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they may give some satisfaction to those who have delved in 
the theory of those transformations, since they make the 
transformations appear, not as separate chapters of the anal­
ysis, but as special applications of formulas now well estab­
lished in other parts of the theory. It is even possible to 
make a satisfactory and not over complicated sufficiency 
proof for a weak minimum, without the use of the Weierstrass 
notion of a field. For the Weierstrass formula can be proved 
directly with some ease for the second variation when once it 
has been seen to hold true for a conjugate system of solutions 
of Jacobi's equations. It is not strange that the second vari­
ation has not been attacked from this standpoint before in 
spite of the fact that in my recent review of the literature 
I have found several suggestions which might have instigated 
one to attempt it. The real reason is, I think, that the ad­
vances of Weierstrass and Hubert were published after 1900 
and about the time that Kneser found his envelope theorem. 
The tendency since then has been to discard the theory of 
the second variation in favor of the more geometrical theory, 
but the experiment, so far as I know, has not been completely 
successful. 
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§ 1. Introduction. 

IT is known that the only groups which are completely 
determined by the orders of two generators and the order of 
their product are the dihedral groups and the groups of 
movements of the five regular solids known to the ancients. 
In all other cases two generators which are not restricted 
except as regards their orders and the order of their product 
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may give rise to any one of an infinite system of groups.* 
In particular, there is no upper limit to the number of distinct 
groups that can be generated by two operators of order three 
whose product is of order four. The group of smallest order 
which two such operators can generate is the well known 
group of order 24 which does not contain any subgroup of 
order 12, and it is known that this group is defined by the 
facts that it is generated by two operators of order 3 whose 
product is of order 4 provided that the square of this product 
is invariant under each of these two operators of order 3. 

In the present article we shall consider the groups generated 
by s i and s2 when these operators satisfy the following condi­
tions : 

Sl* = s2* = (s^Y = (*!2*2)* = 1 (Jc = 3, 4, 5). 

It is unnecessary to consider the case where k = 2, since the 
equations s^ = s2

z = {s2s2)
2 = 1 define the tetrahedral group 

and hence sis2 could not be of order 4. When k = 1 the order 
of Sis2 could evidently not be 4. Hence 3, 4, 5 are the smallest 
positive integral values of k when Sis2 is of order 4. 

§ 2. The Order of s%2s2 is Three. 

From the condition that (si2s2)
z = 1 it follows that 

Si2S2Si2 = S2
2$iS2

2, SiS2
2Si = S2Si2S2. 

Hence the two operators of order 4, Sis2 and s2Si, are commu­
tative and generate a group whose order cannot exceed 16. 
This group must be invariant under the group G generated 
by si and s2 since 

Si2s2si2 = Si2s2
2-s2

2si2 and s2sis2
2 = s2

2si2-Si2s2
2. 

The order of G can therefore not exceed 48. That the order 
of G cannot be less than 48 when no additional restrictions 
are imposed on si and s2 results directly from the fact that 
the abelian group of order 16 and of type (2, 2) admits an 
automorphism of order 3 in which no operator except identity 
corresponds to itself. Hence the theorem: 

If two operators Si, s2 satisfy the conditions 

8l* = s2* = (Sl
2s2y = (Sls2y = l 

but are not otherwise restricted, they generate the group of order 

* G. A. Miller, Amer. Journal of Mathematics, vol. 24 (1902), p. 96. 
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48 obtained by extending the abelian group of order 16 and of 
type (2, 2) by means of an operator of order 3 which transforms 
this group into itself but is not commutative with any of its 
operators besides identity. 

This group of order 48 evidently contains 32 operators of 
order 3, 12 operators of order 4, and 3 operators of order 2 
in addition to identity. Each operator of order 3 is com­
mutative with its own powers only, while each of the other 
operators besides identity is commutative with exactly 16 
operators of the group. 

§ 3. The Order of Si2s2 is Four. 

