~2 = (a + b V^~2)3. 

By equating irrational parts, he found 

1 = b(3a2 - 2b2), 

whence b = 1, a = ± 1 ; but it is neither obvious nor true in 
general that all the integer solutions can be found in this way, 
—one used by Euler and Lagrange for some related questions. 
Then, about 1800, much interest was shown in the so-called 
law of quadratic reciprocity, first rigorously proved by Gauss; 
namely, that if p and q are two odd positive primes 

/ \ / \ tzl . Izl 

( ? ) © - < - » • '• 
The symbol (p/q) denotes + 1 or — 1, according as the con­
gruence x2 = p (mod q) is possible or impossible, and then p is 
called a quadratic or non-quadratic residue respectively of q. 
With certain extensions, this law is really equivalent to a reduc­
tion formula enabling us to calculate the value of the symbol 
(pfq), and forms the foundation of the theory of numbers. 

* Lecture read before the London Mathematical Society on January 18, 
1923, and, by request of the program committee, before the American 
Mathematical Society, on September 6, 1923. 
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Obvious generalizations are suggested for other congruences, 
such as 

xz s= p (mod q)y xA = p (mod q). 

Taking the latter, it was found that the result appeared in a 
very complicated form, which, however, simplified remarkably 
if, instead of primes p and q, we considered their decomposi­
tions (when possible) in the form 

p = a2 + b2, 

or into complex factors (a + ib)(a — ib). This led Gauss to 
the study of the arithmetic properties of complex numbers 
of the form z = a + ib, where a and b are integers» He proved 
that they did not differ essentially from those of ordinary 
integers, and showed that it was a very simple matter to define 
primes so that complex numbers could be factored uniquely, 
that if a product £122 were divisible by a complex prime z, 
then either Zi or s2 was divisible by z, etc. 

Gauss also showed that if p was a prime of the form 4?i + 1, 
then the value of a (odd say) was given by the absolutely 
least residue satisfying the congruence 

« ^ ( - l ^ + i i M (modp). 
(n\y 

This result was extended by Stern, Cauchy, Jacobi, and 
Eisenstein. The proofs depended upon complex numbers 
formed from other roots of unity than the fourth root i and 
applications were made to laws of reciprocity. 

The most important facts concerning these numbers were 
discovered in connection with Fermat's last theorem on the in­
solubility in non-zero integers of the equation 

xv + yp = zv. 

The left-hand side can be factored in the form 
(x + y)(x + ty)(x + ?y) . • • ( * + r ^ 1 y) = **, 

where f is a complex pth. root of unity; and it appeared to be 
a natural assumption, by analogy with elementary arithmetic, 
to put 

x+ty= (A + Bï+CÇ2+ . . . ) p , 



1923.] ALGEBRAIC NUMBERS 447 

or perhaps to some multiple of the right-hand side, where 
A, B, C, • • • are ordinary integers. This involved the as­
sumption that these algebraic numbers could be factored in a 
unique manner, an assumption which was, however, in general 
erroneous. This can be seen from a far more simple case: 

21 = 3-7 
= (4 + V^5)(4 - V^~5) = (1 + 2 V"="~5)(l - 2V^~5), 

and it is easily verified that none of3,7,4d= V - 5 , l ± 2 V - 5 
can be split up into factors of the form a + W — 5 with a 

and b integers. Again 

32 = (2 + V^~5)(2 - ATT5) 

and 2 ± V— 5 are not squares, and neither have a common 
factor of the form a + W — 5, nor can be split into factors of 
this form. 

