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It follows that, while with any law of central attraction 
a circular orbit is possible with any radius r0> it will be 

{—u [ — * » ?.£> j £*.} *- «•• 
8. The case in which P = /m3 is peculiar, since the crite­

rion is then identically equal 3. The special case occurs 
when ( 7 = 0 , the orbit being an equiangular spiral unless 
h2 = ju, which makes y — 90 , when it becomes a circle, and 
the circle must be regarded as described with kinetic in­
stability. 

LAGRANGE'S PLAGE IN THE THEOKY OF 
SUBSTITUTIONS, f 

BY DR. JAMES PIBKPONT. 

I K the present brief note I cannot vindicate Lagrange's 
right to the title of creator of the theory of substitutions; 
but I hope, by presenting a few examples of his methods, to 
show the importance of considering him from this point of 
view. Lagrange was led to the study of this theory by his 
attempts to solve equations of degree higher than the fourth. 
Speaking of the inherent difficulties which this thorny sub­
ject offered to the investigator, he remarks : J 

" The theory of equations is of all parts of analysis the one, 
we would think, which ought to have acquired the greatest 
degree of perfection, by reason both of its importance and of 
the rapidity of the progress that its first inventors made; 
but although the mathematicians of later days have not ceased 
to apply themselves, there remains much in order that their 
efforts may meet with the success that one could desire. In 
regard to the resolution of literal equations one has hardly 
advanced further than one was in Cardan's time, who was the 
first to publish the resolution of equations of the third and 
fourth degree. The first successes of the Italian analysts 
in this branch seem to have marked the limit of possible 
discoveries: at least it is certain that all attempts that have 
been made up to the present to push back the limits of this 
branch of algebra have hardly served for other purposes than 

* An equivalent criterion is otherwise derived in Thomson and Tait's 
Natural Philosophy, § 350. 

t Read before the Yale Mathematical Club. 
X Lagrange: Nouveaux Mémoires, Acad. Sciences Berlin, years 1770-

71. Also, Œuvres, vol. in, pp. 205-421, Réflexions sur la résolution 
algébrique des équations. 
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to find new methods to solve the equations of third and fourth 
degree, none of which seem applicable to equations of higher 
degrees." 

In his great paper published in the Mémoires of the Academy 
of Sciences at Berlin in the years 1770-71, under the title "Ké-
flexions sur la résolution algébrique des equations/' Lagrange 
proposed to examine the different methods which one had 
found up to then to solve algebraic equations, to reduce them 
to general principles, and to show à 'priori why these methods 
succeeded in case of the cubic and biquadratic, but failed for 
equations of higher degree. To do this Lagrange took up 
successively the various methods proposed by Cardan, Ferrari, 
Descartes, Tschirnhaus, Euler, and Bézout, and showed that 
the roots of the various resolvents upon whose solution the 
solution of the given equation depended were rational func­
tions of the roots of the given equation. Here, then, was a 
great and fundamental step in advance. The problem of the 
solution of equations was shown to depend upon the proper­
ties of rational functions of the roots. To study the proper­
ties of these functions, Lagrange invented a i( calcul des com­
binaisons" as he styled it, which was nothing else than the 
first rudiments of the theory of substitutions. 

By means of this new calcul Lagrange was placed in a 
position to tell in advance the result and character of certain 
investigations, in much the same way that algebra serves for 
numerical problems. Lagrange himself characterizes his 
method in the following words : 

" These, then, if I mistake not, are the true principles for 
the resolution of equations. The analysis is reduced, as is 
seen, to a species of calculus of combinations by means of 
which one finds à priori the results one should expect." 
Lagrange gives the new calculus a broad and solid basis. 
Among the various theorems he established for rational func­
tions of the roots of a general equation of nth degree, one is 
of fundamental importance : a function V which takes on n ! 
values for the substitutions of the symmetric group is root of 
an irreducible equation of degree n ! whose coefficients are 
rationally known. The roots of this equation are rational 
functions of one another, and possess the remarkable property 
that every rational function of the roots of the given equation 
can be expressed rationally in one of them, and hence the 
roots themselves. Similar functions he defines as those 
having the same group. Two similar functions are rationally 
expressible by each other. A rational function of the roots 
which takes on p values for the symmetric group, is root of 
an equation of degree p, whose coefficients are rational in the 
coefficients of the given equation. Further, p is a divisor of 
n ! 