I t is easy to see that when s\2s2 is of order 4 the order of G 
is divisible by 168 since the two substitutions Si = abc-def, 
s2 = aeh-cdg satisfy the given conditions, as results from the 
following equations : 

SiS2 = abdh'Cefg, Si2s2 = adfh'begc. 

These two substitoitions generate a transitive substitution 
group of degree seven whose order is a multiple of 168 since 
s±2s2sis2

2 = bfedcgh. The fact that the order of Si2s2sis2
2 is 

actually 7 when si, s2 represent two abstract operators which 
satisfy the conditions 

* i 8 = *2 3 = ( * i * 2 ) 4 = ( * i 2 * 2 ) 4 = 1 

but are not otherwise restricted results from the following 
equations: 

(S!2S2SiS2
2)7 

= 5i2525i^225l2^25l5225l2^2^1^22^l2^25l^225l2^2^1^22^l2^2^1^22^l2^2^1^22 

= Si2S2Si2S2SiS2SiS2
2SiS2

2SiS2
2Si2S2

2Si2S2Si2S2 • 

SI2S2SIS2SIS2
2SIS2

2SIS2
2SI2S2

2SI2S2SI2S2SIS2
2 

= S2
2SiS2

2Si2S2
2SiS2Si2S2

2SiS2SiS2
2Sx2S2

2 

= S2
2Si2S2SiS2Si2S2Si2S2SX

2S2
2Si2S2Si2S2

2 

= S2
2Si2S2Si2S2S%2S2Si2S2

2 = 1 . 

To verify that $i, s2 actually generate the simple group of 
order 168 it may be noted that well-known defining relations 
of this group are as follows:* 

* L. E. Dickson, Linear Groups, 1901, p. 303. 
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L e t T = S2S1S2S1 a n d S = (si2S2SiS22)2, H e n c e S4 = si2S2Sis2
2. 

(S*T)4 = (Si2S2Si2S2Siy = Si2S2Si2S2
2Si2S22Si2S22Si2S2Si = 1; 

( S T ) 3 = SI2S2SIS22SI2S2SI2$2SI-$I2S2SIS22SI2S2SI2S2SI 

• Si2S2SiS22Si2S2Si2S2Si 

= Si2S2SiS22Si2S2Si2S22Si822Si2S2Si2S22SxS22Si2S28i2S2Si 

= Si2S2SiS2$lS22SiS2SiS2SiS22SiS2SiS2SiS22Si2 = 1. 

I t has now been proved that Si2S2SiS22 and S2S1S2S1 generate 
the simple group of order 168. This is also the group generated 
by Si and $2 since 

Si2S2SiS22'S2SiS2Si = S^S^Si = sfaiS^S-? 

S2SiS2Si'SiS2S\S22 = $2SiS2
2SiS22 = ^ V ^ i 2 

SiS2Si2S2'S22Si2S2Si2 = S1S2S1S2S12 

SiS2SiS2Sl?'S,i2S2SiS22 = S1S2S1S2S1S2S1S2 *$2 = #2» 

Since the group generated by Si2S2SiS22 and S2S1S2S1 contains 52 

it contains also SiS2W and Si2$2Si2. The product of these 
operators is SiS22siS2Si2 = (^W^i 2 )"" 1 -^ 2 . This proves that 
the group generated by Si2s2SiS22 and S2S1S2S1 is identical with 
the group generated by Si and s2. Hence the following 
theorem has been established: The simple group of order 168 
is completely defined by the following equations : 

5 l 3 = 523 = (8l82y = (si2S2y = L 

As is well known, W. Dyck gave in 1882 the following 
defining equations of this simple group* 

Sj = 1, S/ = 1, (Sl*2)
2 = 1, (*15*2)4 = 1. 

§ 4. The Order of Si2S2 is Five. 

If Si = acb-dfe and s2 = cdf it results that S1S2 = adcb-ef 
and Si2$2 = abdec. Hence it follows that si, S2 when subjected 
to the additional condition that si2s2 is of order 5 generate a 
group O which has the alternating group of degree 6 for a 
quotient group. L. E. Dickson gave the following defining 
relations for this quotient groupf : 

* Mtxth. Annalen, vol. 20, p. 41. 
t This BULLETIN, vol. 9 (1903), p. 303. 
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tx* = t2
z = (h%ttây = (h\y = i. 

