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Multiple M5-branes, String 2-connections,

and 7d nonabelian Chern-Simons theory

Domenico Fiorenza, Hisham Sati and Urs Schreiber

The worldvolume theory of coincident M5-branes is expected to
contain a nonabelian 2-form/nonabelian gerbe gauge theory that
is a higher analog of self-dual Yang-Mills theory. But the precise
details — in particular the global moduli / instanton / magnetic
charge structure — have remained elusive. Here we deduce from
anomaly cancellation a natural candidate for the holographic dual
of this nonabelian 2-form field, under AdS7/CFT6 duality. We find
this way a 7-dimensional nonabelian Chern-Simons theory of String
2-connection fields, which, in a certain higher gauge, are given
locally by non-abelian 2-forms with values in an affine Kac-Moody
Lie algebra. We construct the corresponding action functional on
the entire smooth moduli 2-stack of field configurations, thereby
defining the theory globally, at all levels and with the full instan-
ton structure, which is nontrivial due to the twists imposed by
the quantum corrections. Along the way we explain some general
phenomena of higher nonabelian gauge theory that we need.
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1. Introduction

The quantum field theory (QFT) on the worldvolume of M5-branes is known
[41, 42, 95] to be a 6-dimensional (0, 2)-superconformal theory that contains
a 2-form potential field B2, whose 3-form field strength H3 is self-dual (see
[53] for a recent survey). Whatever it is precisely and in generality, this QFT
has been argued to be the source of deep physical and mathematical phe-
nomena, such as Montonen-Olive S-duality [95], geometric Langlands duality
[96], and Khovanov homology [97]. Yet, and despite this interest, a complete
description of the precise details of this QFT is still lacking. In particu-
lar, as soon as one considers the worldvolume theory of several coincident
M5-branes, the 2-form appearing locally in this 6d QFT is expected to be
nonabelian (to take values in a nonabelian Lie algebra). But a description of
this nonabelian gerbe theory has been elusive (a gerbe is a “higher analog”
of a gauge bundle, discussed in detail below in Section 3). See [12, 39, 67] for
surveys of the problem and recent developments. Here we add another piece
to the scenario, by proposing a 7d Chern-Simons theory which appears to
be a natural candidate for the holographic dual of the multiple M5-branes
6d QFT via AdS7/CFT6-duality, and by identifying the nonabelian 2-form
fields appearing in the theory as local data of (twisted) String 2-connections.

Namely, for a single M5-brane, the Lagrangian of the theory has been
formulated in [1, 46, 57, 58, 82] and in this case there is, due to [91],
a holographic dual description of the 6d theory by 7-dimensional abelian
Chern-Simons theory, as part of AdS7/CFT6-duality (reviewed for instance
in [3]). We give here an argument, following [91, 94] but taking the quan-
tum anomaly cancellation of the M5-brane in 11-dimensional supergravity
into account, that in the general case: the AdS7/CFT6-duality involves a
7-dimensional nonabelian Chern-Simons action that is evaluated on higher
nonabelian gauge fields which we identify as twisted 2-connections over the
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String-2-group, as considered in [30, 74]. Then we give a precise descrip-
tion of a certain canonically existing 7-dimensional nonabelian gerbe-theory
on boundary values of quantum-corrected supergravity field configurations
in terms of nonabelian differential cohomology. We show that this has the
properties expected from the quantum anomaly structure of 11-dimensional
supergravity. In particular, we discuss that there is a higher gauge in which
these field configurations locally involve non-abelian 2-forms with values
in the Kac-Moody central extension of the loop Lie algebra of the special
orthogonal Lie algebra so and of the exceptional Lie algebra e8. We also
describe the global structure of the moduli 2-stack of field configurations,
which is more subtle.

Most of the ingredients of the 7d theory that we present are implicit
in earlier publications of the authors, notably [74], [76] and [30]. There,
however, we focused on viewing the “indecomposable” 7d Lagrangian (Sec-
tion 4.5) as a differential twist that controls the magnetic dual heterotic
Green-Schwarz anomaly cancellation, in direct analogy of how the ordinary
3-dimensional Chern-Simons Lagrangian serves, as discussed in these refer-
ences, as a differential twist that controls the direct heterotic Green-Schwarz
mechanism. The present article serves to make the corresponding Chern-
Simons theory and its role in 11-dimensional supergravity explicit. Its rela-
tion to M-branes is also discussed in Section 3.5 of [67]. Further connections
between String structures (and their variants) and M-branes are given in
[67, 69, 71].

The description of higher degree form fields in string theory via abelian
differential cohomology has been deeply influenced by the works of Freed
[31] and Hopkins-Singer [44]. Such a description is very convenient when
the gauge fields involved are, indeed, abelian; this includes Maxwell fields,
Kalb-Ramond B-fields, the self-dual field on a single M5-brane (see [9]), and
Ramond-Ramond fields. However, when considering systems such as given
by multiple M5-branes, the theory becomes nonabelian — in some appropri-
ate sense — and hence one needs to describe in a mathematically precise way
the corresponding nonabelian higher degree gauge fields. This requires using
nonabelian differential cohomology, a generalization not just of the theory of
line bundles/circle bundles with connection, but a generalization of the the-
ory of general gauge bundles with connection, hence of general Yang-Mills
fields. A theory that accomplishes this has been laid out in [79], based on
earlier work that includes [81], [74] and [30]. The use of such a formalism
is not only to set up the correct language — which of course is desirable
— but also to obtain a machinery that produces the dynamics of the fields,
as well as their relation and their consistent coupling to other fields, in a
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systematic way, constrained by suitable general principles of higher gauge
theory. As a result, couplings and higher order gauge transformations which
otherwise have to be guessed may now be derived systematically. Further-
more, the result is typically more subtle than what could have been — and in
some cases has been — guessed. The twisted String 2-connections and their
canonical 7-dimensional action functional are an example of this, which we
will explain in detail.

The systems discussed here are just special cases of an infinite hierar-
chy of higher nonabelian gauge fields with higher Chern-Simons type action
functionals that canonically arise in higher nonabelian differential cohomol-
ogy in a canonical way that we briefly indicate in Section 4.1 below. The full
11-dimensional Chern-Simons term of 11d-supergravity is another example.
In [28] we show that another class of examples is given by globalizations
of AKSZ σ-models, such as the Courant σ-model that is induced from gen-
eralized Calabi-Yau spaces. There is a whole zoo of further examples; see
Section 4.6 of [79]. Moreover, to each such theory in dimension (n+ 1) is
associated a corresponding generalized higher WZW model in dimension n.
In particular there is a 6-dimensional WZW-type theory associated with the
boundary of the 7-dimensional String-connection theory discussed here. But
details of this are beyond the scope of the present article.

What we do in this article can be summarized in the following main
points:

1. As a warm-up, we provide in Sections 3.2 and 3.4 a description of
the familiar case of gauge fields on multiple D-branes, but formulated
in terms of the nonabelian differential cohomology of stacks of U(n)-
bundles in a way that has by direct analogy a generalization to multiple
M5-branes considered afterwards.

2. We discuss, in Section 4, a refinement Î8 of the anomaly 8-class or
one-loop polynomial I8 of 11-dimensional supergravity to nonabelian
differential cohomology by a higher stacky Chern-Weil construction.
This refinement is a universal differential characteristic map that is
naturally defined on the moduli 2-stack of boundary supergravity C-
field configurations constructed in [29]. Note that an elliptic refinement
of the one-loop term is given in [70].

3. We consider the 7-dimensional nonabelian Chern-Simons action func-
tional canonically induced by Î8 on boundary C-field configurations in
Section 4.6. We demonstrate that locally — or globally in the trivial
instanton sector — this reduces to the functional that is implied by
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the one-loop correction in 11-dimensional supergravity, as discussed in
Section 2.3.

4. Throughout the article we discuss various aspects of this 7d theory.
We comment on the relation to loop groups and the reason for passing
to 2-groups in 2.1, point out the role of Lie n-algebras in 2.2, explain
in what sense the 2-form on the M5-brane worldvolume is nonabelian
in Sections 3.7 and 4.6.

The discussion is separated into three parts. First, in Section 2 we pro-
vide heuristic physical arguments aimed at characterizing the properties that
the sought-after mathematical objects should satisfy. This involves looking
at the problem form various angles, which we outline below. We present
an argument for why the spaces of states of the 7-dimensional nonabelian
Chern-Simons theory are a plausible candidate for the conformal blocks of
the 6d theory on worldvolume of coincident fivebranes. This argument is
necessarily non-rigorous, but it seems to be as trustworthy as the argument
in [94], of which it is a direct extension. Then in Section 3 we review aspects
of higher nonabelian gauge theory in a way that prepares the ground for our
main construction. Finally in Section 4 we give a precise definition and dis-
cussion of action functionals of 7-dimensional Chern-Simons theories whose
fields are twisted 2-connections with values in the String 2-group. In con-
junction with the physical arguments of Section 2, this can be regarded as
a proposal for how to make aspects of the physical heuristics involved there
precise.

We hope to study the supersymmetric extension of the current construc-
tions in a separate article.

This article makes use of mathematical concepts in the theory of higher
stacks and nonabelian (differential) cohomology. In Section 3 we offer some
introduction and explanation that should be sufficient for an appreciation
of Section 4. However, the reader who wishes to dig deeper into the math-
ematics to which we appeal should look at [76], [30] and [79] (perhaps in
that order). For ease of reference, in the tables below we list mathematical
objects that we will mention frequently, together with their physical mean-
ing. These tables are also useful in the description of the C-field and its dual
in [29].

We will use various notions of cohomology, starting with differential
forms and working our way up through refinements. These are summarized
in the table
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cohomological notion gauge theoretic notion

differential forms Ωcl field strengths / classical description

cohomology H(−) instanton configurations / magnetic charges

differential cohomology Ĥ(−) equivalence classes of gauge fields

cocycle ∞-groupoid H(−) actual gauge fields with (higher) gauge transformations

We will also use various (higher) moduli stacks in order to precisely
capture the global nature of (higher) gauge fields and their (higher) gauge
transformations. One may think of these as integrated BRST complexes or
integrated Lie n-algebroids, see Section 3.1. To guide the reader through the
various stacks, here is a table that should serve to set some notation and
also as a dictionary between stacky notions and the corresponding bundle
structures appearing in relation to the physics of M5-branes and M-theory.
We have

symbol (higher) moduli stack of...

BU(1) circle bundles / Dirac magnetic charges

BU(1)conn U(1)-connections / abelian Yang-Mills fields

BSpinconn Spin connections / field of gravity

BE8 E8-instanton configurations

(BE8)conn E8-Yang-Mills fields

B2U(1)conn B-field configurations (without twists)

B3U(1)conn C-field configurations (without twists)

BStringconn String 2-connections / nonabelian 2-form connections

BString2DD2 first Spin characteristic class λ = 1
2p1 divisible by 2

BString2a E8-twisted String-2-connections

CField bulk configurations of supergravity C-fields (and gravity)

CFieldbdr C-field configurations on (5-brane) boundaries (and E8-gauge fields)

These concepts combine to give actual configuration spaces of (higher)
gauge fields by evaluating cohomology on spacetime with coefficients in a
(higher) moduli stack. Let G = U(1), Spin, String,BU(1), . . . be a (higher)
gauge group with Lie n-algebra g (see [74]), and let X be a (spacetime)
manifold. Then we have

symbol gauge theoretic meaning

[X,BGconn] moduli stack of G-gauge fields on X

H(X,BGconn) collection of gauge fields with G-gauge transformation on X

H(X,BGconn) equivalence classes of G-gauge fields on X

Ĥn(X) � H(X,BnU(1)conn) equivalence classes of abelian n-form gauge fields on X

H(X,BG) set of underlying instanton sectors

Ω(X,BG) g-valued (higher) field strengths
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2. Evidence for and ingredients of the 7d nonabelian
gerbe theory

In this section we present physical arguments for why one should expect the
nonabelian gerbe theory to be the right description of the system of multiple
fivebranes. Along the way, we provide our own interpretations which help
us identify the relevant ingredients in that theory. There are (at least) two
aspects to this

1. In one regime, the M5-brane worldvolume is to be thought of as embed-
ded into an ambient 11-dimensional spacetime that carries a supergrav-
ity C-field which has a direct restriction to the brane. The restriction
at the level of de Rham cohomology and differential forms is discussed
in [73] from the point of view of boundary conditions. We provide
another description in Section 2.1.

2. In another regime, we have “black” 5-branes identified as the asymp-
totic boundary [51] of a compactification on S4 to an AdS7-solution [59]
of 11d supergravity. Here the boundary space of states of the C-field
holographically induces the conformal blocks of the 5-brane supercon-
formal theory. This is discussed in Section 2.3.

We should stress that our use of holography, and the particular configu-
ration related to AdS/CFT, serves as a motivation and indeed our construc-
tions will work in full generality.

2.1. The M5-brane worldvolume theory: loop groups
and the String group

Various ingredients and aspects of 5-brane physics have been conjectured
or argued for before in the literature, see [67] for an outline. Among them
are the ones we discuss below, all of which are subsumed by the proposal
we make. We will also provide heuristic interpretations and connections to
the String 2-group and loop groups, appropriate for the description of M5-
branes.

Nonabelian gerbes and 2-gerbes with connections. The notion of
a gerbe or 2-bundle with connection is a higher analog of the notion of
a principal bundle with connection, hence of (instanton) Yang-Mills field
configurations, where the term “higher” is as in “higher degree differential
forms”: just as a connection on a gauge bundle is locally given by a 1-form
(the gauge potential), a connection on a 2-bundle/1-gerbe is locally given
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by a 2-form. Several known arguments imply that the worldvolume theory
of multiple coincident 5-branes contains a field that is a 2-form connection
on a nonabelian gerbe in analogy to how Yang-Mills theory is the theory of
a field that is a 1-form connection on a principal bundle.

(i) The first argument invokes the lift of string-D4-brane systems from string
theory to M-theory. It is well known that the open string ending on N
coincident D-branes couples to a SU(N)-valued 1-form connection field on
the Chan-Paton bundle on the D-brane, whose line holonomy along the
boundary of the string worldsheet provides the boundary term in the action.
To be precise, there is in addition the B-field in the ambient spacetime whose
restriction to the D-brane twists this 1-form connection field. The lift of this
configuration to M-theory through the inverse of the double dimensional
reduction is an M2-M5 brane configuration with open membranes [84, 85]
ending on N coincident M5-branes. Now, the membrane boundary ∂M2 ⊂
M5 couples to a 2-form connection on the 5-brane and the restriction of
the ambient supergravity C-field induces a twist. For this situation to be
compatible with its reduction to string theory, the 2-form must in some way
take values in a nonabelian Lie algebra. Hence it should be a 2-connection
on a nonabelian gerbe on the 5-brane, which is twisted by the 2-gerbe on
which the C-field is a 3-connection.

We can deduce precisely this phenomenon also from the nature of the
gauge-invariant field strengths on branes that are familiar from the litera-
ture: The gauge-invariant 2-form field strength on a D-brane in the back-
ground of a B-field is, locally, the combination

(2.1.1) F = B + F ,

where F is the trace of the curvature of the connection on the worldvol-
ume of the D-brane. This phenomenon (and its global generalization) is
explained (as we discuss in Section 3.4) by the fact that the gauge field on
the D-brane is a kind of trivialization of the 2-bundle/1-gerbe underlying
the restriction of the B-field to the brane: a twisted Chan-Paton bundle is
a kind of trivialization of a circle 2-bundle/1-gerbe. This phenomenon has
a higher generalization. In general twisted n-bundles / (n− 1)-gerbes may
serve as a kind of trivialization of an n+ 1-bundle. (A detailed mathematical
discussion of this is given in Section 1.3.1 and 4.4 of [79].)

