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The Sen limit

Adrian Clingher, Ron Donagi and Martijn Wijnholt

F -theory compactifications on elliptic Calabi-Yau manifolds may
be related to IIb compactifications by taking a certain limit in
complex structure moduli space, introduced by A. Sen. The limit
has been characterized on the basis of SL(2,Z) monodromies of
the elliptic fibration. Instead, we introduce a stable version of
the Sen limit. In this picture the elliptic Calabi-Yau splits into
two pieces, a P1-bundle and a conic bundle, and the intersection
yields the IIb space-time. We get a precise match between F -theory
and perturbative type IIb. The correspondence is holographic, in
the sense that physical quantities seemingly spread in the bulk of
the F -theory Calabi-Yau may be rewritten as expressions on the
log boundary. Smoothing the F -theory Calabi-Yau corresponds to
summing up the D(−1)-instanton corrections to the IIb theory.
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1. Introduction

F -theory was introduced to study vacua with 7-branes and varying axio-
dilaton [1]. Its most common definition (which however covers only one
branch of the moduli space [2]) is obtained by considering a weakly coupled
M -theory compactification on an elliptically fibered Calabi-Yau π : Y → B,
and taking the limit as the area of the elliptic fibers shrinks to zero. The
axio-dilaton of type IIb supergravity on B is identified with the modular
parameter of the elliptic fiber. The main advantage of this point of view is
that while the axio-dilaton is a complicated multi-valued function over B,
the geometric description π : Y → B allows for a global description without
branch cuts.

Since F -theory was originally thought of as a strong coupling general-
ization of type IIb, it was natural to look for a precise limit of the elliptically
fibered Calabi-Yau in which one should recover the perturbative IIb theory.
Such a limit was proposed by A. Sen, and is now commonly referred to as
the Sen limit of an F -theory compactification. In a nutshell, Sen’s idea is
the following. Since the elliptic Calabi-Yau has a section, it can be put in
Weierstrass form

(1.1) y2 = x3 + fx+ g

The modular parameter τ is identified with the varying axio-dilaton ie−φ + a
of type IIb. The j-function of the elliptic fiber can now be expressed as

(1.2) j(τ) =
4(24f)3

Δ
, Δ = 4f3 + 27g2

To recover perturbative IIb, we want gs → 0, so we want τ → i∞ except
possibly at the location of the 7-branes. The most generic way to do this is
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as follows. We express the Weierstrass coefficients as

(1.3) f ∼ b22 +O(ε), g ∼ b32 +O(ε)

By picking suitable coefficients, the leading terms cancel and we get Δ ∝ ε.
Then as ε→ 0 we have τ → i∞ (and hence gs → 0) except at b2 = 0. The
locus b2 = 0 on B is eventually identified with the orientifold locus in type
IIb. The D7-brane locus depends on the O(ε) terms.

Although this perspective has led to interesting applications, it leaves a
number of issues unaddressed. One of the main problems is that the pre-
cise mapping between the F -theory data and the IIb data has never been
established. For example, part of the F -theory data is the specification of a
configuration for a three-form field C3. Qualitatively, it has been understood
that this should yield the 7-brane gauge fields and two-form tensor fields in
the IIb limit, but the precise dictionary was never found. Similarly, there
were problems in the comparison of tadpole constraints, instantons effects
and other things.

We believe that these difficulties indicate that the usual method of ana-
lyzing the SL(2,Z) monodromy representation really isn’t the right way to
think about the Sen limit. We may ask the question, what are the right tools
to address this problem?

Some recent progress was obtained in [3]. Instead of focusing on the mon-
odromy representation, the idea was to look in more detail at the degenerate
F -theory Calabi-Yau appearing in the Sen limit. It was found for example
that the IIb Calabi-Yau Xn−1, whose appearance looks somewhat mysteri-
ous in Sen’s approach, emerged naturally as a certain divisor of singularities
in the limit. It was also found that differential forms with logarithmic sin-
gularities play an important role in the comparison. However the picture
in [3] was still too singular to establish a complete dictionary, particularly
for the relation between the 7-brane gauge fields in IIb and the F -theory
three-form.

In the present paper, we continue this line of thought. As we have
explained in more detail elsewhere [4], we can get a good dictionary if we
construct a stable version of the degeneration. So in the present paper we
will introduce a stable version of the Sen limit.

Finding a stable version turns out to be remarkably easy, as generi-
cally we only need a single blow-up of Sen’s family. One finds that the
elliptic Calabi-Yau splits into two pieces, a P1-bundle and a conic bundle.
When applied to elliptic K3-surfaces, this is the SO(32) picture of [5, 6],
as expected from the SO(32) heterotic/type I/IIb orientifold duality chain
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in eight dimensions. For a more general F -theory compactification, the Sen
limit is a generalization of the SO(32) limit.

The picture that emerges is that the D7/O7 configuration obtained by
Sen is very similar to spectral data of SO(2n) type, and the dictionary
between F -theory and the D7 data of type IIb takes the form of a cylin-
der mapping, even when there is no K3-fibration. This allows us to get a
complete map between the holomorphic data in F -theory and type IIb. Fur-
thermore, the picture we obtain is now completely analogous to the one for
the E8 × E8 degeneration [7], and fits beautifully with the general picture
for weak coupling limits advocated in [4]. As for the E8 × E8 degeneration
or the general picture in [4], the SL(2,Z) monodromy representation plays
no role in the Hodge theoretic approach.

Our stable family provides a solid basis for understanding the Sen limit.
In [4] we analyzed the limiting mixed Hodge structure of a certain class of
degenerations, generalizing the work of [6]. The Sen limit belongs precisely
to the class of degenerations considered in [4], so in Section 2.5 we specialize
the analysis of [4] to this case, and recover the expected form of the IIb
action.

The nilpotent orbit theorem further shows that the corrections due to
smoothing the F -theory Calabi-Yau have the characteristic form of D(−1)-
instanton corrections to perturbative IIb. Initial evidence for this inter-
pretation of the corrections computed by F -theory was given by Sen and
in [8], where the D(−1)-instantons were related to the instantons of Seiberg-
Witten theory. There has been recent progress on computing these correc-
tions directly using localization techniques in the IIb theory [9, 10].

2. The IIb limit as a stable degeneration

2.1. Sen’s description of the limit

Let us start with some generalities. The data of an F -theory compactification
consists of an elliptically fibered Calabi-Yau manifold π : Yn → Bn−1 with
section. The elliptic fibration can be represented in Weierstrass form:

(2.1) y2 = x3 + fx+ g

In order to fulfill the Calabi-Yau condition, f and g must be sections of K−4
B

andK−6
B respectively. In addition, we have to specify a suitable configuration

for a three-form field C3 with flux G4 = dC3. This part of the data will be
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ignored in the next two subsections, but will play an important role later
on.

In the physics literature, the Sen limit is specified as follows [11, 12]. We
parametrize the Weierstrass fibration as

f = − 1

48
(b22 − 24b4)

g = − 1

864
(−b32 + 36b2b4 − 216b6)(2.2)

for some choices of the bi, which are sections of K−i
B . The coefficients are

slightly different from Sen’s, and were chosen so as to emphasize the relation
to the bi appearing in Tate’s algorithm. Now we introduce a parameter t as
follows:

f = − 1

48
(b22 − 24t b4)

g = − 1

864
(−b32 + 36t b2b4 − 216t2 b6)(2.3)

The discriminant is given by

Δ = t2(−b22b8 − 8t b34 − 27t2b26 + 9t b2b4b6)

∼ −1
4
t2 b22(b2b6 − b24) +O(t3)(2.4)

Using the approximation j(τ) ∼ exp(−2πiτ) for large Im(τ), we see that

(2.5) exp(−2πiτ) ∼ b42
t2(b2b6 − b24)

, τ =
i

gs
+ a

in the t→ 0 limit. Thus the IIb string coupling goes to zero almost every-
where, except possibly at b2 = 0, and we may expect a weakly coupled IIb
vacuum.

The axion is still multi-valued. In the t→ 0 limit all the roots of the
discriminant are located at b2 = 0 and b2b6 − b24 = 0. In order to relate
this to IIb data, one looks at the t→ 0 limit of the SL(2,Z) monodromy
representation

(2.6) ρ : π1(B\Δ, pt)→ SL(2,Z)



618 A. Clingher, R. Donagi and M. Wijnholt

where pt is a base point. The monodromies around these roots were analyzed
in [11, 12], with the result that

(2.7) b2 = 0 :

( −1 4
0 −1

)
, b2b6 − b24 = 0 :

(
1 1
0 1

)

In the type IIb theory, these SL(2,Z) monodromies are generated by O7
and D7 planes respectively, so this means that we should interpret the com-
ponents of the discriminant locus at t = 0 as follows:

(2.8) O7 : b2 = 0, D7 : b2b6 − b24 = 0

Therefore we get the following picture [12]: since b2 = 0 is the orientifold
locus, the emerging Xn−1 is simply the double cover over Bn−1 with branch
locus given by b2 = 0, obtained by undoing the orientifold projection. That
is, in the limit of complex structure moduli space that we discussed above,
the Calabi-Yau manifold Yn gives rise to a Calabi-Yau (n− 1)-fold Xn−1
given by

(2.9) ξ2 = b2

where b2 ∼ K−2
Bn−1

, ξ ∼ K−1
Bn−1

. The orientifold involution is given by

(2.10) ξ → −ξ

and the positions of the branes on this (n− 1)-fold are given as above. The
D7 locus on Xn−1 is simply the pre-image of b2b6 − b24 = 0 in Bn−1 under
the orientifold projection.

The Sen limit has received significant attention recently, see for exam-
ple [13–23].

In this approach, the appearance of Xn−1 looks somewhat mysterious,
and it is not clear how physical quantities in F -theory are related to phys-
ical quantities on Xn−1 with 7-branes. For example in compactifications to
four dimensions, we would like to know the relation between the 4d super-
potentials computed by F -theory and perturbative IIb. It is impossible to
establish such relations with the methods above. We now turn to a different
approach, which will allow us to derive such relations.

2.2. Stable version of the Sen degeneration

Let us examine the limit of the elliptic Calabi-Yau more closely. With a
little bit of algebra, one finds that we can rewrite Sen’s family of Weierstrass
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fibrations in the following suggestive form

(2.11) y2 =
1

1728
[3b2 − s]s2 − b4

24
ts+

b6
4
t2

Here we defined the new variable

(2.12) s ≡ b2 − 12x

We consider the family as an n+ 1 fold Yn+1, together with a projection
πY : Y → D, where D is the disk parametrized by t.

