SURFACES GENERATED BY CONICS CUTTING A TWISTED QUARTIC CURVE AND AN AXIS IN THE PLANE OF THE CONIC.

BY PROFESSOR VIRGIL SNYDER.

(Read before the American Mathematical Society, February 24, 1906.)

The surface generated by the family of ∞^1 conics which cut five director curves is the simplest generalization of a scroll. m Various formulas have been derived, particularly by m Stuy vaert,* and the case of a unicursal quintic as directrix was first given by Bertini,† and further developed by Nugteren.‡ It is the purpose of this note to mention an interesting configuration to which the preceding methods do not apply.

1. Given a rational non-singular twisted quartic curve c_4 , and a straight line l not cutting it. Let the planes π through l and the points P on l be in (1,1) correspondence. A plane π will cut c_4 in four points Q_i which with P uniquely determine a conic c_2 . It is required to determine the order of the surface F generated by c_2 when π describes the axial pencil about l. Let R_2 be the quadric upon which c_4 lies; let κ, κ' be the two points in which The plane (l, s_3) will cut c_4 in a fourth point Q_4 and c_2 will consist of s_3 and Q_4 P, if it be assumed that P is not at κ . The second generator of R_2 in this plane is the line $Q_{\iota}\kappa'$ and does not therefore lie on F unless P is at κ' . Similarly, the lines s_3' and $Q_4'P'$ will make up a second conic.

Any conic c_2 cuts R_2 in four points, all lying on c_4 , hence it can cut no trisecant apart from points on the quartic curve. When P is at κ , the corresponding c_2 has five points on R_2 , hence lies entirely on R_2 , and also when P is at κ' the conic in its plane lies on R_2 . Since every trisecant of c_4 lies on R_2 it follows that every such trisecant will cut five conics of the system, hence F is of order five.

Since any plane through l contains only c_2 besides l, it follows that l is a triple line on F_5 . The complete intersection of F_5

^{* &}quot;Etude de quelques surfaces algébriques engendrées par des courbes du second et du troisième ordre;" dissertation, Gand, 1902.

^{† &}quot;Sulle curve gobbe razionali del quinto ordine," in the Collectanea Mathematica in memoriam D. Chelini, Mediolani, 1881, pp. 313-326.

† "Rationale Ruimtekrommen van de fijde Orde;" dissertation, Utrecht,

and R_2 consists of c_4 , $2c_2$, s_3 and s_3' , making a configuration of order 10 having fourteen actual double points and two triple points, the latter being κ , κ' .

Other straight lines lie on F_5 also. If in any plane π two points of c_4 be collinear with P, the line joining them and the line joining the other points of c_4 in that plane will constitute the conic. To determine the number of such planes, consider the three planes ω formed by l and a bisecant of c_4 passing through P. To every position of π correspond three planes ω . Conversely, in any plane ω are four points of c_4 , making six bisecants cutting l. Each bisecant determines a point P, and thus uniquely fixes π . Between ω , π exists a (6,3) correspondence, having therefore nine coincidences. In each plane lie two lines belonging to F_5 and cutting c_4 twice, hence: F_5 contains eighteen bisecants of c_4 .

The bisecants of c_4 which cut l define a scroll R_9 of order 9, on which l and c_4 are each triple, and s_3 , s_3' are triple generators. The intersection of F_5 and R_9 is made up of l counted nine times, c_4 counted three times, the two trisecants which cut l each counted three times, and the eighteen bisecants mentioned above. This may be expressed thus:

$$(F_5, R_9) = l(9) + c_4(12) + 2s_3(6) + 18s_2(18).$$

2. In case κ and the plane (l, s_3) are corresponding elements, then the residual point in which the (degraded) c_2 cuts l is indeterminate, hence this plane is a factor of F_5 . The line l is double on the other factor F_4 . We now have

$$(F_4, R_2) = c_4(4) + 2s_3(2) + c_2(2),$$

 $(F_4, R_9) = c_4(12) + l(6) + 2s_3(6) + 12s_2(12).$

There are now but six coincidences in the correspondence between ω and π , apart from s_3 which counts for three.