Let h = s2his2
2 and t2 = si. I t is easy to see that h and 

t2 generate Cr. In fact, the group generated by t\ and t2 

contains (s2
2sis2

2si)2 = Si2$2, and hence it contains si and s2. 
The order of t\ is four since it is the transform of S\S2 by s2. 
The fact that the order of h% is also four results from the 
following equations: 

S2
2Si$2$i$2

2Si • S2
2SiS2SiS2

2Si • S2
2SiS2SiS2

2Si • S2
2SiS2SiS2

2Si 

= S2
2Si$2Si-Si2S2Si2S2$i2S2. 

S2SiS2
2SiS2

2$iS2Si - Si2S2Si2S2Si2S2 • S2SiS2
2Si 

= S2
2SiS2

2Si2S2Si2S2
2SiS2

2SiS2
2SiS2

2Si2S2Si2. 

S2
2SiS2

2Si = S2
2SiS2

2Si2S2Si2 • Si2S2Si2S2- S2
2Si2S2Si2$2

2SiS2
2Si 

= S2
2SiS2

2Si2S2SiS2SiS2Si2$2
2SxS2

2$i=S2
2SiS2

2Si2 • Si2S2
2Si2 • Si2S2

2$iS2
2Si 

= 1. 

I t remains to find the order of hH2tit2
2 = s2Si2s2Sis2

2SiS2
2si2. 

We shall first prove that the square of this operator is in­
variant under each of the operators Si and $2. The following 
equations exhibit the fact that this square is invariant under $2 : 

Si2S2SiS2
2SiS2

2Si2S2Si2S2SiS2
2SiS2

2$i2S2 

= Si2S2
2Si2S2Si2S2SiS2Si2S2SiS2

2SiS2
2Si2S2 

— S2SiS2SiS2
2$i2S2piS2Si2S2SiS2

2$iS2
2Si2S2 

= S2SiS2Si2S28iS2SiS2
2SiS28i2S2SiS2

2SiS2
2Si2S2 

= S2Si2S2
2SiS2

2SiS2
2Si2S2SiS2

2SiS28i2828iS2
2SiS2

2Si2S2 

= 525i252
2^l5225l2^2^1^25l5225l522^1^2^12^25l^22^1^225l2^2 

= 525i2^22^l2^2^1^2^1^22^1^22^l252^12^225l2^25l5225l^22^l2^2 

= 525i2525i52
25l5225i5225i2525i522^l5225l252^12522^l2^2^1^22^l522^l2^2 

= 525l2^2^1^22^1^225l2^2^1^2^1^225l522^1^22^l2^2^12^225l2^2^1^22^1^225l2^2 

= 525i2525l5225i5225l2^25l^22^l2^2^l525l2^22^l2^22^l2^25l2525i52 

= S2Si282SiS2
2SiS2

28i282Si282SiS2SiS2
2SiS2

2SiS2
2Si282$iS2 

= S2Si2S2SiS2
2SiS2

2Si2S2Si*$2SiS2
2Si2S2SiS2SiS2 

= S2Si2S2SiS2
2SiS2

2Si2S2Si2S2Si$2
2SiS2

2Si2. 