As it stands, the degeneration above is too severe to extract all the
relevant information. For example, we see that if we set t = 0, then b4 and
b6 drop out of the equation. As a result, information about the D7-branes
appears to be lost.

As we have discussed in detail in [4], we can recover this information if we
instead consider a semi-stable version of the degeneration. The family above
does not provide a semi-stable degeneration. The variety Yn+1 is clearly not
smooth as an (n+ 1)-fold and the central fiber Y0 = π−1Y (0) has singularities
worse than normal crossing. We can fix this by blowing up the family to
resolve the singularities.

Our (n+ 1)-fold Yn+1 has conic singularities along the sublocus given by
y = s = t = 0, which further degenerate when b2 = 0. In the generic situa-
tion, we can desingularize by doing a single blow-up of Yn+1. This produces
a new family πỸ : Ỹn+1 → D. The effect of the blow-up is to replace central
fiber Y0 of the old family Y by its proper transform and the exceptional
divisor of the blow-up. The only remaining singularities of the central fiber
are of normal crossing type, which is practically as good as a smooth vari-
ety. Thus after the blow-up, we do have a semi-stable degeneration, in fact
a stable one.

Then over t = 0, we get a new Calabi-Yau n-fold

(2.13) Ỹ0 =WT ∪Xn−1
WE

where WT is the proper transform of the original fiber at t = 0, and WE

is the exceptional divisor created by the blow-up. In the generic situation,
both WT and WE are smooth, and no additional blow-ups are necessary. As
we will explain below, the normal crossing divisor

(2.14) Xn−1 =WT ∩WE
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is a double cover of Bn−1 and should be identified with the IIb Calabi-Yau.
Further, the geometry of lines on WE encodes the D7-branes.

The original fiber at t = 0 is given by

(2.15) y2 =
1

1728
[3b2 − s]s2 = 1

864
(b2 + 6x)(b2 − 12x)2

Introducing a new coordinate ỹ = y/s, we can write this as

(2.16) ỹ2 =
1

864
(b2 + 6x)

This is the equation of a rational curve. The map (x, ỹ)→ (x, y) identifies
the two points

(2.17) (x, ỹ) = (−b2/12, ±
√
−b2/576)

on each fiber. Over b2 = 0, the elliptic fiber degenerates to a cusp. The
proper transform WT replaces the double points by two distinct points,
with monodromy around b2 = 0. As pointed out in [3], these two points
fibered over Bn−1 give precisely the Calabi-Yau (n− 1)-fold Xn−1 which
Sen identified as the IIb space-time, before orientifolding. Indeed, Xn−1 is an
anti-canonical divisor of WT , so it is automatically Calabi-Yau, and should
be thought of as the ‘boundary’ of WT . So it is natural to identify this with
the IIb space-time. The Z2 involution used for orientifolding exchanges the
two sheets and the O7-planes are by definition located at the fixed points of
this involution, which is given by b2 = 0.

Now we discuss the geometry of the exceptional divisor WE . It consists
of a fibration of conics over Bn−1:

(2.18) y2 =
3b2
1728

u2 − b4
24
uv +

b6
4
v2

We write this as

(2.19) y2 = �uT Q�u, �u =

(
u
v

)
, Q =

1

576

(
b2 12 b4
12 b4 144 b6

)

The discriminant of this conic bundle is given by

(2.20) ΔWE
= det(Q) =

1

4
(b2b6 − b24) = 0

Over the discriminant locus, the quadratic form on the right-hand side fac-
torizes. Thus the generic fiber of WE is a CP1, but over ΔWE

= 0 the conic
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degenerates to a pair of lines (i.e. we get two CP1s instead of just one).
The pairs of lines intersect Xn−1 in a ‘spectral divisor’ Cn−2. This divisor is
automatically compatible with the Z2 involution of Xn−1.

The appearance of a conic bundle is familiar from the geometric engi-
neering of gauge groups of type An or Dn. Indeed, ALE spaces of type An or
Dn can both be thought of as affine conic bundles. (For exceptional gauge
groups, we need elliptic fibrations). So we anticipate that ΔWE

= 0 describes
the D7 locus, without even appealing to the (known) analysis of the limiting
monodromies. We will see it more explicitly later when we use a cylinder
mapping to relate modes of C3 to a ‘spectral sheaf’ localized at ΔWE

= 0.

Generic D7:  b2 b6 - b4
2  =  0 O7:  b2 = 0

(A) (B) (C)

Figure 1: Picture of elliptic fibers for gs = 0, before and after blow-up.
(a) The generic fiber consists of a line and a conic. They intersect in two
points, with monodromy around b2 = 0. This intersection is identified with
the IIb space-time. Contracting the conic leaves a nodal curve. (b) At the
D7 locus b2b6 − b24 = 0, the conic degenerates to a pair of lines. Blowing
down the degenerate conic yields again a nodal curve. (c) At the O7 locus
b2 = 0 the line and the conic are tangent. Upon blowing down the conic, we
get a cusp.
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The situation is described in pictures in Figure 1. In the limit t→ 0, the
generic fiber is nodal, and we get cusps over b2 = 0. The blow up replaces the
generic nodal fiber by two intersecting P1’s: a line given in Equation (2.16),
and a conic given in Equation (2.18). The blow-up separates the double
point of the nodal curve into the two intersection points of the line with the
conic. The exceptional P1 (the conic) further degenerates to a pair of lines
over b2b6 − b24 = 0. And the cusp at b2 = 0 is replaced by a line and a conic
which are tangent, i.e the two intersection points of the line and the conic
in the generic fiber coincide here.

Let us consider compactification to eight dimensions. Then Y is K3,
X1 is T

2 and C0 corresponds to 2× 16 = 32 points on the T 2, interchanged
by the involution. In other words, we get an SO(32) spectral cover on X1

associated to the vector representation, and its Fourier-Mukai transform is
a (highly reducible) SO(32) vector bundle on X1 of rank 32. One may view
this as a type I compactification, or as a heterotic compactification ‘with
vector structure,’ in the language of [24]. (The Spin(32)/Z2 heterotic string
on T 2 also admits compactifications without vector structure, but their type
I and type IIb interpretations are a bit more subtle; see [24] and [25]).

We can get enhanced gauge symmetry by making WE more singular.
This is particularly clear if we consider compactification to eight dimensions.
To understand this, it is perhaps useful to relate our picture to some other
constructions in the literature.

2.3. Rational surfaces and G-bundles on an elliptic curve

The picture we obtained is closely related to another construction in the
literature. Flat G-bundles over an elliptic curve can be related to rational
surfaces of type G. When G = Ek, we get the del Pezzo surface dPk of
degree 9− k, and the elliptic curve is an anti-canonical curve in dPk. The
generalization for G = SO(32) was discussed in [6] and for general gauge
groups it was discussed in [26–28].

The idea is roughly as follows. Suppose we are given a surface S for
which the group of line bundles Pic(S) is discrete, i.e. Pic(S) ∼= H2(S,Z),
like for a rational surface. Suppose we are also given a lattice N , and define

(2.21) T = N ⊗C∗

We would like to define a T -bundle on S. To each such T -bundle, we can
associate a line bundle (i.e. aC∗-bundle), by picking a character χ ∈ Λchar =
Hom(T,C∗). Furthermore, C∗-bundles are classified by Pic(S), so from our



The Sen limit 623

T -bundle we get an element of

(2.22) Hom(Λchar,Pic(S))

Conversely, as T is abelian, such a map reconstructs a unique T -bundle. Our
T -bundle splits as a sum of line bundles, and the only T -bundle which gets
mapped to zero is the T -bundle whose summands are line bundles which all
have their first Chern class identically zero. So T -bundles on S are classified
by Hom(Λchar,Pic(S)). Further note that

(2.23) N∨ = Hom(N,Z) = Hom(T,C∗)

so we can also say that T -bundles on S are classified by Hom(N∨,Pic(S)).
Now suppose thatH2(S,Z) has a sublattice which is isomorphic to a root

lattice Λrt for a Lie group G. Now we also take N = Λwt so that N
∨ = Λroot.

Then, we get a canonical element of Hom(N∨,Pic(S)), and therefore we get
a canonical T -bundle on S. More precisely, the map is canonical up to an
automorphism of Λroot, which is given by the Weyl group. But T -bundles
related by an action of the Weyl group determine the same G-bundle, where
we identify T with a maximal torus of G. So we get a canonical G-bundle
on S.

If our rational surface S contains an elliptic curve E, then we can
restrict our canonical G-bundle on S to get a G-bundle on E. If further-
more [E] ∈ Λ⊥rt ⊂ Pic(S) in the sense that α(E) = 0 for any α ∈ Λrt, then
we get a flat G-bundle on E. As shown in [26–28], all flat G-bundles on
E may be recovered in this way, and moreover there exists an essentially
unique rational surface SG such that the moduli space of the flat G-bundle
on E equals the complex structure moduli space of S keeping E fixed. The
surface SG is rational and can be constructed very explicitly. We will refer
to SG as the rational surface of type G. For G = Ek, one recovers the del
Pezzo surfaces.

By considering configurations of lines, we can also construct associated
bundles Vρ for each representation ρ of G. By restriction, they yield associ-
ated bundles on E.

The main case of interest in this paper is type Dn, so let us spell out
the relevant surfaces. We start with a Hirzebruch surface F1. We have
H2(F1,Z) = 〈b, f〉 with b2 = −1, f2 = 0, and b · f = 1. Now we blow up
n points l1, . . . , ln in general position to get SDn

. The canonical bundle is
given by K = −2b− 3f +

∑
i li. The root lattice is given by

(2.24) Λrt = {x ∈ Pic(S) |x ·K = x · f = 0}
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Indeed, we may take the simple roots to be given by

(2.25) α1 = f − l1 − l2, α2 = l1 − l2, . . . , αn = ln−1 − ln

Now we consider the elliptic curve E with identity p0 ∈ E representing
the anti-canonical class. To this end, we first embed E as an anti-canonical
class in P2, using the linear system |3p0|. Next, we blow-up the image of
p0 in P2 to get E as an anti-canonical curve in F1. Finally, we blow-up
n additional points pi on E, or rather their image in F1, to get E as an
anti-canonical curve in SDn

. Recall that −K · li = 1, so the intersections by
li ∩ E = pi are the n points on E we introduced above.

