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the motion of an infinite linear system of discrete masses, con­
nected by springs. The solution is obtained indirectly by a 
limiting process from the solution for a finite number of 
masses, and is then verified directly. The main features of the 
oscillations of a given mass are interpreted in terms of familiar 
properties of the Bessel functions of the time which occur as 
coefficients. 
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Introduction. The Generalized Fermât Theorem ÇA) in Purely 
Arithmetic Phrasing (A', A") with Extension (A'"). §§ 1—5. 

1. The theorem * in question is the following: 
(^4) In the Galois field GF\_pn~\ of prime modulus p and of 

rank n the two forms each of degree (jr)w(&+1)— l ) / ( p n — 1) in 
the k + 1 indeterminates XQ} Xv • • -, XJc 

Dk+i,nAx» xv • • -, -ay - I -agr I ft J - 0 , 1 , . v , *) 
Pk+l,n,p[X0>

 XV , , , ) ' X ' J S = I I I I ( ^ + 2 af9Xf) 
g=i),k afg\p"> /=0,g-l 

are identical : 

•Dk+l,ntp[.X09 ' ' ', Xk\ = Pk+l)np[X0, • • -, A j . 

Here the subscript remark af\p
n indicates that the mark afg is 

to run over the pn marks of the Galois field GF[pn"], and for 
the case g = 0 the final ]L/=o, g-i does not enter. 

For this theorem, which for (A, n) = (1, 1) is one form of 
Fermat's theorem, I have given three proofs, couched as is 
the statement of the theorem in the abstract Galois field phras­
ing introduced by me in the paper " A doubly-infinite system of 
simple groups" presented to the Chicago Congress of 1893. 

* Moore, "A two-fold generalization of Fermat's theorem, " BULLETIN, 
vol. 2(1896), pp. 189-199. 
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In the development of the Galois field theory and in its ap­
plications to algebra and groups this abstract phrasing is very 
convenient. 

2. Here however we are interested in converses of the 
theorem stated above ; after replacing the marks afg by functions 
of the realm [1 , y~] we decompose, in the sense of equivalence, 
into prime modular systems the modular system 9)1 whose 
elements are the coefficients of various powers of the indeterT 
minâtes in the form 

M == T) — P 
JJ-Lk+l,n,p — - ^ A J + I , n,p •*• k+l,n,p* 

We need first to use the concrete purely arithmetic phrasings 
of Serret and Kronecker. The GF\_pn~\ is then the totality of 
pn classes (abstractly, marks) of rational integral functions of 
an indeterminate y with integral coefficients (forming the realm 
of integrity [1 , y~\) considered with respect to a (prime) modu­
lar system \_p, Fn\_y\\> where Fn\_y~\ is a function of the realm 
[1 , y] of degree n (a polynomial in y with integral coefficients) 
irreducible modulo p. We operate with these classes by oper­
ating with representative functions with respect to the modular 
system [p, Fn [y] ] . For the marks a we may take the pn re-? 
duced functions 

% + a# + a2y
2 + • • • + %-{yn~\ 

where the n coefficients a09 • • -, an_x take independently the values 
0, 1, 2, • • -, p —• 1. There are in this sense as many concretely 
distinct Galois fields as there are functions Fn \_y\ congruentially 
distinct modulo p. These Galois fields are however abstractly 
identical. 

We restate theorem 
(A') In the realm of integrity [1 , y] the two forms each of 

degree (p*^*1) — l)/(pn — 1) in the h + 1 indeterminates X0> 

= n ii (*. + E
 xf z <wf) 

g=0,k afgi—0,p—l /=u, gr—1 J=0, n—1 

are identically * congruent ( s ) : 

* In pure arithmetic all identities and identical congruences are formal 
in certain specified indeterminates. 
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^W„[*o> • • -,xj^p,+1,n,p[x0, ...,xk-\ [p, F%w\, 
with respect to every prime modular system [p, ^n[2/]] , where 
p is a prime and Fn[y\ is any function of [1 , y\ of degree n 
and irreducible modulo p. 