The primary object of the theory was to re-establish order 
in the chaos produced by the breakdown of the fundamental 
theorem upon which depends all the higher arithmetic. This 
was accomplished by Kummer in the special case of the alge­
braic numbers arising from the roots of unity, and more gen­
erally by several other writers. We shall give an account of 
Dedekind's method, since the main idea is not only easily 
explained, but is also very characteristic of mathematics, in 
generalizing a concept or a function by including it in a wider 
one. This idea is familar to all, e.g., n\ initially defined by 
1 • 2 • 3 • • • n when n is an integer, is generalized to 

r<n) = I e"aixnr"ldx9 
Jo 

when n has its real part positive; and for all values of n by the 
well known infinite product. Again the chord of contact of 
the tangents from a point P to a conic can be generalized as 
the polar of P, giving from one point of view a simpler inter­
pretation when the tangents are imaginary. Dedekind's idea 
was to consider groups of numbers which he called ideals, and 
with the obvious method of multiplying and dividing such 
groups as suggested by their definition, he showed that a 
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unique factor law existed for his ideals, and that his results 
included as particular cases the fundamental laws of arith­
metic and the correct arithmetical deductions to be drawn 
from relations involving algebraic numbers. 

2. Algebraic Numbers. We must now define an algebraic 
number. The number 6 is called an algebraic number if it is 
the root of an equation of the form 

adn + b6n~l + h I = 0, 

where a, &,•••, I are ordinary integers. If a = 1, 6 is 
called an algebraic integer, and it is easy to show that this 
generalization is consistent, e.g., the sum, difference, product 
of integers are integers, and that if an algebraic integer is 
rational, it must be an ordinary integer. We may suppose 
that the equation in 6 is irreducible in the field of rationality 
R defined by the ordinary integers, and that it has ri real 
roots and r2 pairs of imaginary roots. 

Any rational function of 0 with rational coefficients, i.e., 
coefficients in R, can be reduced to the'form 

f=A0+A1e+ . . . + ^n-10"-1, 

where Ao,Ai, • • • , An-i are rational numbers; and the assem­
blage of all such functions is referred to as the field or Körper 
K(d). If ƒ is an algebraic integer, the numbers conjugate to 
ƒ are also algebraic integers, and by writing down the con­
jugate equations and solving, we find that d(0)Ao, d(0)Ai, • • • 
are rational integers where d(0) is the discriminant of the equa­
tion in 0. Hence any algebraic integer in the field K{6) can 
be written as 

f = W) ( a ° + aid + ' ' ' + an-lön~1}' 
where a0, a±, • • • , an-x are integers. From this it follows 
that we can find n algebraic integers coi, co2, • • • , wn called the 
base of the field, such that any algebraic integer ƒ can be 
written in the form 

ƒ = «lWi + #2C02 + • ' * + XnO)n, 
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where x\y x2y * * * y ™n are rational integers. For example, 
in the field K{ V2), all integers are of the form Xi + x2 V2 
+ x$ AS, while in the field K{ Vö) they are of the form xx 

+ x2(l + V5)/2. 
The base can be chosen in an infinite number of ways, but 

any one base can be derived from any other by a linear substi­
tution in the co's with integer coefficients and with a deter­
minant unity. Hence the square of the determinant formed 
from the co's and their conjugates, that is, 

d = 
« 1 » , «,<», • • • , «wo> 

« i « , a>2<*\ 

2r2 « 2. 

where coi(2), etc., are the conjugates of coi(1) = coi, etc., is an in­
variant of the bases, and is a rational integer called the dis­
criminant d of the field. It is always greater than unity, and 
there are only a finite number of algebraic fields with a given 
discriminant d, as follows from an asymptotic formula given 
by Minkowski (as an example of his result stated further on), 
namely 

2wn\4j 

3. Units. Among algebraic integers the most important 
are the units, i.e., the divisors of unity. For example, in the 
field K(i), dz 1, dz i are divisors of unity, while in the field 
K{ V2), t + u V2 is a unit if the integers t, u satisfy the equa­
tion f — 2u2 = db 1. It is well known that all the units are 
given by dz (1 + V2)n, where n is any integer. 

A similar theory holds in the general case, since it was proved 
by Dirichlet that any unit can be represented in the form 
0ip e2

q, • • • for a finite number of values of el9 e2, • • •, 
where p, q, • • • are any integers. For example, in the field 
K{ Â/2), the units are of the form x + y Â/2 + z Â/4, where x, y, z 
are integers satisfying the equation 

xz + 2yz + 4s3 - 6xyz = ± 1, 

where the left-hand side is the norm of x + yi2'+ zyi, 
29 
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so that the theory gives the complete solution of this equation 
in x, y, z. It has lately been announced that it can be shown 
in this way that the equation xz — ay* = 1 never has more than 
one integer solution when a is given. 

