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Chicago Congress through their generous contribution to the 
Lobachèvsky memorial fund, contains the promise of a still 
closer union between the mathematicians of America and 
Kussia, and proves the solidarity of scientific interests among 
all nationalities. 

KAZAN, March 7, 1894. 

MACFAKLAKE'S ALGEBKA OF PHYSICS. 

Principles of the Algebra of Physics. By A. MACFARLANE, 
Professor' of Physics in the University of Texas, Austin, Texas. 
Proceedings of the American Association for the Advancement of 
Science, vol. 40, 1891, 53 pp. 

On the Imaginary of Algebra. By A. MACFARLANE. Ibid., 
vol. 41, 1892, 23 pp. 

T H E purpose of the first of the articles which are to form 
the subject of this review may most properly be stated in the 
author's own words: "The guiding idea in this paper is gen­
eralization. What is sought for is an algebra which will 
apply directly to physical quantities, will include and unify 
the several branches of analysis, and when specialized will 
become ordinary algebra." 

A student who sets out to use Grassmann's algebra in geo­
metrical work finds that it applies beautifully to projective 
problems in curves and surfaces of no higher order than the 
second, but beyond them he is confronted and stopped by 
difficulties which can be overcome only by the study of the 
ordinary theory of algebraic forms. In the same way 
quaternions work out many metrical properties of curves and 
surfaces with facility and grace, but I think every student 
who has tried to go far with them finds that he is at last 
brought back to the study of the equations and functions of 
ordinary analysis. There seems, to be no way around the dif­
ficulties of the theories of forms and functions, and even when 
results have been attained by methods which appear to avoid 
them the mind is seldom convinced of their validity. As we 
shall see, Professor Macfarlane derives the formulas of trigo­
nometry with great facility, but it seems almost certain that 
no analyst would dare to use them if they had no other 
foundation. 

Passing by considerations of this kind which seem to make 
it doubtful whether or not any system of analysis other than 
the ordinary one can do much to advance mathematical 
science, we come to the author's first objection to quaternions 
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as Hamilton left them. Hamilton made the square of a 
vector negative; in fact he wrote 

ij = h 
and 

i.ij = ik = — j \ 

so that he had to take i* = —1 if he made 

i(ij) = (ii)j == i*j; 

that is, if he preserved the association law in multiplication. 
The result of this is that the scalar parts of Hamilton's prod­
ucts are taken negatively. Professor Macfarlane prefers to 
make them positive even at the expense of the associative law. 
He finds 

(1) That problems in vector analysis can be worked out 
without the minus; 

(2) That' the expressions so obtained are more consistent 
with those of algebra; 

(3) That the square of a directed quantity in algebra is 
positive ; 

(4) That the quaternion rule throws the system out of har­
mony with determinants; 

(5) That it makes the operator p a negative. 
As to the third of these points the rule stated is certainly 

very limited; while ( — 3)2 = 9, it is also true that (3 V— l)a 

= —9,and 3 V — 1 is just as much a directed quantity as — 3; 
but, granting them all, one is hardly convinced that Hamil­
ton did not choose wisely in preferring the conservation of 
the associative law. Professor Macfarlane's own ingenious 
equations show how inconvenient analysis becomes without it. 
To be sure, each equation means more, but the question is 
whether it is better to manipulate two or three facile equa­
tions or a single " anfractuous " one. 

Proceeding with his argument for making the square of a 
vector positive, he finds what amounts to a contradiction in 
Hamilton's system when vectors are taken to represent physi­
cal entities. The units i,j, h admit of a double interpretation : 
(1) each causes rotation through the angle \n in the plane 
to which it is at right angles ; (2) they are simply directed 
lines. In the first case we may find the meaning of ij by 
adding the quadrants which represent their successive effects, 
and it comes out easily that ij must equal k, while ii repre­
sents the rotation n9 or simply —- 1. Now if i is a rotator and 
j a line, we find as before that ij = h> where k is a line ; while 
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ii, where the first i is a rotator and the second a line, ought to 
leave the line i unchanged. As a matter of fact in quaternions 
ii = — 1 always. There is certainly what seems an " insuperable 
objection/' but from Hamilton's point of view it is no objec­
tion at all. Hamilton lays down a consistent body of symbols 
and combinatory laws, and then makes such physical applica­
tions as he can. The fact that the symbols fail of certain 
representative powers is no objection to them as a logical 
system. The truth is that a vector symbol will not bear 
interpretation as a rotator except when it is multiplied into a 
vector perpendicular to itself, and then it will bear that inter­
pretation. This is a limitation, but it is not an objection. 
The laws of multiplication are first laid down and then we 
ask for their physical meaning ; the other course might be 
taken and Professor Macfarlane actually takes it, but it is hard 
to see why one of them is more right or wrong than the other. 
All through his discussion of Hamilton's rules the author 

seems to identify the rotator i (or ft) with the quadrant cor­
responding ; this introduces difficulties which are perhaps 
unnecessary. Hamilton looked upon the arc rather as the 
logarithm of the rotator, and these arcs have in fact a remark­
able resemblance to ordinary logarithms. Their addition is 
not commutative, but the addition of the logarithms of rota­
tors should not be. 