We note some further aspects of this configuration. Each fiber f inter-
sects E twice, and the sum of the two intersection points is linearly equivalent
to 2p0. So E is a double covering over b = l0. It has a natural Z2 involution
interchanging the two sheets, and p0 is one of the four fixed points. Also, the
involution relates each intersection point li ∩ E = pi to another intersection
point (f − li) ∩ E = −pi. The notation −pi is justified as pi + (−pi) ∼ 2p0,
i.e. they sum to zero in the group law on E.

Finally, we consider the space of pairs (SG, E), where SG is a rational
surface of type G and E ∈ | −K|. Recall that for every v ∈ Λrt, we get a
line bundle on SG, which restricts to a line bundle Lv of degree −K · v = 0
on E. Since the identity p0 ∈ E is given, Pic0(E) is canonically isomorphic
to E. So we get a natural map

(2.26) (SG, E)→ Hom(Λ, E)/W

and the image is an open dense subset. One can compactify the space of
pairs (SG, E) by including certain singular surfaces, such that the map above
extends to an isomorphism [27].

Physically it is very natural that we should compactify by including cer-
tain singular surfaces. On the heterotic side, the moduli space has boundaries
where we get an enhanced gauge symmetry. On the F -theory side this should
correspond to a singular surface, whose resolution has a chain of −2-curves
orthogonal to the canonical class and intersecting in an ADE pattern. At
least for the En cases one can show this is exactly what happens.

Although here we only need the geometry of certain low degree curves,
it is very interesting to consider curves of arbitrary degree. The correspon-
dence predicted by heterotic/type II duality relates BPS states obtained by
quantizing membranes wrapped on a curve Σ in K3 with Σ · Σ = 2d− 2 to
Dabholkar-Harvey BPS states of ‘level d.’ Their number N(d) is computed
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by the left-moving partition function of a bosonic string compactified using
the Narain lattice 2ΓE8

⊕ 4H, i.e. we have

(2.27)
∑
d≥0

N(d) qd−1 =
1

η(q)24
= q−1

∏
n>0

1

(1− qn)24

We conjecture that there is an analogous correspondence for all the SG, with
the Narain lattice containing the root lattice for the group G.

For the case of D16 = SO(32), SG is exactly the conic bundle WE over
P1 that we obtained in the Sen limit from a K3-surface. To see this, first
note that just like SSO(32), WE is a P1-fibration over P1 such that the fiber
splits into a pair of lines {li, f − li} for i = 1 · · · 16 when ΔWE

= 0. In other
words it is clearly a Hirzebruch surface blown up in 16 points, and the only
thing left to check is the self-intersection number of the base.

It is interesting to see how the general discussion of the surfaces SG fits
exactly with our expectations about the IIb/SO(32) limit. The intersection
of WE with WT is given by the curve v = 0 in Equation (2.18). It is a
bisection of WE → B with branch points over b2 = 0. This is precisely the
elliptic curve E on SSO(32). The rank 32 bundle associated to the vector
representation of SO(32) is simply given by

(2.28) VSG
=

⊕
i

O(li)SG
⊕O(f − li)SG

By restricting V, and since li ∩ E = pi and (f − li) ∩ E = 2p0 − pi, we get
the associated SO(32) bundle on X1 given by

(2.29) VE =
⊕
i

OE(pi)⊕OE(2p0 − pi)

By tensoring with O(−p0) we get the associated flat SO(32) bundle:

(2.30) VE ⊗OE(−p0) =
⊕
i

OE(pi − p0)⊕OE(−(pi − p0))

Note that O(l0)|E = O(p0) so we could instead have started with the bundle
VSG

⊗O(−l0) and restrict that to E. In any case, we see that the spectral
cover (aka the D7-branes) precisely corresponds to the inverse image of
ΔWE

= 0 under the projection E → B. One can also construct the associated
spinor bundles, see [27].

We can further consider a relative version of these correspondences, by
fibering over a base. This has been partially worked out for the case of



626 A. Clingher, R. Donagi and M. Wijnholt

G = Ek discussed in [7, 29, 30]. It seems natural to expect a correspondence
between the following categories:

1) pairs (Zn−1, VZn−1
), where Zn−1 is an elliptic Calabi-Yau with section,

and V is a holomorphic G-bundles on Zn−1, semi-stable on the generic
fiber;

2) triples (Zn−1, CZn−1
, LZn−1

) where (CZn−1
, LZn−1

) is the spectral data
for VZn−1

, i.e. CZn−1
is the spectral cover and LZn−1

is the spectral
sheaf for some faithful representation of G.

3) triples (Yn, Zn−1, [C3]) where (Yn, Zn−1) is log Calabi-Yau and fibered
by SG, such that for each fiber we recover the dictionary between SG
and V |E discussed above. The twisting data for this fibration is the
Deligne cohomology class [C3] which lives in a certain primitive part of
the cohomology of Yn. It corresponds to the twisting data (the spectral
sheaf LZn−1

) of VZn−1
. Further discussion of such Deligne cohomology

classes can be found in Section 2.4.

4) triples (Yn, Zn−1, VYn
) where (Yn, Zn−1) is as above, and VYn

is a canon-
ical G-bundle over Yn whose restriction to Zn−1 yields VZn−1

. We
expect that that the differential character [ω3(VYn

)], where ω3 is the
Chern-Simons three-form and p1 = dω3 is the first Pontryagin class, is
equal to the Deligne cohomology class above up to a shift by a similar
class coming from the log tangent bundle.

A correspondence along these lines has been previously suggested in [31, 32].
It would be very interesting (but require some effort) to work this out more
precisely.

At any rate, the Sen limit is more general than the SO(32) limit, since
it does not require fibrations by a K3 surface. All we get in general is
the structure of a conic bundle. The An and Dn surfaces are both special
cases of conic bundles. So rather than investigating the above conjectural
correspondences, we now move on to study conic bundles.

2.4. The cylinder map for conic bundles

In this section we would like to establish the IIb/F -theory duality map. Let
us recall the main features of the central fiber. We have

(2.31) Y0 =WT ∪Xn−1
WE



The Sen limit 627

and Xn−1 =WT ∩WE is identified with the divisor of normal crossing sin-
gularities of Yn. Furthermore, Xn−1 → Bn−1 is a double cover, with branch
locus (i.e. O7-plane locations) given by b2 = 0.

For F -theory on a smooth Calabi-Yau Yt, the physical data is related to
the cohomology groups Hk(Yt) and their Hodge decomposition. In the limit
t→ 0 these become the logarithmic de Rham cohomology groups Hk

log(Y0),
where we used the shorthand notation

(2.32) Hk
log(Y0) = H

k(Y0,Ω
•
Y0
(logXn−1)).

Since Y0 fails to be smooth and complete, these cohomology groups can be
broken up into several components. This partially mirrors the fact that on
the IIb side we do not have a pure Hodge structure either, but a division
into closed string modes on Xn−1 and open string modes associated to the
D7-branes.

More precisely, the cohomology groups Hk
log(Y0) carry a natural filtra-

tion, which can be obtained as follows. On Y0 we have the short exact
sequence

(2.33) 0→ Ωp
Y0
→ Ωp

Y0
(log(Xn−1))

res→Ωp−1
Xn−1

→ 0

where res is the Poincaré residue map. This gives rise to the long exact
sequence

(2.34) · · · → Hk−2(Xn−1)→ Hk(Y0)→ Hk
log(Y0)→ Hk−1(Xn−1)→ · · ·

where the maps respect the Hodge structure, and the coboundary map
Hk−2(Xn−1)→ Hk(Y0) is a Gysin map. From this we get the filtration

(2.35) Wk ⊆Wk+1 = Hk
log(Y0)

where Wk = Hk(Y0)/im(H
k−2(Xn−1)), and Grk+1 carries a pure Hodge struc-

ture. The subspace Wk does not carry a pure Hodge structure, but we can
further decompose Hk(Y0) using the Mayer-Vietoris sequence
(2.36)

· · · → Hk−1(Xn−1)→ Hk(Y0)→ Hk(WT )⊕Hk(WE)
dk→Hk(Xn−1)→ · · ·

This gives a further step in the filtration, Wk−1 ⊂Wk, where Wk−1 =
coker(dk−1), such that Wk−1 and Grk both carry a pure Hodge structure, and
Grk−1 ∼= Grk+1. Together these give a two-step filtration on the cohomology
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Hk
log(Y0), which is known to agree with the monodromy weight filtration on

the nearby Hk(Yt). Eg. for k = 4 we have

(2.37) 0 ⊆W3 ⊆W4 ⊆W5 = H4
log(Y0)

with Gr3 ∼= Gr5 ∼= H3−(Xn−1) and Gr4 = ker(d4)/Im(H2(Xn−1)). As usual,
if we are to think of Y as an F -theory compactification rather than an
M -theory compactification, then there are some restrictions on the allowed
modes. Namely we only want to keep cohomology classes that evaluate to
zero on homology classes contained in the base or that contain the elliptic
fiber. We will always assume this in the following. We consider only the
graded pieces in this subsection, and study the filtration in more detail in
the next subsection.

We can use this decomposition ofHk
log(Y0) to compare data on Y0 to data

on Xn−1. The graded pieces Grk−1 and Grk+1 are fairly simple to analyze.
It is not hard to see that a subset of modes of C3 reproduce the IIb fields

B
(2)
NS and C

(2)
RR. Similarly one finds that a subset of the complex structure

deformations of Y0, corresponding to logarithmic (n− 1, 1) forms with a pole
along Xn−1, get mapped to involution-odd complex structure deformations
of Xn−1 by taking the residue.

In this subsection we want to discuss the remaining piece of the coho-
mology Hk

log(Y0), isomorphic to Grk
∼= ker(dk)/Im(Hk−2(Xn−1), which was

missing in [3] as WE was contracted there. We want to show that there is
an equivalence of the schematic form

(2.38) GrkH
k
log(Y0) ∼ Hk−2

v,− (Cn−2)

at least if we restrict to modes that are allowed in F -theory. Here Cn−2 is
the locus in Xn−1 wrapped by the D7-branes. In the process one needs to
deal with certain singularities of Cn−2, which we have analyzed only up to
codimension two. So we will assume that n ≤ 4.