4. Minkowski's Theorem. It is Minkowski's theorem on 
linear forms, however, which is fundamental in the theory 
and has contributed greatly to its simplicity and elegance, 
namely, that integer values of x and y, not both zero, can be 
found so that 

| ax + by | ^ p, | ex + dy \ < q, 

where a, 6, c, d are any real numbers, and p, q > 0, satisfy 
the equation 

la, b I 
|c, a I 

There is of course the obvious extension to any number of 
variables x, y, z, 

No less than four distinct proofs have been given. The 
original proof by Minkowski is equivalent to the geometric 
theorem that any parallelogram in the x, y plane with one 
vertex at the origin and area ^ 1 contains at least one lattice 
point on its sides or within its interior and is really a par­
ticular case of a far more general one. This proof, as well as 
the latest one just given by Siegel, which is analytic in char­
acter and depends upon trigonometric series, applies directly 
regardless of whether the coefficients are rational or not. The 
other proofs are arithmetic in character, first establishing the 
theorem for rational coefficients. Hilbert's proof depends 
upon Dirichlet's idea that if n + 1 objects are arranged in n 
groups, then one group will contain at least two objects. The 
proof by Hurwitz is a beautiful piece of arithmetic work, very 
characteristic of the author, showing that there are 

la, 61 
\c, d\ 

forms of the type \x + MJ, such that all forms Ax + By, with 
A, B integers, can be written in the form 

\x+ fiy+ p(ax + by) + q(cx + dy), 
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where all coefficients, etc., are integers, and where a, 6, c, d are 
given. 

5. Test for Algebraic Numbers. I may say here a few words 
regarding the conditions that a given number 0 should be an 
algebraic number of the nth degree, i.e., the root of an equation 
of the nth degree irreducible in R. Of the two kinds known, 
one states that a number 0 cannot be an algebraic number 
of the nth degree if we can find an infinity of rational approxi­
mations p/q, such that 

| £ -» |<V 
where c is a given number, and where X > n according to* 
Liouville, X S n according to Thue in 1908, or finally X > 2 -<Jn 
according to Siegel in 1921. From this flow such results as 
that the equation f(x, y) = c has only a finite number of integer 
solutions if ƒ is an irreducible binary quantic in x, y of degree 
greater than 2. The proofs are very complicated, but very 
remarkable, depending only on elementary algebra. 

The other types of results are due to Minkowski and Furt-
wângler and depend upon the investigation of the minima of 
the form 

X0 + XXd + • • ' + tfn-iö"-1 

for integer values of xo, Xi, • • • , #w_i, all numerically less than 
some number t. If now t takes the values 1, 2, • • • , we have a 
series of minima mi, ra2, ra3, • • •, which are such that the 
ratios m^/mi, mz/mv, • • • have only a finite number of values 
for all values of t. 

6. Ideals. The algebraic integers in the field K(6) form 
the foundation of all that follows, just as ordinary rational 
integers do in arithmetic, and the word integer hereafter refers 
to the integers in the field K(6). 

Let «i, az, «3, • • • , OLV be any given integers; then the ideal 
A is the group of integers defined by Xiai + X2CK2 + • • • , 
where Xi, X2> X3, • • • are any integers, a fact expressed by the 
notation 

A = [au 0L2, 0J3, • • • , <xP~]. 
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The ideals A and B = [fii, /32, j83, • • M 3 J are equal, written 
A = B if every number of A is included in B and conversely; 
i.e., if integers X, /* can be found so that 

j3l = All^l + Xl2<*2 + • • • , fo = X21OÜ + X22«2 + * • ' , 

and 

«1 = jLtujSi + M1202 + ' • ' , «2 = M2l/3l + M22& + • • • • 

An ideal is called a principal ideal if it can be written in the 
form [a], so that it consists of all the integers divisible by a. 
Further the principal ideals [a] and [j3] are equal if and only if 
a and /3 are associated integers, i.e., a = /3e, where e is a unit. 

