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the motion of an infinite linear system of discrete masses, con
nected by springs. The solution is obtained indirectly by a 
limiting process from the solution for a finite number of 
masses, and is then verified directly. The main features of the 
oscillations of a given mass are interpreted in terms of familiar 
properties of the Bessel functions of the time which occur as 
coefficients. 
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Introduction. The Generalized Fermât Theorem ÇA) in Purely 
Arithmetic Phrasing (A', A") with Extension (A'"). §§ 1—5. 

1. The theorem * in question is the following: 
(^4) In the Galois field GF\_pn~\ of prime modulus p and of 

rank n the two forms each of degree (jr)w(&+1)— l ) / ( p n — 1) in 
the k + 1 indeterminates XQ} Xv • • -, XJc 

Dk+i,nAx» xv • • -, -ay - I -agr I ft J - 0 , 1 , . v , *) 
Pk+l,n,p[X0>

 XV , , , ) ' X ' J S = I I I I ( ^ + 2 af9Xf) 
g=i),k afg\p"> /=0,g-l 

are identical : 

•Dk+l,ntp[.X09 ' ' ', Xk\ = Pk+l)np[X0, • • -, A j . 

Here the subscript remark af\p
n indicates that the mark afg is 

to run over the pn marks of the Galois field GF[pn"], and for 
the case g = 0 the final ]L/=o, g-i does not enter. 

For this theorem, which for (A, n) = (1, 1) is one form of 
Fermat's theorem, I have given three proofs, couched as is 
the statement of the theorem in the abstract Galois field phras
ing introduced by me in the paper " A doubly-infinite system of 
simple groups" presented to the Chicago Congress of 1893. 

* Moore, "A two-fold generalization of Fermat's theorem, " BULLETIN, 
vol. 2(1896), pp. 189-199. 
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In the development of the Galois field theory and in its ap
plications to algebra and groups this abstract phrasing is very 
convenient. 

2. Here however we are interested in converses of the 
theorem stated above ; after replacing the marks afg by functions 
of the realm [1 , y~] we decompose, in the sense of equivalence, 
into prime modular systems the modular system 9)1 whose 
elements are the coefficients of various powers of the indeterT 
minâtes in the form 

M == T) — P 
JJ-Lk+l,n,p — - ^ A J + I , n,p •*• k+l,n,p* 

We need first to use the concrete purely arithmetic phrasings 
of Serret and Kronecker. The GF\_pn~\ is then the totality of 
pn classes (abstractly, marks) of rational integral functions of 
an indeterminate y with integral coefficients (forming the realm 
of integrity [1 , y~\) considered with respect to a (prime) modu
lar system \_p, Fn\_y\\> where Fn\_y~\ is a function of the realm 
[1 , y] of degree n (a polynomial in y with integral coefficients) 
irreducible modulo p. We operate with these classes by oper
ating with representative functions with respect to the modular 
system [p, Fn [y] ] . For the marks a we may take the pn re-? 
duced functions 

% + a# + a2y
2 + • • • + %-{yn~\ 

where the n coefficients a09 • • -, an_x take independently the values 
0, 1, 2, • • -, p —• 1. There are in this sense as many concretely 
distinct Galois fields as there are functions Fn \_y\ congruentially 
distinct modulo p. These Galois fields are however abstractly 
identical. 

We restate theorem 
(A') In the realm of integrity [1 , y] the two forms each of 

degree (p*^*1) — l)/(pn — 1) in the h + 1 indeterminates X0> 

= n ii (*. + E
 xf z <wf) 

g=0,k afgi—0,p—l /=u, gr—1 J=0, n—1 

are identically * congruent ( s ) : 

* In pure arithmetic all identities and identical congruences are formal 
in certain specified indeterminates. 



282 DECOMPOSITION OF MODULAR SYSTEMS, [March, 

^W„[*o> • • -,xj^p,+1,n,p[x0, ...,xk-\ [p, F%w\, 
with respect to every prime modular system [p, ^n[2/]] , where 
p is a prime and Fn[y\ is any function of [1 , y\ of degree n 
and irreducible modulo p. 