Now, it is known that the invariant self dual 3-form field strength on the
M5-brane is accordingly locally of the form

(2.1.2) H = H + C ,
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where C is the restriction of the ambient C-field to the brane, and where
H = dB2 is the curvature of the 2-form potential on the M5-brane. This
can be seen from the M2-brane as follows. Consider the part of the action
given by SC =

∫
Σ3
C3, where Σ3 is the worldvolume of the M2-brane. This

action is not invariant for an open M2-brane unless we introduce a two-
form gauge field B coupled to the boundaries of the M2-brane, with SB =∫
∂Σ3

B2 and require that it transforms as B2 → B2 − Λ2 under the C-field
gauge transformation C → C + dΛ2. Here Λ2 is a two-form field. Then gauge
invariance requires considering the combination H = C +H. Therefore this
is another reason to expect that the 2-form field on the M5-brane is the local
connection on a twisted 2-bundle whose twist is given by the C-field.

(ii) The second argument (see [95]) proceeds by a similar dimensional reduc-
tion, but now from 6 to 4 dimensions. One finds that compactifiying the con-
formally invariant worldvolume theory of a single fivebrane with its abelian
2-form on a torus yields abelian Yang-Mills theory (electromagnetism) in
4-dimensions, such that the residual conformal transformations on the com-
pactified space becomes the Montonon-Olive electric-magnetic duality of
4-dimensional Yang-Mills theory. Since this gives, in the abelian case, a nat-
ural geometric explanation for the otherwise more mysterious S-duality of
(super) Yang-Mills theory, it is natural to expect that the same mechanism is
the source of electric-magnetic duality also generally in nonabelian (super)
Yang-Mills theory. Motivated by these arguments a definition of twisted
nonabelian 2-gerbe with connection has been proposed in [5] and argued
to be relevant for the description of 5-brane physics. The notion of higher
twisted gerbes with higher connections has been fully formalized in [79]. By
appealing to theorems about these structures that we provided in [30, 76], as
well as to a study of topological effects within AdS/CFT-duality, we argue
in Section 2.3 below that indeed these structure on 5-branes are implied by
quantum anomaly cancellation of M5-branes in M-theory.

There are further connections to other branes which highlight some of
the topological and geometric considerations that we consider. We mention
that the connection of Fivebrane structures in relation to the NS5-branes in
type IIA is given in [72, 76].

Loop group and String 2-group degrees of freedom on the M5-
brane. There have been put forward various arguments that mean to iden-
tify gauge loop groups (see [60] for mathematical background) controlling the
gauge theory on M5-branes. We recall these arguments, recasting them on
firm mathematical ground within our perspective, and indicating how they
will be refined in Sections 3 and 4.
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First, consider again the twisted Chan-Paton bundles that appear on
the D4-brane in 10-dimensional type IIA string theory. These are controlled
topologically by the obstruction theory of lifts through the universal circle
extension

(2.1.3) U(1)→ U(H)→ PU(H)

of the group of projective unitary operators PU(H) on any separable Hilbert
space H (see Section 3.4 for details): they are projective unitary bundles
whose obstruction to lift to genuine unitary bundles is the class of the ambi-
ent B-field gerbe (related to the third integral Stiefel-Whitney class). Now,
under the double dimensional reduction from M-theory to type IIA string
theory, the D4-brane in ten dimensions comes from an M5-brane in eleven
dimensions. In the spirit of [52] it has, essentially, been argued in [5] that
reversing double dimensional reduction goes along with a delooping of the
above sequence, and that this should involve the M-theory E8-degrees of
freedom. Notice that the homotopy type of the topological space PU(H)
is that of an Eilenberg-MacLane space K(Z, 2), characterized by the fact
that its only nontrivial homotopy group is π2(PU(H)) � Z, and that the
only nonvanishing homotopy group of the topological space underlying the
Lie group E8 in degree < 15 is π3(E8) � Z, so that the only nonvanish-
ing homotopy group of the loop group ΩE8 in degree < 14 is π2(ΩE8) � Z.
Therefore, over the manifolds of dimension ≤ 11 that appear in the string
theoretical context, projective unitary bundles have the same classification
as ΩE8-bundles [52], hence in these dimensions the group E8 is a model for
the delooping of PU(H)

(2.1.4) PU(H) �14 ΩE8 .

Therefore, still in these dimensions, the sequence (2.1.3) is homotopy equiv-
alent to a sequence for a central extension Ω̂E8 of the loop group ΩE8

(2.1.5) U(1)→ Ω̂E8 → ΩE8 .

So far this is the argument from [5, 52]. Note that one has to be a bit
careful with this, because it concentrates on homotopy types and ignores
the geometric (gauge) structure, which is different for projective unitary
bundles and for ΩE8-principal bundles.

In order to fully deloop the whole sequence, we may observe next that
a space of the homotopy type of a K(Z, 2) is a delooping for U(1). We
will find it useful to make this explicit by writing BU(1) for K(Z, 2). Then
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a delooping of the sequence (2.1.3) over spaces of dimension < 14 can be
written in the form

(2.1.6) BU(1)→ ? → E8 .

This means that the middle term here is analogous to an ordinary group
extension of E8 by a circle group, only that the circle group U(1) is replaced
by a higher or shifted circle group BU(1). If we keep arguing from the point
of view of sufficiently low-dimensional spaces, then we notice the truncated
homotopy equivalence ΩE8 ∼14 BU(1) and observe that for any group G the
group LG of free loops (without fixed basepoint) forms a split extension

(2.1.7) ΩG→ LG→ G .

Hence in sufficiently low dimension and ignoring geometry, the above ques-
tion mark “?” could be filled by the trivial extension

(2.1.8) ΩE8 → LE8 → E8

of E8 by its free loop group. While this may serve as a guide, it is too
simplistic, because there is no reason to expect a trivial extension here. At
the opposite extreme is the universal non-trivial such extension, which is
such that every other one is a multiple of it. This universal shifted central
extension of E8 is known as the String group of E8, denoted

(2.1.9) BU(1)→ String(E8)→ E8 .

Its homotopy type is that of a certain topological group, but as a geometric
(smooth) object it is not a Lie group. Instead it is a higher analog of a
Lie group called a smooth 2-group (technical details of which we review in
Section 3.7 below).

In [7] it is shown that String(G) for any simply connected compact sim-
ple Lie group G has a presentation by what is called a crossed module of two
ordinary Lie groups, namely by the Kac-Moody central extension Ω̂G of the
loop group of G (but now regarded as a genuine Lie group) and the based
path group of G. In this sense, the String(E8) 2-group remembers the loop
group degrees of freedom even after delooping to the 5-brane. Notice, how-
ever, that the notion of (gauge) equivalence for higher groups is considerably
richer than for ordinary groups, so that one and the same 2-group may be
presented by rather different looking constructions, some of which do not
manifestly involve loop groups. A review of this phenomenon we append in
the Appendix.
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There is also a different way to arrive at the conclusion that (twisted)
String-2-connections are the right fields in one-loop-corrected supergravity
and on 5-branes. This is the perspective of [30, 76], which is at the heart
of our development in Sections 3 and 4. The argument requires some back-
ground ideas in gauge theory and higher stacks that we survey in 3.1. The
reader not familiar with this relation may want to come back to the following
argument after having looked at those sections. Here is the argument, cen-
tral to our main point. The fields of supergravity over an M5-brane bound-
ary Σ locally look like a Spin-connection (gravity) and an E8-gauge-field.
Crucially, these are subject to a constraint [91] which demands that the
Pontrjagin class 1

2p1 of the former equals twice the canonical 4-class a of the
latter. We recall this in more detail below in Section 2.3.

Consider, for the moment, the set of gauge equivalence classes of Spin-
structures on X, which we write H(Σ,BSpin), and the set of gauge equiv-
alence classes of E8-instantons, which we write H(Σ,BE8), and finally the
set of degree-4 integral cohomology classes, which we write H(X,B3U(1)).
Then the first Spin class 1

2p1 is a map

(2.1.10) 1
2p1 : H(Σ,BSpin)→ H(Σ,B3U(1))

and the E8 class a is a map

(2.1.11) a : H(Σ,BE8)→ H(Σ,B3U(1))

and the set of pairs P (Σ) of gauge equivalence classes of field configurations
that satisfy the quantization condition constraint is the fiber product (or
“pullback”) of these two maps, the set that universally completes a diagram
of maps like this:

(2.1.12)

P (Σ) ��

��

H(Σ,BE8)

2a
��

H(Σ,BSpin)

1
2p1

�� H(Σ,B3U(1)) .

From this point of view it seems as if the supergravity quantization condi-
tion simply restricts the configuration space of fields. However, there is a
problem with this argument. For quantization of a gauge theory, the set
of gauge equivalence classes of field configurations is an invalid starting
point. What one instead needs to consider is the BRST complex of field
configurations, or rather, its integrated version, the moduli stack of field
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configurations. We write BSpinconn for the universal moduli stack of Spin-
connections. Then H(Σ,BSpinconn) denotes the integrated BRST complex,
containing the genuine Spin-connection fields on Σ, and the gauge trans-
formations between them. This is no longer a set, but is now a groupoid.
Its set of connected components recovers the set H(X,BSpinconn) of gauge
equivalence classes of fields. Similar comments and notation apply to E8 and
B2U(1).

These structures are now a valid starting point for quantization. There-
fore, the above constraint should be imposed on these structures. The crucial
difference now is that when we ask for the structure that universally com-
pletes this fiber product diagram

(2.1.13)

? ��

��

H(Σ,BE8)

2â
��

H(Σ,BSpinconn) 1
2 p̂1

�� H(Σ,B3U(1))

B̂

�� �����������������

�����������������

then going around the square in the two possible ways no longer needs to
yield genuinely equal field configurations. It suffices that the two field config-
urations obtained are connected by a gauge transformation B, as indicated.
This is indeed the only way to make gauge-invariant sense of this diagram.
In the following, all square diagrams (always of higher smooth stacks) that
we display are implicitly filled by a gauge transformation this way, but only
sometimes do we display it explicitly.

Such fiber products “up to gauge transformation” are well known in
homotopy theory. They are called homotopy fiber products or homotopy pull-
backs. If we compute them in the full context of higher gauge theory, we find
two crucial differences to the above naive idea of imposing the quantization
constraint.

First, the object in the top left is no longer the simple restriction of
the direct product of Spin- and E8-connections that satisfy the quantization
constraint. The reason is that the choice of gauge transformation B on each
pair is now part of the field content data. The new field that appears this
way is well known in string theory, at least for Hořava-Witten boundaries
of 11-d supergravity [45]: it is the field strength of a twisted 2-form field
(“B-field”) with twisted Bianchi identity

(2.1.14) dH3 = 〈Fω ∧ Fω〉 − 2〈FA ∧ FA〉 ,
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where Fω and FA are the curvatures of the Spin connection ω and the gauge
connection A, respectively, and

(2.1.15) H3 = dB +CS3(ω)− 2CS3(A).

Equation (2.1.14) manifestly exhibits the structure of the square diagram
(2.1.13) presented by de Rham cocycles.

The second effect is that the object denoted “?” above is not itself a
groupoid anymore. It turns out to be a higher groupoid, here a 2-groupoid
that contains not just gauge transformations, but gauge-of-gauge transfor-
mations (coming from ghosts-of-ghosts in the corresponding BRST com-
plex). In Section 3.8 below we identify the question mark here with the
2-groupoid H(Σ,BString2a) of E8-twisted String-2-connections. If the E8-
twist here vanishes, then this involves the genuine String-2-group which we
had motivated already via loop groups in Section 2.1 above. This effect of
imposing the relation 1

2p1 = 2a not on gauge equivalence classes but on mod-
uli stacks / integrated BRST complexes of fields is the key step that leads
us to nonabelian higher form fields in the following discussion. In the closely
related context of anomaly cancellation in heterotic string theory, this very
phenomenon has been discussed in some detail in [76].

The theory of such nonabelian 2-form connections has been developed
in [30, 79, 81]. We review String 2-connections in Section 3.7 below and dis-
cuss twisted String-2-connections in Section 3.8. In Section 4 we systemati-
cally derive the twisted String 2-connections on M-branes in 11-dimensional
supergravity (or M-theory) that were anticipated in [5] in higher analogy
with the twisted unitary bundles on boundaries/D-branes in 10-dimensional
string theory.

2.2. M-branes and L∞-algebras, Lie n-algebras
and “3-algebras”

The higher Lie groups that appear in higher gauge theory — such as the
String-2-group already mentioned - have an infinitesimal approximation by
a higher analog of Lie algebras. These higher Lie algebras are known as
Lie-infinity algebras or L∞-algebras, for short. (A description in the context
that we need here is in [74]). While an ordinary Lie algebra is a vector space
equipped with a binary skew bracket that satisfies the Jacobi identity, an
L∞-algebra is a chain complex of vector spaces, which is equipped with k-
ary skew graded brackets for all k ∈ N, such that these satisfy a certain joint
higher analog of the Jacobi identity.
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If the underlying chain complex of an L∞-algebra is concentrated in
the lowest n degrees, then we also speak of an n-term L∞-algebra or Lie
n-algebra. These are the infinitesimal approximations to Lie n-groups. For
instance, the smooth 2-group String has a Lie 2-algebra: string. This degree
“n” of Lie n-groups and Lie n-algebras is directly related to the dimension
of the branes that can be charged under them. A brane with n-dimensional
worldvolume can be charged under a Lie n-group / Lie n-algebra. For
instance, there is an abelian Lie 2-algebra bR, given by the chain complex
concentrated on R in degree 1 and having trivial bracket. It is the Lie 2-
algebra of the Lie 2-group BU(1), which is the smooth incarnation of the
topological group BU(1) that we encountered before. A 2-connection on
a 2-bundle whose gauge 2-group is BU(1) and whose Lie 2-algebra is bR
is precisely a Kalb-Ramond B-field. Indeed, this has a holonomy over 2-
dimensional worldsheets and the string with its 2-dimensional worldvolume
is charged under it.

In direct analogy of this situation, there is a Lie 3-algebra b2R with Lie
3-group B2U(1). A 3-connection with values in this is essentially what the
supergravity C-field is (we give the details in Section 4.3). A detailed dis-
cussion of Lie 3-algebras related to C-fields and Chern-Simons couplings of
2-branes is in [74], [76] and [30], as are discussions of further higher analogs,
such as the Lie 6-algebras related to the magnetic dual C-field and Chern-
Simons couplings of the 5-brane, which we will consider in Section 3.9. The
description of supergravity theories by D’Auria and Fré [18] can also be for-
mulated in terms of higher gauge field with values in super L∞-algebras.
Notably there is a super Lie 3-algebra and a super Lie 6-algebra extension
of the super Poincaré-Lie algebra such that the action functional of 11-
dimensional supergravity is a variant of a higher Chern-Simons action for
these. Moreover, the infinitesimal automorphism L∞-algebra of these con-
tains in degree 0 the M-theory super Lie algebra ([74] and Section 4.3.2.2
of [79]).

There is therefore ample theory and examples for the role of Lie 2-algebra
in string theory, the role of Lie 3-algebras in membrane theory, the role of
Lie 6-algebras in 5-brane theory and generally of Lie (n+ 1)-algebras in n-
brane theory, a large part of which we discussed before (starting in [74]) and
some part of which will concern us here.