In particular, if a = 1, we have as the unit ideal [1] all the 
integers in K(6). 

We can now extend many arithmetic concepts to ideals. 
Thus the product AB of the ideals A and 5 is defined as the 
ideal C formed from the numbers obtained by multiplying 
every number of A by every number of B; and we write 
C = AB. The commutative law is obviously satisfied, so 
that we can write A X A = A2, A X A X A = Az, etc., while 
A0 stands for the unit ideal [1], 

Division is defined as the inverse of multiplication, so that 
the ideal C is divisible by the ideal A if an ideal B can be 
found so that C = AB. An ideal P is called a prime ideal if 
it is divisible by only itself and [1], the unit ideal. Finally, 
two ideals are called prime to each other if they have no common 
divisor except [1]. 

The fundamental theorem in the theory of ideals states 
that an ideal can be factored in only one way, apart of course 
from the order of the factors. Many important consequences 
follow just as in elementary number theory. The proof can 
be presented in several different ways, requiring in any case a 
long chain of subsidiary propositions. In Hurwitz' method the 
important steps are as follows: 

(1) Corresponding to any ideal A we can find an ideal 
B so that AB is a principal ideal [a] where a is a positive 
rational integer. 
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(2) From the equality [y]A = [y]B, we have A = B, and 
hence from G A = CB, also A = B. From these we show that 
if C is divisible by A, every number of C is included in A, and 
conversely. 

It is then shown that an ideal A has only a finite number of 
divisors, since a given rational integer a is a member of only a 
finite number of ideals. 

The next step is to show that if an ideal P is a divisor of 
AB, then either A or B is divisible by P. This depends upon 
the fact that the greatest common divisor of the ideals A, B 
is given by [«1,̂ 2, • • •, aP, ft, ft, • • •, j8 J. The result follows im­
mediately. 

An ideal can be factored by a definite and direct process. 
We can then factor any algebraic integer I by factoring the 
principal ideal [I]. Suppose we find 

[/] = A*B»C ••-, 

where A, B, C, • * • are different prime ideals. Then if 
A, B, C, • • • are principal ideals [a], \J3], [7], • • •, we have the 
result that 

where e is a unit. If, however, one at least of the ideals 
A, B, C, • • • is not a principal ideal, the integer I cannot be 
factored in the ordinary sense, though the ideal [I] can be. It 
is for this reason that J cannot be considered as a prime, and 
that a unique factorization law that would naturally suggest 
itself does not hold in the theory of algebraic numbers. 

7. Congruences and Norms. We can now consider congru­
ences with respect to ideals. A number fx is said to be divis­
ible by the ideal A if fx is one of the numbers forming the ideal 
A, or, what amounts to the same thing, if the principal ideal 
\p] is divisible by A; and we write 

fi s 0 (mod -4). 

Hence we mean by the congruence 

/x = v (mod A) 
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that [ju — v] is divisible by A, or that /x — v belongs to the 
ideal A. The ideal A is only a part of the integers of K(6), 
and the number of incongruent integers (mod A) is finite and 
is denoted by N(A). In particular, if A is a principal ideal 
[fx], N(A) is the absolute value of the product of /* by its con­
jugates. For example, in the field K(i), if co is a prime of the 
form a + ib, where p — a2 + b2 is a rational prime = 1 (mod 4) 
and where a, b are rational integers, the number of incongruent 
integers (mod co) is 

(a + ib) (a — ib) = p. 

If jit is a rational integer, the number N(fx) becomes \fxn\. 
The norm satisfies the law 

N(A)N(B) = N(AB). 