3. I take as known the fundamental definitions and elemen­
tary theorems of Kronecker's theory of modular systems, in 
particular with respect to the composition and equivalence of 
modular systems. I t is however desirable to fix the notations * 
to be used here. 

A realm 3Î of integrity-rationality 

91 = » [ # ! - • -, i2^](JBM+1, • • •, -#M+V) 

consists of all functions 

F\RX,-..., RJ (i2M+1, • • -, B^v) 

rational integral in _R,, • • •, i2M and rational in R^+l, • • •, 
R^+v ? the coefficients being integers. These functions are 
called the quantities of the realm. The realm is closed under 
addition, subtraction, and multiplication, and likewise under 
division by any function not 0 of 3t' = (JB/x4_1, • • •, it^+y). 

Any set of quantities Fx , • • •, Fm of a realm 9Î constitutes 
$ modular system g = [ i ^ , • • •, Fm"] of that realm. The whole 
theory of such modular systems relates to the underlying realm. 

Any set of modular systems 

& - [ ^ - - - , * L ] ( t - l , 2 , . . . , m ) 

determines a modular system [• • -F... • • • j^ i , ; : : , ^J for which we 
use the notation [gfp • • -, gfm]. 

(1) The theorem: 
I f 

[3fi*3f»3f]~[i], 
then 

and its useful generalization : 
If 

[&> %, m ~ L1] (*-K/î i,j-h •'•>*), 
*The notations are those of my paper " The decomposition of modular 

systems of rank u in n variables,,J BULLETIN, vol. 3 (1897), pp. 372—380. 
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then 

nc&sfl-cn&s]: 
may readily be proved. 

(2) A system g of the realm 9? I call prime * in case 
(a) g and [1] are not equivalent and (/3) for any quantity G of 
the realm we have one of the alternative equivalences 

[&GQ~& or [&<?]~[1 ] , 

that is, one of the alternative congruences 

G s O f ö ] or QG'ml [%], 

where in the latter case G' is a properly determined quantity 
of the realm. 

For a prime system g î*1 connection with any system © we 
have one of the alternatives 

[ & © ] - $ and © S 0 [ 3 ] or [ & © ] - [ ! ] , 

that is, any system © contains or is relatively prime to a prime 
system gf. 

We have the fundamental theorem : 
I f g is prime and the product ®1®2 of two systems ®v ©2 

contains $f, while ©1 does not contain gf, then ©2 does contain gf. 
For ®x®2 == 0 [ $ ] and ©1 sjs 0 [g ] and hence, since % is 

prime, [%, © J ^ [ 1 ] . Now $@2 s 0 [ g ] . Hence we have 

[& ®J®i = ° [5]> a n d so i n d e e d ®2
 s ° [5]-

(3) If [$ , © J - [1] (t - 1, 2,. •., m), then 

(4) I f [&, $ ] ~ [1] (» + j ; », i = 1, 2,- • -, m) a n d l = 0 
[&] (t - 1, 2,- • -,m), then S» s 0 [g ] where % - J J , &• 

4. We are now to work in the realm of integrity 9 1̂ = [1,2/], 
where y is an indeterminate. There are in all say m functions 
Fn \y~] of ?HX congruentially distinct (mod. p) and each of degree 
n and irreducible mod. p ; we write them i ^ [ j / ] ( i = 1, • • •, m). 
The modular systems $nj = [>, i ^ . | > ] ] ( j « 1, • • -, m) are 

* Kroneoker's prime modular system of a given rank (Jour, fiir Mathe-
matik, vol. 99, p. 337) is differently defined. 