The variety WT is merely a P1-fibration all of whose fibers are non-
singular. Using the Leray sequence, its cohomology is given by

(2.39) Hk(WT ) = Hk(Bn−1)⊕Hk−2(Bn−1)

Similarly we may compute the cohomology of WE using the Leray spectral
sequence. The variety WE admits a fibration πE :WE → Bn−1 which is a
conic bundle over Bn−1, and its fibers may degenerate. Then on the E2-page,
we encounter the sheaf cohomology groups Ek−m,m

2 = Hk−m(Bn−1, RmπE∗Z),
and the differential is a map d2 : E

p,q
2 → Ep+2,q−1

2 . Since R1πE∗Z vanishes,
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the sequence degenerates at E2. We also have R0πE∗Z = ZBn−1
. Now we

consider the remaining groups

(2.40) Ek−2,2
2 = Hk(Bn−1, R2πE∗Z)

Since taking cohomology commutes with base change in the highest degree,
for any point s on the base we have R2πE∗Z|s = H2(π−1E (s)) ∼= H2(π

−1
E (s)).

Therefore R2πE∗Z ∼= Z⊕R2
p where the first factor is the class of the total

fiber over a point s ∈ Bn−1, and R2
p is the remainder, which is localized over

the D7 locus ΔWE
= 0. Then we can define

(2.41) Hk+2
p (WE ,Z) ≡ Hk(Bn−1,R2

p)

Perhaps a simpler way to say it would be that H∗p (WE) corresponds to
those classes in H∗(WE) that evaluate to zero on homology classes that are
contained in the base Bn−1 or that contain the fiber of πE :WE → Bn−1.
The cohomology of WE is thus given by

(2.42) Hk(WE) = Hk(Bn−1)⊕Hk−2(Bn−1)⊕Hk
p (WE)

Now restricting to ker(dk), modding out by Im(Hk−2(Xn−1)), and fur-
ther restricting to allowed F -theory modes (which are classes that evaluate
to zero on homology classes contained in the base or containing the whole
elliptic fiber of Y0), we kill almost all the pieces of H

k(WT )⊕Hk(WE). We
are left with the restriction of ker(dk) to Hk

p (WE). We would now like to

give an alternative description of Hk
p (WE) in terms of some kind of ‘spectral

data.’ In fact, mathematically it has been known for quite a while that the
Hodge structure of a conic bundle is closely related to the Hodge structure
of (a double cover of) its discriminant locus [33], and we will see that this
double cover of the discriminant behaves as a brane configuration. As for
del Pezzo fibrations, the isomorphism between the remaining data can be
phrased as a cylinder map. For conic bundles, the cylinder map is particu-
larly simple.

We introduce the following notation. We have the subvariety ΔWE
in

Bn−1 given by ΔWE
= b2b6 − b24 = 0, and the subvariety Rn−1 = π∗EΔWE

⊂
WE . We denote its normalization by R̃n−1; this is the analogue of the cylin-
der [7, 29, 33, 34]. The conic degenerates to a pair of lines over ΔWE

, so
R̃n−1 consists of pairs of (unembedded) lines fibered over ΔWE

, which fur-
ther degenerate to a double line when b2 = b4 = b6 = 0. We have a natural
inclusion i : R̃n−1 →WE . We also introduce Cn−2 = Rn−1 ∩Xn−1. It is the
pre-image of ΔWE

in Xn−1, a double cover over ΔWE
, and should be thought
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of as the locus wrapped by the D7 branes before modding out by the orien-
tifold involution. When n = 4 the surface Cn−2 has double point singularities
along a curve F , which is the fixed locus of the involution. These singularities
degenerate further to pinch points when b2 = b4 = b6 = 0.

There is a natural map R̃n−1 → Cn−2 which replaces each line by the
intersection with Xn−1. However, sometimes the two lines intersect at the
same point in Xn−1, thereby yielding only a single point on Cn−2. When
n = 4 this yields exactly the curve F on Cn−2. Thus the map R̃n−1 → Cn−2
factors through

(2.43) pR : R̃n−1 → C̃n−2,

where ν : C̃n−2 → Cn−2 is obtained by requiring that each line gets mapped
to its own intersection point withXn−1. It is also precisely the normalization.
So two distinct lines always yield two distinct points in C̃n−2. Note that
C̃n−2 itself is therefore not a subspace of Xn−1 (though it may be viewed as
a subspace of the blow-up of Xn−1 along the singular locus of Cn−2).

There is a diffeomorphism symmetry on R̃n−1 which interchanges the
two lines in each fiber. This descends to an involution ρ on C̃n−2, which
has fixed points only in codimension two (corresponding to a double line in
R̃n−1) and C̃n−2/Z2 = ΔWE

. We summarize some of the relationships in the
following diagram:

(2.44)

R̃n−1 ↪→i WE

↓ pR
C̃n−2 ↓
↓
ΔWE

↪→ Bn−1

We see that there is a natural map between C̃n−2 and WE :

(2.45) c ≡ i∗p∗R : Hk−2
− (C̃n−2)→ Hk

p (WE)

Its inverse (up to a constant) is given by c∗ = pR∗i∗. This map preserves
the integral structure and the Hodge structure, up to a (1, 1) shift in the
degrees. This relates the remaining data on the F -theory and IIb sides.

Let us see why H∗p (WE) is related to the odd forms on C̃n−2. Given a
class in H∗p (WE ,Z), we restrict to the cylinder and then integrate over the
conic fibers. By definition of Hp, the integral is equal and opposite on each
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of the two lines of the fiber, so it is odd under the exchange of the two lines.
Thus the resulting class on C̃n−2 is odd under the orientifold involution.

Finally, in order to descend to Grk, we have to restrict to classes in
Hk

p (WE) that are in the kernel of d
k. Let j : Cn−2 → Xn−1 denote the embed-

ding. Applying the cylinder map to relate classes Hk
p (WE) to classes in

Hk−2
− (C̃n−2), the resulting classes are ‘vanishing’ classes in the kernel of the

map (j ◦ ν)∗. We denote such classes by Hk−2
v (C̃n−2). Thus we find that

(2.46) GrkH
k
log(Y0) ∩Hk

p
∼= Hk−2

v,− (C̃n−2)

as advertized. We explicitly wrote ∩Hk
p in order to emphasize that in F -

theory we have to exclude some classes which would otherwise be allowed,
but in the remainder we will not always state this explicitly.

Let us discuss a bit more explicitly how this relates the bosonic fields of
a D7-brane wrapped on Cn−2 to the degenerate F -theory Calabi-Yau. As
promised, this will give the geometric engineering explanation of why ΔWE

=
0 should be identified with the D7 locus of type IIb, without appealing to
SL(2,Z) monodromies (which of course gives the same answer). The bosonic
fields on a D7-brane consist of a complex adjoint and a gauge field.

The complex adjoint field of the eight-dimensional gauge theory wrapped
on Cn−2 describes the deformations of the D7 locus. These deformations live
in H0

+(C̃n−2, ν∗NCn−2
) ∼= Hn−2,0

− (C̃n−2). The switch from even to odd forms
is due to the fact that the isomorphism uses the holomorphic volume form on
Xn−1, which is odd under the orientifold involution. By the correspondence
above, this gets mapped to Hn−1,1

p (WE). Now WE carries a relative holo-
morphic (n, 0)-form Ωn,0

E ∈ h0(WE ,KWE
), and the deformations that keep

the residue fixed are parametrized precisely by hn−1,1(WE).
Similarly we can compare the data associated to the gauge field on the

D7-brane. The Picard group of line bundles on the D7-brane is isomorphic
to H1(O∗Cn−2

). In the present context, we further restrict this to classes that
are compatible with the orientifold involution. It is not hard to see that the
Picard group sits in a short exact sequence

(2.47) 0→ J 1H1
−(C̃n−2)→ H1

−(O∗C̃n−2
)→ H1,1

Z,−(C̃n−2)→ 0

where

(2.48) J 1H1 = H1
C/F

1H1
C +H1

Z

is the Jacobian. The discrete part is given by the the first Chern class c1(L) ∈
H1,1

Z (Cn−2), and the Jacobian parametrizes the continuous part. When the
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flux vanishes, the latter corresponds to the Wilson line moduli of the gauge
field. We ignored the half-integral shift in the flux quantization law, which
corresponds to an analogous shift on the F -theory side.

Now we apply the cylinder map. This maps our sequence (2.47) to

(2.49) 0→ J 2H3(WE)→ H
4(WE ,D(2))→ H2,2

Z (WE)→ 0

More precisely, we need to restrict this to H∗p . The discrete part corresponds
to G-flux. The continous part is given by the intermediate Jacobian

(2.50) J 2H3 = H3
C/F

2H3
C +H3

Z

When the G-flux vanishes, one may think of this as describing periods of the
three-form C3. Together, these two pieces of data determine a Deligne coho-
mology class in H

4(WE ,D(2)), where D(2) is the Deligne complex D(2) ={
(2πi)2Z→ Ω0WE

→ Ω1WE

}
.

The appearance of Deligne cohomology is not surprising. Just as equiv-
alence classes of holomorphic line bundles are given by generators of the
Picard group, similarly equivalence classes of the three-form field C3 (viewed
as a gerbe) are given by Deligne cohomology classes. The statement about
holomorphic line bundles is a special case of the latter, as H1(C,O∗) is
isomorphic to the Deligne cohomology group H

2(C,D(1)). The (1, 1) shift
takes this to H

4(WE ,D(2)) on the F -theory side. There are various Deligne
cohomology groups one could consider in connection with 2-gerbes. This
particular group classifies 2-gerbes together with a kind of holomorphic con-
nective structure. (Note that H

2(C,D(2)) classifies line bundles together
with a holomorphic connection). Thus we see that the cylinder map solves
the problem of relating equivalence classes of the 7-brane gauge fields in
type IIb to equivalence classes of the three-form field in F -theory.

In differential geometric terms, we may think of this as follows. The map
i∗ is a Gysin map, which can be represented by the Thom class ΞR of R in
WE [35, 36]. So given a gauge field Aμdx

μ on D7, we can promote it to a
three-form of the form

(2.51) C3 = Aμ dx
μ ∧ ΞR

on WE . Similarly, given an (n− 1, 0)-form Φ on Cn−1, we can promote it to
a form on WE which parametrizes infinitesimal complex structure deforma-
tions of WE , keeping Xn−1 fixed:

(2.52) δΩE = δΦ ∧ ΞR
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Since R is a divisor, ΞR is of type (1, 1). This explains the (1, 1) shift in the
degrees above. Conversely, the map pR∗ appearing in c∗ can be interpreted
as integrating over the fibers of pR : R̃n−1 → C̃n−2, which brings down the
degree by (1, 1). This description of the map seems to depend on a number
of choices. The formulation in terms of equivalence classes above clarifies
the map between the invariant data.