3. I take as known the fundamental definitions and elemen
tary theorems of Kronecker's theory of modular systems, in 
particular with respect to the composition and equivalence of 
modular systems. I t is however desirable to fix the notations * 
to be used here. 

A realm 3Î of integrity-rationality 

91 = » [ # ! - • -, i2^](JBM+1, • • •, -#M+V) 

consists of all functions 

F\RX,-..., RJ (i2M+1, • • -, B^v) 

rational integral in _R,, • • •, i2M and rational in R^+l, • • •, 
R^+v ? the coefficients being integers. These functions are 
called the quantities of the realm. The realm is closed under 
addition, subtraction, and multiplication, and likewise under 
division by any function not 0 of 3t' = (JB/x4_1, • • •, it^+y). 

Any set of quantities Fx , • • •, Fm of a realm 9Î constitutes 
$ modular system g = [ i ^ , • • •, Fm"] of that realm. The whole 
theory of such modular systems relates to the underlying realm. 

Any set of modular systems 

& - [ ^ - - - , * L ] ( t - l , 2 , . . . , m ) 

determines a modular system [• • -F... • • • j^ i , ; : : , ^J for which we 
use the notation [gfp • • -, gfm]. 

(1) The theorem: 
I f 

[3fi*3f»3f]~[i], 
then 

and its useful generalization : 
If 

[&> %, m ~ L1] (*-K/î i,j-h •'•>*), 
*The notations are those of my paper " The decomposition of modular 

systems of rank u in n variables,,J BULLETIN, vol. 3 (1897), pp. 372—380. 
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then 

nc&sfl-cn&s]: 
may readily be proved. 

(2) A system g of the realm 9? I call prime * in case 
(a) g and [1] are not equivalent and (/3) for any quantity G of 
the realm we have one of the alternative equivalences 

[&GQ~& or [&<?]~[1 ] , 

that is, one of the alternative congruences 

G s O f ö ] or QG'ml [%], 

where in the latter case G' is a properly determined quantity 
of the realm. 

For a prime system g î*1 connection with any system © we 
have one of the alternatives 

[ & © ] - $ and © S 0 [ 3 ] or [ & © ] - [ ! ] , 

that is, any system © contains or is relatively prime to a prime 
system gf. 

We have the fundamental theorem : 
I f g is prime and the product ®1®2 of two systems ®v ©2 

contains $f, while ©1 does not contain gf, then ©2 does contain gf. 
For ®x®2 == 0 [ $ ] and ©1 sjs 0 [g ] and hence, since % is 

prime, [%, © J ^ [ 1 ] . Now $@2 s 0 [ g ] . Hence we have 

[& ®J®i = ° [5]> a n d so i n d e e d ®2
 s ° [5]-

(3) If [$ , © J - [1] (t - 1, 2,. •., m), then 

(4) I f [&, $ ] ~ [1] (» + j ; », i = 1, 2,- • -, m) a n d l = 0 
[&] (t - 1, 2,- • -,m), then S» s 0 [g ] where % - J J , &• 

4. We are now to work in the realm of integrity 9 1̂ = [1,2/], 
where y is an indeterminate. There are in all say m functions 
Fn \y~] of ?HX congruentially distinct (mod. p) and each of degree 
n and irreducible mod. p ; we write them i ^ [ j / ] ( i = 1, • • •, m). 
The modular systems $nj = [>, i ^ . | > ] ] ( j « 1, • • -, m) are 

* Kroneoker's prime modular system of a given rank (Jour, fiir Mathe-
matik, vol. 99, p. 337) is differently defined. 
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all prime and by pairs relatively prime. We write their 
product 

&- n 8„- n r>^o]]~[p>n wi-
5. We set (using the notations of § 2) 

and denote by 9)1*+1 ntP the modular system of coefficients of 
Mk+1 n p [X0, • • -, Xj j ; this system 2ft belongs to the realm 
^ = [1,2/]-

Our theorem A'(§ 2) is then 

whence follows in accordance with § 4 and § 3 (4), 

{A'") 3»*n.-,,-0[3fJ. 