3. If κ , (l, s_3) and κ' , (l, s_3') are both pairs of corresponding elements, the surface is a cubic, on which l is a simple line. The equations are

$$(F_3, R_2) = c_4(4) + 2s_3(2),$$

 $(F_3, R_0) = c_4(12) + l(3) + 2s_3(6) + 6s_2(6).$

Of the ten lines on F_3 which cut l, eight lie on R_9 ; the other two are the residuals in the planes (l, s_3) , (l, s_3') and have but

one point on c_4 . F_3 contains sixteen other lines which do not lie on R_2 nor on R_9 .

4. Now suppose no restriction be put upon the relation between P and π , but that c_4 passes through κ . The conic in every plane π will pass through κ . The surface is now of order four, and l is a double line upon it. The only conic common to F_4 and R_2 is in the plane π when P is at κ' ; that in the plane corresponding to κ touches l at κ , but does not lie on R_2 . In the plane of (l, s_3') , l is itself part of c_2 . The point κ is a triple point on the surface. The R_9 of bisecants breaks up into a cubic cone K_3 having its vertex at κ and having s_3 for a double edge, and an R_6 having l for triple line, c_4 for double curve, s_3' for a triple generator, and s_3 for a simple generator.*

We now have

$$(F_4, R_6) = c_4(8) + s_3(1) + s_3'(3) + l(6) + 6s_2(6).$$

The correspondence (ω, π) is now (3, 3) with six coincidences, which account for twelve lines on F_4 , but only six belong to R_5 , the other six lying on K_3 ,

$$(F_4, K_3) = c_4(4) + s_3(2) + 6s_1(6).$$

The surfaces F_4 , K_3 furnish a monoidal representation of c_4 when the common vertex is a point on the curve.

If in the correspondence (P, π) , κ , (l, s_3) are corresponding elements, nothing new will result, since the line joining Q_4 of c_4 to κ is not a generator of R_2 . The surface is not changed except that one of the six bisecants of c_4 mentioned above now passes through the triple point κ .

5. If κ' , (l, s_3') are corresponding elements however, the surface reduces to a cubic on which l is a simple line and κ is a double point;

$$\begin{split} (F_3,\,R_2) &= c_4(4) \,+\, 2s_3(2)\,; \quad (F_3,\,R_6) = l(3) \,+\, c_4(8) \,+\, s_3(1) \\ &+ s_3'(3) \,+\, 3s_2(3), \quad (F_3,\,K_3) = c_4(4) \,+\, s_3(2) \,+\, 3s_1(3). \end{split}$$

 F_3 and K_3 furnish a monoidal representation of c_4 .

6. If l is a bisecant of c_4 , every c_2 must pass through two fixed points. Since it must also pass through P on l, the latter is a factor of every c_2 , and the residual is a straight line joining

^{*}This surface is type 80 in my enumeration of sextic scrolls, Amer. Jour. of Math., vol. 27, p. 101.

the other two points of c_4 in π . The surface is now of order three and l is a double line above it. Since from every point of l two bisecants to c_4 can be drawn, apart from l itself, the surface is a cubic scroll of the first kind, R_3 . The R_6 breaks up into a cubic cone, with vertex at κ' , and this same R_3 .

Finally, if l has three points upon c_4 , F becomes the $\mathring{R_2}$ upon

which c_{\downarrow} lies.

7. If c_4 is of genus one it has no trisecants. As no line can cut more than two conics apart from the two lying on R_2 , the surface is of order four and l is a double line upon it. The scroll of bisecants is now R_3 on which l is a double directrix and c_4 a triple curve. The correspondence (π, ω) is now (2, 6) with eight coincidences and 16 lines, hence

$$(F_4, R_8) = c_4(12) + l(4) + 16s_2(16).$$

If one or both points κ , κ' correspond to the plane containing a bisecant passing through them, the conics in these planes break up, but no important changes in the form of the surfaces occur.