2.5. Asymptotics of the superpotential in the Sen limit

In the previous subsections, we have described a stable version of the Sen
degeneration. We saw that there was a precise dictionary between the cen-
tral fiber of the stable degeneration and the perturbative IIb data on its
boundary. In particular, we saw how the 7-brane gauge fields get mapped
to G-flux on the central fiber.

In this subsection, we want to consider F -theory compactifications on
Calabi-Yau four-folds and understand the limiting behaviour of the flux
superpotential:

(2.53) W =
1

2π

∫
Yt

Ω4,0 ∧ G

We could state the problem a little more generally. Let Ωn,0 denote
the holomorphic volume form on Yn. More precisely, let Fn denote the line
bundle over D\{0} with fiber Hn,0(Yt) for t �= 0. Let F̃n be its canonical
extension over t = 0, and let Ωn,0(t) be a local holomorphic frame. Then
much of the interesting information about the low energy theory is contained
in the periods

(2.54) ΠI =

∫
CI

Ωn,0

So we can ask for want the behaviour of the periods in the stable degener-
ation limit. Depending on the value of n, the periods can be interpreted as
computing BPS protected masses or tensions of wrapped branes. For defi-
niteness we consider n = 4, in which case the periods can also be interpreted
as computing the value of the flux superpotential, by Poincaré duality.

The approach to the periods considered here is a generalization of [6],
and a number of general aspects are explained in more detail in [6, 37]
and [4]. For general aspects of Hodge theory see [38–40]. A nice intuitive
description is given in Sections 4.3 and 4.4 of [41]. More computational
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approaches using Picard-Fuchs equations have been studied in many works,
see for example [42–50].

The question of the asymptotic behaviour of the periods in a semi-stable
degeneration limit is a classic problem in Hodge theory. Let us briefly review
some of the relevant facts. Parallel transport of homology classes (or dually
cohomology classes) around t = 0 yields an automorphism of Hk(Yt), which
can be represented as a matrixM . By a base change, we may assume that the
monodromy is unipotent, i.e. there exists an integer γ such that (M − 1)γ =
0. Let N be the log of the monodromy matrix, which is then nilpotent.

In this set-up, the Schmid nilpotent orbit theorem says that the periods
have the following asymptotic form in the limit t→ 0:

(2.55) �Π(t) ∼ e
1

2πi
log(t)N �Π0

The expression on the right hand side is called the nilpotent orbit. It should
be thought of as a perturbative approximation to the periods. The vector �Π0
is the period map for the limiting mixed Hodge structure on H4(Yt). Thus
to find the asymptotic form of the periods, we only need a way to derive
this limiting mixed Hodge structure.

By the work of Steenbrink [51], the limiting mixed Hodge structure for a
semi-stable degeneration may be read off from the logarithmic cohomology
groups of the central fiber. The Hodge filtration is found from the decom-
position

(2.56) H4
log(Y0) =

∑
p+q=4

Hp(Y0,Ω
q
Y0
(logX3))

The monodromy weight filtration is in general a bit more complicated to
describe, but for our case we already found it in Section 2.4. It is of the form

(2.57) 0 ⊆ im(N) ⊆ ker(N) ⊆ H4
log(Y0)

with graded pieces Gr5 ∼= Gr3 ∼= coker(d3) and Gr4 ∼= H2
v,−(C̃2). From the

decomposition for H3(WT ) and H3(WE) in Section 2.4, we see that both
have a piece isomorphic to H3(B3) ∼= H3

+(X3), and from the Mayer-Vietoris
sequence we then find that coker(d3) = H3−(X3).

Now in order to find the asymptotic form of the superpotential, we write
the period map for the nilpotent orbit. Let Ω0 be a generator for F

4 ∩W5.
In the logarithmic description, this is a logarithmic (4, 0) form on Y0. The
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nilpotent orbit is given by

(2.58) Ω0(t) ≡ e
1

2πi
log(t)NΩ0 = Ω0 +

1

2πi
log(t)NΩ0

Here we simply expanded the exponential and used that N2 = 0. Choose a
basis

〈
ei, f j , gk

〉
forH4(Yt,Z) which is adapted to the weight filtration. That

is,
〈
ei
〉
projects to a basis for W5/W4,

〈
f j
〉
projects to a basis for W4/W3,

and
〈
gk
〉
is a basis for W3. The matrix N acts as Nei = gi, Nf j = Ngk = 0.

Fixing an isomorphism H4(Yt,Z) ∼= ZdimH4

using the basis above, we can
write the period map as

(2.59) Ω0(t) = ei
∫
ei

Ω0 + f j
∫
fj

Ω0 + gk
(

1

2πi
log(t)

∫
ek

Ω0 +

∫
gk

Ω0

)

We can write more explicit expressions for each of the terms using the iso-
morphisms of Hodge structures found in Section 2.4.

Let us consider the first term in (2.59) above. Using the isomorphism
F 4Gr5 ∼= F 3H3−(X3), we can write

(2.60)

∫
ei

Ω0 =

∫
di

Ω3,0

Here
〈
di
〉
is a basis for H3−(X3,Z) which gets mapped to the image of

〈
ei
〉
in

Gr5, and 〈di〉 is its dual. The (3, 0) form should be thought of as the residue
of the logarithmic (4, 0) form. Note that the holomorphic (3, 0) form is odd
under the involution.

Now we come to the second term in (2.59). In order to understand it, let
us consider the Hodge structure on W5/W3. We can fit it in a short exact
sequence

(2.61) 0→ Gr4 →W5/W3 → Gr5 → 0

We are interested in the F 4 part of W5/W3. It has a contribution from
F 4Gr4, and another from lifting the F 4 part of Gr5 to W5/W3. We actu-
ally have F 4Gr4 = 0 (as well as F 4 ∩W4 = 0), and the F 4 part of Gr5 was
described in (2.60), so we only need to describe its lift to W5/W3. The lift
is described by the extension class of (2.61). It may be written explicitly in
terms of a representing homomorphism ψ [52], which corresponds precisely
to the second term given by f j

∫
fj
Ω0 in (2.59).

In order to write a more useful expression for ψ, we may use the isomor-
phisms for the graded pieces of the Hodge structure found in Section 2.4.
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Then we see that the short exact sequence (2.61) is very similar to an exten-
sion sequence on X3 of the form

(2.62) 0→ H2
v(C2)→ H3(X3, C2)→ H3(X3)→ 0

which holds for example if C2 is very ample, as we will assume. However,
the above sequence uses H2(C2), whereas Gr4 is related to H2(C̃2). They
are certainly not isomorphic, since H2(C2) doesn’t even carry a pure Hodge
structure. So we need the precise relation between them.1

Let us recall the precise relation between C2 and C̃2. The surface C2 is
invariant under the involution, and singular along the fixed locus, which is
a curve that we will call F . The normalization replaces this fixed locus by a
double cover F̃ → F , which is branched at the pinch points.

By Leray, we have H2(C̃2,Z) = H2(C2, ν∗Z). Now we can write a short
exact sequence of local systems

(2.63) 0→ ZC2
→ ν∗ZC̃2

→ LF → 0

where LF is a local system supported on F . This gives the long exact
sequence

(2.64) · · · → H1(LF )→ H2(C2,Z)→ H2(C̃2,Z)→ H2(LF )→ · · ·

So to find the relation between H2(C̃2) and H
2(C2), we need to know more

aboutH2(LF ). We do this by considering the analogous short exact sequence
on F :

(2.65) 0→ ZF → ν∗ZF̃ → LF → 0

In our generic situation, F̃ is a smooth curve with a Z2 involution and iso-
lated fixed points, and F is its quotient. The associated long exact sequence
is

(2.66) · · · → H2(F,Z)→ H2(F̃ ,Z)→ H2(LF )→ 0

We have thatH2(F,Z) = H2(F̃ ,Z) = Z, and the mapH2(F,Z)→ H2(F̃ ,Z)
is multiplication by two. Therefore we haveH2(LF ) = Z2. But Hodge theory

1Another option is to work with intersection cohomology. Since the intersection
cohomology of a variety is the same as that of its normalization, this will yield the
same result as the approach below.
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depends on the rational structure, so we should kill the torsion. Going back
to (2.64), we see that

(2.67) H2(C̃2,Q) ∼= H2(C2,Q)/Im(H
1(LF ))

where we denoted the rational version of LF by the same name. From the
remaining part of the long exact sequence (2.66), we see that H1(LF ) ∼=
H1(F̃ )/H1(F ) ∼= H1−(F̃ ).

Now when C2 is very ample,H
2(C2) decomposes asH

2
v(C2)⊕ j∗H2(X3),

where j : C2 → X3 is the inclusion and H∗v = ker(j∗). So we can consider
the image of H1−(F̃ ) in H2

v(C2) by projecting. We again denote this by

Im(H1−(F̃ )). Then from (2.62) we get the sequence
(2.68)

0→ H2
v(C2)/Im(H

1
−(F̃ ))→ H3(X3, C2)/Im(H

1
−(F̃ ))→ H3(X3)→ 0

We can further decompose this into even and odd parts under the orien-
tifold involution, and Im(H1−(F̃ )) actually sits in the odd part, though we
could have further projected if that had not been the case. Thus we get the
sequence
(2.69)
0→ H2

v,−(C2)/Im(H
1
−(F̃ ))→ H3

−(X3, C2)/Im(H
1
−(F̃ ))→ H3

−(X3)→ 0

Now replacing H2
v,−(C2)/Im(H1−(F̃ )) by H2

v,−(C̃2) ∼= Gr4, we see that (2.69)
above is the sequence that is equivalent to (2.61).

We proceed to write the representing homomorphism ψ [52] for the
extension class of (2.61) or equivalently (2.69). Denote by

〈
cj
〉
an integral

basis for H2
v,−(C2)/Im(H1−(F̃ )) which maps to the image of

〈
f j
〉
in Gr4

under the isomorphism. The duals are cycles cj ∈ H2(C2) that pair to zero

with Im(H1−(F̃ )) and become homologically trivial when embedded in X3.
We choose a set of three-chains Γj in H3(X3, C2) such that ∂Γj = cj and

such that the image of H1−(F̃ ) in H3(X3, C2) evaluates to zero on Γj . The
representing homomorphism for the extension class is then given by

(2.70) ψ =
∑
i

cj
∫
Γj

Ω3,0

In other words, we have found that

(2.71)

∫
fj

Ω0 =

∫
Γj

Ω3,0
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These expressions were studied in some detail in [53], under the assumption
that C2 is smooth. In that case they vary holomorphically in the moduli, and
the critical locus is precisely the Noether-Lefschetz locus. In the present case
it seems that these expressions still vary holomorphically, but the critical
locus corresponds to the Noether-Lefschetz locus for involution odd classes
on C̃2. As usual the chain integrals depend only on the ‘endpoints’ cj ⊂ C2,
up to identifications by the periods of Ω3,0. Indeed if we choose any other set
of Γ̃j such that ∂Γ̃j = cj , then Γ̃j − Γj is a closed cycle and the difference in
the integral is a period of Ω3,0. So modulo the identifications, we may think
of these expressions as localized on the D7 locus.

