NOTE ON HYPERELLIPTIC INTEGRALS.

```
    by professor alexander s. chessin.
```

(Read before the American Mathematical Society at the Meeting of October 30, 1897.)

Let X_{r} denote a polynomial in x of degree $r ; P_{m}(x)$, $\mathrm{Q}_{n}(x), \ldots$ polynomials in x of degrees m, n, \cdots We know that the integration of

$$
\int f\left(x, \sqrt{X_{r}}\right) d x
$$

where $f\left(x, \sqrt{X_{r}}\right)$ is a rational function of x and $\sqrt{X_{r}}$, is reduced to the integration of

$$
\begin{equation*}
\int \frac{R(x) d x}{\sqrt{X_{r}}} \tag{1}
\end{equation*}
$$

where $R(x)$ is a rational function of x. This note is intended to give a practical rule for the integration of (1).

Let

$$
\begin{equation*}
R(x)=\frac{P_{m}(x)}{\prod_{x=1}^{k=s}\left(x-a_{k}\right)^{n_{k}}} \tag{2}
\end{equation*}
$$

We may assume that $P_{m}(x)$ has no factor $x-a_{k}$, otherwise the common factors may be cancelled. We also assume that all the factors of X_{r} are simple, for double factors could be taken outside the radical.

Suppose first that none of the α_{k} are roots of $X_{r}=0$. Then we have the equality

$$
\begin{align*}
& \int \frac{P_{m}(x) d x}{\prod_{k=1}^{k=8}\left(x-\alpha_{k}\right)^{n_{k}} \sqrt{X_{r}}}=\frac{Q_{p}(x) \sqrt{X_{r}}}{\prod_{k=1}^{k=s}\left(x-\alpha_{k}\right)^{n-1}} \tag{3}\\
& +\sum_{k=0}^{k=r-2} \lambda_{k} \int \frac{x^{k} d x}{\sqrt{ } \bar{X}_{r}}+\sum_{k=1}^{k=s} \mu_{k} \int \frac{d x}{\left(x-\alpha_{k}\right) \sqrt{X_{r}}}
\end{align*}
$$

where

$$
\left\{\begin{array}{lll}
p=m-s-r+1 & \text { if } & m>\sum_{k=1}^{k=s} n_{k}+r-2 \tag{4}\\
p=\sum n_{k}-s-1 & \text { if } & m \leqq \sum_{k=1}^{k=s} n_{k}+r-2
\end{array}\right.
$$

In fact after differentiating formula (3) and multiplying the result by $\sqrt{ } \bar{X}_{r} \prod_{k=1}^{k=s}\left(x-\alpha_{k}\right)^{n_{k}}$ we have a polynomial of the degree m in the left hand side, and a polynomial of the degree $p+s+r-1$
or

$$
\sum_{k=1}^{k=s} n_{k}+r-2
$$

on the right hand side according as
or

$$
\begin{aligned}
& m>\sum_{k=1}^{k=s} n_{k}+r-2 \\
& m \leqq \sum_{k=1}^{k=s} n_{k}+r-2
\end{aligned}
$$

In the first case by taking for p the value $m-s-r+1$ we obtain a polynomial of degree m on the right hand side; in the second case it will be a polynomial of degree $\geqq m$. In either case we have as many equations to find the indeterminate coefficients of $Q_{p}(x)$ and the λ_{k} and μ_{k} as there are coefficients, namely $m+1$ in the first case and $\sum_{k=1}^{\sum_{k=s}} n_{k}+r-1$ in the second.

Suppose now that $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\rho}$ are roots of $X_{r}=0$. Then we have the equality
(5) $\int \frac{P_{m}(x) d x}{\prod_{k=1}^{k=s}\left(x-\alpha_{k}\right)^{n_{k}} \sqrt{\bar{X}_{r}}}=\frac{Q_{q}(x) \sqrt{\bar{X}_{r}}}{\left.\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{\rho}\right) \prod_{k=1}^{k=s} x-\alpha_{k}\right)^{n_{k}-1}}$

$$
+\sum_{k=0}^{k=r-2} \lambda_{k} \int \frac{x^{k} d x}{\sqrt{X_{r}}}+\sum_{k=\rho+1}^{k=s} \mu_{k} \int \frac{d x}{\left(x-a_{k}\right) \sqrt{X_{r}}}
$$

where

$$
\left\{\begin{array}{l}
q=m-s-r+\rho+1 \text { if } m>\sum_{k=1}^{k=s} n_{k}+r-2 \tag{6}\\
q=\sum_{k=1}^{k=s} n_{k}-s+\rho-1 \text { if } m \leqq \sum_{k=1}^{k=s} n_{k}+r-1
\end{array}\right.
$$

In fact after differentiating formula (5) and multiplying the result by $\sqrt{X_{r}} \prod_{k=1}^{k=s}\left(x-\alpha_{k}\right)^{n_{k}}$ we obtain a polynomial of
degree m on the left hand side, and a polynomial of the degree $q+s+r-\rho-1$ or $\sum_{k=1}^{k=s} n_{k}+r-2$ on the right hand side according as $\sum_{k=1}^{k=s} n_{k}+r-2<m$ or $\geqq m$. In the first case by taking for q the value $m-s-r+\rho+1$ we obtain a polynominal of degree m on the right hand side; in the second case the degree will be $\geqq m$. In either case the number of equations to determine the coefficients of $Q_{q}(x)$ and the λ_{k} and μ_{k} is equal to the number of these coefficients, namely $m+1$ in the first case and $\sum_{k=1}^{k=s} n_{k}+r-1$ in the second.