284 DECOMPOSITION OF MODULAR SYSTEMS, [March, 

all prime and by pairs relatively prime. We write their 
product 

&- n 8„- n r>^o]]~[p>n wi-
5. We set (using the notations of § 2) 

and denote by 9)1*+1 ntP the modular system of coefficients of 
Mk+1 n p [X0, • • -, Xj j ; this system 2ft belongs to the realm 
^ = [1,2/]-

Our theorem A'(§ 2) is then 

whence follows in accordance with § 4 and § 3 (4), 

{A'") 3»*n.-,,-0[3fJ. 

27i6 Equivalence Theorem (B) and the Decomposition Theorem 
(C) §§ 6-14. 

6. We are to prove the equivalence 

(B) 3 K * + w ~ & > 

whence in view of § 4 follows the decomposition, in the sense 
of equivalence, of the system 9Jt*+i,w,^ viz., 

(O) a>W,P~II3v 
that is, its exhibition as a product of systems no further decom­
posable and indeed in this case prime. 

7. To prove (B) we need to prove, (A'") being admitted, 
merely the converse of (A'")9 viz., 

Here $n depends upon n and p and not on h. The congruence 
(A"') follows from the following two congruences : 

( 4 L ) & - 0 [3K8,n,p], 

(-D) 3 K w s 0 [3K*+1)M>P], 
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of which the former is the particular case of {A'") for k =* 1. 
We shall, however, prove (D) and then (J5, (?) without the 
mediation of (A^). 

8. Proof of (7)). The obviously true congruence 

implies the identical congruence 

in the & + 1 indeterminates X0 , • • -, Xft. Considering in partic­
ular the terms of M with the literal part containing the factor 
Xfn . •. Xfn • • • Afn, we have the identical congruence in X0 , X a 

(x0xr - ^^rv-
I I ( X 1 + X 0 a 0 + a l 2 / + . . . + a ^ + . . . + a w _ 1 ^ - 1 ) = 0 [a»*+lfW|P], 

~0,p~l 

that is, 
M^^X^X^mO [Tth+1,niP], 

and so in fact we have 

(D) M2,n,p=0 [9*W,J-

9. We consider in preparation for the proof of (B, C) (§ 11) 
various properties of the system 9JÎ = 9Jl*+i, n,P> consequences of 
the identical congruence 

J/[X0,XX] =DjX,X1 ] - P[X0iX, ] » (X0Xf - X tXf) 

- n (X1 + X 0 a 0 + a l 2 / + . . . + a y + . . . + a „ _ l 2 / - > 0 [ 2 K ] j 

=0,jp—1 

this congruence obviously true for 3ft = 3ft2 tt p is by (D) true 
for3Jt = ^ + 1 ) M ) ? ) . 

(1) G being any quantity Ö = aQ + a ^ + • • • + an^{f~x of 
our realm 9î1 = [1 , y\ of degree in y at most n — 1 with co­
efficients az each 0 or positive integers less than p but not all 
0, we have 

[3», G ] ~ [ l ] > 
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and so there is a quantity O' of dix such that 

00'=1 [a»]. 

Proof. Since M m 0 [3», O] we have 

J>[X0, X J m P f X ^ X J [3Ji, (?]. 

Now P[X0 , X J has the distinct factors Xx and X t -f GX0 and 
other factors with product say Q[_X0, X J ; hence 

and so, since G s= 0 [501, 6r], 

P [ X 0 , X J n X ^ [ X 0 , X J [3», ö ] . 
Hence 

D[X0 , X J . X ? Q [ i 0 , X J [3R, £ ] . 

The term XxX0
pn gives the congruence 

- 1 = 0 [3R, 0 ] , 

that, is, [1] a 0[3», G], and, since [3W, £ ] m 0 [1], we have 
proved that (3R, G] ~ [1]. 

(2°) There is an integer g for which 

pgmO [3R] and [p , f l r ] - [1]. 

Proof. From the identical congruence by the substitution 
(X0, Xx) = (1, — p — 1) we have a congruence identical in y, 
and the term t/° gives the congruence 

( - ] p = T r + 7 ^ a 0 [9R], 

whence follows the statement (2) in case p = 2 for # = 1 at 
once, and in case p > 2 for # = (p — Pn — p — 1)1 p by the 
remark that pg == — p [p2] and so # a — 1 [p] . 