To find a simple formula for the norm of an ideal, we first 
prove that an ideal has a base, i.e., n integers ah a2, , an 

can be found so that all the numbers of A can be written in 
the form 

XlC*l + X2C*2 + • • • + Xn«n, 

where Xi, X2, • • • , Xn are rational integers, and further that the 
determinant 

j c ^ W 1 ) , - . . ,«*<» I 

W ( 2 w 2 >, . . . , «»» 

formed from the base and its conjugates is an invariant of the 
ideal. The numbers ai, a^ • • -,an of the base can be expressed 
in terms of the base coi, co2, • • -, con of the field by means of the 
equations 

Oil = CnCOi + Ci2C02 + • • • , 
a2 = C21CO1 + c22co2 + • • • , 

where the c's are rational integers. The determinant | ckî | is 
the norm of the ideal A. We can also write 

\cta\* = dN*(A), 

a most useful equation. 
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The norm of a prime ideal P takes a very simple form. For 
P must be a divisor of a rational prime p which is the smallest 
rational integer divisible by P. Hence we have 

N(P) = p', where 1 < ƒ S n. 

The integer ƒ is called the #racfe of the ideal. It should be 
noted that only a finite number of ideals have a given norm. 

There are of course an infinite number of ideals, but they 
can be divided into a finite number of classes. Thus an ideal 
A will be called equivalent to B, i.e., they are in the same class, 
if integers a, /3 can be found so that 

[a]A = [/3]P, 

a fact expressed by writing A ~ B. 
All the principal ideals are equivalent, and they constitute 

the principal class. Further, there are only a finite number 
of classes, as follows from the fact that every class contains 
an ideal whose norm ^ VS. This is a simple deduction from 
the fact, depending upon Minkowski's theorem, that every 
ideal A contains a number a such that 

\N(a)\ ^N(A)->ld. 

We could also in this way actually calculate H, the number of 
ideal classes. The classes of ideals form an ordinary abelian 
group. 

The whole theory can be developed by proving that H is 
finite, and then deducing the unique factorization law. 

8. Application to Indeterminate Equations. This number 
H, and the fact that it is finite, are of the greatest importance 
in the applications to indeterminate equations. For if A is 
any ideal, then AH belongs to the principal class, i.e., AH ~ [1]. 
Conversely, if An ~ [1], and n is prime to H, it follows that A 
is a principal ideal. Hence, if we wish to draw any conclu­
sion from the equality ah = c11 in algebraic integers, we must 
first write it as an equation in ideals [a][b] = [c]n. Therefore, 
if the ideals [a], [b] have a common factor, say a principal 
ideal [d], we must have, say, 

[a] - [d]A\ [b] = [d]^B\ 
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where [c] = AB; and the ideals A and B will be principal 
ideals only if n is prime to H. We then have 

A = [x], B = [y], 
[a] = [d][x]", [b] = [ r f T W , 

whence a = dxne, where e is some unit. 
For example, in Fermat's equation in rational integers, 

xp + yv = zp, 
or 

(# + ^x*+&/)(* +rv) ••• = *p, 
where f = e2**7*, we consider first the case when #, ?/, s are all 
prime to p, that is, the greatest common factor of the ideals 
[x + Çy]> [x + r22/], • • -, is unity. Hence, if p is prime to the 
number of ideal classes in the field i£(f), we have 

x + f y = ea?9 

where e is a unit and a is an algebraic integer. It is not 
very difficult to prove from this equation that Fermat's equa­
tion is impossible. Similarly, when one of x, y, z is divisible 
by p, all, of course, on the assumption that p is prime to H. 

Another illustration is given by the classical indeterminate 
equation 

az2 = x4 + bx*y + cx2y2 + dxyz + ey4, 
where a, b, c, d, e are given rational integers and x, y, z are 
unknown rational integers. If 6 is a root of the equation 

Ö4 + b6B + cd2 + dd + e = 0, 
az2 has a factor x — 6y, so that we have the equation in ideals 

[x - By] = fxr2, 
where /i is one of a finite number of ideals and r is an unknown 
ideal. Since the number of ideal classes is finite we can put 
r = av/P, where a, (3 are integers, and v is one of a finite num­
ber of ideals. Then fxv* must be one of a finite number of 
principal ideals, say [7], so that 

[* - By] = a 2 H/f t 
whence 

x — 6y = ea2yl(32, 
where e is a unit. Since all units can be expressed in the form 
€1 €22 for a finite number of values of €1, we deduce an equation 
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of the form 
X — 0y = vo?9 

where v is one of a finite number of integers and a is an un­
known integer. If this has an infinite number of solutions, we 
have for a particular solution 