From the following equations it results that this square is 
also invariant under $1. 
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The transform of this square by Si is 

Si2S2Si2S2SiS22SiS22Si2S2Si2S2$iS22SiS22 

= Si^S^Si^Si^S^Si^Si^S^S^2 

= Si2S2SiS22Si2S2SiS22SiS22SiS22Si2S22Si2S2Si2S2SiS22SiS22 

= Si2S2SiS22SiS22Si2S22Si2S2SiS2
2Si2S2SiS22Si2S2SiS22SiS22 

= 5i2525l522^1^22«5l2^2^l522^1^22^l522^l2^22^l2^25l^22^l2^25l^22^l522 

= Si2S2SiS22SiS2
2Si2S2SiS22SiS22Sx2S2SiS22SiS22Si2S2SiS22SiS22 

= Si2S2SiS22SiS22Si2S2SiS22Si2S2SiS2SiS22SiS22SiS22Si2S2SiS22SiS22 

= Si2S2SiS22SiS22Si2S2Si2S2SiS2SiS22SiS22Si2S2SiS2SiS22SiS22 

= Si2S2SiS22SxS22Si2S2Si2S2SiS22Si2S2Si2S2SiS2SiS2SiS22SiS22 

= Si2S2SiS2
2SiS22Si2S2Si2S2SiS22Si2S2SiS2SiS22 

— Si2S2SiS22SiS22Si2S2$l2S2$lS22SiS22Si2S2. 

Having proved that this square is invariant under s\ and s2 
we proceed to prove that the cube of this square is identity : 

$2Si2S2SiS22SiS22Si2S2Si2S2SiS2
2SiS22Si2 

•S2Si2S2SiS22SiS22Si2S2Si2S2SiS22SiS22Si2 

= S2Si2S2SiS22SiS22Si2S2Si2S2SiS22SiS22Si2 

•SiS22Si2S2Si2S2SiS22SiS22Si2S2Si2S2SiS22 

= S22SiS22SiS22Sx2$2Si2S2SiS22SiS2Si2S2Si2S2SiS22SiS22Si2S2Si2 

= Si2S2Si2S2SiS2Si2S2SiS22Si2S22SiS22Si2S2
2SiS22Si2S2Si2 

= Si2S2SiS2Si2S2SiS2Si2S2Si2S2SiS2Si2S22Si2S22SiS22 

= Si2S2SiS2SxS22Si2S22SiS2Si2S2SiS22SiS2Si2S2
2 

SiS22Si2S2Si2S22SiS2Si2S2SiS2
2SiS2Si2S22 

'S2Si2S2SiS22SiS2
2Si2S2Si2S2SiS2

2SiS22Si2 

= S2Si2S2Si2S22SiS2Si2S2SiS22SiS2SiS2SiS22SiS22Si2S2Si2S2SiS22Si 

= SiS22SiS22SiS2SiS2Si2S2SiS2Si2S2SiS22Si2S2Si2S2SiS22Si 

= Si2S22SiS2Sl2S22SiS2SiS2Si2S2SiS22Si2S2Si2S2SiS22 

= Si2S22SiS2Si2S2Si2S22SiS2SiS22Si2S2Si2S2SiS22 

= Si2S22SiS2Si2S2Si2S2$l2S22Si2S2Si2S2Si2S2SiS22 

= Si2S22Si2S22Si2S22Si2S2
2 = 1 . 
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Since (tist2tit2
2)2 is invariant under G and the order of this 

invariant operator is a divisor of 3, it results that the order g 
of G must be a divisor of 1,080. If g = 1,080, G can be repre­
sented as a transitive substitution group of degree 18 since it 
contains the icosahedral group, as results from the fact that 

si2s2 and Sis2sis2 

are two operators of orders 5 and 2 respectively whose product 
is of order 3, since 

Si2S2SiS2SiS2$l2S2SlS2SlS2Sl2S2SlS2SiS2 = SiS2
2Si%2Si%2Si2 = 1. 

The subgroup of order 60 composed of all the substitutions 
which omit one letter of this transitive group is of degree 15 
since G contains an invariant operator of order 3, and the six 
systems of intransitivity of the two invariant substitutions 
of order 3 of this transitive group are permuted according to 
the alternating group of degree 6. If this subgroup is transi­
tive, it is completely determined since the icosahedral group 
can be represented in essentially only one way as a transitive 
substitution group of degree 15. That is, all such possible 
representations are conjugate substitution groups. Moreover, 
this transitive subgroup determines five cycles of the two 
invariant substitutions of order 3 contained in G. 