27i6 Equivalence Theorem (B) and the Decomposition Theorem 
(C) §§ 6-14. 

6. We are to prove the equivalence 

(B) 3 K * + w ~ & > 

whence in view of § 4 follows the decomposition, in the sense 
of equivalence, of the system 9Jt*+i,w,^ viz., 

(O) a>W,P~II3v 
that is, its exhibition as a product of systems no further decom
posable and indeed in this case prime. 

7. To prove (B) we need to prove, (A'") being admitted, 
merely the converse of (A'")9 viz., 

Here $n depends upon n and p and not on h. The congruence 
(A"') follows from the following two congruences : 

( 4 L ) & - 0 [3K8,n,p], 

(-D) 3 K w s 0 [3K*+1)M>P], 
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of which the former is the particular case of {A'") for k =* 1. 
We shall, however, prove (D) and then (J5, (?) without the 
mediation of (A^). 

8. Proof of (7)). The obviously true congruence 

implies the identical congruence 

in the & + 1 indeterminates X0 , • • -, Xft. Considering in partic
ular the terms of M with the literal part containing the factor 
Xfn . •. Xfn • • • Afn, we have the identical congruence in X0 , X a 

(x0xr - ^^rv-
I I ( X 1 + X 0 a 0 + a l 2 / + . . . + a ^ + . . . + a w _ 1 ^ - 1 ) = 0 [a»*+lfW|P], 

~0,p~l 

that is, 
M^^X^X^mO [Tth+1,niP], 

and so in fact we have 

(D) M2,n,p=0 [9*W,J-

9. We consider in preparation for the proof of (B, C) (§ 11) 
various properties of the system 9JÎ = 9Jl*+i, n,P> consequences of 
the identical congruence 

J/[X0,XX] =DjX,X1 ] - P[X0iX, ] » (X0Xf - X tXf) 

- n (X1 + X 0 a 0 + a l 2 / + . . . + a y + . . . + a „ _ l 2 / - > 0 [ 2 K ] j 

=0,jp—1 

this congruence obviously true for 3ft = 3ft2 tt p is by (D) true 
for3Jt = ^ + 1 ) M ) ? ) . 

(1) G being any quantity Ö = aQ + a ^ + • • • + an^{f~x of 
our realm 9î1 = [1 , y\ of degree in y at most n — 1 with co
efficients az each 0 or positive integers less than p but not all 
0, we have 

[3», G ] ~ [ l ] > 



286 DECOMPOSITION OF MODULAR SYSTEMS. [March, 

and so there is a quantity O' of dix such that 

00'=1 [a»]. 

Proof. Since M m 0 [3», O] we have 

J>[X0, X J m P f X ^ X J [3Ji, (?]. 

Now P[X0 , X J has the distinct factors Xx and X t -f GX0 and 
other factors with product say Q[_X0, X J ; hence 

and so, since G s= 0 [501, 6r], 

P [ X 0 , X J n X ^ [ X 0 , X J [3», ö ] . 
Hence 

D[X0 , X J . X ? Q [ i 0 , X J [3R, £ ] . 

The term XxX0
pn gives the congruence 

- 1 = 0 [3R, 0 ] , 

that, is, [1] a 0[3», G], and, since [3W, £ ] m 0 [1], we have 
proved that (3R, G] ~ [1]. 

(2°) There is an integer g for which 

pgmO [3R] and [p , f l r ] - [1]. 

Proof. From the identical congruence by the substitution 
(X0, Xx) = (1, — p — 1) we have a congruence identical in y, 
and the term t/° gives the congruence 

( - ] p = T r + 7 ^ a 0 [9R], 

whence follows the statement (2) in case p = 2 for # = 1 at 
once, and in case p > 2 for # = (p — Pn — p — 1)1 p by the 
remark that pg == — p [p2] and so # a — 1 [p] . 