That formula (3) does not hold in general when $X_{r}\left(\alpha_{k}\right)=0$ can be easily seen by substituting for x the value α_{k} in the result of the differentiation of (3). In fact it will be found that unless $n_{k}=1$ formula (3) involves the equality $P_{m}\left(\alpha_{k}\right)=0$ which is contrary to our assumption that $P_{m}(x)$ has no factor $x-\alpha_{k}$. But formula (3) still holds if $\alpha_{k}{ }^{m}$ is a root of $X_{r}=0$ provided $n_{k}=1$. And indeed, in this case formulas (3) and (5) can be brought to the same form if we remember that the integral

$$
\int \frac{d x}{\left(x-\alpha_{k}\right) \sqrt{ } \bar{X}_{r}}
$$

is reducible to the integral

$$
\int \frac{x d x}{\sqrt{X_{r}}}
$$

when α_{k} is a root of $X_{r}=0$.
Remark. In order to determine the algebraic part of formulas (3) and (5) it is not necessary to break up the denominator of $R(x)$ into factors. Formula (3) may be written as follows:

$$
\begin{gathered}
\int \frac{R(x) d x}{\sqrt{X_{r}}}=\frac{Q_{p}(x) \sqrt{\overline{X_{r}}}}{\prod_{k=1}^{k=s}\left(x-\alpha_{k}\right)^{n_{k}-1}} \\
+\sum_{k=0}^{k=r-2} \lambda_{k} \int \frac{x^{k} d x}{\sqrt{ } X_{r}^{-}}+\int \frac{T_{s-1}(x) d x}{\prod_{k=1}^{k=s}\left(x-a_{k}\right) \sqrt{X_{r}}}
\end{gathered}
$$

and to find $\prod_{k=1}^{k=s}\left(x-\alpha_{k}\right)^{n_{k}-1}$ and $\prod_{k=1}^{k=s}\left(x-\alpha_{k}\right)$ we only need to find the greatest common measure of the denominator of
$R(x)$ and its derivative. As to formula (5) it may be written thus

$$
\begin{aligned}
& \int \frac{R(x) d x}{\sqrt{X_{r}}}=\frac{Q_{q}(x) \sqrt{X_{r}}}{\prod_{k=1}^{k=\rho}\left(x-\alpha_{k}\right) \prod_{k=1}^{k=s}\left(x-a_{k}\right)^{n_{k}-1}} \\
& +\sum_{k=0}^{k=r-2} \lambda_{k} \int \frac{x^{k} d x}{\sqrt{X_{r}}}+\int \frac{T_{s-\rho-1}(x) d x}{\prod_{k=\rho+1}^{k=s}\left(x-\alpha_{k}\right) \sqrt{X_{r}}}
\end{aligned}
$$

The function $\prod_{k=1}^{k=s}\left(x-\alpha_{k}\right)^{n_{k}-1}$ is found as just explained, while the functions $\prod_{k=1}^{k=\rho}\left(x-\alpha_{k}\right)$ and $\prod_{k=\rho+1}^{k=s}\left(x-\alpha_{k}\right)$ are found by determining the greatest common measure of the functions $\prod_{k=1}^{k=s}\left(x-\alpha_{k}\right)$ and X_{r}.

The results of this note applied to the case of $r=2$ give very useful formulas, namely

$$
\begin{align*}
& \int \frac{P_{m}(x) d x}{\prod_{k=1}^{k=s}\left(x-\alpha_{k}\right)^{n_{k}} \sqrt{X_{2}}}=\frac{Q_{n-s-1}(x) \sqrt{X_{2}}}{\prod_{k=1}^{k=s}\left(x-\alpha_{k}\right)^{n_{k}-1}} \tag{7}\\
& \quad+\lambda \int \frac{d x}{\sqrt{X_{2}}}+\sum_{k=1}^{k=s} \lambda_{k} \int \frac{d x}{\left(x-\alpha_{k}\right) \sqrt{X_{2}}}
\end{align*}
$$

if $X_{2}\left(\alpha_{k}\right) \neq 0(k \equiv 1,2, \ldots s), n$ being the greatest of the numbers m and $\sum_{k=1}^{k=s} n_{k}$; and

$$
\begin{align*}
\int \frac{P_{m}(x) d x}{\prod_{k=1}^{k=s}\left(x-\alpha_{k}\right) \sqrt{X_{2}}} & =\frac{Q_{n-s+\rho-1}(x) \sqrt{X_{2}}}{\left(x-\alpha_{1}\right)\left(x-\alpha_{\rho}\right) \prod_{k=1}^{k=s}\left(x-\alpha_{k}\right)^{n_{k}-1}} \tag{8}\\
\quad+\lambda \int \frac{d x}{\sqrt{X_{2}}} & +\sum_{k=\rho+1}^{k=s} \mu_{k} \int \frac{d x}{\left(x-\alpha_{k}\right) \sqrt{X_{2}}}
\end{align*}
$$

if $\alpha_{1}, \alpha_{\rho}$ are roots of $X_{2}=0$.
Formula (7) holds also in the case where α_{k} is a root of $X_{2}=0$ provided $n_{k}=1$.

It will be noticed that the method of reduction here used does not require the degree of the numerator of $R(x)$ to be less than that of the denominator.
Johns Hopkins University, October 6, 1897.