Leaving this interesting subject, Professor Macfarlane asks 
next, " Are the principles of the method of quaternions con­
sistent with the theory of dimensions . . . ? " If i and j 
denote lengths, then in the equation 

ij = h 

h ought to denote an area. This is undoubtedly true, and in 
any equation where i and j were interpreted as lines h would 
have to be interpreted as an area ; and to this interpretation 
the rules of quaternions offer no hindrance. Directed areas 
are a part of the system. The difficulty about dimensions is 
purely psychological and comes from confusing in thought 
the symbol with what it may, but need not invariably, stand 
for. The symbols i9 j , k denote imaginary numbers ; for 
these numbers there is an arithmetic, and one of the rules of 
this arithmetic is that when taken abstractly ij shall give h, 
where h is the same kind of a thing as i and j ; just as 3 times 
2 gives 6. The dimension theory is not in question. If the 
equations are to represent truths of geometry they must be 
homogeneous, but the homogeneity takes care of itself gen­
erally. It is perfectly useless to try to take actual lines and 
manipulate them mathematically; between the symbol and 
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the reality there is an impassable gulf. The equation cited 
by Professor Macfarlane from the "Directional Calculus" 

2\ = Pi + 6> 
where p^ and p1 denote points and e a line, is necessarily a 
pseud-equation as he implies, and results apparently obtained 
from it can only be delusive unless the so-called points are 
really lines ; but quaternions present no such anomalies. It 
seems to be unnecessary to try to make i,j> k mean merely 
lines or merely directions, or to lay down such a law as that 
" in such an expression as xi it is more philosophical and 
correct to consider x as embodying the unit, while i denotes 
simply the axis." It is surely not a defect of Hamilton's system 
that x may or may not be taken as a pure tensor according to 
circumstances, and that the number i may be of one or two 
dimensions in the unit of length like any other number, or 
that it need not contain the unit of length at all but may 
denote a certain rotation or a certain axis of rotation. 

The essential difference between Professor Macfarlane's 
system of algebra and that of Hamilton is that he makes 
i2 = ƒ = fa* = -)- 1 instead of — 1. This destroys the asso­
ciative character of the multiplication, but it allows an exten­
sion to manifoldnesses which quaternions cannot reach. With 
this rule the product of the imaginary numbers A = ai + bj 
+ ck and B = M + mj + nk easily takes the form 

AB = cos AB + Sin AB, 

where the meaning of the symbols cos and Sin is pretty 
obvious, cos AB = — S. AB in the language of quaternions 
and Sin AB = V. AB. The analytical meanings of cosine 
and sine are so well established that one would be tempted to 
wish the author had not made this use of them, especially as 
his reasons for discarding Hamilton's expressive symbols 
would apply quite as well to his own. 

The formulas for the products of three and four of these 
numbers grow complex and would seem difficult to employ. 
Since A BOB may mean various things according to the mode 
of associating the letters, it is indispensable to use the great­
est care at every step. The author selects from the five 
possible products the two {{AB)G)D and {AB)(GD) as the 
most important. The form (AB)(OD) differs from the prod­
uct of two quaternions on account of the squares of the units 
being positive. 

A quaternion is represented by the symbol aaA
9 where a is 

the tensor, a the axis, and A the angle. The ordinary repre­
ss 

sentation is aa*, so that here aA is the same as the familiar 
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2A 
a*, and it comes out that a71" is the old of or — 1. Of 
course Professor Macfarlane's a* denotes a rotation through 
the angle 2 in circular measure, and there is no difficulty in 
distinguishing between this symbol and the a whose square is 
+ 1 in his system. Eemembering that aA turns a line lying 

in a plane at right angles to a through the angle — it is evi-
Z 

dent that 
ir 

aaA — a (cos A + sin A . aft), 

as the author asserts. This is Hamilton's equation : 
2A 

aa* = a (cos A 4- sin A . a), 
TP 

the difference being merely one of notation. This new afi ex­
actly places the quaternion unit a in a multiplication-table. 
We may call the part in the parenthesis a versor without 
prejudice to either system, and by forming the product of two 
versors and taking its scalar part we get the fundamental 
formula 

cos G = cos A cos B — sin A sin B cos G. 

It is well known that the algebra of quaternions all having 
the same plane is not different from that of ordinary complex 
quantities, except in form. Thus we may write with Profes­
sor Macfarlane 

TT 

aA = cos A -f a* sin A, 
or, as usual, 

eiA = cos A-\- i sin Ay 

and proceed to develop a plane trigonometry. The analyst 
will be likely to prefer the latter because he can reach it step 
by step from the multiplication-table he learned at school 
with no breach in the continuity of his logic, and with no 
hypothesis as to the geometrical meaning of i. Moreover the 
second equation is true in the same way that 3 + 2 = 5 is 
true. It does indeed define the function eiA, but perhaps in a 
very different sense from that in which the first equation 
may be said to define aA. Changing A to A + B and factor­
ing the right member, we easily conclude with our author 
that 

aA + B=: aA.aB, 
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with commutative factors, and De Moivre's theorem is a near 
consequence. We shall have (aA)n = anA, but it is by no 
means true that {aAßB)n = anA. ßnB. The result is much 
more complicated, for (aAßB)n is a complex number of the 

- n 

form (I + my2), where only y is an imaginary, and the bi­
nomial theorem must be used. 