8. If l intersects c_4 at κ , R_8 breaks up into an elliptic K_3 and an R_5 having the symbol $l_2^2 + c_4^2$.* F is a cubic on which l is a simple line and κ is a node.

$$(F_3, R_5) = l(2) + c_4(8) + 5s_2(5), \quad (F_3, K_3) = c_4(4) + 5s_1(5).$$

The correspondence (π, ω) is now (2, 3) and the residual lines in the planes of the coincidences belong to K_3 . If l intersects c_4 twice the surface reduces to R_2 containing c_4 and l.

9. If c_4 has a node, and no restrictions as to (π, P) , the surface is F_4 , having l for double line. Two lines through the node cut l and cut c_4 again;

$$(R_8, F_4) = l(4) + c_4(12) + 16s_2(16).$$

If κ (l node) are corresponding elements, the surface is F_3 ,

$$(F_3, R_8) = l(2) + c_4(12) + 10s_2(10),$$

since the line joining the node to κ and cutting c_4 again counts for three coincidences. Both points κ , κ' in which l cuts K_2 on which c_4 lies cannot give rise to coincidence, because they lie in the same plane κ .

^{*}This scroll is type B, iv of Schwarz's classification in Crelle's Journal, vol. 67, p. 37.

10. If l cuts c_4 in κ , the surface is a nodal cubic, having one node at κ , and another at the node of c_4 . R_8 breaks up into K_3 and R_5 , the latter having the symbol $l_2 + c_4^2 + 3^2$ (Schwarz's A, vii), the double generation being the line joining the node to the fourth point in the plane containing l. Thus,

$$(F_3, R_5) = l(2) + c_4(8) + g_2(2) + 3s_2(3).$$

If c_4 has a cusp, the second nodal point becomes uniplanar. Further specializations result in quadrics and quadric cones.

CORNELL UNIVERSITY, January, 1906.

OPERATION GROUPS OF ORDER $p_1^{m_1\mu_1}p_2^{m_2\mu_2}$.

BY PROFESSOR O. E. GLENN.

It is desired to make certain generalizations concerning the groups of order the product of powers of two primes p_1 , p_2 , such that $p_1 \equiv 1 \pmod{p_2}$, these groups possessing abelian subgroups H_i of type $[\mu_i, \mu_i, \dots, \mu_i]$ (i=1, 2). It is possible to specify for these groups those subgroups (here called basic subgroups) from which it is necessary and sufficient that generating operations be selected in order that they may generate the whole group G. This general problem connected with groups of composite order seems to merit more attention than it has thus far received. If

$$H_1 = \{P_1, P_2, \dots, P_{m_1}\}, H_2 = \{Q_1, Q_2, \dots, Q_{m_2}\},$$

then the number of operations of order $p_i^{\mu_i}$ in H_i is

$$\sum_{j=0}^{m_i-1}{}_{m_i}C_j\big[\,p_i^{\mu_i}-\Phi(\,p_i^{\mu_i})\big]^j\,\big[\Phi(\,p_i^{\mu_i})\big]^{m_i-j}$$

$$= [p_i^{\mu_{i-1}} + \Phi(p_i^{\mu_i})]^{m_i} - p_i^{m_i(\mu_{i-1})},$$

so that the number of cyclical subgroups of order $p_i^{\mu_i}$ in H_i is

$$\begin{split} N_{p_i}^{\mu_i} &= \frac{p_i^{m_i(\mu_i-1)}(p_i^{m_i}-1)}{\Phi(p_i^{\mu})} \\ &= p_i^{(m_i-1)(\mu_i-1)}(p_i^{m_i-1}+p_i^{m_i-2}+\cdots+p_i+1). \end{split}$$