(3) P ^ E O [g«]. 

Proof. In case ƒ) = 2 (3) follows at once from (2), 
2 = 0 [3JI], as proved for p = 2. In case p > 2 the coefficient 
of X 2 Xf -1 gives 

tttiP-^T'1 • (i + y + • • • + 2T1) = o [a»]. 
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Setting Gx = \ (p - 1) and G2 = 1 + • • • + 2/n_1 we have (1) 
quantities G[, G'2 of 9Î1 for which GXG[ m 1, G2G'2 s= 1 [3)1], 
and obtain (3) in multiplying the congruence just written by 
Q'^G'r 

(4) pmO [501]. 

Proof. From (2),[p, g] ~ [ 1 ] , it follows by § 3 (3) that 
[ppn'1, g~] ~ [ 1 ] , that is, for properly determined </, #</ ss 1 
hp**"1 ] , so that by (3) gg' == 1 [gît], whence from (2), jpgr s 0 
[9JÎ] we have the desired congruence (4). 

(5) j r - y - 0 [3R]. 

Proof. (5) follows from the identical congruence by the 
substitution (X0, Xt) = (1, j/) with the remark that, since 
P [ Z 0 , X J has the factor Xl +J~^lyX0, P [ l , y] m 0 [>] 
and so by (4) P [ l , y] m 0 [3»]. 

10. We need further the known decomposition 

o r - y ] ~ i i II [P»^I>]]» 

where for every divisor d of n the P^[2/](i = 1>- • •> wid) are the 
say md quantities of 9ÎX congruentially distinct and each of degree 
d and irreducible modulo p. We may and do suppose that the 
coefficients of the Fdj[y] are taken from the integers 0, 1, • • -, 
_ p — 1 . Here the FJy] are the Fnj[y] of § 4 ; mn = m. 
The systems [ p , i ^ [ y j ] are by pairs relatively prime. 

11. Proof of (JS, 0) : 3Jt ~ $ n ~ H ^ . . We have from 

§ 9 {A, 5) 

3K~ [ 3 R , 2 > , î r - y ] , 

whence by § 10 and § 3 (1) we have the decomposition 

3R~n II [a»,/>,^[y]]» 

and so, since [3W, i ^ [ y ] ] ~ [1] for <2< m (§ 9, 1), 

3K~ II W P , ^ ] } , 
y=i , m 
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that is, in the notation of § 4, 

an- n [3R» ]̂« 

Now by {A") 2tt = 0 [ & J and so [a», $nJ] ~ § ¥ , and thus we 
have finally 

(B,C) $~ n &,-&• 
i = i , #& 

12. I t is noteworthy that the modular system 9Ji = 3KA+i|W)J) 

is in the sense of equivalence in fact independent of k and de­
pendent only on n and p , 

13. My exhibition of the system $n by its equivalent 
$flk+i,n,p f ° r & a n y positive integei', the elements of ^Jlkn.ltntP 

being the coefficients of the integral function Mk+ltntP) is to be 
compared with that of Serret (Algèbre supérieure,* fifth edition, 
volume 2, §349). In our notation we have (using §3, 1°) 

&~ II 3f*~ I l [p, FM] ~ [p, Klî/ll 
where 

Serret gives a fraction F\_y~\ 

H{^-y)IH{yp,"-y), 
ne n0 

where ne, no run through those divisors of n whose comple­
mentary divisors njne, njno have respectively an even (or 0), 
an odd number of unrepeated prime factors, and shows that 
modulo p the division indicated by the notation of F(y) can be 
performed and that for the resulting integral function F\jf\ we 
have F[y\ = Fn[y~\ [>] and so $ „ - [ > , F[y]]. — Appar­
ently my exhibition lends itself more easily to investigations in 
the domain of pure arithmetic. 

THE UNIVERSITY OF CHICAGO. 


