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the motion of an infinite linear system of discrete masses, con-
nected by springs. The solution is obtained indirectly by a
limiting process from the solution for a finite number of
masses, and is then verified directly. The main features of the
oscillations of a given mass are interpreted in terms of familiar
properties of the Bessel functions of the time which occur as
coefficients.
H. E. SvaueHrT,
Secretary of the Section.

THE DECOMPOSITION OF MODULAR SYSTEMS
CONNECTED WITH THE DOUBLY GEN-
ERALIZED FERMAT THEOREM.

BY PROFESSOR ELIAKIM HASTINGS MOORE.

(Read before the Chicago Section of the American Mathematical Society,
December 29, 1898.)

Introduction. The Generalized Fermat Theorem (A) in Purely
Arithmetic Phrasing (A, A”) with Extension (A"™). §§ 1-5.

. The theorem * in question is the followmg
(A) In the Galois field G'F[p"] of prime modulus p and of
rank n the two forms each of degree (p"*+V—1)/(p" — 1) in
the % + 1 indeterminates X, X, - -+, X,

k

D/c+1,n,p[)(0, Xl) ey Xk] = |X$aml (%J =0,1,.. " k)
PenolX Xp o0 X] =TI IIE + T 2X)

g=0, k& agylpr
are identical :

Dk+1,nm[Xo’ k] = L+1 np[ L Xk]

Here the qubscrlpt remark a,|p" indicates that the mark o, i
to run over the p" marks of ‘the Galois field GF[p"], and for
the case g = O the final >, _; does not enter.

For this theorem, whlc for (k, n) = (1, 1) is one form of
Fermat’s theorem, I have given three proofs, couched as is
the statement of the theorem in the abstract Galois field phras-
ing introduced by me in the paper ¢ A doubly-infinite system of
simple groups” presented to the Chicago Congress of 1893.

* Moore, ‘‘ A two-fold generalization of Fermat’s theorem,”” BULLETIN,
vol. 2 (1896), pp. 189-199.
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In the development of the Galois field theory and in its ap-
plications to algebra and groups this abstract phrasing is very
convénient,

2. Here however we are interested in converses of the
theorem stated above ; after replacing the marks o, by functions
of the realm [1,y] we decompose, in the sense of equivalence,
into prime modular systems the modular system 9 whose
elements are the coefficients of various powers of the indeter~
minates in the form

M, =D — P .
Myi1,m,p k+1,m,p k+1,m,p

We need first to use the concrete purely arithmetic phrasings
of Serret and Kronecker. The GF[p"] is then the totality of
p" classes (abstractly, marks) of rational integral functions of
an indeterminate y with integral coefficients (forming the realm
of integrity [1, y]) considered with respect to a (prime) modu-
lar system [p, F,[y]], where F [y] is a function of the realm
[1, y] of degree n (a polynomial in y with integral coefficients)
irreducible modulo p. We operate with these classes by oper-
ating with representative functions with respect to the modular
system [p, F [y]]. For the marks a we may take the p" re-
duced functions

ay+ ay+ ay® + -+ a,_y",

where the n coefficients a, - - -, @,_, take independently the values
0,1,2,.--, p— 1. There are in this sense as many concretely
distinct Galois fields as there are functions F, [y] congruentially
distinct modulo p. These Galois fields are however abstractly
identical.

We restate theorem

(4’) In the realm of integrity [1, y] the two forms each of
degree (p"* — 1)/(p" — 1) in the k 4 1 indeterminates X,

o X,

'ch+1,n,p [XO’ "’,Xk] =lX§mi| (i,j: O’ ]’ ...,k)
Pk+l,n,p[Xo) Tty Xk]
=11 II X+ > X, > au)

9=0, k agy =0, p—1 =, g—1 =0, n—1

are identically * congruent (=):

*In pure arithmetio all identities and identical congruences are formal
in certain specified indeterminates.
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Dysryn o[ Xy -+ X)=P o[ X -y X1 [0 Fn[y]]’

with respect to every prime modular system [p, F"[%]g’ where
p is a prime and F,[y] is any function of [1, y] of degree n
and irreducible modulo p.

3. I take as known the fundamental definitions and elemen-
tary theorems of Kronecker’s theory of modular systems, in
particular with respect to the composition and equivalence of
modular systems. It is however desirable to fix the notations *
to be used here.

A realm R of integrity-rationality
m:[R1~-~, Ru](Ru+17"' R )

) w+v

consists of all functions
F[Ru Y Rn] (Ru+n ) R;H-v)

rational integral in R,, ..., R, and rational in R, .-,
R,,,, the coefficients being integers. These functions are
called the quantities of the realm. The realm is closed under
addition, subtraction, and multiplication, and likewise under
division by any function not O of R'=(R,,;,---, R,,)

Any set of quantities F,, ---, F of a realm R constitutes
a modular system § =[F,, ---, F, ] of that realm. The whole
theory of such modular systems relates to the underlying realm.