An alternative approach to writing an expression for ψ, which is in prac-
tice probably much simpler, would be to blow up X3 along the intersection
of the D7 and O7 locus. The proper transform of C2 is the normalization
C̃2, and since X3 is smooth the Hodge structure of X3 lifts to the blow-up
X̃3. However we wanted to demonstrate that it is in principle possible to
work only on X3.

Finally we consider the last term (2.59), given by gk
∫
gk
Ω0. We may

think of this as being associated to the extension

(2.72) 0→W3 →W5 →W5/W3 → 0

We have F 4 ∩W3 = 0 so the non-zero part comes entirely from the exten-
sion class. In order to write the representing homomorphism, we take an
integral basis dk for W3

∼= H3−(X3) and the dual basis dk for H3,−(X3),
and then lift the dk to W∨

5 . We can represent the lifts by four-cycles of
the form (ck,1, ck,2), where c1 and c2 are four-chains on WE and WT with
∂ck,1 = −∂ck,2 = dk ∈ H3,−(X3). Then the representing homomorphism can
be written as the integral of the logarithmic (4, 0) form over these four-
cycles. By changing representatives, we see that up to natural ambiguities
given by periods of the form

∫
ei
Ω0 and

∫
fj
Ω0 this integral depends only on

the ‘end-points’ dk. We will informally write it as

(2.73)

∫
gk

Ω0 =

∫
dk

Φ

Altogether, we found that the period map for the nilpotent orbit can be
written as

(2.74) Ω0(t) = ei
∫
di

Ω3,0 + f j
∫
Γj

Ω3,0 + gk
(

1

2πi
log(t)

∫
dk

Ω3,0 +

∫
dk

Φ

)
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In order to compare with the usual expressions in perturbative type IIb, let
us define

(2.75) τ =
1

2πi
log(t)

Then by using Poincaré duality on X3, we see that the flux superpotential
W = 1

2π

∫
Yt
Ω4,0 ∧ G has the following asymptotic form in the limit t→ 0:

(2.76) W =

∫
X3

Ω3,0 ∧ H+ WD7 +

∫
X3

Φ ∧ H̃NS +O(τe2πiτ )

where we defined H = HRR + τ H̃NS , and WD7 is the superpotential for
D7-branes wrapped on C2 with worldvolume flux F ∈ H2−(C2)/Im(H1−(F̃ )).
More explicitly, let us write the worldvolume flux F of the D7-brane as

(2.77) F− F0 = Nj c
j

withNjc
j ∈ H2

v,−(C2)/Im(H1−(F̃ )) and F0 ∈ j∗H2(X3). ThenWD7 is defined
to be the following integral linear combination of chain integrals:

(2.78) WD7 =
∑
j

Nj

∫
Γj

Ω3,0.

An alternative way to write it is WD7 =
∫
D7Tr(φ

2,0 ∧ (∂̄A0
a+ a2) + Φ2,00 a2)

where a = A−A0 and φ = Φ− Φ0, by analogy with (or dimensional reduc-
tion from) the expression ωCS = Tr(adA0

a+ 2
3a

3) for the Chern-Simons form.

Again since C2 is not smooth, this should be thought of as living on C̃2.
The exponential terms in (2.76) are the corrections to the nilpotent

orbit. Since Im(2πiτ) is precisely the action of a D(−1)-instanton, these
corrections should be interpreted as computing D(−1)-instanton corrections
to the perturbative IIb superpotential.

3. Further aspects of the correspondence

In this section, we would like to explain how a few additional aspects of the
relation between perturbative IIb and F -theory can now be given a clear
explanation.
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3.1. Tadpoles, Euler character and
Chern-Schwartz-Macpherson classes

Our approach gives a clear and conceptual way to match the Euler character
of the F -theory Calabi-Yau with a certain tadpole constraint in type IIb. The
tadpole that we want to consider is the one associated to the RR four-form
field C(4), with flux F(5). In theM -theory description, this is the tadpole for
the six-form C(6), with two indices along the elliptic fiber.

The tadpole gets contributions from localized D3-branes, curvature and
fluxes. The constraint is given by

(3.1) 0 = dF(7) = ND3
− 1

24
χ(Yt) + 〈G,G〉

where 〈G,G〉 = 1
2

∫
Y G ∧ G. On the other hand, in perturbative IIb we have

an analogous relation of the form

(3.2) 0 = dF(5) = ND3
− 1

24
χIIb(O7, D7) +

1

im(τ)
〈H,H〉+ 〈F,F〉

Here χIIb(O7, D7) denotes curvature contributions from the D7 and O7-
planes, and the flux contributions are given by 〈H,H〉 = ∫

Z H ∧ H and 〈F,F〉 =
1
2

∫
D7 F ∧ F. We can try to compare the individual contribution from local-

ized branes, curvature and fluxes. This leads us to the expectation that

(3.3) χ(Yt)→ χIIb(O7, D7), 〈G,G〉 → 1

im(τ)
〈H,H〉+ 〈F,F〉

in the Sen limit. In this subsection, we want to explain more explicitly
how the first equality comes about. The matching of the flux contribution
follows from the polarization on H

4(Y0,Ω
•(logX3)). Using the basis 〈e, f, g〉

of Section (2.5), by standard results on the monodromy weight filtration and
the cylinder map we have |(e, f, g)|2 = Q3(e, g) +Q2(f, f) where Q3 is the
polarization on H3(X3,Z) and Q2 is the polarization on H

2(C̃), so the only
thing one would need to check is the normalizations.

Previously, comparisons of Euler characters were done using formulae
similar to those of [54], which relate Chern classes of Y to Chern classes
on the base of the elliptic fibration [13, 14, 55]. The basic idea is that the
Euler character of a smooth elliptic curve is zero, so the Euler character
of Y only gets contributions from the discriminant locus. One can then
compare the resulting expression for finite t with the expectation from the
perturbative IIb theory. We would like to do the computation of the Euler
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character directly at t = 0. Our computation is actually simpler, because
at t = 0 we just have P1-fibrations, whereas for t �= 0 we have to deal with
elliptic fibrations.

The Calabi-Yau manifold Y0 =WT ∪Xn−1
WE however has normal cross-

ing singularities, and its topology is generally different from the smooth
fibers. However for a normal crossing degeneration the Betti numbers of the
smooth fibers agree with the logarithmic Betti numbers of the central fiber.
Thus the Euler character we want is computed on the central fiber by

(3.4)
∑
k

(−1)k dimHk
log(Y0) = χ(WT ) + χ(WE)− 2χ(Xn−1)

Note that this differs from the topological Euler character of Y0, which is
given by χ(Y0) = χ(WT ) + χ(WE)− χ(Xn−1). It gets an extra contribu-
tion −χ(Xn−1) from the logarithmic forms, as we can see from the exact
sequence (2.34). Clearly the comparison that we want to do would not work
if we used the ordinary Euler character.

There is an alternative way to derive the formula (3.4) that uses some
results from the theory of Chern-Schwartz-Macpherson classes, which are
defined for smooth as well as singular varieties.2 Although we strictly do
not need it here, we briefly digress to explain this because it allows one to
compare more general Chern classes.

The CSM classes are obtained from a natural transformation

(3.5) csm∗ : C(V )→ A∗(V )

on a variety V . Here C(V ) is the category of constructible functions, whose
elements are given by finite linear combinations

∑
mi1Di

, where mi ∈ Z
and 1Di

denotes the function which takes the value 1 on the closed subset
Di ⊂ V and zero on the complement. The category A∗(V ) consists of integer
linear combinations of closed subvarieties of V modulo rational equivalence,
i.e. linear combinations which are divisors of a rational function are set to
zero. There is a further natural map from A∗(V )→ H∗(V ), which associates
to an element of A∗(V ) its homology class.

The total CSM class is now defined as csm∗(1V ), where 1V is the identity
function on V . It has the following interesting normalization property: on
a smooth variety, csm∗(1V ) agrees with the (Poincaré dual of the) total
Chern class of the tangent bundle. Together with naturality under push-
forwards of proper maps, this determines the transformation csm∗ uniquely.

2We are grateful to P. Aluffi for a very useful correspondence on CSM classes.
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One can show that the degree of csm∗(1V ) always yields the topological
Euler character. This is not an analytic invariant, so it tends to jump under
semi-stable degeneration. Thus this is not exactly what we want.

However Verdier has shown the existence of a constructible function ψ,
such that csm∗(ψ) is an analytic invariant. This is referred to as ‘Verdier
specialization’ [56]. In particular, it does not jump under semi-stable degen-
eration. So csm∗(ψ) is the natural definition of Chern classes on our singular
variety, if we want these classes to agree with classes on the smooth fibers
under a degeneration. We suspect that these Chern classes can probably
also be formulated in terms of logarithmic forms and the log tangent bun-
dle [57, 58].

The function ψ is easy to describe [59]. For smooth varieties of course
we have ψ = 1V . For singular varieties with normal crossing singularities,
ψ = m on a component of multiplicity m, and zero at any point which lies
on multiple components.

The upshot of our discussion is that the numerical invariant of Yn which
agrees with the Euler character of the generic fiber of our family Y is given
by the degree of csm∗(ψ). Furthermore, we have ψ = 1 on WT \Xn−1 and
WE\Xn−1, but ψ = 0 on Xn−1. In other words, we have

(3.6) ψ = 1WT
+ 1WE

− 2× 1Xn−1
.

Therefore we want to calculate

(3.7) deg(csm∗(ψ)) = χ(WT ) + χ(WE)− 2χ(Xn−1)

which is of course exactly the same formula we found above.
The computation is now easily done. Since WT is a P1-fibration without

any singular fibers, we have

(3.8) χ(WT ) = χ(P1)χ(Bn−1) = 2χ(Bn−1).