198 LAGRANGE AND THE THEORY OF SUBSTITUTIONS. [ M a y , 

If 0 and ip take on respectively mp and p values for the 
symmetric group, then 0 is a root of an equation of mth de­
gree whose coefficients are rational in ip. The function tp can 
be expressed rationally in <p. 

Let us see how such theorems as these enable Lagrange to 
assign à priori the reason for the success of the various meth­
ods proposed to solve the cubic and biquadratic, and their 
failure when applied to equations of higher degrees. I have 
already remarked that Lagrange found that the resolving 
functions employed by his predecessors were rational. In 
final analysis, he found that they all belonged to the type 

t = xx + ax% + <*2
8̂ + • • • + <*n~lx% 9 

where xlfxi9... xn_x are the roots of the given equation ƒ(#) = 0 
and a is an imaginary nth root of unity. Let us see to what 
equations these functions lead. Two cases present themselves 
according as n is prime or composite. Let first n be prime. 

Then the function 

8X = t* = {xx + ax2 + . . . + a"-1^)* 

re-mains unchanged for the cyclic substitutions 

\ z, z -{- a \ (mod n) a = 0, 1 . . . n — 1. 

For the substitutions 

| z, bz | (mod n) b = 1, 2 . . . n — 1, 

6X takes on n — 1 values 

0,0,. . . 0M_i, 

obtained by replacing a by respectively a\ of8, . . . 
Consider the equation 

0 = ( 0 - 0 l ) . . . ( 0 - 0 - i ) = o. 

Its coefficients are symmetrical functions of Ql9 0 2 , . . . . Let 
ip be such a function. It is root of an equation of degree 
p = (n — 2) ! If t/j can be found in any way, the coefficients 
of 0 = 0 being rational in ip, are rationally known, and the 
solution oîf(x) = 0 depends now upon an equation of degree 
n — 1. 

When n = 3, p ~ l ; n = 5, p = 6. 
Thus for the cubic we see that the coefficients of 0 = 0 are 

rational, and the solution depends therefore upon an equation 
of the second degree only. As soon, however, as the prime 
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n > 3, the coefficients depend upon an equation of degree 
higher than the given equation. For n = 5 it is already of 
sixth degree. In passing I note that Lagrange by the con­
siderations of his new calcul made the solution of the quintic 
depend upon a sextic. The methods of Tschirnhaus, Euler, 
and Bézout lead to equations of twenty-fourth degree. 
Lagrange sought in vain to find a resolving function which 
should satisfy an equation of degree less than five. 

It is not uninteresting also to remark, that whenever an 
equation of prime degree is algebraically soluble, Lagrange's 
method leads us directly to the solution. When n = 5, this 
was already noticed by Malfatti, a contemporary of Lagrange. 

When n is a composite number, the foregoing considera­
tions do not hold. 

Let n—pr where p is a prime factor. 
Lagrange writes the roots in the array 

1 2 • • • » • * * 

'̂ Ji/ + 1 X3v 

X(p-l)v+l • ' ' Xpv 

Let the equation whose roots form the ith. row be cpt = 0. 
The coefficients of this equation are symmetric functions of 
the elements of the corresponding row. 

If X. = x,. ,, , « + # , - ^ , „ + . . . # . , « = 1, 2 . . . », 
the coefficients of <pt — 0 are rational in Xt, and when Xx, 
X9... are known, the coefficients of 01 = 0, 02 = 0 . . . are 
rationally known, and the solution of an equation of degree 
pv is reduced to the solution of p equations of degree v. 
If now v be composite we may break v into two factors, 
v — pxvl9 px being prime, and proceed as before. 

Let us now return to the determination of the quantities 
Xl9 X 2 . . . which are roots of an equation of prime degree, 
namely, 

X= (X-XX)(X- Xt)... ( X - Xp) = 0, 

whose coefficients are roots of a rational equation of degree 
__ n • p"Jv\ffV 
The equation X— 0 being prime, may be solved by the 

foregoing method. 
When 

n = 4, p = 3; n = 6, p = 10 or 15, 
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Here again Lagrange's methods gave him a clear insight 
into the reason for the success and failure of his predecessors' 
methods, according as n = 4 or > 4. 