A different and conjectural proposal for a role of higher Lie algebraic
structures in membrane theory has been proposed in [8], motivated from
a supersymmetric extension of the M2-brane action. There a certain tri-
linear term appears, satisfying an invariant condition which the authors
called a “3-algebra” structure, a terminology subsequently picked up by
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many publications. In the process, the term transmuted sometimes into “3-
Lie algebra” and sometimes even into “Lie 3-algebra”. Unfortunately, the
Bagger-Lambert “3-algebra” is not a Lie 3-algebra in the established sense
of an L∞-algebra structure on a graded vector space V . The reason is that
for the notion of an L∞-algebra it is crucial that V is an N-graded (or Z-
graded) vector space and that the n-ary brackets respect the degree in a
certain way. But in the Bagger-Lambert proposal, V is all concentrated in a
single degree (is regarded as ungraded). One immediately finds that in this
case the L∞-respect of the trinary bracket for the grading would implies
that V is taken to be in degree 1

2 . Since this is not in N, it does not yield
an L∞-algebra. But the N-grading (or Z-grading) of L∞-algebras is crucial
for the homotopy theoretic interpretation of L∞-algebras as higher Lie alge-
bras. None of the good theory of L∞-algebras survives when this grading is
dropped. This grading has its origin in the Dold-Kan correspondence, which
establishes integral graded homological structures as models for structures
in homotopy theory (see Section 2.1.7 in [79] for a discussion of this in the
context of higher gauge theory). Notably, a higher Lie algebra is supposed
to have a Lie integration to a smooth n-groupoid. Under this process, the
elements in degree k of the higher Lie algebra become tangents to the space
of k-morphisms of this smooth n-groupoid. Clearly, here only integer k make
any sense.

On the other hand, it is of course possible to consider the structure
of “L∞-algebras without grading”, even if these will not have a good the-
ory. This notion has once been introduced by Filippov [27] under the name
“n-Lie algebra”. The innocent-looking difference between the terms “Lie
n-algebra” and “n-Lie algebra” corresponds, unfortunately, to a major dif-
ference in the behavior of the concepts behind these terms. It was argued in
[49, 50] that these “3-algebras” might also play a role in the description of
multiple M5-branes. For that, a nonabelian generalization of the field con-
tent given by the (0, 2) tensor multiplet is proposed; this involves nonabelian
versions of the fields in that supermultiplet, namely the scalars, the fermions
and the antisymmetric 3-form. In addition, a nonabelian gauge field and a
non-propagating vector are introduced. In the construction, however, the
nonabelian two-form Ba

μν never appears, which seems to be a problem for
the quantum theory.

On general grounds, it is clear from our point of view that 2-brane
physics is governed by Lie 3-algebraic structures, but it is not yet clear how
the trinary operation highlighted in [8] would be an example. In view of this,
it might be noteworthy that the equivalent reformulation and generalization
of the BLG model by the ABJM model [2] does not involve any “3-algebras”
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at all. On the other hand, comparison with other structures suggests that
possibly the trinary operation is indeed a structure in higher Lie theory, but
not the trinary bracket on an L∞-algebra. Instead, it can be seen to be in
analogy with a higher symplectic structure, a “2-plectic structure”. This is
argued in [62], and this would make sense also in homotopy theory (see the
Section 4.5 on higher symplectic geometry in [79]).

In conclusion, the reader expecting to see higher Lie algebraic struc-
tures on the M5-brane will find them play a pivotal role in our discussion
in Sections 3 and 4. It is not, however, quite the kind of algebraic struc-
ture that [8, 49, 50] propose, but one that has a good homotopy-theoretic
interpretation.

2.3. Holography and Chern-Simons theory

In this section we give a physical argument that the 7-dimensional non-
abelian gauge theory, to be discussed more fully below in Section 4, is the
Chern-Simons part of 11-dimensional supergravity on AdS7 × S4 with 4-
form flux on the S4-factor and with quantum anomaly cancellation con-
ditions taken into account. We, moreover, argue that this implies that the
states of this 7-dimensional CS theory over a 7-dimensional manifold encode
the conformal blocks of the 6-dimensional worldvolume theory of coincident
M5-branes. The argument is based on the available but incomplete knowl-
edge about AdS/CFT-duality, as reviewed in [3], and cohomological effects
in M-theory as discussed in [67].

We start in Section 2.3 with some remarks about the relevant compact-
ifications of 11d sugra to AdS7. Then in 2.3 we discuss the subtleties of
quantum anomaly corrections to the 7-dimensional Chern-Simons theory
inside 11-dimensional supergravity.

AdS-compactifications. There are 6d theories with different amount of
supersymmetry, whose duals under AdS7/CFT6 have, in particular, differ-
ent boundary behaviors of the C-field. (We analyze the moduli for differ-
ent boundary conditions in detail in [29]). While the maximally supersym-
metric (0, 2)-theory is dual to supergravity on AdS7 × S4, there is also a
(0, 1)-superconformal theory in 6d, and it is dual to a compactification on a
AdS7 × C2//Zk-orbifold, with the 5-branes sitting at an orbifold fixed point.
Whereas in the first case the supergravity fields are otherwise unconstrained,
in the second case they satisfy boundary conditions as in Hořava-Witten the-
ory [45].
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The minimal supergravity in seven dimensions. The field content of the
massless representations of the minimal D = 7, N = 2 supergravity coupled
to vector multiplets, written in terms of 2-form potential is [11] (g,B2, A

I
1, φ

α,
φ, ψi

1, χ
i, θαi), where the first five fields are bosonic and the last three are

fermionic. The reduction to six dimensions is as follows:

1. This minimal gauged supergravity compactified on S1 leads to non-
chiral N = (1, 1) 6d supergravity [36].

2. The theory reduces on the orbifold S1/Z2 to 6d, N = (0, 1), chiral the-
ory [6]. Only fields of even Z2-parity survive on the two orbifold planes:
(g,B2, A

I , φα, φ, ξ), which includes the chiral multiplet (g,B+
2 , ψ

i−
1 )

with B2 = B+
2 +B−2 , a sum of self-dual and anti-self-dual parts. This

is a Hořava-Witten-like construction in seven dimensions implement-
ing a form of Green-Schwarz anomaly cancellation.

The (0, 1) theory as dual to AdS7. The AdS7 vacuum with N = 2 super-
symmetry is the supergravity dual, in the context of the AdS/CFT corre-
spondence, of the 6d, N = (0, 1), SCFT [26]. The nonabelian gauging of the
self-dual tensor fields can be performed by introducing tensor gauge degrees
of freedom with p-form gauge parameters, p = {0, 1, 2} . This is used in [63]
to build a 2-form potential which carries a representation of the structure
group. This is possible due to the 3-form potential which mediates couplings
between the tensor and vector multiplets. The full nonabelian field strengths
of the gauge field A and the 2-form gauge potential B are proposed there
to be

(2.3.1) Fr = F r + hrIB
I , HI = dAB

I +CSI + gIrCr ,

where F is the ordinary curvature 2-form of the gauge field, dA is the A-
covariant exterior derivative, CSI is a Chern-Simons 3-form of A for some
bilinear form, and gIr and hrI are couplings of Stückelberg type.

Our approach provides a systematic way of obtaining consistent cou-
plings that include terms of this kind of form.1 In particular, within the
heuristic model presented in Section 2.1, we interpret the appearance of a
3-form potential C as an indication of the presence of a Lie group G, in
addition to the appearance of a 2-form potential B2 which indicates the
presence of a based loop group (of that Lie group).

1See the discussion around Equation (3.7.19) for the case of untwisted String-
2-connections, and then Section 4.6 for the general case of twisted String-2-
connections.
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The anomaly-corrected nonabelian 7d Chern-Simons term. Generally, there
are two, seemingly different, realizations of the holographic principle in quan-
tum field theory. On the one hand, Chern-Simons theories in dimension
4k + 3 have spaces of states that can be identified with spaces of corre-
lators of (4k + 2)-dimensional conformal field theories (spaces of “confor-
mal blocks”) on their boundary. For the case k = 0 this was discussed in
[90], for the case k = 1 in [41, 42, 91], and the case k = 2 in [9]. On the
other hand, AdS/CFT duality (see [3] for a review) identifies correlators
of d-dimensional CFTs with states of compatifications of string theory, or
M-theory, on asymptotically anti-de Sitter spacetimes of dimension d+ 1
(see [93]).

However, in [94] it was pointed out that these two mechanisms are in fact
closely related. A detailed analysis of the AdS5/SYM4-duality shows that
the spaces of correlators of the 4-dimensional theory can be identified with
the spaces of states obtained by geometric quantization just of the Chern-
Simons term in the effective action of type IIB string theory on AdS5. The
relevant part of this action locally reads

(2.3.2) (BNS, BRR) �→ N

∫
AdS5

BNS ∧ dBRR ,

where BNS is the local Neveu-Schwarz 2-form field, BRR is the local RR
2-form field, and where N is the RR 5-form flux picked up from integration
over the (internal) S5 factor.

The abelian theory. As briefly indicated in [94], the similar form of the
Chern-Simons term of 11-dimensional supergravity (M-theory) on AdS7 sug-
gests that an analogous argument shows that, under AdS7/CFT6-duality,
the conformal blocks of the (0, 2)-superconformal theory are identified with
the geometric quantization of a 7-dimensional Chern-Simons theory. That
Chern-Simons action is taken, locally on AdS7, to be (up to an overall numer-
ical factor)

(2.3.3) C3 �→
∫
AdS7×S4

C3 ∧G4 ∧G4 = N

∫
AdS7

C3 ∧ dC3 ,

where now C3 is the local incarnation of the supergravity C-field, and where
G4 is its curvature 4-form locally equal to dC3. This is the (4 · 1 + 3 = 7)-
dimensional abelian Chern-Simons theory shown in [91] to induce on its
6-dimensional boundary the self-dual 2-form, in the abelian case.

The nonabelian theory. Wemay notice, however, that there is a term that is
missing from (or that can be added to) the above Lagrangian. The quantum
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anomaly cancellation via M5-branes in 11-dimensional supergravity is known
to require instead a Lagrangian whose Chern-Simons term locally reads

(2.3.4) (ω,C3) �→
∫
AdS7×S4

C3 ∧
(
1
6G4 ∧G4 − IdR8 (ω)

)
,

where ω is the Spin connection form, locally, and where IdR8 (ω) is a de Rham
representative of the integral cohomology class [22, 86]

(2.3.5) I8 =
1
48

(
p2 − λ2

)
,

where

(2.3.6) λ :=
1

2
p1

with p1 and p2 the first and second Pontrjagin classes, respectively, of the
given Spin bundle over 11-dimensional spacetime X. This means that after
passing to the effective theory on AdS7, this corrected Lagrangian picks
up another 7-dimensional Chern-Simons term, now one which depends on
nonablian fields. Locally, this reads

(2.3.7) S7dCS : (ω,C3) �→ N

6

∫
AdS7

C3 ∧ dC3 −N
∫
AdS7

CSI8(ω) ,

where N :=
∫
S4 G4 is the C-field flux on the 4-sphere factor and CSI8(ω) is

some Chern-Simons form for IdR8 (ω), defined locally by (see also [67, 75])

(2.3.8) dCSI8(ω) = IdR8 (ω) .

However, the above action functional, which is locally a functional of a 3-
form and a Spin connection, cannot globally be of this form, as even the
field that looks locally like a Spin connection cannot globally be a Spin
connection. To see this, we first notice that there is a quantization condition
on the supergravity fields on the 11-dimensionalX [92], which in cohomology
requires the identity

(2.3.9) 2[G4] =
1
2p1 + 2a in H4(X,Z) ,

where on the left we have the integral class underlying the C-field, and on
the right we have the sum of the first fractional Pontrjagin class of the Spin-
connection and the canonical class a of an ‘auxiliary’ or ‘topological’ E8

bundle on the 11-dimensional spacetime X.
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Moreover, by the arguments in [68] we expect that the integral class
of the C-field vanishes on (a vicinity of) the 5-brane. This means that on
an asymptotic neighbourhood of the asymptotic boundary ∂X, the above
quantization condition becomes

(2.3.10) 1
2p1 + 2a = 0 in H4(∂X,Z) .

Notice that requiring [G4] = 0 at the boundary means that the C field is
still there, but given by a globally defined differential 3-form C3.
As we have indicated around (2.1.13), imposing condition (2.3.10) in a gauge
equivariant way involves refining it from an equation between cohomology
classes (hence gauge equivalence classes) to a choice of coboundary between
cocycles for 1

2p1 and 2a. Doing so has two effects.

1. The first is that, according to [30, 68, 76], what locally looks like a
Spin connection is globally instead a 2-connection on a twisted String-
principal 2-bundle, or equivalently a twisted differential String struc-
ture, where the twist is given by the class 2a. The total space of
such a principal 2-bundle may be identified [79] with a (twisted) non-
abelian bundle gerbe. Therefore, the configuration space of fields of the
effective 7-dimensional nonabelian Chern-Simons action above should
involve not just Spin connection forms, but also String-2-connection
form data. By [74] this is locally given by nonabelian 2-form field data.

2. The second effect is that on the space of twisted String-2-connections,
the differential 4-form tr(Fω ∧ Fω), which under the Chern-Weil homo-
morphism represents the image of 1

2p1, locally satisfies [30, 76]

(2.3.11) dH3 = tr(Fω ∧ Fω) + 2tr(FA ∧ FA)− 2dC3 ,

where H3 is the 3-form curvature component of the twisted String-2-
connection, and where Fω and FA are the curvatures of the connection
ω on the Spin bundle and of a connection A on the auxiliary E8 bundle,
respectively. This is the twisted Bianchi identity of the curvature 3-
form, or equivalently the de Rham refinement of Equation (2.3.9),
whose form is unaffected by the integral constraint (2.3.10).

Therefore the quantum correction term in the supergravity Lagrangian (2.3.7)
now becomes (still for local data)
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(2.3.12)
−N

∫
CSI8(ω) =

N

48

∫ (
(H3 + 2C3 − 2CS3(A)) ∧ (dH3 + 2dC3

− 2〈FA ∧ FA〉)− CS7(ω)
)
,

where CS3(A) is the ordinary Chern-Simons term for the E8-connection

(2.3.13) CS3(A) = tr(A ∧ dA) + 2
3tr(A ∧A ∧A) ,

and where CS7(ω) is the degree 7 Chern-Simons term for the Spin-connection,
given by

(2.3.14)

CS7(ω) = 〈ω ∧ dω ∧ dω ∧ dω〉+ k1〈ω ∧ [ω ∧ ω] ∧ dω ∧ dω〉
+ k2〈ω ∧ [ω ∧ ω] ∧ [ω ∧ ω] ∧ dω〉
+ k3〈ω ∧ [ω ∧ ω] ∧ [ω ∧ ω] ∧ [ω ∧ ω]〉 ,

for suitable scalar constants ki (see [75]). Notice that when multiplying
out the brackets, a term proportional to

∫
C3 ∧ dC3 appears. Since, by the

boundary condition, C3 is here a globally defined form, this term may be
rescaled by rescaling the 3-form. Therefore, we can absorb the first sum-
mand of (2.3.7) into the quantum correction Lagrangian and take the 7d
Chern-Simons action to be a multiple of

∫
CSI8 .

In [76] we have discussed the local data of such 7-dimensional nonabelian
Chern-Simons Lagrangian on String-2-connections. In [30] we have provided
the global description of the action functional on the full moduli 2-stack
of String-2-connections. There we had concentrated on the role of this 7-
dimensional action in the definition of twisted differential Fivebrane struc-
tures. In Section 4 below we discuss its role as a fully-fledged 7-dimensional
Chern-Simons theory on nonabelian 2-form fields.