#o - 02/0 = W , 
whence, by multiplication, we can deduce an equation of the 
form 

(x - Oy) (xo - ey0) = M2(a + bd + c62 + ddz), 
where x, y, a, b, c, d are unknown rational integers and Xo, yo, M 
are given rational integers. It was from an equation of this 
form (e.g., with XQ — 1, yo = 0) that I showed that the method 
of infinite descent applied to the original equation, and hence 
to the homogeneous ternary cubic 

f(x, y> z) = o, 
i.e., that all its rational solutions could be derived from a finite 
number by the classic method.* 

9. The Class Number. The problem of finding the number 
H of ideal classes is a very interesting and difficult one. 
Analytically H is a multiple of the residue at s = 1 of the 
function defined when the real part of s is greater than one, by 

/(5) = 2 :W 
where the summation refers to all the ideals of the field K(d). 
This is deduced from the series 

the summation referring to all the ideals in the class L} and 
the residue at s = 1 being independent of the class L. We 
may also write 

where the summation refers to all non-associated integers ju 
divisible by the ideal B, and B is an ideal in the class Irl. 

*The same method shows that Ey2 — Axz + Bx2 -\-Cx-\-D has only a 
finite number of integer solutions if the right side has no squared factor 
in a?. 

file://-/-Cx-/-D
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The function f (s) is the analog of the ordinary Riemann 
zeta function. Its chief properties remained unknown for many-
years, and their investigation was one of the problems pro­
posed by Hilbert in his address in 1900 to the International 
Mathematical Congress at Paris. 

In 1916, it was shown by Hecke that f(s) represented a 
function of s which can be continued throughout the s plane, 
whose only singularity is a simple pole at s = 1, and which 
also satisfies a very simple functional relation. His method 
can be illustrated by considering the ordinary f function 

By using the gamma function, we can express this as a definite 
integral 

Jo 

where 0(£) is practically a theta function. The range of inte­
gration is split into J]* + Jl1. In the former, £ is changed 
into l/£ and the classical transformation formula for 0(l/£) 
is applied. The result at once follows. Moreover, a simple 
functional equation between f (s) and f (1 — s) is apparent. 

The same method applies to fL(s) by noting that 

N(ji) = M1M2 • • • Mn, 

so that fL($) can be transformed into a multiple integral with 
limits 00, 0 by writing 

if k is real and positive, R(s) > 0. The great difficulty was to ex­
press the fact that the summation refers to the non-associated 
integer JUS, i.e., that only one number of the group eipe2

Q • • • /x 
arising from any integer values of p, q appears in the summa­
tion. By writing the limits of integration as 

f + I + / +..., 
0 «/1 J2 

Hecke transformed the integral into a theta series with n vari-
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ables associated with the ideal, where the summation now 
refers to all the integers ix (not merely the non-associated one). 
Moreover, since the multiple theta series also had a simple 
transformation formula, he was able to find a simple functional 
relation between ƒ(s) and/(l — $), to show that ƒ(s) exists all 
over the s plane, and has a simple pole at s = 1. Siegel has 
lately shown that these results can be found in another way, 
wherein the units make no appearance. The same method 
applies to many functions associated with or derived from the 
Dedekind zeta function, such as the series 

v x(A) 
A[N{A)Y9 

where now x(A) is a root of unity associated with the ideal A, 
and many results in the ordinary theory of prime numbers 
can be extended to the case of prime ideals. For example, the 
prime number theorem, which states that the number of 
primes less than x is asymptotically equal to x/log x, is equiva­
lent to the fact that the Riemann zeta function has only a simple 
pole at s = 1 and no zeros in a contour whose right-hand 
boundary is say z = 2, and whose left-hand boundary ap­
proaches z = 1 from the left according to the law 

logx 

where a is a constant. The Dedekind zeta function has practi­
cally the same properties as the Riemann function whence 
results the same asymptotic formula for ideals as for ordinary 
primes, e.g., the number of prime ideals whose norm â x is 
asymptotically equal to xjlog x. Further Hecke was able to 
prove results such as that the indefinite form ax2 + hxy 
+ cy2 represents an infinite number of primes in any given 
sector of the xy plane whose center is at 0 and whose radius 
is infinite. The 0 functions dealt with by Hecke are associated 
with ideals and algebraic numbers in a very simple and elegant 
manner. A simple case is that in which we have 