Particularly instructive and important is the application 
Lagrange made of his methods to the equations upon which 
the division of the circumference of the circle into n equal 
parts depends,* for it would have required a far less attentive 
reader than Lagrange's illustrious disciple, Abel, not to have 
perceived what slight modifications were necessary in order 
to apply Lagrange's methods to the corresponding equations 
in the theory of elliptic functions. 

The equations in question have the form 

x»-iJtx
n-* + ... + £ + 1 = 0 

where we suppose n prime. Lagrange proceeds as follows: 
Let n — 1 = pq, p prime. If r be an imaginary nth. root of 
unity and a a primitive congruence root for n, we can arrange 
t h e ^ roots thus: 

r 

r^-1 

r 

r^
1 

r<*»-1 

r . . 

r^1 

a(q-l)P 
, . T 

a(q-l)p+l 
. r 

r^'1 

If X„ X 2 , . . . denote, as in the general case just treated, the 
sums of the elements of the various rows, Lagrange showed 
that the equation 

x=(x-x1)...(x-xp) = o 
is rational and can be algebraically solved, so that the solution 
of the original equation depends upon the solution of p equa­
tion of degree q, and so forth. To solve the equation X = 0, 
he employs as in the general case the resolving function 

Bx = t> = (X} + aX, f . . . + a*-*XPY. 

But this quantity is here rationally known (a being sup­
posed known), since, for any substitution which changes r into 
ra, Xx goes over into X 2 , X2 into X3 , etc.; thus 0, is un­
altered. Developing and arranging according to powers of a, 
we have 

01 = €o + agl+...+ a»-1gp_1, 
* LAGRANGE: Traité de la résolution des équations numériques de 

tous les degrés. Paris, 1808. pp. 275-311. 
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where the £'s are unchanged for r, ra. But the £'s being 
rational functions of r, ra, ra<i . . . , we have, e.g., 

£o = A + Br + Cra + ... + iVr«n"2. 

As this is unchanged for r, ra, we have by comparison 

J5 = Ö = . . . = -ZV, or 

£o = ^ + J5(r + ra + . . . ) = A - B; 

that is, ë0 is known. As 61 is thus known, we get 

Xt + .aX% + ... + a^Xp = V ^ ; 

similarly Xx + fiX% + . . . + /3*-*Xp = W2~; 

x, + *>x2 + . . . + œ^xp = yê£7; 

also X x + X , + . . . + X p = - l , 

where a, ft... œ are the p — 1 imaginary ptti roots of unity. 
This system of linear equations gives us Xt ; for example, 

j = - i + y % + y g . + . - . + v ^ 

The roots of the equation 

xn-l _|_ xn-2 + . . . + a; -|_ 1 = 0 

are rational functions of one of them, x0 : 

(1) xt = 6L{xQ), i = 1, 2 . . . n - 1. 

They enjoy further the property that 

(2) Bfi^ = eKetxü. 

But just these properties (1), (2) are enjoyed by the n* 
roots of the equation F(x) = 0 for dividing the argument of 
snz, namely, 
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when we consider the quantities &2, sn#, cn2, dn#, and 

- (±pK+±qiK'\ 
\ n J' 

as known. 
How closely Abel follows Lagrange in his solution of equa­

tions of the type F(x) == 0 is shown by the following sketch 
of his method :* 

Let f(x) = 0 be any (irreducible) equation whose roots en­
joy the properties (1), (2). We may represent them by the 
array 

x0 0xo... 0*-%; 

ocl dxx . . . 6n~1xl ; 

Consider the equation cp(x) = 0, whose roots are the ele­
ments of the first row. If we suppose the coefficients of this 
equation to be known, it is soluble. In fact setting with La­
grange 

I/J0 = (x0 + aVx0 +... + a»-1»*-^)», 

?/;0 remains unchanged for \ x0, 0xo \ , as in the case of the 
cyclotomic equations just considered. 

But if\ is rational, for if we denote by ipm what tf>0 becomes 
after the substitution | xu, 0mxQ | , since ipm = tf>0, we have 
#o — *Pi = • • • #n-i > whence 

0o = \{*l>. + ^ + • • • + #n-l), 

a symmetric function of the roots of (p(x) = 0. 
Thus, precisely as before, we have a system of linear equa­

tions which gives, for example, 

-A + V¥o + Vfc + . . . + VïïZi 

where A is the coefficient of xn~l in <p(x) = 0. 
We return to the equation upon which the coefficients of 

cf)(x) = 0 depend. 