We therefore see that including the I8-correction term and the refined quan-
tization condition in AdS7/CFT6 leads to a 7-dimensional theory that con-
tains orthogonal and unitary nonabelian gauge field degrees of freedom and
which is globally controled by a twisted nonabelian gerbe structure. As we
discuss in detail below in Section 3.6, this kind of data has several rather
different looking equivalent incarnations, due to the fact that these higher
connections have a much richer gauge structure that ordinary connections.
In particular, one can pass from descriptions that locally look only slightly
nonabelian but have complicated global transformation laws, to equivalent
descriptions that have global transformation laws more like ordinary con-
nections but which, in compensation, exhibit a richer nonabelian structure
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locally: it is locally given [80][81] by a 1-form A ∈ Ω1(−, P∗so) with values
in the Lie algebra of paths in the Lie algebra so of the orthogonal group and
a 2-form B ∈ Ω2(−, Ω̂so) with values in the Kac-Moody central extension of
the loop Lie algebra of so.

The above line of arguments suggests that the Chern-Simons term that
governs 11-dimensional supergravity on AdS7 is an action functional on
fields that are twisted String-2-connections such that the action functional is
locally given by expression (2.3.7). In Sections 4.2 and 4.5 we discuss a pre-
cise formulation of higher Chern-Simons theories satisfying these properties
and which extend beyond Anti-de Sitter spaces.

2.4. Which gauge group(s)?

We ask the natural question: Is/are there (a) particular Lie group(s) that
is/are associated with the fivebrane theory? We provide several further argu-
ments which favor the exceptional groups, including E8.

2

First, note that the anomaly cancellation in the ambient seven-dimensional
theory with boundary, leading to chiral N = (0, 1) 6d theory, is worked out
in [35]. The resulting admissible groups from the anomaly argument are
indeed the exceptional groups.

The system of multiple M5-branes, generalizing the system of n D-branes
leading to U(n) nonabelian gauge symmetry, can be described by twisted
String(G)- gerbes, whose cocycle data involves the universal central exten-
sion Ω̂G of the based loop group ΩG, where G is any of the Lie groups E6,
E7, E8, F4, and G2, as was also proposed in [5]. Indeed, it has been argued
in [78] that classical membrane fields are loops.

The form of the action of the fivebrane suggests working in eight dimen-
sions, where the interpretation of the terms becomes transparent. This also
suggests the existence of an E8 gauge theory on this eight-dimensional exten-
sion Z8 of the worldvolumeM6. The topological part of the action extended
to eight dimensions looks like [91]

(2.4.1) 〈 [G4] ∪ [G4]− λ ∪ [G4] , [Z
8] 〉 ,

with [G4] a degree four characteristic class and [Z8] the fundamental class
on which the composite degree eight cohomology class is evaluated. Now we
observe that, up to dimension 8, all exceptional Lie groups have the same
homotopy type as the Eilenberg-MacLane space K(Z, 3), so that G4 can be

2This section expands in part on the discussion in Section 2.1.
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viewed essentially as the characteristic class of any bundle with structure
group an exceptional Lie group G2, F4, Ei, i = 6, 7, 8. Therefore, while E8

is not singled out by this argument, it is certainly the case that it could
be assumed to describe the extension of the fivebrane worldvolume to eight
dimensions.

The space of conformal blocks, in the sense of Witten [96], has dimension
bigger than one for groups other than E8. This means that the theory does
not have a distinguished partition function. Therefore, this quantum field
theory argument favors E8.

We hence start with an E8 bundle on the 8-dimensional extension Z8.
This extension is the total space of the 2-disk bundle over M6 (in the sense
of [52, 66]), and the process of extension can be done in two different ways.
The first way is to take M6 to be the boundary of W 7 and then take this 7-
dimensional space to be the base space of a circle bundle with total space Z8.
The second way is to takeM6 itself as the base space of a circle bundle with
total space a 7-dimensional manifold Y 7, which we take to be the boundary
of Z8. So the two-disk bundle D2 → Z8 →M6 can be viewed as

S1 �� Z8

��
W 7 M6 = ∂W 7� �i��

or

Z8 Y 7 = ∂Z8� �
j��

��

S1 .��

M6

Why loop bundles? Proceeding with the second case, we have to some
extent a seven-dimenional analog of the eleven-dimensional Hořava-Witten
set-up. Here will will consider the M5-brane worldvolume M6 to be dis-
connected. That is we will take M6 to be composed of the two boundary
components for the manifold with boundary W 7. Taking an E8 bundle on
Z8 gives us an LE8 bundle on W 7, in a process which is similar to the one
relating M-theory to type IIA string theory (see [24, 52]). Then we consider
the reduction of this LE8 bundle to M6, in a process analogous to Horava-
Witten, except that it is for loop bundles instead of finite-dimensional bun-
dles. We get this way an LE8 bundle on each boundary component M6

i ,
i = 1, 2.

Let us now go with the restriction of the E8 bundle on Z
8 to its boundary

Y 7. This will give an E8 bundle, whose reduction over the circle fiber down
to M6 leads again to an LE8 bundle, in this case in exact analogy to the
case of going from Z12 to the M-theory boundary and then reducing on the
M-theory circle to get type IIA string theory (see [52, 65, 66]). Therefore,
we have the following statement
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For any exceptional Lie group G, there is a loop G bundle on the five-
brane worldvolume. This arises from the dimensional reduction of a G bundle
on the extended worldvolume.

Reduction to the D4-brane. Assuming we have a bundle with struc-
ture group an exceptional Lie group G or its loop group on the M5-brane
worldvolume M6, it is natural to ask to what structure this reduces on
the D4-brane worldvolume. Since such a reduction would be over a cir-
cle, one possibility is to perform a reduction similar to that of going from
M-theory to type IIA string theory, as in [21]. For example, the inclusion
E8 ⊃ (SU(5)× SU(5)) /Z5 provides a way of getting unitary groups from
exceptional groups. Such unitary groups will be in the stable range due
to the relatively low dimension of our spaces, so that we would effectively
get unitary groups of all ranks. Breaking loop bundles to finite-dimensional
(unitary) bundles is considered in a similar context in [66].

Center-of-mass and noncommutativity. In the absence of a B-field,
the field theory of N coincident D-branes is a supersymmetric U(N) gauge
theory. The U(1) part represents the interactions of D-brane open string
with the bulk closed strings, representing the supergravity fields. This U(1)
center-of-mass part decouples from the open string dynamics leading to an
effective SU(N) gauge theory. However, we will explain, in Section 3.2 below,
that this U(1) part does have a role to play which is interesting in its own
right. We will then generalize this discussion to the case of multiple M5-
branes. However, in the presence of a constant B-field background, non-
commutativity of the resulting gauge theory [83] makes it impossible to
separate the center-of-mass part. The reason is that the B-field makes the
left and right mover of the open string sector not to be treated on equal
footing. Indeed, gauge transformations on SU(N) do not close [4]. Noncom-
mutative SO(N) and Sp(N) theories can also be constructed with a similar
phenomenon occurring [13]. We anticipate that multiple M5-branes in the
presence of a C-field will lead to a similar inability to separate this ana-
log the center-of-mass part. What this means, from the point of view of the
description of the String group in Section 2.1, is that we cannot separate the
based loop group part ΩG from the finite-dimensional part that corresponds
to the underlying Lie group G, as their twisted product is what forms the
String group. Recall that in the above-mentioned model: S1 is replaced by
K(Z, 2), which is homotopy equivalent to a loop group of an exceptional Lie
group in our range of dimensions. The S1 is the center-of-mass in the case
of D-branes; analogously, one may interpret the factor K(Z, 2) ∼8 ΩG, for
G exceptional, as the ‘center-of-mass’ in the case of M5-branes.



Multiple M5-branes, String 2-connections, · · · 255

2.5. Generalizations: Nontrivial normal bundle
and the role of the ADE groups

We used in Section 2.3 the comparatively good available understanding of
holography over asymptotically AdS spaces in order to give a plausibility
argument that suggests that the 7-dimensional quantum field theory encodes
holographically the nonabelian 6-dimensional (0, 2)-theory. Once one accepts
this, there are evident generalizations of this 7-dimensional theory to more
general setups than covered by AdS/CFT. Here we indicate some of these
generalizations and make connections to higher structures.

The M5-brane background in the eleven-manifold X11 breaks the struc-
ture group Spin(10, 1) of the Spin bundle to the (twisted) product bundle
with structure group Spin(5, 1)×Spin(5) corresponding to the breaking of
the tangent bundle TX11|M6 = TM6 ⊕N , where N is the normal bundle.

The N = (0, 2) theory associated with arbitrary group G is suggested to
have an anomaly of the following general form when coupled to the Spin(5)R
normal bundle N [47]

(2.5.1) I8(G) = r(G)I8(1) +
c(G)

24
p2(N ) ,

where

(2.5.2) I8(1) =
1
48

(
p2(N )− p2(M) + (λ(N )− λ(M))2

)

is the anomaly polynomial for a single free (0, 2) supermultiplet [91]. Here
r(G) = rank(G) is the rank of the group and cG = dimG · hG, where hG is
the dual Coxeter number of G.

Now, motivated by our discussion on String structure associated to the
M5-brane (see the discussion around expression (2.3.10)), we impose our con-
dition leading to a twisted String structure. Inspecting the formulae (2.5.1)
and (2.5.2) we see that imposing first the condition 1

2p1(M)− 1
2p1(N ) = 0

leads to a simplification. Indeed, with this twisted String condition (with
the twist being 1

2p1(N )), the general anomaly polynomial (2.5.1) becomes

(2.5.3) I8(G)ts = − 1
48 [p2(M)− (r(G) + 2c(G)) p2(N )] .

Assuming the conjectural formula (2.5.1) holds, a couple of remarks are in
order:

1. In the case of a twisted String structure, with the twist given by the
first Spin characteristic class of the normal bundle, we interpret the
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vanishing of the anomaly, given by expression (2.5.3), as saying that
we have a twisted Fivebrane structure, with the twist again being due
to the normal bundle, that is the twist is given by a fractional second
Pontrjagin class of the normal bundle. In order for this to serve as a
twist in the sense of [76], it has to be an integral class. This imposes
the condition

(2.5.4) 1
6(r(G) + 2c(G)) ∈ Z .

This might be considered as a condition analogous to the condition
1
6c(G) ∈ Z, derived in [47].

2. We now would like to take expression (2.5.3) as a basis for the non-
abelian Chern-Simons term as in Section 2.3. We can indeed apply
the general formula as above (see expression (2.3.12)), but now we
have both a Chern-Simons 7-form for the tangent bundle as well as
one for the normal bundle. This then resembles the discussion in [76]
where the gauge bundle corresponding to the heterotic string plays an
analogous topological role — namely a twist — that the normal bun-
dle plays here. Our more general Chern-Simons theory will be given by
expression (2.3.12) but with the last term there replaced by the Chern-
Simons form corresponding to I8(G)ts, given in expression (2.5.3).

We summarize what we have as follows:

The Chern-Simons theory can be defined for a general ADE group. An
ADE group G induces the corresponding String(G)-2-group involving the
centrally extended loop group Ω̂G, which serves as the structure 2-group for
2-bundles that underly the worldvolume two-form field. For G nonabelian,
we have a nonabelian gerbe and hence a theory of multiple M5-branes. A
necessary condition for the existence of such theory is the presence of a
twisted String structure, with the twist given by the normal bundle. This
in turn leads to a twisted Fivebrane structure, with a similar type of twist
arising from the normal bundle.

3. Nonabelian higher gauge theory

We review here aspects of higher nonabelian connections and their higher
gauge theory, formulated on smooth higher stacks. We do so in a way that is
tailored towards our application in Section 4 and should serve as a warmup
for that application, but the discussion is of independent relevance for higher
nonabelian gauge theory and for other of its applications in string theory.
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These structures and their applications have been discussed in earlier work
such as [30, 74, 76, 79]. 3

3.1. Higher smooth moduli stacks — integrated
BRST Lie n-algebroids

Physics has for a long time been concerned with and formulated in terms
of geometry. But ever since the inception of gauge theory, it is secretly also
concerned with and formulated in terms of homotopy theory. A gauge trans-
formation is essentially what mathematically is called an isomorphism in a
groupoid or homotopy in a space. The central idea in physics that “it is bad
to quotient out gauge transformations and good to remember them” is equiv-
alently the idea in homotopy theory that “it is bad to force everything to be
a discrete set (of equivalence classes) and good to instead retain groupoids
with their isomorphisms and spaces with their homotopies”. Therefore, what
really matters in physics is the combination of both geometry and homo-
topy theory. This is, then, a theory where we have geometric families of
homotopies, such as smooth families of homotopies. For instance the config-
uration space of Yang-Mills theory is not just a smooth collection of field
configurations, and is not just a groupoid of gauge transformations, but is
a combination of both, namely a smooth groupoid. In this formulation, both
the field configurations may vary smoothly, as do their gauge transforma-
tions.

For a higher gauge theory such as the 2-form theory of the B-field, we
have the same situation, but with even richer structure. The B-field has a
smooth 2-groupoid of field configurations, where in addition to the gauge
transformations there are now smooth families of gauge-of-gauge transfor-
mations. Next, for the supergravity C-field the configuration space is corre-
spondingly a smooth 3-groupoid, and so on.

Why stacks? For historical reasons, a smooth groupoid is also called a
stack on smooth manifolds. This terminology is often used in the context
of refined moduli spaces which are then called moduli stacks. For instance,
for G any Lie group, there is a topological space BG which is the “moduli
space of G-instantons” in that for X any manifold, the homotopy classes
of maps X → BG correspond to equivalence classes of G-principal bundles
(G-instantons) on X. The trouble with this concept is that BG does not
know about the smooth gauge transformations given by G-valued functions,

3The reader who feels reasonably comfortable with the general ideas used there
might wish to skip ahead to Section 4.
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nor does it know about actual gauge fields, namely about connections on G-
principal bundles. This is where the moduli stacks come in. There is a smooth
groupoid / smooth stack which we will write as BG and which is such that
maps of smooth stacks X → BG correspond to G-bundles on X, and smooth
homotopies of such maps correspond to smooth gauge transformations of G-
bundles. Furthermore, there is a differential refinement to a richer smooth
stack which we denote BGconn, and which is such that maps X → BGconn

correspond to G-Yang-Mills gauge fields on X, and homotopies of such maps
correspond to smooth gauge transformations. Accordingly then, there is the
smooth mapping stack [X,BGconn] whose elements are gauge fields on X,
and whose morphisms are gauge transformations. This is the true “configura-
tion space” of Yang-Mills theory on X. If we forget the smooth structure on
this, we write H(X,BGconn), the cocycle groupoid of nonabelian differential
G-cohomology. Its connected components H(X,BGconn) is the set of gauge
equivalence classes of field configurations: the cohomology set of nonabelian
differential G-cohomology on X.

Importance in (higher) gauge theory. The above stack is in fact a
global refinement of an object long familiar in gauge thery, namely the
BRST-complex for Yang-Mills fields on X. A BRST complex is, in a precise
sense, the infinitesimal approximation — the Lie algebroid — of a smooth
moduli stack of field configurations. The ghosts of the BRST complex are the
cotangents to the spaces of morphisms / gauge transformations in the stack.
For higher gauge theory, the order-n ghosts-of-ghosts in the BRST complex
are the cotangents to the space of n-morphisms in the higher moduli stack
and exhibit a Lie n-algebroid structure. This is one way to understand the
use of (higher) moduli stacks in physics, as the natural way to incorporate
the BRST quantization of (higher) gauge theories into a powerful ambi-
ent mathematical context, and to refine it from infinitesimal (higher) gauge
transformations to finite ones.