If we assume that this subgroup is generated by the following 
substitutions : 

abc • dkf • enh • goi -jlm, al-bn-cf-do-gm* hi, 

then the invariant substitutions of the substitution group of 
degree 18 which is simply isomorphic with G may be assumed 
to be 

abc • dmh • ekj -fin • gio • pqr 

acb • dhm • ekj -fnl • goi • prq. 

An additional generator of this substitution group is of order 
4 and has for its square any one of the substitutions of order 
2 contained in it, since all of these substitutions of order 2 
are conjugate under this substitution group. As this sub­
stitution of order 4 is also commutative with the given in­
variant substitutions of order 3 and must involve three cycles 
of order 4 and three transpositions, it must be one of three 
substitutions. Assuming that its square is 
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dj-em-fi'gn-hk*lo, 

these three substitutions are as follows: 

ap'bq-cr-dfji -mleo -hnkg 

ap • bq • cr • dljo • mneg • Affci 

ap-bq-cr-dnjg'mfei *hlko. 

I t is not difficult to verify that the first two of these substitu­
tions together with the above group of order 60 and degree 15 
give rise to substitutions which could not appear in the group 
under consideration. On the other hand, the last one of 
these three substitutions together with the group of order 60 
actually generates a group of order 1,080 and of degree 18. 
This group is generated by the following substitutions: 

Si = alk'bnj'cfe-dmh'goi, 

$2 = apk-bqycre- dij > gnh-lmo. 

The fact that these substitutions satisfy the conditions 
imposed on Si and £2 results from the following equations: 

sis2 = amgl-bhin- cdof - er -jq- kp, 

Si2$2 = dgfre-honqj-ilpkm. 

The given substitutions satisfy also the conditions imposed 
on tfi and t2, since 

t\ = ak'bj'ce'dril-fhqg-mpon, 

ti2t2 = alrk'bnpj'cfql'dg'ho-im, 

ti%tit22 = alcfbn-dkhemj-gio-pqr. 

The group generated by $i and $2 contains 

(si$2Si)2(siS2)
2Si2S2 = dhm- eno -fgk -ijl- pqr. 

As the product of this substitution of order 3 and Si2s2 is of 
order 2, these two substitutions generate a transitive group of 
order 60 and of degree 15. I t therefore results that Si and S2 
generate a transitive group of degree 18 whose order cannot 
be less than 1,080, and from the given abstract properties of 
Si and S2 it follows that this order cannot exceed 1,080. I t 
has therefore been proved that the G is actually of order 1,080. 
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In the given group of order 60 each substitution of order 3 
is transformed into itself by its own powers only. Hence in 
the group of order 1,080 such a substitution is transformed 
into itself by only 9 substitutions. The Sylow subgroups of 
order 27 contained in this group must therefore be non-
abelian. Hence it results that G does not contain a subgroup 
which is simply isomorphic with the alternating group of 
degree 6. 

It may be noted that to every operator in the central 
quotient group there corresponds at least one operator of G 
whose order is equal to the order of the operator of this 
quotient group, and yet G does not involve any subgroup which 
is simply isomorphic with the central quotient group. In this 
respect the present group differs from the group of order 120 
which has for its central quotient group the icosohedral group 
but does not contain the latter as a subgroup. In this group 
of order 120, operators of order 4 correspond to operators of 
order 2 in the central quotient group. The Sylow subgroups 
of order 8 contained in G are separately simply isomorphic 
with the octic group, just as in the simple group of order 360, 
while the Sylow subgroups of order 27 are separately simply 
isomorphic with the non-abelian group of this order which 
involves no operator of order 9. In particular, the following 
theorem has been established: There are two and only two 
groups, besides identity, which are generated by Si and s2 when 
these two operators satisfy the conditions 

Sl* = 8%> - (sxs2y = (Sl*s2y = l. 

One of these is the simple group of order 360 and the other is a 
group of order 1,080 whose central quotient group is this simple 
group but which does not involve this simple group as a subgroup. 
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