Bit A) = y ^ 0-«U»ll«l-Cl/l2|S<2 C\nn\2tn 

M=0 (mod A) 



460 L. J. MORDELL [Dec, 

where the summation refers to all the numbers fi = jui of an 
ideal A, and 1x2, fiz, • • • are the conjugates of /z, and c is a con­
stant depending on the ideal A. Then we may write 

d(t,A) = .—L-=o(hB), 
W 2 • • • tn \* ) 

where B is an ideal derived very simply from A, namely 
AB = 1/D, where D is the grund, ideal, really an ideal whose 
norm is the discriminant d. 

These 0 functions led Hecke to the consideration of Gauss' 
sums in any algebraic field, for which they are as important 
as are the ordinary Gauss' sums in the elementary theory of 
numbers. He showed that the reciprocity formula for them 
follows from the functional equation for the zeta function, 
and that the law of quadratic reciprocity for any algebraic 
field is a simple consequence of his general methods. His 
functional equations have enabled him to prove a number of 
striking results, both arithmetic and analytic. One of the lat­
ter is that if R(x) is the fractional part of x so that 0 ^ R(x) < lf 

while x — R(x) is an ordinary integer, then the Dirichlet series 

A R{md) - 1/2 2^ , 

where a = Vcü or 1/Vd, represents a meromorphic function of s, 
analytic for R(s) >0,while if R(s) S 0, it has simple poles at the 
points represented by the formula 

s = _ 2i ± pm > (n, ft = 0, 1, 2, . . •), 
log rj 

where rj is the fundamental unit or its square in the field K(^d). 

10. Representations as Sums of Squares. Siegel has shown 
that the methods introduced by Hardy and Littlewood into 
the analytic theory of numbers can also be extended to similar 
questions involving algebraic numbers. Thus the question 
of finding approximate formulas for the number of represen­
tations of a given rational integer n as a sum of say 5 squares 
is equivalent to finding the coefficient of xn in the expansion 
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of ƒ (a:) = (1 + 2x + 2x4 + • • «)6. This is given by a contour 
integral around a circle whose radius is taken to be very nearly 
one, say 1 —1/n. The range of integration 2x and 0, or say 1,0, 
is split up into arcs according to the Farey method of division of 
order, say [->Jn\. If the fraction p/q is associated with one of 
these arcs, the integrand is evaluated approximately at x = e2iriPla 

and the sum of the resulting integrals is proved to be a genuine 
approximation. Siegel has shown that if we seek the number of 
representations of an algebraic integer as a sum of squares of 
algebraic integers (when the field and its conjugates are real), 
the 6 function 1 + 2# + 2x4 - } - • • • can be replaced by the 6 series 
considered by Hecke. For example, in a quadratic field, the 
coefficient involves a double integral over the unit square. 
This square can be subdivided in a method similar to the 
ordinary Farey method into a number of small regions, and in 
each of these regions an approximate value is taken for the 
integrand, and the resulting integral again gives a genuine 
approximation. 

11. Laws of Reciprocity. Finally the general laws of rec­
iprocity in any field, i.e., the investigation of the congruence 

xn = p (mod Q), 

where Q is a given ideal, p a given algebraic integer, x an un­
known algebraic integer, and n a given rational integer, are 
some of the most successful, abstruse, and far reaching results 
of the ideal theory, giving one a glimpse of regions so remote 
that apparently many years will elapse before our efforts 
will bring us within measurable distance. 