Therefore, similarly, there is for each natural number n a higher moduli
stack BnU(1)conn of n-form gauge fields. For instance [X,B2U(1)conn] is the
stacky configuration space of the B-field on X, with its gauge transforma-
tions and gauge-of-gauge transformations, whose infinitesimal approxima-
tion is the BRST complex for a 2-form field with its ghosts and ghosts-of-
ghosts. As opposed to the BRST complex, the full stack of field configura-
tions knows not just about the infinitesimal gauge transformations, but also
of the finite gauge transformations. It therefore contains genuinely the full
information about the gauge field configurations.

For all n ∈ N, there is the smooth moduli n-stack BnU(1)conn of n-form
fields, discussed in more detail in Section 3.3. CohomologyH(X,BnU(1)conn)
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with coefficients in this is ordinary differential cohomology. More generally,
for G any higher smooth group, one can consider higher moduli stacks of
nonabelian G-connections. The corresponding cohomology H(X,BGconn) is
nonabelian differential cohomology.

The Dold-Kan correspondence. Handling higher stacks is a bit more
subtle than handling just manifolds or just topological spaces, but there are
a handful of simple but powerful tools that allow one to efficiently work
with them in a way that is very close to common operations in physics. One
such tool is, for instance, the Dold-Kan correspondence. In simplified terms
this establishes that the homological algebra of chain complexes of sheaves,
which is familiar in string theory mostly from the study of the topological
string, presents a sub-class of higher stacks, namely the “strictly abelian”
higher stacks. For instance, for every sheaf A of abelian groups on all smooth
manifolds — e.g. the sheaf A = U(1) of smooth circle-valued functions —
there is a chain complex of sheaves

(3.1.1) A[n] = (A→ 0→ 0→ · · · → 0)

concentrated on A in degree n, and the Dold-Kan correspondence identifies
this (up to a suitable notion of equivalence) with a moduli n-stack BnA
that classifies instanton configurations for A-valued gauge fields of higher
order n. For instance, B2U(1) classifies instanton configurations of B-fields
and B3U(1) classifies instanton configurations of C-fields. This we come to
in Section 3.3. For technical details on the Dold-Kan correspondence and
higher stacks see Section 2.1.7 in [79].

Geometric realizations and smooth refinement. While smooth higher
stacks have richer structure than topological spaces, there is a map called
geometric realization that sends any smooth higher stack to the topological
spaces which is the “best approximation” to it, in a precise sense. This is an
“∞-functor” 4

(3.1.2) | − | : Smooth∞Grpd→ Top ,

For instance the geometric realization of the moduli stack BSpin of Spin-
principal bundles is the ordinary classifying space BSpin

(3.1.3) |BSpin| � BSpin

4See Sections 3.2.2 and 3.3.3 of [79].



260 D. Fiorenza, H. Sati and U. Schreiber

(all up to weak homotopy equivalence). And the geometric realization of
the n-stack BnU(1) is the Eilenberg-MacLane space K(Z, n+ 1) (notice the
degree shift) which classifies integral cohomology

(3.1.4) |BnU(1)| � K(Z, n+ 1) .

Geometric realization necessarily forgets crucial geometric information and
information about the nature of gauge transformations. But for a large class
of higher moduli stacks (not for all, but for all non-differentially refined
stacks that are of interest to us here), it remembers the information about
gauge equivalence classes. For instance equivalence classes of morphisms
of smooth stacks X → BE8 from a smooth manifold X are in bijection
with homotopy classes of continuous maps X → BE8. This is important
for the present discussion, as very different looking smooth higher moduli
stacks may become equivalent after geometric realization. For instance the
equivalence

(3.1.5) |BPU(H)| � |B2U(1)|

controls the nonabelian cohomology of the restriction of the B-field to D-
branes (Section 3.4) and the equivalence

(3.1.6) |BE8| �15 |B3U(1)|

controls the higher nonabelian cohomology of the restriction of the C-field
to M5-branes (Section 4.3).

Using the notion of geometric realization, we may say that an ordinary
universal characteristic class c ∈ Hn+1(BG,Z) has a smooth refinement to
a morphism of n-stacks

(3.1.7) c : BG→ BnU(1)

if the geometric realization BG→ K(Z, n+ 1) of this morphism represents
c. For G a compact Lie group, such smooth lifts exist uniquely, up to equiv-
alence, by Theorem 3.3.29 in [79]. (This is how we obtain the String 2-group
in Section 3.7.) Since BnU(1) is the moduli stack for circle n-bundles /
(n− 1)-gerbes, c also constructs an (n− 1)-gerbe on the moduli stack BG.
The looping Ωc is there fore an (n− 2)-bundle gerbe over G itself. For n = 3
this bundle-gerbe perspective on smooth refinements is spelled out in [88].
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There are more such tools for handling higher stacks, but here we will not
further dwell on recalling these. The interested reader can find explanations
in [30] and in more details in [79]. 5

3.2. Determinant line bundles and c1-twists

A central role in our discussion to follow is played by universal characteristic
maps refined to smooth stacks, and of their homotopy fibers. As a warmup
and general motivation, we expose here the simplest non-trivial example of
this general concept, whose component ingredients are all still familiar from
traditional theory. This is the example induced by the smooth refinement
c1 of the first Chern class on unitary bundles. In particular we describe how
to regard principal SU(N)-bundles (with suN -connections) equivalently as
trivially c1-twisted principal U(N)-bundles (with uN -connections). 6

Recall from the theory of characteristic classes that the obstruction to
reducing the structure group of a principal U(N)-bundle to SU(N) is the
first Chern class of the bundle. The stacky perspective on this says: the
smooth universal first Chern class is the homotopy class of the morphism of
stacks

(3.2.1) c1 = Bdet : BU(N)→ BU(1)

from the moduli stack of principal U(N)-bundles to the moduli stack of
principal U(1)-bundles induced by the determinant det : U(N)→ U(1). Fur-
thermore, the fact that c1 represents the obstruction to the U(N)-to-SU(N)
reduction becomes the following statement: the stack BSU(N) of principal
SU(N)-bundles is the homotopy pullback

(3.2.2)

BSU(N) ��

��

∗

��
BU(N)

c1 �� BU(1) .

By the definition of homotopy pullbacks (see also the discussion in the intro-
duction around (2.1.13)), this says that a morphism of stacksX → BSU(N),

5The reader who does not know yet and who cannot be bothered to go through
these details should nevertheless be able to follow the discussion below, if only he
or she keeps the intuitive idea of a higher stack as a collection of higher smooth
families of higher gauge transformations in mind.

6Our discussion of String-2-connections in Section 3.7 will proceed by close anal-
ogy with the constructions here.
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hence an SU(N)-principal bundle over X, is equivalently a morphism X →
BU(N), hence a U(N)-principal bundle P , together with a choice of triv-
ialization of the composite morphism X → BU(N)

c1→ BU(1), hence of the
determinant bundle c1(P ). Moreover, the whole groupoid of SU(N)-principal
bundles on a manifold X is equivalent to the groupoid of U(N)-principal
bundles on X that are equipped with a trivialization of their associated
determinant U(1)-principal bundle.

Let us describe a morphism of stacks X → BSU(N), with BSU(N) iden-
tified with a homotopy pullback as above, in explicit detail, following [30].
For this we first need to choose an open cover U =

⋃
i Ui of X, which is

“good”, meaning that all non-empty finite intersections of the Ui are con-
tractible. In terms of this choice, a map of stacks from X into the above
homotopy pullback is given by the following data.

• U(1)-valued functions ρi on the patch Ui ;

• U(N)-valued functions gij on the double intersection Uij := Ui ∩ Uj ,
with gii = 1,

subject to the constraints

• det(gij)ρj = ρi on Uij ;

• gijgjkgki = 1 on the triple intersection Uijk := Ui ∩ Uj ∩ Uk.

Morphisms between (ρi, gij) and (ρ′i, g
′
ij) are the gauge transformations locally

given by U(N)-valued functions γi on Ui such that γigij = g′ijγj and ρi det(γi)
= ρ′i.

Note that the classical description of objects in BSU(N) corresponds to
the gauge fixing ρi ≡ 1; at the level of morphisms, imposing this gauge fixing
constrains the gauge transformation γi to satisfy det(γi) = 1, i.e. to take val-
ues in SU(N). From a categorical point of view, this amounts to saying that
the embedding of the groupoid of SU(N)-principal bundles into the homo-
topy fiber of c1 given by (gij) �→ (1, gij) is fully faithful. It is also essentially
surjective: use the embedding U(1)→ U(N) given by eit �→ (eit, 1, 1, . . . , 1)
to lift ρ−1i to a U(N)-valued function γi with det(γi) = ρi

−1; then (γi) is an
isomorphism between (ρi, gij) and (1, γigijγj

−1).
Next we turn to connections. It is a well known fact from Chern-Weil

theory that the de Rham image of the first Chern class of a U(N)-principal
bundle can be realized as the de Rham cohomology class [tr(F∇)], where F∇
is the curvature 2-form of a un-connection ∇. The cohomology equation

(3.2.3) [tr(F∇)] = 0
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is equivalent to tr(F∇) = dα for some 1-form α, and we can therefore think
of the choice of such an α as the choice of a trivialization of the characteristic
form tr(F∇). Since the 1-form α is naturally interpreted as a u1-connection
on a trivial principal U(1)-bundle, the trivialization of tr(F∇) becomes the
equation

(3.2.4) tr(F∇) = Fα ,

i.e., we are identifying the characteristic 2-form tr(F∇) with the curvature 2-
form of a connection on a trivial principal U(1)-bundle. All this has a simple
interpretation in terms of stacks: the smooth first Chern class c1 : BU(N)→
BU(1) has a differential refinement to a morphism

(3.2.5) ĉ1 : BU(N)conn → BU(1)conn

from the moduli stack of U(N)-principal bundles with uN -connections to
the moduli stack of U(1)-principal bundles with u1-connections, induced by
the Lie algebra morphism

(3.2.6) tr : uN → u1 .

In terms of local data, the morphism ĉ1 maps the uN -connection 1-form Ai

to the Chern-Simons 1-form CS1(Ai) = tr(Ai), and the identity

(3.2.7) tr(FAi
) = dCS1(Ai)

shows that the curvature characteristic 2-form of the uN -connection (Ai)
can be identified with the curvature of the 2-form of the u1-connection
(CS1(Ai)). This means that, as a morphism of stacks, the traced curvature

(3.2.8) BU(N)conn
tr curv−−−−→ Ω2

closed

actually factors as

(3.2.9) BU(N)conn
ĉ1−→ BU(1)conn

curv−−→ Ω2
closed ,

where Ω2
closed is the stack whose smooth U -paramaterized families of objects

are closed 2-forms on U (with trivial morphisms). Moreover, the stack of
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SU(N)-principal bundles with suN -connections is the (homotopy) pullback

(3.2.10)

BSU(N)conn ��

��

∗

��
BU(N)conn

ĉ1 �� BU(1)conn .

Again, we write out the data for objects and morphisms in the groupoid
of SU(N)-bundles with suN -connections over a fixed smooth manifold X,
presented as a homotopy pullback this way. For a fixed good open cover U
of X, the objects of this groupoid are

• U(1)-valued functions ρi on Ui;

• uN -valued 1-forms Ai on Ui;

• U(N)-valued functions gij on Uij , with gii = 1.

subject to the constraints

• trAi + dlogρi = 0 on Ui ;

• det(gij)ρj = ρi on Uij ;

• Aj = g−1ij Aigij + g−1ij dgij on Uij ;

• gijgjkgki = 1 on Uijk ,

and the classical description of suN -connections on a principal SU(N)-bundle
corresponds to the gauge fixing ρi ≡ 1. This should not be surprising: the
data (ρi) are the data of the trivialization of the principal U(1)-bundle with
u1-connection induced by ĉ1; fixing these data to 1 is equivalent to requiring
that this bundle with connection is trivially trivialized.

As far as concerns the morphisms, in the homotopy pullback description,
a morphism between (ρi, Ai, gij) and (ρ′i, A

′
i, g

′
ij) is the datum of

• U(N)-valued functions γi on Ui

such that

• A′i = γ−1i Aiγi + γ−1i dγi ;

• ρi det(γi) = ρ′i on Ui ;

• γigij = g′ijγj on Uij .
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Note that the gauge fixing ρi = 1 imposes det(γi) = 1, and one recovers the
classical description of isomorphisms between principal SU(N)-bundles with
suN -connections.

Notice that the curvature characteristic 2-form of a suN -connection (either
in the classical or in the homotopy pullback description) is identically zero.
This means that we actually went far beyond our original aim that was to
kill only the cohomology class of the curvature characteristic form, and not
the curvature characteristic 2-form itself. This is not unexpected: morphisms
of principal bundles with connections are too narrow to capture the flexi-
ble nature of requiring something to be zero only in cohomology. A natural
way to remedy this is to consider instead the moduli stack BU(N)conn,c1=0

defined as the homotopy fiber of the composite map

(3.2.11) c1 : BU(N)conn
ĉ1−→ BU(1)conn → BU(1) ,

where the second morphism forgets the connection. Since we have a homo-
topy pullback diagram

(3.2.12)

Ω1 ��

��

∗

��
BU(1)conn

�� BU(1)

it follows by the pasting law for homotopy pullbacks that the homotopy fiber
of (3.2.11) is equivalently described as the homotopy pullback

(3.2.13)

BU(N)conn,c1=0
��

��

Ω1

��
BU(N)conn

ĉ1 �� BU(1)conn .

In other words, BU(N)conn,c1=0 is the collection of all the homotopy fibers
of ĉ1 : BU(N)conn → BU(1)conn, with varying “background field” in Ω1, and
so local data for a map from a manifold X into this stack are

• U(1)-valued functions ρi on Ui;

• u1-valued 1-forms Hi on Ui;

• uN -valued 1-forms Ai on Ui;

• U(N)-valued functions gij on Uij , with gii = 1.
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subject to the constraints

• Hi = dlogρi + trAi on Ui;

• det(gij)ρj = ρi on Uij ;

• Aj = g−1ij Aigij + g−1ij dgij on Uij ;

• Hi = Hj on Uij ;

• gijgjkgki = 1 on Uijk.

In particular, the local curvature 2-form of a connection classified by
BU(N)conn,c1=0 is

(3.2.14) tr(FAi
) = dHi .

Notice that since Hi = Hj on Uij , the (Hi) define a global 1-form on X and
so tr(FAi

) = dHi precisely says that the cohomology class of the curvature
characteristic 2-form vanishes. The stringy analog of this we discuss below,
around Equation (3.7.14).

3.3. Higher U(1)-bundles with connections

We discuss the moduli stack of ordinary circle bundles with connection
(abelian Yang-Mill fields) and then the higher analogs, the higher stacks
of circle n-bundles with connection (B-fields, C-fields, etc.).

The stack circle-bundles with connections. We start with the moduli
stack BU(1)conn of ordinary circle bundles with connection in a way that
prepares for the generalizations to follow.

The local data for a u1-connection on a U(1)-principal bundle over
a smooth manifold X, locally trivialized over an open cover {Ui ↪→ X},
are given by “vertices” (objects) Ai, which are u1-valued 1-forms on Ui

and “edges” (morphisms/gauge transformations) gij , which are U(1)-valued
functions on the double intersections Uij . This data is subject to two con-
straints: “an edge gij has to go from Ai to Aj”:

(3.3.1) d log gij = Aj −Ai ;

and “going around the boundary of a 2-simplex is a trivial path”:

(3.3.2) gijgjkg
−1
ik = 1 .



Multiple M5-branes, String 2-connections, · · · 267

(3.3.3) Aj

gjk

����
��

��
��

Ai

gij
���������

gik
�� Ak .

This can be elegantly stated as follows: the stack BU(1)conn is the image
under the Dold-Kan correspondence (briefly discussed in Section 3.1) of the
2-term chain complex of sheaves

(3.3.4) C∞(−; U(1)) d log−−−→ Ω1(−) .