Similarly, we can use the fact that Xn−1 is a double cover of Bn−1 branched
over the orientifold locus. Assuming the orientifold locus is smooth, we
clearly have

(3.9) χ(Xn−1) = 2χ(Bn−1)− χ(O7).

The only computation that is slightly tricky is χ(WE), as the conics can
degenerate. Assuming that the fiber over ΔWE

always consists of a pair of



The Sen limit 643

lines, we would have

(3.10) χ(WE) ∼ 2χ(Bn−1) + χ(ΔWE
)

since the Euler character of a smooth conic is 2, but the Euler character
of a conic that has degenerated to a pair of lines is 3. However the conic
could further degenerate in higher codimension, and the type of singularity
depends on the dimension n. To be definite, we concentrate on F -theory
compactifications on Calabi-Yau four-folds, i.e. we take n = 4. Then we only
need to consider singularities up to codimension three.

From Equation (2.18) for WE , we then see that when b2 = b4 = b6 = 0
the conic can further degenerate to a double line given by y2 = 0, whose
topological Euler character is 2. These are exactly the ordinary double point
singularities of ΔWE

= 0. Let us denote the number of such points by nd.
Then we have3

(3.11) χ(WE) = 2χ(Bn−1) + χ(ΔWE
)− nd

Adding up the contributions, the various χ(Bn−1) all cancel, and we find

(3.12) deg(csm(ψ)) = 2χ(O7) + χ(ΔWE
)− nd

Now we can compare this with perturbative IIb. The curvature contribution
to the D3 tadpole which has been proposed in the IIb context is [13, 14]:

(3.13) χIIb = 2χ(O7) +
1

2
χ0(D7)

Here χ0 is defined as χ0 = χ(C̃)− nd, where C̃ is a two-fold covering of
ΔWE

= 0 which two-to-one generically and one-to-one at the ordinary double
points. It follows that χ0 = (2χ(ΔWE

)− nd)− nd. Plugging in, we see that
the F -theory expression naturally matches with the answer expected from
perturbative type IIb.

Note that the appearance of the cover C̃ → ΔWE
is natural from several

points of view. From the F -theory perspective, the covering C̃ → ΔWE
is

two-to-one precisely when the fiber of the cylinder R̃3 → ΔWE
consists of a

3Perhaps a better way to state it is as follows: we have χ(WE) = 2χ(Bn−1) +
1
2χ(R̃n−1). The fibers of R̃n−1 → ΔWE

consists of two lines generically, and a dou-
ble line over the singular locus of ΔWE

= 0. Thus we have χ(WE) = 2χ(Bn−1) +
χ(ΔWE

)− χs(ΔWE
) where χs(ΔWE

) denotes the Euler character of the singular
locus of ΔWE

.
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pair of lines, and one-to-one when the fiber of R̃3 → ΔWE
is a double line

(which is topologically a single line). On the other hand it is the natural
object from the point of view of spectral covers for the vector representation
of SO(2n), where it appears as the normalization of the ‘naive’ cover. This
is why C̃ already appeared in our F -theory/IIb duality map.

3.2. Singularities of SO(2n) spectral covers

We saw above that the D7 locus generically has singularities in the pres-
ence of O7-planes. This has led to a number of puzzles and claims about
discrepancies, although many of these issues were resolved in [14]. In this
subsection, we would like to revisit some of these issues and discuss them
from the point of view of spectral covers. We would like to emphasize here
that such singularities are in fact a well-known feature of almost all spec-
tral covers, including covers for the vector representation of SO(2n), or the
anti-symmetric representation of the An-series, and are completely natural.
As such they were already encountered for example in the heterotic model
building literature.

Intuitively the reason for such singularities is that over a sublocus on
the base, different weights of a representation often get mapped to the same
point on the corresponding spectral cover, for representation theoretic rea-
sons. When that happens because two weights are exchanged by monodromy,
we expect the cover to be smooth, but otherwise we expect singularities that
can not be gotten rid off by varying parameters. It is important to remem-
ber however that spectral covers with such singularities still correspond to
smooth non-abelian configurations; the singularities only appear because we
insist on giving an abelianized description.

For the purpose of this paper, we are interested in the spectral cover C
for the 2n-dimensional vector representation of SO(2n), see eg. [60, 61]. It
is given by the equation

(3.14) PSO(2n) = det(λI − Φ) = λ2n + a2λ
2n−2 + · · ·+ a2n = 0

i.e we only have even terms and the equation is invariant under λ→ −λ.
The ai are various Casimirs of the Higgs field Φ. Furthermore, a2n is the
determinant of an anti-symmetric matrix, so it is a square, namely the square
of the Pfaffian of Φ.



The Sen limit 645

This cover is singular at the fixed points of the involution ρ(λ) = −λ.
Near the singularities of (3.14) we can write the equation of C as

(3.15) zλ2 + w2 = 0

where z and w are local coordinates such that z ∼ λ2n−2 + · · ·+ a2n−2 and
a2n ∼ w2. In codimension one on C, taking z constant we see that λ = w = 0
is a double point singularity. In codimension two on C, allowing z to vary
we recognize λ = z = w = 0 as a cuspidal point or pinch point singular-
ity. Again, we emphasize that these singularities of C are artefacts of the
abelianization. The corresponding non-abelian configurations are completely
smooth (provided the Higgs bundle is stable).

The usual way to deal with the singularities of SO(2n) covers is to con-
sider the normalization ν : C̃ → C [60, 61]. In the local coordinates above,
the normalization C̃ is explicitly given by introducing a new coordinate
x = −w/λ, and rewriting (3.15) as z + w2/λ2 = 0. In other words, we have

(3.16) xλ+ w = 0, x2 + z = 0

Locally the surface is now well-parametrized by x and λ. The map to C
is simply given by projecting out x. Under this projection the curve λ = 0
on C̃, which is parametrized by x, is mapped to C by identifying ±x. The
projection is an isomorphism for λ �= 0. The involution ρ of C lifts to the
involution ρ̃ : λ→ −λ, x→ −x of C̃. One easily checks that C̃ is smooth
and the fixed points of the involution are precisely the lifts of the pinch
points of C.

To get a better sense of the spectral sheaf, let us consider the following
model for an adjoint SO(2n) Higgs field:

(3.17) Φ =

⎛
⎜⎜⎝

0 a b 0
−a 0 0 1
−b 0 0 0
0 −1 0 0

⎞
⎟⎟⎠

Then det(λI − Φ) = λ4 + (a2 + b2 + 1)λ2 + b2, so this works as a local model
near the singularities (3.15). The spectral sheaf is given by the cokernel of
(λI − Φ). We find that the matrix is rank four generically, drops to rank
three along generic points on the spectral cover, and drops to rank two along
generic points on the double curve of the spectral cover. At the pinch point it
is still rank two. So the spectral sheaf is rank one along generic points on the
spectral cover C, and rank two along the double curve, including the pinch
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point. This means that the spectral sheaf generically lifts to a line bundle
L on the normalization C̃, since the push-forward ν∗L of a line bundle is
rank one generically and rank two at the image of the curve λ = x2 + z = 0
(even at the pinch point, which is scheme theoretically a double point on
this curve). The line bundle L should be compatible with the orientifold
involution, i.e. ρ̃∗L ∼= L∨ ⊗KC̃ .

The above behaviour of an SO(2n) spectral cover seems similar to the
behaviour for the D7/O7 planes derived by Sen. This is not surprising given
the relation between SO(32) type I (or heterotic) on T 2 and IIb with D7/O7
branes on T 2, which is by T -duality on the T 2. By fibering the elliptic curve
over a base, it is clear that the spectral data of a type I SO(32) bundle must
agree exactly with the D7/O7 data of Sen.

We make a brief comment about the D-terms. Let L denote the spectral
sheaf. Given what is known about principal SO(2n) Higgs bundles, we expect
D-flatness to be equivalent to the stability condition

(3.18) K ⊂ L ⇒ μ(K) < μ(L)

where the slope μ is defined with respect to an ample line bundle O(J) using
the Hilbert polynomial. (We will ignore the issue of Mumford-Takemoto
stability versus the slightly stronger condition of Gieseker stability here;
they ar very similar but use a slightly different notion of the slope). Due
to the relation ρ∗L ∼= L∨, the slope of L vanishes automatically. So L is
stable if there exist no subsheaves of positive or zero slope. Note that the
subsheaf K is not required to be compatible with the orientifold involution.
It is crucial that we use stability and not some primitiveness condition of
the form F ∧ J = 0, since D7/O7 systems are intrinsically non-abelian at
the singularities.

3.3. D3-instantons versus M5-instantons

Another interesting issue is the comparison between D3-instantons in IIb
andM5-instantons in F -theory as t→ 0. We will briefly review some results
from [3, 62], and point out some issues that could not be resolved at the time.
Given the explicit dictionary derived here between F -theory data and IIb
data for t = 0, we can now fill some of these gaps.

TheM5-branes in question wrap the elliptic fiber. Since the elliptic fiber
splits into two in the Sen limit, the M5-brane splits into two pieces as well:

(3.19) M5T =M5 ∩WT , M5E =M5 ∩WE
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Recall also that the worldvolume of the IIb D3 instanton (before orientifold-
ing) is the intersection of the M5 with the normal crossing divisor Xn−1, or
equivalently it is the intersection D3 =M5T ∩M5E .

The contribution of an M5 instanton to the superpotential is given by
the M5 partition function, after factoring out four universal bosonic zero
modes and two universal fermionic zero modes. The worldvolume theory of
the M5 consists of five scalars φ, a spinor ψ with eight on-shell degrees of
freedom, and a chiral two-form B+. Thus the partition function is of the
schematic form

(3.20) ZM5 = ZφZψZB+

In the Sen limit the M5 worldvolume has become reducible (with normal
crossing singularities), so we have be more careful in saying what we mean
by the partition function. Without a UV completion we cannot derive this
from first principles, but we can give a reasonable prescription, because
the singularities are rather mild. Our point of view will be that the modes
of the worldvolume fields have to be glued along the intersection M5T ∩
M5E , analogous to the non-trivial gluings of reducible D-branes discussed
in [2, 3, 63]. Then the zero modes of the various fields are described by
the logarithmic cohomology groups Hk

log(M5), in the same way as the zero

modes on a smooth M5-brane are described by the various Hk(M5).
We can again use (2.34) to relate Hk

log(M5) to the ordinary cohomology.
This yields a filtration

(3.21) 0 ⊆Wk−1 ⊆Wk ⊆Wk+1 = Hk
log(M5)

with Wk−1 = im(N) and Wk = ker(N), much like we saw for the F -theory
Calabi-Yau Y0 itself. We also have the obvious Hodge filtration onHk

log(M5).
Together with a rational structure, these give the limiting mixed Hodge
structure for the Sen limit of the M5-brane.