First consider the congruence x2 = q (mod p) in rational 
numbers, where p and q are odd primes. As factorization 
of x2 — q suggests V?, let us examine the meaning of this 
congruence in the field If (•>/#)• K ^ *s possible, it is equiva­
lent to saying that the prime p factors in the field K(-yJq). By 
associating with any ideal a certain number of roots of unity, 
say 0i, #2, • • -, 0k, we can divide the ideal classes into genera; 
and conversely, if these units are given and satisfy an equa­
tion of consistency eie2 • • • ek = 1, we can find a class of ideals 
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associated with the given units. Not only can we prove the 
law of quadratic reciprocity in this way, as was done by 
Kummer, but the ideas involved are so general that they have 
been extended by Hubert and Furtwângler to the law of reci­
procity in any field. Many new ideas, however, are involved in 
the proof, e.g., if x2 = q (mod p) where now x, q are integers, and 
pis an ideal in the field K(0), we have to investigate the prop­
erties of the algebraic field K(-Jq). It is of course obvious 
that Vg satisfies an equation of degree 2n, but it is more con­
venient to consider it as a number satisfying a quadratic 
equation, the coefficients being integers in K(0), so that Vg 
generates a quadratic field relative to the field K(6). So it is 
more convenient to consider the ideals in the field K{ Vg) as 
quadratic ideals relative to the field K(0). If the field K(0) 
satisfies certain very special conditions, the study of the rela­
tive field Vg leads to the law of quadratic reciprocity in the 
field. All the laws of reciprocity, quadratic, cubic, etc., can 
be deduced when the proper relative field is known. This is 
a question of great difficulty and importance. 

Great progress has been made arithmetically as far as the 
laws of reciprocity are concerned. In particular, the relative 
discriminant of these fields is unity and the relative Galois group 
is isomorphic with the group of the ideal classes in K(0). 
Analytically, however, it has only been done in a few cases. 
The problem is equivalent to questions such as the following. 
Take the equation xp = 1 where p is a prime. This is an 
abelian equation, i.e., all its roots are rationally represented 
in terms of one of them, e.g., f, f2, f3, f4, • • • , or, say, jfi(f), 
M£)>f* (£)>'••* and it is obvious that 

Then there is a theorem which states that the root of any 
abelian equation whose coefficients are rational integers, can 
be expressed rationally with ordinary rational coefficients in 
terms of roots of unity. The next stage is that the roots of 
any abelian equation whose coefficients are imaginary quad­
ratic integers in the field K(œ) can be expressed rationally in 
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terms of j(co), where j(co) is the well known modular f unction, 
that is, by means of the complex multiplication of elliptic 
functions. 

Beyond this, however, we at present cannot go. But it is 
obvious what a field of research is suggested for the future. 

Some of the relative fields are given by the equations in 
elliptic functions dealing with the subdivision of the periods, 
and also by the modular functions of several variables, an 
idea due to Hilbert, and developed by Blumenthal and Hecke 
and intimately connected with the 6 function in the Riemann 
theory of algebraic functions. 

The final law of reciprocity can be stated in all its gener­
ality in a remarkably simple form. For example, the law of 
quadratic reciprocity in any field K{6) is equivalent to the 
theorem that the equation 

ax2 + by2 + cz2 = 0, 

where a, b, c are given and x, y, z are unknown coprime integers 
in the field, is possible if and only if the congruence 

ax2 + by2 + cz2 = 0 (mod P) 

can be satisfied if P is any ideal in the field. A simple proof 
of this would of course lead to an easy arithmetical proof of 
the laws of reciprocity, and it is well worth the attention of 
mathematicians. 

Finally, we may state that Siegel has made recently an 
interesting application of the law by showing that every alge­
braic integer can be expressed as the sum of 4 squares of alge­
braic numbers provided it is totally positive, that is, those of 
the conjugates that are real must be positive. Waring's 
theorem also has been extended to algebraic numbers.* 

THE UNIVEESITY OF MANCHESTER, ENGLAND 

* For references on this and other topics mentioned above, see the Report 
on Algebraic Numbers, BULLETIN OP THE NATIONAL RESEARCH COUNCIL, 
February, 1923; H. Bohr and H. Cramer, Die neuere Entwickelung der 
analytischen Zahlentheorie, ENCYKLOPADIE, II C 8; Hecke, Vorlesungen 
uber die Theorie der Algebraischen Zahlen; Mordell, Indeterminate equations 
of the third degree, SCIENCE PROGRESS, July, 1923. 