Here in degree 0 we have the sheaf Ω1(−) of 1-forms (which assigns to any
smooth manifold U the additively abelian group of 1-forms on U), and in
degree 1 similarly the sheaf of smooth U(1)-valued functions. The differ-
ential is the operation that takes a U(1)-valued function, forms (locally)
any R-valued lift and then produces the differential of that. This is just a
rephrasing of the above explicit description of the local data for BU(1)conn,
but it highlights an important aspect. Namely, there is no need to speak
Stackish fluently to see the central point of the above sentence: “BU(1)conn
is something built from the 2-term complex C∞(−; U(1)) d log−−−→ Ω1.”.

The stack of U(1)-principal n-bundles with connection. The above
immediately suggests the following generalization: for every n ∈ N, the mod-
uli n-stack of circle n-bundles or equivalently U(1)-bundle (n− 1)-gerbes is
the image BnU(1) under the Dold-Kan map (see Section 3.1) of the chain
complex of sheaves (over smooth manifolds)

(3.3.5) C∞(−,U(1))→ 0→ 0→ · · · → 0 ,

which is concentrated in degree n on the sheaf of smooth U(1)-valued func-
tions. Similarly, the moduli stack BnU(1)conn of principal U(1)-n-bundles
with connections is the n-stack obtained via Dold-Kan from the (n+ 1)-
term complex of sheaves U(1)[n]∞D given by

(3.3.6) C∞(−; U(1)) d log−−−→ Ω1(−) d−→ Ω2(−) d−→ · · · d−→ Ωn(−) ,
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with the sheaf of n-forms, Ωn(−), in degree 0, and the sheaf of U(1)-valued
smooth functions in degree n. This is known as the Beilinson-Deligne com-
plex. The morphism of chain complexes

(3.3.7)

C∞(−; U(1)) d log ��

��

Ω1(−) d ��

��

Ω2(−) d ��

��

· · · d ��

��

Ωn(−)
d

��
0 �� 0 �� 0 �� · · · �� Ωn+1

closed(−)

,

where in the top row we have the Deligne complex as before and in the
bottom row we have simply the sheaf on n-forms, extended by 0 to a chain
complex, induces the curvature morphism

(3.3.8) BnU(1)conn → Ωn+1
closed ,

mapping a connection on a U(1)-principal n-bundle to its curvature (n+ 1)-
form. Also, the evident morphism of chain complexes

(3.3.9) C∞(−; U(1)) d log ��

��

Ω1(−) d ��

��

Ω2(−) d ��

��

· · · d ��

��

Ωn(−)

��
C∞(−; U(1)) �� 0 �� 0 �� · · · �� 0

induces the map on moduli that forgets the connection on a circle n-bundle
and induces the natural forgetful morphism

(3.3.10) BnU(1)conn → BnU(1)

to the moduli n-stack of principal U(1)-n-bundles.
For X a smooth manifold, homotopy classes of maps of stacks X →

BnU(1) are in bijection with the integral cohomology classes of X in degree
n+ 1. We write

(3.3.11) π0H(X,BnU(1)) � Hn+1(X,Z) .

Similarly, the homotopy classes of morphisms of smooth higher stacks X →
BnU(1)conn are in bijection with the differential cohomology of X. We write

(3.3.12) π0H(X,BnU(1)conn) � Ĥn+1(X) .
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Let us unwind the local data from the above definitions looks like for the
case of n = 2, hence for circle 2-bundle / bundle gerbes; It is immediate to
generalize from this description to higher n’s. In the n = 2 case we have:

• 2-forms K2;i on Ui;

• 1-forms A1;ij on Uij ;

• U(1)-valued functions gijk on Uijk.

These data are subject to the following constraints:

• dA1;ij = K2;j −K2;i on Uij ;

• d log gijk = A1;jk −A1;ik +A1;ij on Uijk;

• gjkl g−1ikl gijl g
−1
ijk = 1 on Uijkl.

These data are conveniently depicted on a 3-simplex as follows:

(3.3.13) K2;i

A1;ij

���������������

A1;ik

��

A1;ij

�	��
��
��
��
��
��
��
��

K2;j .

A1;jk

	
��
��

��
��

��
��

��
��

��
������

�������

��� A1;jl


�����
K2;l

K2;k

A1;kl

��								

gijk�� ����

gikl

�





gjkl


�
�� ��

gijl��
����

It is evident from the above description that the datum of a trivialization
of the U(1)-gerbe underlying an X-point in B2U(1)conn consists of

• 2-forms H2;i on Ui;

• 1-forms H1;ij on Uij ;

• 1-forms B1;i on Ui;

• U(1)-valued functions ρij on Uij

such that

• H2;i = dB1;i +K2;i on Ui;

• H1;ij = d log ρij +B1;j −B1;i +A1;ij on Uij ;
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• H2;i = dB1;i +K2;i on Ui;

• dH1;ij = H2;j −H2;i on Uij ;

• gijk = ρjk ρ
−1
ik ρij on Uijk.

An immediate consequence of these local equations is that dK2;i − dK2;j

vanishes on Uij and so (dK2;i)i∈I defines a global closed 3-form on X. More-
over, this 3-form is globally exact and so its cohomology class vanishes (this
is the triviality on the underlying grebe read in terms of de Rham cohomol-
ogy). Exhibiting a global primitive for (dK2;i)i∈I is an easy exercise in sheaf
cohomology. Namely, H1;jk −H1;ik +H1;ij = 0 on Uink so (H1;ij)i,j∈I is a
Čech 1-cocycle on X with coefficients in the sheaf Ω1 of smooth 1-forms.
Since this sheaf is fine, (H1;ij)i,j∈I is a 1-coboundary, and so there exist
1-forms αi on Ui with H1;ij = αj − αi. Then (H2;i − dα1;i)i∈I is a global
2-form on X which is a primitive of (dK2;i)i∈I .

3.4. Multiple D-branes in nonabelian
differential cohomology

In type II string theory in the presence of D-branes, the background B-field
on spacetime X is accompanied by nonabelian gauge fields on the branes
satisfying there a compatibility condition with the restriction of the B-field
to the branes. This turns out to be analogous, in a precise fashion, to the
situation with the C-field in 11-dimensional supergravity, and its restiction
to Hořava-Witten boundaries of spacetime. In both cases the total moduli
stack of field configurations is given by a nonabelian and twisted version of
relative (differential) cohomology. For the C-field we discuss this in Section
4.3 (and in full detail in [29]). Here we give the analogous discussion for the
B-field in terms of the stacky structures that we have already introduced
above. Where for the B-field the trivialization on the brane makes a non-
abelian 1-form appear, for the C-field the trivialization on the brane makes
a nonabelian 2-form appear.

Let X be a 10-dimensional spacetime. By the discussion in Section
3.3, the B-field on X is given by a morphism of smooth 2-stacks B̂ : X →
B2U(1)conn. Let then Q ↪→ X be a single Spinc D-brane in X. Freed-Witten
anomaly cancellation [33] requires that the restriction of B̂ to Q has trivial
integral class, hence that there it is, up to a gauge transformation, in the
image of the moduli Ω2(−)→ B2U(1)conn. This situation is concisely cap-
tured by saying that the field configurations form a homotopy-commuting
diagram
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(3.4.1)

Q
F ��

��

Ω2(−)

��
X

B̂

�� B2U(1)conn

Â

�

�� 

































of smooth 2-stacks. The bottom morphism is the B-field on X. Its composite
with the left morphism is its restriction to the brane. The top morphism is a
globally defined 2-form F on the brane, and the homotopy in the middle is a
gauge transformation from this 2-form, regarded as a connection on a trivial
2-bundle, to the restriction of the B-field. Notice that this means that Â
is locally, on a patch Ui ↪→ Q, a 1-form with curvature Fi = dAi, such that
Equation (2.1.1) holds

(3.4.2) Fi = Bi + Fi .

This 1-form is the Chan-Paton gauge field on the D-brane. Moreover, the
collections of all such triples of field configurations naturally form the map-
ping 2-groupoid, denoted

(3.4.3) HI(Q
i→ X , Ω2(−)→ B2U(1)conn) ,

whose cocycles are homotopy-commuting squares as above, and whose co-
boundaries are the corresponding relative gauge transformations. We have
a variant of this when discussing the boundary C-field configurations in
Section 4.3.

More generally, there may be N coincident D-branes with Spinc-world-
volume Q. In this case (see for instance [48] for a clean account) the trivi-
alization Â in the above is to be replaced by a twisted U(N)-bundle on Q,
whose twist is the restriction of B̂ to Q. In our context, this is formulated as
follows. The short exact sequence of groups (a finite-dimensional counterpart
of sequence (2.1.3))

(3.4.4) U(1)→ U(N)→ PU(N)

that exhibits the unitary group as a central extension of the projective uni-
tary gives rise to a long sequence of smooth 2-stacks

(3.4.5) BU(1) �� BU(N) �� BPU(N)
dd �� B2U(1) .
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The characteristic map dd here may be understood as presenting the uni-
versal class on projective bundles that obstructs their lift to genuine unitary
bundles. This has an evident differential refinement

(3.4.6) d̂d : BPUconn → B2U(1)conn .

where now on the left we have the moduli stack of projective unitary bundles
with projective connections. Underlying such a (nonabelian twisted) connec-
tion is a globally defined abelian curvature 1-form (induced, locally, by the
trace operation, as in Section 3.2). Therefore, we can now consider relative
cohomology twisted by dd on the brane inclusion Q→ X. Its cocycles are
homotopy-commuting diagrams of 2-stacks

(3.4.7)

Q
Â ��

��

BPU(N)conn

d̂d
��

X
B̂

�� B2U(1)conn .

�
�� ��

��
��

�

��
��

��
�

Here the top morphism now characterizes a twisted Chan-Paton gauge field
on N coincident D-branes, whose dd-class trivializes the restriction of the
spacetime B-field to the branes. When the lower morphism is presented in
terms of bundle gerbes, then the top morphism is presented by the corre-
sponding gerbe modules as in [16]. A component-discussion of this relative
nonabelian differential cohomology describing D-brane gauge fields is for
instance in Section 4 of [61]. The C-field analog of this diagram is discussed
below as (4.3.2) and (4.3.10).

The groups PU(N) all embed into the group PU(H), of projective uni-
tary operators on any separable infinite-dimensional complex Hilbert space
H, and we have a morphism of classifying stacks

(3.4.8) dd : BPU(H)→ B2U(1)

that classifies the U(1)-extension U(H). In this limit of “arbitrary num-
bers of D-branes” something interesting happens: under geometric realiza-
tion (3.1.2) the two moduli stacks BPU(H) of projective unitary bundles
and B2U(1) of circle 2-bundles both become the Eilenberg-MacLane space
K(Z, 3), and the class dd simply becomes the identity. This is related to
Kuiper’s theorem, which asserts that the topological space underlying U(H)
is a contractible space. This says that, while the geometry and differential
geometry of twisted nonabelian 1-form connections is very different from
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that of abelian 2-form connections, their instanton sectors may be identi-
fied.

We discuss an analog of all these statements for the supergravity C-fields
in Section 4.3.

3.5. Higher holonomy

It is a classical fact that a connection on a circle bundle induces a notion of
holonomy along 1-dimensional curves, and that this holonomy is the gauge
coupling action for a charged particle in the background of the gauge field
presented by the connection. This fact has a higher analog for the higher
circle bundles from Section 3.3. A circle n-bundle with connection, equiv-
alently: an abelian n-form gauge field, has holonomy over n-dimensional
trajectories and this holonomy is the gauge coupling action of the (n− 1)-
brane charged under the corresponding form field (the Wess-Zumino-Witten
term). We recall how this comes about in terms of the Deligne complex and
thus as a map on higher stacks.

Let X be a smooth manifold. Then the set of connected components of
the n-groupoid H(X,BnU(1)conn) of U(1)-n-bundles with connection on X
is naturally isomorphic to the (n+ 1)-th ordinary differential cohomology
group of X:

(3.5.1) π0H(X,BnU(1)conn)
∼= Ĥn+1(X;Z) .

Also, the set of connected components of the n-groupoid H(X,BnU(1))
of U(1)-n-bundles on X is naturally isomorphic to the (n+ 1)-th singular
cohomology group of X:

(3.5.2) π0H(X,BnU(1)) ∼= Hn+1(X;Z) .

and the forgetful map BnU(1)conn → BnU(1), that “forgets the connection”,
induces the natural morphism

(3.5.3) Ĥn+1(X;Z)→ Hn+1(X;Z)

from differential cohomology to singular cohomology. Moreover, it is well
known (see, e.g., [44]) that if X is a smooth oriented manifold, then the
above morphisms fit into a short exact sequence

(3.5.4) 0→ Ωn(X)/Ωn
cl,0(X)→ Ĥn+1(X;Z)→ Hn+1(X;Z)→ 0 ,
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where Ωn(X)/Ωn
cl,0(X) is the group of differential n-forms on X modulo

those n-forms which are closed and have integral periods. For the reader’s
convenience, let us briefly recall how the above short exact sequence origi-
nates. Consider the complex of sheaves Ω1≤•≤n[n], i.e.,

(3.5.5) Ω1 → Ω2 → · · · → Ωn

with Ωn in degree zero. Then we have a short exact sequence of complexes
of sheaves

(3.5.6) 0→ Ω1≤•≤n[n]→ U(1)[n]∞D → U(1)[n]→ 0

inducing a long exact sequence in hypercohomology

(3.5.7)
· · · → H−1(X,U(1)[n])→ H0(X,Ω1≤•≤n[n])

→ H0(U(1)[n]∞D )→ H0(X,U(1)[n])→ 0 .

Since all the sheaves Ωi are acyclic, the usual immediate spectral sequence
argument shows that H0(X,Ω1≤•≤n[n]) ∼= Ωn(X)/dΩn−1(X) and so the
above long exact sequence reads

(3.5.8)
· · · → Hn(X;Z)→ Ωn(X)/dΩn−1(X)

→ Ĥn+1(X;Z)→ Hn+1(X;Z)→ 0 .

From this we get the short exact sequence

(3.5.9) · · · 0→ A→ Ĥn+1(X;Z)→ Hn+1(X;Z)→ 0 ,

where A is the image of Ωn(X)/dΩn−1(X) inside Ĥn+1(X;Z), and so is
naturally isomorphic to the quotient of Ωn(X)/dΩn−1(X) by the image of
Hn(X;Z) into Ωn(X)/dΩn−1(X). Since this image is precisely Ωn

cl,0(X)/

dΩn−1(X), we have A ∼= Ωn(X)/Ωn
cl,0(X).

In particular, if Σ is an n-dimensional smooth oriented manifold, we get
a canonical isomorphism

(3.5.10) Ĥn+1(Σ;Z)
∼−→ Ωn

cl,0(Σ)/Ω
n
cl,0(Σ) ,

i.e., each U(1)-n-bundle with connection on Σ is equivalent to a trivial U(1)-
n-bundle with an n-connection given by a globally defined n-form on Σ.
Moreover, this n-form is uniquely determined up to an n-form with integral
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periods. By definition of Ωn
cl,0(Σ), the integration over Σ induces a well

defined group homomorphism

(3.5.11) e2πi
∫
Σ : Ωn

cl,0(Σ)/Ω
n
cl,0(Σ)→ U(1) ,

and so finally we get the following result.

Observation 3.5.1. For Σ a compact n-dimensional smooth manifold,
there is a canonical morphism

(3.5.12) exp(2πi

∫
Σ
(−)) : H(Σ,BnU(1)conn)→ U(1) .

This is a map that sends n-form gauge fields on Σ to elements in U(1) and
is gauge invariant.