The D3 partition function is of the schematic form

(3.22) ZD3 = ZφZψZFZλ37

In the language of the present paper, it was shown in [3] that reduction of the
M5-brane along M5T reproduces most of the expected degrees of freedom
on a D3-instanton in type IIb. More precisely, the forms used for reduction
on M5T in [3] can be extended along M5E . This is the gluing prescription
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mentioned above, and yields

(3.23) Zφ → Z
(5)
φ , Zψ → Zψ, ZB+ � Z

(1)
φ ZF

It was further argued that the chiral two-form on the M5-brane should
have additional modes, which reproduce the partition function Zλ37

due to
chiral currents on the intersection of the D3-instanton with the D7-branes.
However the picture in [3] was too singular to explicitly check this. Our semi-
stable version of the degeneration solves this problem, and as we will now
see, these modes are indeed present and they simply come from reduction
along the fibers of M5E .

To see this, let us simply restrict the cylinder map to theD3-worldvolume.
This yields a map

(3.24) c : H i,j
− (Σ̃37)→ H i+1,j+1

p (M5E)

where Σ37 = D3 ∩D7, and ν : Σ̃37 → Σ37 is its normalization. The subscript
‘p’ stand for primitive, i.e. we consider the cohomology classes orthogonal
to the base and the anti-canonical. The self-duality condition on the chiral
two-form means that the fluxes of interest live in H2,1 ⊕H0,3, and further
restricting to Hp kills any (0, 3) part. Under the inverse of the cylinder map,

fluxes in H2,1 get mapped to chiral currents J = ∂φ in H1,0(Σ̃37).
More precisely, what we want to do is the following. Let us fix a basis

{Ai, B
j} for H3(M5,Z) such that Ai ∩Bj = δji . We also take a basis ωi for

the imaginary self-dual harmonic three-forms. Then up to a suitable change
of basis, we have

(3.25)

∫
Ai

ω̄j = δij ,

∫
Bj

ω̄i = τij

where τij is the period matrix. We also define zi to be periods of C3 (ass-
suming that the restriction G|M5 is trivial in cohomology; the modification
of the story when G|M5 is non-zero is explained below):

(3.26) C3 = 2πziωi + c.c.

Then the partition function for B+ obtained from summing over fluxes and
holomorphic factorization is essentially proportional to the theta function
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on the intermediate Jacobian of the M5-brane [64]

(3.27) ZB+ ∝ Θ(τ |z) =
∑

exp(
1

2
ninj2πiτij + 2πinizi)

So to get the asymptotic form of ZB+ as t→ 0, we should simply substitute
the periods τij(t) and zi(t) for the nilpotent orbit associated to the limiting
mixed Hodge structure on H3

log(M5). The analysis is slightly complicated
but in principle it proceeds exactly like the derivation of the asymptotic
form of the superpotential in Section 2.5.

Let us here simply note the main feature. From our stable version of
the degeneration, we see that for t = 0 the intermediate Jacobian admits a
fibration JM5 → JD3 with fiber given by JΣ37

. Here by JΣ37
we mean the

part of the Jacobian that is odd under the orientifold involution. Then the
theta function roughly speaking factorizes as ΘD3ΘΣ37

; more precisely when
we fix the data on the D3 then we recover the theta function of JΣ37

. The
theta function associated to JΣ37

can be reinterpreted as (being proportional
to) a partition function of chiral fermions. In the perturbative IIb theory,
this is precisely the partition function Zλ37

of chiral fermions obtained from
quantizing Euclidean D3-D7 strings. It is related to the chiral two-form by
bosonization, i.e. we have J = ∂φ ∼ λλ. Similarly, the theta function ΘD3 is
proportional to the partition function ZF of U(1) Yang-Mills theory on the
D3 [65]. It arises essentially from the sum over worldvolume fluxes on the
D3-instanton.

Thus altogether we have

(3.28) ZB+ → Z
(1)
φ ZFZλ37

and therefore, modulo subtleties in properly defining the partition functions,
ZM5 reproduces all the pieces of ZD3 in the Sen limit.

As emphasized in [3], it is important to note that the intermediate Jaco-
bian of the M5-brane is in general not isomorphic to the Jacobian of any
Riemann surface. Neither does it admit a projection to a lower dimensional
abelian variety, with fibers that could be interpreted as the Jacobian of a
Riemann surface (or as a Prym). This happens only in special cases, ana-
lyzed here and in [3], and even then only for a piece of it as we saw above.
Thus it is in general not possible, nor is it necessary, to reinterpret ZB+ as
a partition function of fermions, using the 2d Bose-Fermi correspondence.

Now we would like to take a closer look at the vanishing behaviour.
Suppose that we have zero modes for the λ37 fermions in IIb. In this case
the partition function vanishes, but we can still get non-zero contributions
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to derivatives of the superpotential, which inserts zero modes in the path
integral. Let us see how the computations in F -theory and IIb are related.
Again, the picture here was already argued in [3], but now we can make it
more precise. It is essentially completely analogous to the relation between
F -theory and the heterotic string (which is of course not surprising given
that for K3-fibrations we recovered the SO(32) degeneration).

We have

(3.29) Zλ37
(τ, z) ∼

∫
dλe

∫
Σ37

λ∂̄Aλ

Here A is the restriction of the 7-brane gauge field, z are its periods (assum-
ing

∫
Σ37

F = 0), and τ describes complex structure of Σ37, which is sensitive
to deformations of the 7-branes or the background Calabi-Yau Xn−1.

Although the contribution to the superpotential vanishes when there are
λ37 zero modes (eg. when

∫
Σ37

F �= 0), we may still get non-trivial contribu-
tions to derivatives of the superpotential. In particular, chiral fields corre-
sponds to infinitesimal deformations of τ and z, so instanton contributions
to holomorphic couplings of such chiral fields involve covariant derivatives
of the partition function Zλ37

(τ, z) with respect to τ and z. Differentiating
with respect to the background fields pulls down factors of J ∼ λλ from
the exponent in Zλ37

. These can absorb fermion zero modes and lead to a
non-vanishing path integral.

On the M5-side, we may not be able to recover the desired correlators
by differentiating ZB+ , as the corresponding chiral fields may be massive in
theM -theory picture. However there are still distinguished, gauge-covariant
operators that we can insert in the partition function. Suppose that ourM5-
worldvolume contains a primitive holomorphic cycle α ∈ H2(M5,Z). Then
we can consider the Wilson surface operator4

(3.30) W (α) = e
∫
α
B+

Note that these operators transform non-trivially under gauge transforma-
tions: Since δB+ = λX ωX , we have

(3.31) W (α)→ e
∫
α
B++λXωX

= eiλXQX
α W (α)

4In [66] this was also phrased in terms of M2 branes ending on the M5-brane.
We prefer to phrase it in terms of operators since we are not changing the solution
of the equations of motion that we are expanding around.
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where QX
α =

∫
α ω

X . The correlation functions of such observables inserted
can in principle be computed using holomorphic factorization. In fact with
these insertion W (αi), we see that they organize as a source term for B+:

(3.32)

∫
M5

B+ ∧
[
G

2π
+ α∗1 + · · ·+ α∗n

]

The correlator is non-vanishing only if the expression in brackets is cohomo-
logically trivial, i.e. if it can be expressed as dω3. Integrating by parts, we
get

(3.33)

∫
M5

dB+ ∧ ω3

so we can think of this as a shift of the periods C3 → C3 + ω3. If α shrinks
to zero in the F -theory limit, then this operator describes the coupling of
the M5-instanton to massless modes in F -theory, so it computes an M5
instanton correction to certain derivatives of the superpotential in F -theory.
So by this mechanism, the M5 instanton may generate a contribution to a
holomorphic coupling that is forbidden in perturbation theory due to gauged
U(1) symmetries [3].

The above prescription was motivated by comparison with the bosonized
description of the heterotic string, and indeed in the degeneration limit it
is easy to match this with the heterotic string or type I string (using the
spectral cover description) or with type IIb. In the bosonized version, the
currents J on Σ37 come in two types. The currents that ‘live in the Cartan’
are of the form Ja ∼ ∂φa. This clearly lifts to an insertion of dB+ in ZB+ ;
it is the cylinder map we discussed earlier. But there may exist additional
currents along Σ37 of the form J±α ∼ exp(±√2φ · α). Due to the way that
the fields vary over Σ37 sometimes these currents are only defined at isolated
points on Σ37; this point is actually crucial for computing corrections to
holomorphic couplings.

In theM -theory picture, these extra currents match with extra singular-
ities of WE in the non-generic situation, whose blow-up yields extra cycles
α ∈ H2(M5,Z) (for example when the D3-instanton intersects a stack of
multiple coinciding D7-branes). The heterotic/F -theory duality map asserts
that insertion of a current Jα lifts to the operator

(3.34) Jα = e
√
2φ·α →W (α) = e

∫
α
B+
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We see that with this dictionary, the heterotic and M5-pictures match. But
formulated in this way the dictionary makes sense also in the general case
when there is no heterotic dual, i.e. ifWE does not come from aK3-fibration.

We would like to point out in particular that although we are still work-
ing one instanton at a time in IIb and F -theory, there are already interesting
results about the sum over worldsheet instantons on the heterotic side. For
example given a Calabi-Yau three-fold Z, it has been found that the sum over
all instantons in any given class in H2(X3,Z) vanishes in linear sigma model
constructions [67]. If we take a Spin(32)/Z2 model with vector structure
and admitting an elliptic fibration, then we can straightforwardly dualize
this to a IIb orientifold model using the Fourier-Mukai transform, without
going through F -theory.

The sum over worldsheet instantons becomes a sum over ‘vertical’ D3-
instantons on the IIb side, i.e. instantons of the form π−1X3

(C) where πX3
:

X3 → B2 and C is a curve in B2. Horizontal D3-instantons wrapping the
zero section of X3 are not included, as they map to NS5-instantons in the
heterotic string. Still, the result of [67] shows that for IIb orientifold duals
of linear sigma model constructions, the sum over vertical D3-instantons
vanishes, even though the individual contributions do not vanish. Given the
state of D3-instanton calculus in type IIb (or F -theory), this is a remarkable
statement.
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[56] J. L. Verdier, Spécialisation des classes de Chern, Astérisque 82-83,
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