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ON THE COMMUTATORS OF A GIVEN GROUP. 

BY DR. G. A. MILLER. 

L E T SV S2, 83, ..., sg represent all the operators of a given 
group G, and let t represent any operator whatsoever. From 
the identities 

we observe that the transform, with respect to any operator 
of 6r, of the commutators formed with t and the operators 
of G is the product of two such commutators. All of these 
commutators must, therefore, form a group which is trans­
formed into itself by G. When t transforms G into itself 
the given commutators generate the smallest self-conjugate 
subgroup of G which has the property that all of the opera­
tors of the corresponding quotient group are commutative 
to t ; i. e., t transforms each of the divisions of G with re­
spect to this self-conjugate subgroup into itself. By letting 
t represent, in succession, all the operators of G we arrive 
at the known theorem that the commutator subgroup of a 
group is the smallest self-con jugate subgroup with respect 
to which the group is isomorphic to an abelian group.* 

From the fact that the commutator subgroup of G is a 
characteristic subgroup it follows that it is self-conjugatein 
every group that contains G self-conjugately. In particu­
lar, if G is of order pa and is not the abelian group of the 
type (1, 1, 1, ..., 1), then every group that contains G 
self-conjugately must also contain a self-conjugate sub­
group of order pf*, a > t3 > 0. When G is the abelian 
group of the type ( 1 , 1 , 1, *.., 1), it is clearly always 
possible to construct a group which contains G self-conju­
gately and which transforms none of the subgroups of G 
besides identity into itself, f 

If t remains fixed in the commutator G = s ~* t ~1 st while 
« is multiplied on the left by all the operators of G we ob­
serve that C remains unchanged when this multiplier is 
commutative to t and that it is changed for every other mul­
tiplier. Arranging all the operators of G in the following 

*Quar. Jour, of Math., vol. 28 (1896), p. 268. 
t Moore, BULLETIN, vol. 2 (1896), p. 33. 
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manner, the first row being composed of the operators that 
are commutative to t, 

1 , 82, S3, " • Sy, 

'2? V a ? V 2 ? *Y'2? 

*•*, V A ? V A ? - V A ? 

G has the same value when s is multiplied on the left by 
each one of the y operators of a row, and if s is multiplied 
by two operators from different rows the corresponding 
values of G must evidently be different. Hence G has just 
A = g -*- y distinct values when s is multiplied by all the 
operators of 0 and each value of G corresponds to the same 
number of operators of (?. This result is independent of 
whether s or t belong to G or not. When s belongs to G we 
may say that G has A distinct values when s is successively 
replaced by all the operators of G and that each value of 0 
corresponds to the same number of the operators of (?. 

While G has the same number of different values as t has 
conjugates when it is transformed by all the operators of G, 
yet these different values of Cneed not include any of these 
conjugates of t nor is it necessary that these form a complete 
system of conjugates with respect to the operators of (?, e. gn 
when £ is one of the operators of order three in the alternat­
ing group of order twelve while s assumes successively all 
the values of the operators of this group, the four values of 
C are the operators of order two and identity. If s had as­
sumed all the values of the operators of the symmetric 
group of order twenty-four, C would have assumed the 
values of four operators of order three in addition to the 
given four values. 

The following two equations 

% a 2 * ^ A ' C1C2 kh ' m i m 2 X a2^1 ' ^2C1 kmi 

= axbxox-mxm2l2 - c262a2, 

a x a 2 • bxb2 • cxc2 hxh2 • lxl2 X a2bx • b2ex k2lx • l2m 

= axbxcx - hxlxml2h2 - c2b2a2 

show that every substitution is the product of two substitu­
tions of order two that do not involve any element except 
those involved in the given substitution.* The given sub-

* I t may be observed that each of these substitutions transforms the 
given product into its inverse. 
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stitutions of order two are similar when the given cyclical 
product involves an odd number of letters ; when this pro­
duct involves an even number of letters, one of the given sub­
stitutions of order two contains one more transposition than 
the other. Hence every positive substitution is the product 
of two similar substitutions of order two. Since these two 
similar substitutions can be transformed into each other by 
some substitution we have the theorem : 

Every positive substitution is the commutator of two substitutions 
involving only elements that are contained in the given positive 
substitution. 

From the following examples we see that any circular 
substitution of an odd order is the product of two similar 
circular substitutions which may have either one or three 
common elements, 

a^ag • a,aaa8 = a^a , 

axa3a4 - axa2a5 = axa^a2ab 

ata30&4 • • * an + 2 * U-M** + 3^n + 4 * * * a2n + 1 

3= a\a$a± • • • an+2a2#H 4- z&n + 4 * * * a2n+1 

ai0&2#3 • • • an+2 a>iQ>t(han+3an + 4 • • • a2n 4.1 
= a ^ a ^ ••• ttn4-2^2^n+3an + 4'** a2n + l 

Hence we observe that any cycle of an odd order greater 
than three is the product of two smaller similar cycles each 
of which is of an odd order. I t is evident that the two 
given similar cycles can always be transformed into the 
inverse of each other by some even substitution ; i. e., 
every positive cycle whose degree exceeds three is a commutator of 
two positive substitutions which do not involve any elements except 
those which are contained in the given cycle. 