More generally, let be X a (spacetime) manifold of any dimension or,
in fact, any orbifold or more general smooth stack or higher smooth stack.
Then with Σ as before, there is a canonical morphism

(3.5.13) holΣ : H(Σ, X)×H(X,BnU(1)conn)→ U(1) ,

where H(Σ, X) denotes the space (or ∞-groupoid) of maps from Σ to X.
This morphis reads in an n-form gauge field ∇ on X as well as a smooth
trajectory φ : Σ→ X and produces the n-dimensional holonomy

(3.5.14) holΣ(φ,∇) ∈ U(1)

of ∇ around Σ under the map φ. Formally, the map holΣ is just the compo-
sition
(3.5.15)

holΣ : H(Σ, X)×H(X,BnU(1)conn)
◦→ H(Σ,BnU(1)conn)

e2πi
∫
Σ(−)−−−−−−→ U(1) .

An explicit expression for holΣ(φ,∇) in terms of local differential forms data
can be found in [23, 37, 38].

Holonomy of M-branes. For illustration in the case at hand, we will
spell this out for the case of M-branes, and rewrite the above results in this
special, but important situation. The M2-brane and the M5-branes corre-
spond to the case n = 3 and n = 6, respectively. We have
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1. Consider the M2-brane with worldvolume a smooth oriented 3-manifold
Σ3. On the 11-dimensional target space Y 11 we have a C-field repre-
senting a connection on a U(1)-principal 3-bundle. Consider the σ-
model for the M2-brane φ : Σ3 → Y 11 with space of maps H(Σ3, Y

11).
Then the holonomy of the C-field is given by

(3.5.16) holM2 : H(Σ3, Y
11)×H(Y 11,B3U(1)conn)→ U(1) .

2. For the case of the M5-brane we consider the dual C6 of the C-field
on the 6-dimensional smooth oriented worldvolume Σ6. We again have
sigma model maps φ : Σ6 → Y 11 which form the space H(Σ6, Y

11).
The holonomy of the dual of the C-field is then

(3.5.17) holM5 : H(Σ6, Y
11)×H(Y 11,B6U(1)conn)→ U(1) .

In the special case that the C-field happens to be given by a globally defined
3-form C3 on Y 11, we have the explicit formula

(3.5.18) holM2(φ,C3) = exp(2πi

∫
Σ3

φ∗C3) .

This is the familiar higher gauge coupling or Wess-Zumino-Witten term in
the M2-brane action. The above construction generalizes this to general C-
field configurations (and with just slight adaption to branes with boundary).
The description of holonomy for the M5-brane is analogous. The partition
functions in this setting are described in [67].

3.6. Differential characteristic maps

We have seen abelian differential cohomology in Sections 3.3 and 3.5 and
are about to consider higher nonabelian cohomology in the next Section
3.7. The link between the two is given by characteristic classes, or rather
by their refinement to smooth and differential characteristic maps between
smooth moduli stacks. These differentially refined characteristic maps are
the structures from which we obtain higher Chern-Simons action functionals
in Section 4. Here we briefly review some basic ideas. Details are in [30] and
in Sections 2.3.18 and 3.3.14 of [79].

Let G be a Lie group and [c] ∈ Hn+1(BG;Z) an integral characteristic
class on its classifying space. If G is compact, then by Theorem 3.3.29 in [79]
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there is an isomorphism

(3.6.1) Hn+1(BG;Z) ∼= π0H(BG;BnU(1)) ,

between the integral cohomology in degree n+ 1 of the topological space
BG, and the gauge equivalence classes of circle n-bundles over the moduli
stack BG. In other words, there is, up to equivalence, a unique morphism

(3.6.2) c : BG→ BnU(1)

of smooth stacks, such that for E : X → BG the map of stacks classifying
a G-principal bundle on X, the integral class c(E) ∈ Hn+1(X,Z) is that
classifying the circle n-bundle given by the composite c(E) : X → BG

c→
BnU(1).

A simple example of this that we have already seen was the smooth
refinement c1 of the first Chern class in (3.2.1). For this example we obtained
in (3.2.5) furthermore a differential refinement, namely a morphism ĉ between
the corresponding moduli stacks for bundles with connection, which refines
c by fitting into a homotopy commuting diagram

(3.6.3)

BGconn
ĉ ��

��

BnU(1)conn

��

curv �� Ωn+1
cl

BG
c �� BnU(1)

.

This diagram in particular says that for (E,∇) a G-principal bundle E
with connection ∇, then the (n+ 1)-form curvature of the circle n-bundle
ĉ(E,∇) is a de Rham representative of the integral class of the underlying
circle n-bundle c(E).

When restricted to gauge equivalence classes and to cohomology, this is
a construction that is provided by classical Chern-Weil theory, simply by
evaluating the curvature form F∇ in an invariant polynomial 〈−〉 on the Lie
algebra of g. We need to refine this construction away from gauge equivalence
classes to the full higher moduli stacks. A step in this direction has been
provided by Brylinski and McLaughlin in [15], who showed how to construct
for every single Čech-Deligne cocycle for a G-principal bundle representing
a map (E,∇) : X → BGconn, a corresponding Čech-Deligne cocycle for the
the circle n-bundle with connection ĉ(E) : X → BnU(1)conn. Based on this
and on L∞-algebraic resolutions considered in [76], we gave in [30] a con-
struction of genuine morphisms ĉ of higher moduli stacks by a procedure
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that may be understood as a higher analog of Lie integration of Lie algebra
homomorphism, generalized to Lie n-algebras. However, the morphisms of
higher stacks obtained this way typically go out of higher connected cov-
ers of moduli stacks for Lie groups, and extra work is required in pushing
them down again. This phenomenon is, in low degree, already familiar from
classical Lie theory: there, morphisms of (finite dimensional) Lie algebras
correspond to morphisms between the connected and simply connected Lie
groups integrating these. In order to get morphisms between non-simply
connected Lie groups from Lie integration, extra quotienting is required,
which may or may not be respected by the morphism.

Example. The simplest instance of this phenomenon occurs with G =
O(2), the two-dimensional orthogonal group. Namely, the Lie algebra of O(2)
is so2 and there is a (unique up to a scalar factor) nontrivial real valued
Lie algebra 1-cocycle μ1 on so2 (i.e., a nontrivial Lie algebra morphism
μ1 : so2 → R). Yet, μ1 cannot be integrated to a Lie group 1-cocycle (i.e., to
a morphism of Lie groups) ρ : O(2)→ U(1); indeed, the only nontrivial Lie
group homomorphism from O(2) to U(1) is det : O(2)→ {±1} ⊆ U(1). Here
the topological obstruction to the integration of μ1 is the nonconnectedness
of O(2). And indeed, μ1 can be integrated if we pass to the “connected cover”
SO(2) of O(2); its integration is nothing but the well known isomorphism
SO(2)

∼−→ U(1). In terms of integral characteristic classes, this discussion
is summarized by the fact that H2(BO(2);Z) = Z/2Z and so there are,
up to equivalence, only two morphisms of stacks BO(2)conn → BU(1)conn
corresponding to characteristic classes for O(2): a principal O(2) bundle with
connection given by local data (gij , Ai) can be mapped either to the trivial
U(1)-bundle with connection (1ij , 0i) or to the U(1)-bundle with connection
locally given by (det(gij), 0i). Notice that in both cases the map at the level
of local connection data is the zero morphism so2 → R.

The general statement is the natural generalization of the example just
presented: a real valued Lie algebra n-cocycle on g universally integrates to
a morphism of moduli n-stacks

(3.6.4) BG〈n〉 → BnU(1) ,

where G〈n〉 is an (n− 1)-connected cover of the Lie group G. For instance,
if O denotes the infinite orthogonal group and so its Lie algebra, then there
is no nontrivial real valued Lie algebra 1-cocycle on so; the canonical Lie
algebra 3-cocycle on so integrates to the first fractional Pontrjagin class

(3.6.5) 1
2p1 : BSpin→ B3U(1) ,
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where Spin(n) is the 1-connected cover of O(n).
While this machine goes through for all n, a crucial subtlety but also a

source for much of the structure that we discuss here, is that further higher
connected covers of Lie groups do not exist as Lie groups, in general. Instead,
they only exists as higher Lie groups. Notably, the canonical Lie algebra 7-
cocycle on so integrates to the second fractional Pontrjagin class. But this is
no longer defined on the stack BSpin itself, but on a higher nonabelian stack
(a 2-stack, in this case), which we denote BString. The reader may think of
this as a twisted product of the nonabelian 1-stack BSpin with the abelian
2-stack B2U(1) discussed in Section 3.3. We describe this in more detail in a
moment, below in Section 3.7. So in terms of this String 2-stack, the degree-
7 cocycle on so turns out to integrate the second fractional Pontrjagin class
refined to a higher stack morphism of the form

(3.6.6) 1
6p2 : BString→ B7U(1) .

Moreover, both these Pontrjagin classes are induced by Lie algebra n-cocycles,
and have differential refinements

(3.6.7) 1
2 p̂1 : BSpinconn → B3U(1)conn

and

(3.6.8) 1
6 p̂2 : BStringconn → B7U(1)conn .

A proof of these results, together with a construction of G〈n〉 as an higher
smooth group via (a version of) the Sullivan construction, and a treatment
of the integration of Lie algebra n-cocycles can be found in [30]. The stacks
BString and BStringconn mentioned above will be defined in Section 3.7.

Remark 3.6.1. One may wonder whether the n-cocyclesBG〈n〉 → BnU(1)
andBG〈n〉conn → BnU(1)conn mentioned above descend to n-cocyclesBG→
BnU(1) andBGconn → BnU(1)conn. As we mentioned above, the obstruction
to this descent is of a topological kind: one has to see whether the charac-
teristic class in Hn+1(BG〈n〉;Z) defined by the cocycle is the pullback of an
integral characteristic class in Hn+1(BG;Z) or not. For instancee, the first
Pontrjagin class is an element in H4(BSO;Z). It refines to a morphism of
stacks p1 : BSO → B3U(1), whose infinitesimal version is twice the stan-
dard Lie algebra 3-cocycle μ3 on so3. As mentioned above, the 3-cocycle
μ3 integrates to 1

2 p̂1 : BSpinconn → B3U(1)conn, and so 2μ3 integrates to
p̂1 : BSpinconn → B3U(1)conn. Since the underlying characteristic class p1
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actually lives on BSO, there are no obstructions to the descent of p̂1 to
BSOconn, and so one has a differential refinement of the first Pontrjagin
class to a morphism of stacks

(3.6.9) p̂1 : BSOconn → B3U(1)conn .

For n = 3 and G a compact simple Lie group, one can find a full detailed
treatment of the descent problem for differential cocycles in [34].

As anticipated in the previous section, we will only be concerned with
top degree local differential forms data for n-connections given by morphisms
X → BnU(1)conn. So the relevant question for us now is: what is the degree-
n differential form An;i associated with the g-valued local 1-form ωi of a
g-connection and with a real valued Lie algebra n-cocycle μ inducing the
characteristic map ĉ? And the answer is everything but unexpected:

(3.6.10) An;i = CSn(ωi) ,

where CSn is a Chern-Simons element for the Lie algebra cocycle μ. Again,
see [74],[30] or [79] for details and for the generalization of the notion of
Chern-Simons elements to Lie n-algebras.

In what follows, we will need the full local data for the U(1)-principal 3-
bundle with connection that is associated by 1

2 p̂1 to a Spin-principal bundle
with connection given by local data (ωi, gij). These are obtained as follows:

• since the group Spin is connected, over each double intersections one
can lift the transition function gij to a smooth family of based paths
in G, ĝij : Uij ×Δ1 → G, with ĝij(0) = e and ĝij(1) = gij ;

• since Spin is 1-connected, over each triple intersection one can find a
smooth family of based 2-simplices in G, ĝijk : Uijk ×Δ2 → G, with
boundaries labeled by the based paths on double overlaps:

(3.6.11) gij
gij ·ĝjk

����������

e
ĝik

ĝij
��������

gik .

ĝijk

• since Spin is 2-connected, on each quadruple intersection one can find
a smooth family of based 3-simplices in G, ĝijkl : Uijkl ×Δ3 → G,
cobounding the union of the 2-simplices corresponding to the triple
intersections;
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• for n = 1, 2, 3, let ω̂i0...in be the Δn-family of so-valued 1-form on
Ui0,...in obtained via the gauge action of ĝi0,...,in on ωi0 |Ui0,...,in

, i.e.,
ω̂i0...in ∈ Ω1(Ui0,...in ×Δn; so) is defined as

(3.6.12) ĝi0,...,inωi0 ĝ
−1
i0,...,in

+ ĝi0,...,indU ĝ
−1
i0,...,in

,

where dU denotes the de Rham differential in the Ui0,...,in-direction on
Ui0,...,in ×Δn.

These pieces of data are sent to the Čech-Deligne 3-cocycle

(3.6.13)

(Ci, Bij , Aijk, gijkl) :=

(
CS3(ωi),

∫
Δ1

CS3(ω̂ij),

∫
Δ2

CS3(ω̂ijk),∫
Δ3

μ3(ω̂ijkl ∧ ω̂ijkl ∧ ω̂ijkl) mod Z

)
,

where μ3 and cs3 are the standard 3-cocycle and Chern-Simons element for
so. Notice that the integration over the 3-simplex Δ3 in the above formula
only reads the vertical part of the 3-form μ3(ω̂ijkl ∧ ω̂ijkl ∧ ω̂ijkl) with respect
to the projection Uijkl ×Δk → Uijkl, which, by construction, is ĝ∗ijklμ3(θ ∧
θ ∧ θ), where θ ∈ Ω1(Spin; so) is the Maurer-Cartan form on the group Spin.

3.7. The 2-stacks BString and BStringconn

We now discuss the moduli 2-stacks BString and BStringconn of String-
principal 2-bundles and of String-principal 2-bundles with 2-connection ([30]
and [79], Section 4.1.3). The definitions and discussion here proceeds in
direct analogy with the discussion in 3.2, simply by replacing the first Chern
class with the first fractional Pontrjagin class.

Let BSpin be the smooth stack of smooth Spin-principal bundles. As
remarked above around (3.6.5), the first fractional Pontrjagin class 1

2p1
refines to a morphism of smooth 3-stacks 1

2p1 : BSpin→ B3U(1) and so
we can define BString as the homotopy fiber of this morphism, by analogy
with (3.2.2), hence as the homotopy pullback

(3.7.1)

BString ��

��

∗

��
BSpin

1

2
p1 �� B3U(1)

of smooth higher stacks. One way to characterize what this means in more
concrete terms (another one we get to in a moment) is to say that that a
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String-principal 2-bundle over a smooth manifoldX, hence a stack morphism
X → BString, is

• a Čech cocycle datum (gij) of a Spin-principal bundle on X;

• together with a choice of a trivialization of the induced Čech 3-cocycle
(
∫
Δ3 ĝ

∗
ijklμ3(θ ∧ θ ∧ θ) mod Z) given in (3.6.13).

Homotopy pullbacks may be more familiar in the context of topological
spaces. There, for f : X → Y any continuous map of pointed topological
spaces, its homotopy fiber may be defined, up to weak homotopy equivalence,
as the ordinary pullback of the based path space projection PY → Y of Y
along f . But there are many other constructions that give the same result
up to weak homotopy equivalence.