Kemembering that a* has all the analytical properties of 
V — 1, at least when not combined with other imaginaries, 

IT 

Professor Macfarlane easily shows that aA = eAa . Of course 
li­

ne implicitly defines the symbol eAa by the series 

l + Aa*+. . . . 

He then concludes without difficulty that the logarithm of 
TT 

the quaternion raA is log r + o&A ; an expression which he 
shows how to generalize. 

The products of vectors not being associative, the problem 
of finding their derivatives with respect to a scalar variable 

presents some interesting matter; and formulas for -n{An), 

where A is a vector, are derived simply and elegantly. Of 
course the differentiation of a quaternion presents no new 
principles, and the same may perhaps be said of the author's 
treatment of matrices ; but at any rate his remarks upon the 
latter subject are very interesting reading. After all, how­
ever, there is a certain flavor of genius in what Hamilton and 
Tait have to say about this particular kind of linear substitu­
tions which nothing more recent seems to replace exactly. 
They certainly have the advantage in simplicity of language 
and method, and they are much more easily understood. 

Professor Macfarlane dwells at some length on the proper* 
o o o 

ties of the operator /7 = i-—\-j-—f- k—-9 which is formally 

a vector and shows easily that, if u is a scalar quantity, 

whereas in quaternions /72 is negative* 
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When G is a vector p G will contain a scalar and vector part 
and he writes the solenoidal condition 

du du du _ 0 

dx ~*~ dy "^ a* 

in the concise form cos p ( 7 = 0; while the condition for no 
molecular rotation is S i n p G y = 0 . Tait writes these con­
ditions : 

S. FG=0; V. pC=0. 

Our author prefers to reserve the symbol p 2 for Laplace's 
operator and remarks that, for a vector, 

Quite commonly /7(/7o) would be written /72o, and his remark 
that " p(pG) is not equal to p^C" can only mean that p 8 on 
a vector gives a result' very different in form from /72 on a 
scalar function. The first paper closes with some interesting 
examples of the use of p and remarks on the addition of 
scalar and vector quantities having fixed positions in space. 

In his second article Professor Macfarlane proposes " to 
review the different explanations [of the V — 1] . . . . which 
have been contributed, with the hope of finding a theory 
which will tend to unify them." He points out that the 
investigation of the subject was started by the controversy 
about the logarithms of negative numbers and quotes from 
D'Alembert the following astonishing fallacy: "e* = + Ve or 
— Ve ; but the logarithm of e is £ ; therefore the logarithm 
of — Ve as well as + Ve is £." Homer nods sometimes, but it 
is hard to imagine D'Alembert believing that by taking 
merely arithmetical roots of e he could produce a negative 
number. It recalls some of Euler's queer fancies about 
infinite series. After recalling various theories of V •— 1 our 
author pronounces its true explanation to be that " of a geo­
metric ratio or quaternion" with "a t least one other geo­
metric meaning." 

He treats next spherical trigonometry by quaternions. Ke-
calling his equations 

n 

aA = cos A-\- a% sin A 
and 

aA _. eAa ^ 
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he easily concludes again that A a2 is the logarithm of aA. 
The formal similarity of the powers of a to those of é being 
complete it can be seen at once how expressions of the most 
general kind can be obtained for the logarithms of negative 
numbers. By multiplying together aA and ßB and taking 
the real and imaginary parts the fundamental equations of 
spherical trigonometry are reached almost instantaneously as 
in the former paper. 

A section on circular spirals closes with the differentiation 
of aA and other quaternion expressions, and with some re­
marks on hyperbolic trigonometry and hyperbolic spirals the 
article terminates. The hyperbolic trigonometry is founded 
on the equation 

haA = cosh A -f oc2 sinh.4, 

where the symbols on the right have their usual meaning, and 
A is the area of a hyperbolic sector. 

0. H. CHAPMAN. 
UNIVERSITY OF OREGON, May 14, 1894. 

NOTE ON THE SUBSTITUTION GROUPS OF EIGHT 
AND NINE LETTERS. 

BY G. A. MILLER, PH.D. 

I N calculating the possible groups of a given degree it is 
very helpful to have an accurate list of the groups of the 
lower degrees. An error in the lower groups is apt to give 
rise to numerous errors in the higher groups. On this ac­
count I have calculated all the possible groups through degree 
9 and compared my results with the published lists. No 
complete lists of the groups beyond degree 9 have yet been 
published. 

In the April number of this journal I noted several errors 
and one omission in the lists of the groups of eight letters. 
The following forms a supplement to this note. 

There is a primitive group of degree 8 and order 1344, 
which is not given in the lists referred to in my note in the 
April number of this journal. The existence of a transitive 
group of this order and degree can be proved as follows: 

A(abcdefgh)8 