From the following equations, in which 0 < 2a < n + lt 

ava2 "' otn-f-1 * #i an+ 2^+3 "# ^n^a+i 

= a x a 2 ••* a2<l • (*2a 4.1 C^2a-f 2 •** #2n > n^> 1 

a x a 2
 k • * (*n + 2 * < W V * + 3 an-f 4 * * * &2n &2a + 2 

= axa^a± ••• Ct2a + 1 * ÖW+2.a2a-f 3 *•• Q>n + >2 a 2 a n + 3 '** #2» > (f t > 2 ) , 

we observe that two negative cycles of degrees 2a and 
2(n — «) are always the product of two positive cycles in-
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volving the same elements and of degree n + 1 if n is even 
but of degree n + 2 if n is odd. Since not all the elements 
of these positive cycles are common, one of them may always 
be transformed into the inverse of the other by some posi­
tive substitution involving the same elements.* We have 
now proved that every positive substitution which does not 
include a cycle of order three is the commutator of two posi­
tive substitutions that do not involve any element except 
those of the given positive substitution. If a positive sub­
stitution consists of a cycle of order three it is evidently a 
commutator of positive substitutions with five but no smaller 
number of elements. If it contains a cycle of order three 
and some other elements it can clearly be expressed as the 
product of two positive substitutions such that the one can 
be transformed into the inverse of the other by a positive 
substitution in the same elements. Hence 

THEOREM I. Every substitution of the alternating group of 
degree n ( n > 4) is a commutator of two substitutions of the same 
group. 

The inverse of each of the two similar cycles having one 
common element whose product may be made any desired 
odd cycle can evidently be transformed into the other by a 
substitution of any arbitrary order. Hence any odd cycle 
is the product of two similar substitutions whose order is 
entirely arbitrary. Similarly we observe that any two neg­
ative cycles are the product of two similar substitutions 
whose order is arbitrary. In particular, any given operator 
is the product of two operators of the same arbitrary order. 
Hence the commutators of two operators may be employed 
to give a very simple proof of this special case of the gen­
eral theorem. If Z, m, n are any integers greater than unity 
it is always possible to find three operators L, M, N whose 
orders are l, m, n and which satisfy the relation L = MN. 

The holomorph of a cyclical group is evidently isomorphic 
to an abelian group with respect to this cyclical subgroup, f 
When the order of the given cyclical group is odd the given 
holomorph must contain systems of conjugate operators each 
of which includes as many operators as the order of the 
given cyclical subgroup. When this order is even the num­
ber of conjugates in a system must behalf as large. Hence 

THEOREM I I . If the order of a cyclical group is odd, it is the 
commutator subgroup of its holomorph and all its operators are 

* Since ab • cd and abed • ef are the commutators of abe> ad • be and bfdec, 
ae - ef respectively, we do not need to consider the cases when n = 2 or 3. 
In fact, the general method is not directly applicable to these cases. 

t Cf. Burnside, Theory of Groups, 1897, p. 240. 
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commutators of this holomorph. When this order is even, the 
commutator subgroup of the holomorph includes half of the 
operators of this eyclical group and all of these operators are com­
mutators of this holomorph. 

Since s ^ ^ i s similar to ts and this is similar to st, we ob­
serve that the commutator of two operators is similar to the 
commutator formed by means of one of these operators and 
the inverse of the other. The preceding results are, in part, 
aupplementary to those contained in the paper i ' On the 
commutator groups,^' BULLETIN, Vol. IV., pp. 135-139. 

CORNELL UNIVERSITY. 

THE CALCULUS OF GENERALIZATION. 

Calcul de Généralisation. Par G. OLTRAMARE, Doyen de la 
Faculté des Sciences de l'Université de Genève. Paris, A. 
Hermann, 1899. 8vo, viii + 191 pp. 
THIS work is the magnum opus of the venerable dean of 

the faculty of sciences, of Geneva, who is probably the old­
est living pupil of Cauchy. The volume recapitulates and 
completes the works of the author published during the last 
twenty years. 

Oltramare regards every function as developable in a series 
of exponentials; thus, a designating an independent variable, 
he puts 

<p(a) = Aae«« + Ape?" + Ayey« + - , 

where a, /9, y, ••• are any constants real or imaginary, in num­
ber finite or infinite. He adopts the shorter notation Geau 

for the series 2Aue
au, u taking successively the values a, /5, y, •••, 

and the equation 
<p(a) = Geau 

then expresses that the function <p(a) is generated from eau 

by generalization. 
This is in fact an extension of Liouville's generalized de­

rivatives ; the latter defined the derivative of index p. of the 
function <p(a) as given by the equation 

-r-^ = Aae
aaa^ + A^p* + A^y* + - ; 

aa^ 

•and Oltramare proposed to construct a more general calcu­
lus* by considering expressions of the form 

* See Laisant's introduction to Oltramare's lithographed essay on the 
•calculus of generalization published previously. 