"*ABEL: Mémoire sur une classe particulière d'équations résolubles 
algébrique men ts. Grelle, vol. 4. Also, Œuvres, 2d éd., vol. i, pp. 
478-507, 
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Let Xx be the oft-considered symmetric function of the ele­
ments of the first row, 

X, = x0 + 6xQ + . . . + e»-%,etQ. 

The equation 

X = (X - XX)(X- X2) . . . (X- Xm) = 0 

is rational. In fact 

X, = F(xa) = F(dx0) = . . . = F{0*~\). 

Similarly X, = F(xJ = F(8x,) = . . . = F(6n-\). 

Hence X? = \ {{F(z,))* +... + {F{8-\))*\ ; 

Xf=\\{Fxiy+...+(F(9>-*xuY\, 

and thus Xf + X2« + . . . + %m *s rational. 
Now the equation X = 0, having the same properties as 

the original equation f(x) = 0, this last is algebraically soluble, 
and we have the theorem that the equation upon which the 
division of the argument of the elliptic function sn(z) depends 
is (under the previous assumptions) algebraically soluble. 

Leaving Abel now, I must pass on to a last and even more 
striking example of the wonderful powers of Lagrange's " cal­
cul " to announce à priori the results which one should expect. 
Lagrange, as I have remarked, had vainly endeavored to find 
a rational resolving function for the quintic which would 
satisfy an equation of degree less than five, and so place one 
in a position to effect the solution of this celebrated equation. 
Rufïini, an Italian contemporary of Lagrange, and his ardent 
disciple, succeeded by Lagrange's own methods in proving 
that no such function existed ; in fact he demonstrated quite 
generally that no rational function of n elements existed 
which took on three or four values for the symmetric group, 
n being > 4. But Rufïini was too convinced of the latent 
power of his great countryman's methods to stop here: he 
boldly undertook* by their means to prove that the alge-

* P. RUFFINI : Reflessioni intorno alia soluzione delle equazioni al-
gebraiche generali. Modena, 1813. 
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braical solution of the general equation of degree > 4 was 
impossible. Although not altogether successful in his at­
tempt, I wish to show with what simple means he did prove 
that if the expression for a root can be given such a form 
that the radicals in it are rational functions of the roots of 
the given equation, then the algebraical solution is impossible 
when the degree of the equation surpasses four. 

In fact such an expression for the root could always be ar­
rived at as follows: Let i j b e a rational quantity, and let nx 
be a prime; then P,ni — Ax defines a first irrationality. Let 
A^ be any rational function of quantities originally rational 
and P , ; then P2

n2 = A^ defines a second irrationality. Con­
tinuing in this way, any root of the given equation has the 
form xx = A, where A is a rational function of Px, P 2 . . . 

Let now s be the cyclic substitution s = (12 3 4 5), and let 
P3, Ps*, PS3, PS4 be the values of Px for s, s*, s8, and s4, re­
spectively. Then P8 — j3Px where )3ni = 1. Operating with 
s, s* . . . this gives 

P s 2 = /J»Pa, PS3 = PPX, PS4 = FPi; / . fi* = 1. 

Similarly let P a be the value of Px for or = (1 2 3) ; then 
Pv = yPl9 and thus y* = 1. But P.9<r = /3yPx; hence, since 
(scry = 1, py = 1 ; .:y = l. Similarly,if p = (3 4 5), then 
P p — Pp2 = Px. Now per = s; hence Pp<r = Ps~ Px. But 
P s = /3P1 ; thus ft = 1. Hence Px remains unaltered for s, thus 
also P 2 , etc.; hence finally A. Thus the right hand oî œx = A 
is unchanged for £ while the left-hand side is changed. Thus 
it is impossible to solve algebraically the general equation 
whose degree surpasses four. 

The limited time at my disposal has not permitted me to 
discuss Lagrange's claims in detail; but the few examples I 
have chosen from Lagrange himself and from his immediate 
disciples will show, I think, how incomparably superior his 
methods were to those of his predecessors, Hudde, Saunder-
son, Le Sœur, and Waring; and it would be no difficult or un­
grateful task to show how easily the ideas of Galois spring 
from the same source that inspired Euffini, Cauchy, and Abel 

N E W H A V E N , CONN. 