Any set of modular systems

&= [Fo o uF,] (t=1,2, .-, m)
determines a modular system [. .. F‘.ﬁ ..i=hm ] for which we

use the notation [, -+, F.]- a=1,.0
(1) The theorem :
If

[%v‘ 8:2’ %] ~ [l:l;
(& &1 [F» §] ~ [%1%2’ &1

and its useful generalization :

If _
[ 8p &1~ [1] C+j; 4j=1,.-,m),

* The notations are those of my paper ¢ The decomposition of modular
systems of rank » in » variables,”’ BULLETIN, vol. 3 (1897), pp. 372-380.

then
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then

t=IIIm (3o ] ~ [i__];,Im%v RHE

may readily be proved.

(2) A system § of the realm R I call prime* in case
(2) & and [1] are not equivalent and (8) for any quantity G of
the realm we have one of the alternative equivalences

[8 G1~& or [§ G]~[1],

that is, one of the alternative congruences

G=0[F] or GG =1[F],

where in the latter case G’ is a properly determined quantity
of the realm.

For a prime system § in connection with any system & we
have one of the alternatives

[ 61~ and G=0[F] or [3 6]~ [1],

that is, any system @& contains or is relatively prime to a prime
system

We have the fundamental theorem :

If § is prime and the product &,®, of two systems §,, G,
contains ¥, while &, does not contain ¥, then ®, does contain .

For §,8,=0 [%] and @, £ 0 [F] and hence, since § is
prime, [3, G,]~[1]. Now %(S =0 [¥]. Hence we have
[3 6,]16; =0 [¥] ,andsomdeed@ =0 [¥].

3) If [§ 6,]~[1] (¢=1, 2,--+, m), then

[%,JL 63 ~II [% 61~[1]

(4) If [‘{fl,%j] ~[1] G#%j;4,j=1,2,-,m)and M= 0
[§] E=1, 2,--,ym), then M = O [F] where F =[], F-

4. We are now to work in the realm of integrity %, = [1, y],
where y is an indeterminate. There are in all say m functions
F,[y] of R, congruentially distinct (mod. p) and each of degree
n'and irreducible mod. P ; we write them Flyl(j j =1,...,m).

The modular systems %M =[p, F {:y]]( J=1,.. m) are

* Kronecker’s prime modular system of a given rank (Jour. fiir Mathe-
matik, vol. 99, p. 337) is differently defined.
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all prime and by pairs relatively prime. We write their
product

= II Su=II [» B0 ~Ip 1 P[]
5. We set (using the notations of § 2)

Mk+l.n,p [X), Tty Xk] = -Dk+1.n,p [X), Tt Xk]
“'Pk+1,n,p[Xo) R} Xh]

and denote by M, , , the modular system of coefficients of
My, np [ Xy Xi]; this system I belongs to the realm

= y .
'Our theorem A’ (§ 2) is then

(A”) %/H-l,'n,y = 0 [%nj] (j = 1, M} 'm),
whence follows in accordance with § 4 and § 3 (4),
4" Mes1,mp=0 [F.]-

The Equivalence Theorem (B) and the Decomposition Theorem
(C) §§ 6-14.

6. We are to prove the equivalence

(B) %Ic-}-l,n,p ~ %n’

whence in view of § 4 follows the decomposition, in the sense
of equivalence, of the system M,,, , ,, Viz.,

(C) %"‘H. n,p ~j.—1—11m3:nj’

that is, its exhibition as a product of systems no further decom-
posable and indeed in this case prime.

7. To prove (B) we need to prove, (4") being admitted,
merely the converse of (4"), viz.,

(4”) Ba=0 [Miss,n,]-

Here ¥, depends upon » and p andnot on k. The congruence
(A"™) follows from the following two congruences :

(ZZ—’_:l &, =0 [wz, ", p] ’
(D) WMo, np =0 [My1,n,5]>
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of which the former is the particular case of (4”) for & = 1.
We shall, however, prove (D) and then (B, C) without the
mediation of (4;)).

8. Proof of (D). The obviously true congruence

9Rlc-}-l, np = 0 [%lﬁl, n, p]
implies the identical congruence
Mk+1, n, p [*Xl:){l: ] Xo] =0 [SR"—%L ”,P]

in the % + 1 indeterminates X, ..., X,. Considering in partic-
ular the terms of M with the literal part containing the factor

Xp ... X ... X" we have the identical congruence in X, X
(XX7— X, X7) -
II (X +X@a+ay+---+ay'+--- +a, ;y*")=0 (M1, 2,51 5

AQe « Ay 1
=0,p—1

that is,

M,, n,p[)(o: 4Y1] =0 [My, np)s
and so in fact we have
(D) %2’ n, = O [wtk+1, n,p]'

9. We consider in preparation for the proof of (B, C) (§ 11)
various properties of the system M = M, ,, ,, consequences of
the identical congruence

M[X, X ]=D[X, X,]— P[X, X, ] = (X, X" — X, XT")
— I (X% + Xag+ay+- - +ag+--+a,_y)=0[M];

Qoo o Wy
=0, p—1

this congruence obviously true for M =M, , , is by (D) true
for %’e = mk_[,.l, n,p*

(1) @ being any quantity G =a, + ay + ---+ a,_y""" of
our realm R, = [1, y] of degree in y at most n — 1 with co-
efficients a, each 0 or positive integers less than p but not all
0, we have

[é)ﬁ, G] ~ [1],
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and so there is a quantity G' of R, such that
GEF =1 [M].
Proof. Since M =0 [M, G] we have
D[X, X,|= P[X,X,] [, G].