(3) P ^ E O [g«]. 

Proof. In case ƒ) = 2 (3) follows at once from (2), 
2 = 0 [3JI], as proved for p = 2. In case p > 2 the coefficient 
of X 2 Xf -1 gives 

tttiP-^T'1 • (i + y + • • • + 2T1) = o [a»]. 
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Setting Gx = \ (p - 1) and G2 = 1 + • • • + 2/n_1 we have (1) 
quantities G[, G'2 of 9Î1 for which GXG[ m 1, G2G'2 s= 1 [3)1], 
and obtain (3) in multiplying the congruence just written by 
Q'^G'r 

(4) pmO [501]. 

Proof. From (2),[p, g] ~ [ 1 ] , it follows by § 3 (3) that 
[ppn'1, g~] ~ [ 1 ] , that is, for properly determined </, #</ ss 1 
hp**"1 ] , so that by (3) gg' == 1 [gît], whence from (2), jpgr s 0 
[9JÎ] we have the desired congruence (4). 

(5) j r - y - 0 [3R]. 

Proof. (5) follows from the identical congruence by the 
substitution (X0, Xt) = (1, j/) with the remark that, since 
P [ Z 0 , X J has the factor Xl +J~^lyX0, P [ l , y] m 0 [>] 
and so by (4) P [ l , y] m 0 [3»]. 

10. We need further the known decomposition 

o r - y ] ~ i i II [P»^I>]]» 

where for every divisor d of n the P^[2/](i = 1>- • •> wid) are the 
say md quantities of 9ÎX congruentially distinct and each of degree 
d and irreducible modulo p. We may and do suppose that the 
coefficients of the Fdj[y] are taken from the integers 0, 1, • • -, 
_ p — 1 . Here the FJy] are the Fnj[y] of § 4 ; mn = m. 
The systems [ p , i ^ [ y j ] are by pairs relatively prime. 

11. Proof of (JS, 0) : 3Jt ~ $ n ~ H ^ . . We have from 

§ 9 {A, 5) 

3K~ [ 3 R , 2 > , î r - y ] , 

whence by § 10 and § 3 (1) we have the decomposition 

3R~n II [a»,/>,^[y]]» 

and so, since [3W, i ^ [ y ] ] ~ [1] for <2< m (§ 9, 1), 

3K~ II W P , ^ ] } , 
y=i , m 
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that is, in the notation of § 4, 

an- n [3R» ]̂« 

Now by {A") 2tt = 0 [ & J and so [a», $nJ] ~ § ¥ , and thus we 
have finally 

(B,C) $~ n &,-&• 
i = i , #& 

12. I t is noteworthy that the modular system 9Ji = 3KA+i|W)J) 

is in the sense of equivalence in fact independent of k and de
pendent only on n and p , 

13. My exhibition of the system $n by its equivalent 
$flk+i,n,p f ° r & a n y positive integei', the elements of ^Jlkn.ltntP 

being the coefficients of the integral function Mk+ltntP) is to be 
compared with that of Serret (Algèbre supérieure,* fifth edition, 
volume 2, §349). In our notation we have (using §3, 1°) 

&~ II 3f*~ I l [p, FM] ~ [p, Klî/ll 
where 

Serret gives a fraction F\_y~\ 

H{^-y)IH{yp,"-y), 
ne n0 

where ne, no run through those divisors of n whose comple
mentary divisors njne, njno have respectively an even (or 0), 
an odd number of unrepeated prime factors, and shows that 
modulo p the division indicated by the notation of F(y) can be 
performed and that for the resulting integral function F\jf\ we 
have F[y\ = Fn[y~\ [>] and so $ „ - [ > , F[y]]. — Appar
ently my exhibition lends itself more easily to investigations in 
the domain of pure arithmetic. 

THE UNIVERSITY OF CHICAGO. 