Now P[X,, X,] has the distinct factors X, and X, + GX and
other factors with product say Q[X,, X, ] hence

X, X]=X1Q[X, X;] [&]
and so, since G = 0[M, 1,

PLX, X]=X1Q[X, X] [M, G].
D[X, X|]=X]Q[X, X,] [M, G].
The term X, X" gives the congruence

—1=0 [M G],

that.is, [h] = 0[M, G], and since [M, G]= 0 [1], we have
proved that (¢, G]

(2°) There is an mteger g for which
pg=0 [M] and [p,g]~ [1].

Proof. From the identical congruence by the substitution

(X, X))=(1, —p — 1) we have a congruence identical in v,
and the term y° gives the congruence

Hence

(—p—=1y"+p—1=0 [M],
whence follows the statement (2) in case p =2 for g=1 at

once, and in case p> 2 for g= (p — 1" —p —1)/p by the
remark that pg = — p [p?] andso g = — 1 [p].

3) pri=0 [M].

Proof. In case p =2 (3) follows at once from (2),
2= O)E’ 1, as proved for p = 2. 1Incase p > 2 the coefficient
of X2X#"1 gives

Gep—1)"-Q+y+---+y)=0 [M].
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Setting G, =3(p—1) and G,=1+ ---+ y*! we have (1)
quantities G, G, of R, for which G,G; =1, G,G, =1 [M],
and obtain (3) in multiplying the congruence just written by
GG,

(4) p=0 [M].

Proof. From (2),[p, g] ~ [1], it follows by § 3 (3) that
[p77, g] ~ [1], that is, for properly determined ¢’, g9’ = 1
P77 ], so that by (3) gg' = 1 [M], whence from (2), pg = 0
[9)?] we have the desired congruence (4).

(5) ywr—y=0 [M].

Proof. (5) follows from the identical congruence by the
substitution (X, X|)= (1, y) with the remark that, since
P[X, X|] has the factor X, +p — 1yX,, P[1, y] =0 [p]
and so by (4) P[1,4] =0 [9)?]

10. We need further the known decomposition

[P ym—y]"’n H [p)Fdi[y]]’

J=1, mg

- where for every divisor d of n the F,[y](j = 1, -+, m,) are the
say m, quantities of i, congruentially “distinet and each of degree
d and irreducible modulo p. We may and do suppose that the
coefficients of the F [y] are taken from the integers 0, 1,
p—1. Here theF[y] aretheFl:]of§4 m_m
The systems [ p, Z, [)yj] are by pairs relatively prime.

11. Proof of (B, M~ ~%F~ JI S, Webhavefrom

§9 (4, 5)

Jj=1,m

MW~ M, p, y" =y,
whence by § 10 and § 8 (1) we have the decomposition
M~I1 IT [D ps Fylyl]s

J=1, mg

and so, since [M, F,[y]] ~ [1] ford <n (§9, 1),

M~ JT (M, p, Fyly]},

Jj=1m
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that is, in the notation of § 4,

MW~ II W 3l

J=1,m
Now by (4”) M = 0 [F,,] and so [M, &, ] ~F,,, and thus we
have finally
(‘B1 0) % ~ II %n’j ~ 8:11'

i=1,m

12. It is noteworthy that the modular system I = M, , ,
is in the sense of equivalence in fact independent of % and de-
pendent only on » and p,

%k’l']y np ~ %n ~ %Zy mp*

13. My exhibition of the system by its equivalent
Mit1, 0, for £ any positive integer, the elements of M, ., ., ,
being the coefficients of the integral function M, , ,, is to be
compared with that of Serret (Algebre supérieure,.fifth edition,
volume 2, §349). In our notation we have (using §3, 1°)

Su~ I &y~ 11 [p: F,lv]] ~ [ F,[9]0;

where -
F,[y]= I1 Fyly]-

=1,m

Serret gives a fraction F[y]
L™ =9/ 1L &™),

where n, n, run through those divisors of n whose comple-
mentary divisors n/n, n/n, have respectively an even (or 0),
an odd number of unrepeated prime factors, and shows that
modulo p the division indicated by the notation of F(y) can be
performed and that for the resulting integral function F[y] we
have Fly] = F,[y] [p] and so §, ~[p, F[y]].— Appar-
ently my exhibition lends itself more easily to investigations in
the domain of pure arithmetic.

THE UNIVERSITY OF CHICAGO.