To relate the homotopy pullbacks of higher stacks with those of topo-
logical spaces, we invoke the geometric realization map from (3.1.2). By the
discussion there, the image of 1

2p1 under geometric realization is a continu-
ous map of topological spaces

(3.7.2) 1
2p1 : BSpin→ K(Z, 4) ,

hence a class in degree-4 integral cohomology H4(BSpin,Z). This is the
ordinary Ponrtryagin class of which 1

2p1 is the smooth refinement.
While, in general, geometric realization of higher stacks does not preserve

homotopy fibers, one can show that in some special cases, such as the one
above, it does (Theorem 3.3.25 in [79]). This means that

(3.7.3) |BString| � BString

is indeed the classifying space of the topological String group as traditionally
defined, fitting into a homotopy pullback

(3.7.4)

BString ��

��

∗

��
BSpin

1

2
p1 �� K(Z, 4)

of topological spaces. In this form we can see more directly than otherwise in
which way the String group is indeed related to something stringy. For if we
form topological loop spaces twice on this last homotopy pullback diagram,
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we get the homotopy pullbacks

(3.7.5)

U(1) ��

��

ΩString ��

��

∗

��
∗ �� ΩSpin

Ω2 1

2
p1 �� BU(1)

and hence the long fiber sequence

(3.7.6) U(1) �� ΩString �� ΩSpin
1

2
p1 �� K(Z, 4) .

This exhibits an equivalence between the loop space of the topological String
group and the level-1 Kac-Moody central extension Ω̂Spin of the topological
loop group of Spin

(3.7.7) ΩString � Ω̂Spin .

It is in this reduced form that String bundles first appeared in the string
theory literature [89]: as central extensions of the structure loop group on the
loop space of spacetime (hence the configuration space of the closed string).
But some torsion information is lost in this double looping (Ω1

2p1(ΩX) may
vanish even if 1

2p1(X) does not), and the precise structure needed in the
heterotic string are genuine (twisted) String 2-bundles [76] as discussed here.

While the above simple argument, derivng the topological Kac-Moody
loop group from String, does not go through quite in this form for the fully-
fledged smooth (stacky) version of String, it turns out that a refinement of
this state of affairs does hold true: In [7] it is shown that when the Kac-
Moody loop group Ω̂Spin is regarded as a smooth group (a Fréchet group),
then the evident smooth map

(3.7.8) Ω̂Spin→ PSpin

to the smooth group PSpin of based paths in Spin is equipped with an action
of the path group, such that it becomes what is called a crossed module of
smooth groups. This may naturally be thought of as defining a smooth 2-
stack (def. 1.3.5 in [79]), written B(Ω̂Spin→ PSpin). By Theorem 4.1.29 in
[79], this turns out to be an equivalent incarnation of the moduli 2-stack of
String-2-bundles

(3.7.9) BString � B(Ω̂Spin→ PSpin) .
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Having two such seemingly different descriptions for the stack of principal
String bundles should not be surprising: BString is defined as a homotopy
fiber, and so it is well defined only up to weak equivalence.

Analogous considerations apply for the infinitesimal approximation to
the smooth String-2-group: its Lie 2-algebra string (see [74]). This Lie 2-
algebra is abstractly defined (def. 4.1.15 in [79]) as the L∞-algebra homotopy
fiber of the canonical degree-3 Lie algebra cocycle μ3 on so, which we may
identify with a map of Lie 3-algebras

(3.7.10) μ3 : so→ b2u(1)

from so to the line Lie 3-algebra, the two-fold delooping of u(1) � R. Again,
by the very definition of homotopy pullbacks, this homotopy fiber may be
presented by a Lie 2-algebra, denoted soμ3

, defined by the fact that a mor-
phism of Lie 2-algebroids (see [74])

(3.7.11) (ω,B) : TX → b(soμ3
)

from the tangent Lie algebroid of a smooth manifold X is

• a flat so-valued 1-form ω;

• equipped with a choice of 2-form B which trivializes the Chern-Simons
3-form of ω, in that

(3.7.12) dB = tr(ω ∧ ω ∧ ω) .

But, as before for the finite String-2-group, there is, now by Theorem 30
in [7], a quite different looking but equivalent incarnation of the Lie 2-algebra
string. This is given by a pair of ordinary non-abelian Lie algebras, the Kac-
Moody loop Lie algebra Ω̂so, and the based path Lie algebra P so, equipped

with the canonical Lie algebra homomorphism (Ω̂so
h→ P∗so), which defines

what is called a “strict” Lie 2-algebra (all this is reviewed in the Appendix).
This is an equivalent presentation (an equivalent higher gauge incarnation)
of string:

(3.7.13) soμ3
� (Ω̂so

h→ P∗so) .

Using this infinitesimal description of the String-2-group, we obtain now,
by [30], a differential refinement of BString, namely the moduli 2-stack
of String-2-bundles equipped with 2-connections. As remarked in Section
3.6 (see Equation (3.6.7)), using this, the morphism of 3-stacks 1

2p1 can
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be further refined to a morphism of differentially refined 3-stacks 1
2 p̂1 :

BSpinconn → B3U(1)conn. Therefore, we could define, analogous to (3.2.10),
the moduli 2-stack of String bundles with connections as the homotopy fiber
of 1

2 p̂1 over the trivial U(1)-2-gerbe endowed with the trivial connection.
However, this turns out to be too a strict notion, so one prefers to adopt a
more flexible one, i.e. to define the stack BStringconn by analogy with the
homotopy fiber of (3.2.11), to be the homotopy fiber of 1

2 p̂1 : BSpinconn →
B3U(1) over the the trivial U(1)-2-gerbe. In other words, one asks that the
underlying Chern-Simons U(1)-2-gerbe 1

2p1(P ) of a Spin-principal bundle
P with connection trivializes, but without requiring that the induced con-
nection on it be trivial. String structures of this kind have been considered
in [87]; they are particular examples of the more general notion of twisted
String structure considered in [76], to which we turn in Section 3.8.

In more detail, BStringconn is defined by the homotopy pullback

(3.7.14)

BStringconn ��

��

∗

��
BSpinconn

1

2
p1 �� B3U(1) ,

which is the higher analog of (3.2.11). Since we have a homotopy pullback

(3.7.15)

Ω1≤•≤3 ��

��

∗

��
B3U(1)conn

�� B3U(1)

analogous to (3.2.12), the 2-stack BStringconn is equivalently given by the
homotopy pullback

(3.7.16)

BStringconn ��

��

Ω1≤•≤3

��
BSpinconn

1

2
p̂1 �� B3U(1)conn ,

in analogy with (3.2.13). As we have seen in Section 3.6, a realization of 1
2 p̂1

maps the local data (ωi, gij) of a Spin-bundle with connection on a manifold
X to the Čech-Deligne 3-cocycle
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(3.7.17)

(Ci, Bij , Aijk, gijkl) :=

(
CS3(ωi),

∫
Δ1

CS3(ω̂ij),

∫
Δ2

CS3(ω̂ijk),∫
Δ3

μ3(ω̂ijkl ∧ ω̂ijkl ∧ ω̂ijkl) mod Z

)
.

So one can derive local expressions for local differential form data of a String
connection in perfect analogy with formulae at the end of Section 3.3 .
Alternatively, one can derive all these local differential forms data and the
equations they satisfy by simplicial integration of the string Lie 2-algebra
soμ3

(as in Section 6.3 of [30], based on the L∞-algebraic resolutions in [76]).
Whichever of these equivalent presentations one adopts, one finds that on
each Ui of the chosen open cover U of X the datum of a String 2-connection
is the datum of an so-valued 1-form ωi and of a real valued 2-form Bi on
Ui, with 3-form curvature

(3.7.18) Hi := dBi +CS3(ωi) ,

satisfying a system of compatibility conditions on double and triple overlaps
of the patches in the cover. On the other hand, due to the equivalence of
Lie 2-algebras (3.7.13), there is an equivalent but rather different looking
higher gauge in which a String 2-connection is locally on any Ui given by
a pair (Ai, B̂i) of nonabelian differential forms, with Ai ∈ Ω1(Ui, Pg), and
B̂i ∈ Ω2(Ui,Ωg⊕ R). Notice that this has correspondingly a pair (Fi,Hi) of
cuvature forms, with

Fi = dAi +
1
2 [Ai ∧Ai] + h(Bi) ∈ Ω2(Ui, P∗so)(3.7.19)

Hi = dBi + [Ai ∧Bi] ∈ Ω3(Ui, Ω̂so)(3.7.20)

(see [80] for details). Here the bracket in the first line is the Lie bracket on
the P∗so-components of the 1-form A, and in the second line it is the action
of the P∗so-components of A on the Ω̂so-components of B̂ (see [7] for details
of this action). The map h in the first line sends the Ω̂so-valued 2-form to the
underlying P∗so-valued 2-form obtained by forgetting the central extension
and regarding a loop as a special based path.

A higher nonabelian curvature structure of this form was also proposed
in [63] for a description of nonabelian 2-forms on 5-branes, as recalled above
around (2.3.1). There, also a Chern-Simons term was added, as in (3.7.18).
We will see further Chern-Simons terms appear and acts as twists of the
above curvature relations when we pass to twisted String-2-connections in
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Section 3.8 below, (see Equation (3.8.9) there), though it seems that the
details that we derive differ from the proposal in [63]. Precisely in the special
case that the 2-form curvature (3.7.19) vanishes, there is a natural notion
of non-Abelian Wilson-surface observables for 2-connections. This and the
full local data for such 2-connections is derived and spelled out in [80, 81].

3.8. The 2-stack BString2a
conn of twisted String

2-connections

We discuss now a notion of twisted String-2-connections. These relate to the
String-2-connections from Section 3.7 as twisted vector bundles with connec-
tion (as in twisted K-theory) relate to ordinary vector bundles. 7 In [29]
we find twisted String-2-connections in boundary field configurations of C-
fields, reviewed below in Section 4.3, and in this form we will identify them
as the field configurations for 7d Chern-Simons theories in Section 4.4.

The construction of the refinement of the first fractional Pontrjagin class
to a morphism of stacks described in Section 3.7 rests only on the fact that
Spin is a compact and simply connected simple Lie group, and so the same
argument applies to the exceptional Lie group E8. By classical results [14]
its first non-vanishing homotopy group is π3(E8) � Z and so it follows by
the Hurewicz theorem that H4(BE8,Z) � Z . Therefore the generator of
this group is, up to sign, a canonical characteristic class, which we write
[a] ∈ H4(BE8,Z), corresponding to a characteristic map

(3.8.1) a : BE8 → K(Z, 4) .

For any integer k, the characteristic class k[a] ∈ H4(BE8,Z) has an essen-
tially unique refinement

(3.8.2) ka : BE8 → B3U(1)

to a morphism of smooth stacks, a representative of which is provided by
the Lie integration of kμe83 according to [30], where μe8

3 denotes the canonical
Lie algebra 3-cocycle on e8. Therefore, we can consider the smooth 2-groups
Stringka, defined to be the loop space objects of the homotopy pullback in

7For more context in string theory see [76], for general theory see Sections 2.3.5,
3.3.7 and 4.4 of [79].
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the top left corner of

(3.8.3)

BStringka ��

��

BE8

ka
��

BSpin
1

2
p1 �� B3U(1) .

This is the construction alluded to in the introduction around (2.1.13). By
using the (higher) abelian group structure on B3U(1), the stacks BStringka

can be equivalently seen as the homotopy fibers of the difference 1
2p1 − ka,

via a stacky generalization of the description in [76],

(3.8.4)

BStringka ��

��

∗

��
B(Spin× E8)

1

2
p1−ka �� B3U(1) .

By the defining nature of homotopy pullback, this means, in generalization
of the discussion below (3.7.1), that a Stringka-principal 2-bundle, classified
by a morphism of 2-stacks X → BStringka, is equivalently the data of

• an ordinary Spin-principal bundle P and an ordinary E8-principal bun-
dle E;

• equipped with a choice of gauge transformation

(3.8.5) h : 1
2p(P )

�→ ka(E)

between their Chern-Simons circle 3-bundles.

The image of this last condition in integral cohomology is

(3.8.6) 1
2p1 = ka ∈ H4(X,Z) .

For k = 2 this is the “quantization condition” for supergravity C-field con-
figurations on a 5-brane boundary. We come back to this in Section 4.3.

The 2-group Stringka is related to the 2-group String in higher analogy
of how the ordinary group Spinc is related to Spin. This is explained in [76].
As also discussed there, the Freed-Witten anomaly cancellation mechanism
for type II strings on D-branes implies twisted Spinc-structures on D-branes.
Here, the (twisted) String2a-structures that we find on M5-branes can there-
fore be understood as a direct higher generalization of this to higher dimen-
sion. Notice that for k = 0 we recover the untwisted string 2-group from
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Section 3.7 together with a factor of E8:

(3.8.7) String0a � String × E8 .

This is the higher analog of the fact that the “untwisted version” of Spinc(N)
is SO(N)×U(1).

Also notice that, by a classical fact [14] which explains much of the role
of E8 in 11-dimensional supergravity, E8 is 14-connected, so that for X of
dimension 11 (and more generally for X of dimension ≤ 15 ) E8-bundles
on X have the same classification as circle 3-bundles / 2-gerbes on X in
that there is precisely one equivalence class of them for each element of
H4(X,Z). Accordingly, configurations on such X that satisfy (3.8.6) for
some E8 bundle with class a are precisely the Spin-structures for which 1

2p1
— hence λ from expression (2.3.6) — is further divisible by k. To amplify
this, observe that the identity morphism

(3.8.8) DD2 : B
3U(1)→ B3U(1)

is the canonical smooth refinement of the canonical 4-class of circle 3-bundles
/ 2-gerbes (the higher Dixmier-Douady class), which induces for each k ∈
Z the smooth 2-group StringkDD2 . This is such that a lift from a Spin-
structure to a String2DD2-structure exists precisely if λ is further divisible
by k, irrespective of the dimension of X.

As before for String itself, with the methods of [30] we obtain a differ-
ential refinement to a moduli 2-stack BStringkaconn of String2a-connections.
This has a presentation by differential Lie integration of a Lie 2-algebra
that extends the direct sum so⊕ e8 via its canonical 3-cocycle. From this
one finds, in generalization of the discussion around (3.7.18), that there is a
higher gauge in which Stringka-connections are locally given by

• an so-valued 1-form ωi;

• an e8-valued 1-form Ai;

• a 2-form Bi;

with local curvature 3-form the sum of the (opposite of the) de Rham differ-
ential of B with the difference of the Chern-Simons form of ω and k times
the Chern-Simons form of A, respectively:

(3.8.9) Hi = dBi +CS3(ωi)− kCS3(Ai) .
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Note that this implies the equation

(3.8.10) dHi = 〈Fωi
∧ Fωi

〉 − k〈FAi
∧ FAi

〉 ,

which is the de Rham image of the characteristic relation (3.8.5). It is no
coincidence that these are the formulae known from the heterotic Green-
Schwarz mechanism. See [76] for more on that.

Again, beware that these local formulae are a little deceptive, in that on
the one hand there are other higher gauges in which they look rather differ-
ent, and also the formulae on single patches Ui do not reflect the complexity
of the data and its conditions on double and triple overlaps. As before for
bare String-2-connections in Section 3.7 we have: due to the higher gauge
freedom, there are other — very different looking local formulae — that
are however higher gauge equivalent via an equivalence explained in the
Appendix. In that other gauge, the 2-form B above is instead non-abelian
and valued in a Kac-Moody loop Lie algebra; accordingly, the 3-form cur-
vature is nonabelian and is given by a twisted version of Equation (3.7.20).

We discuss the role of these Stringka-2-connections in 5-brane physics
below in Section 4.

3.9. The differential second Pontrjagin class

We discuss now the smooth and differential refinement of the second Pontr-
jagin class p2 from [30, 74], defined on the 2-stack of String-2-connections.
Below, in Section 4.5, this will give the indecomposable part of the non-
abelian 7-dimensional Chern-Simons theory.

In Section 3.6 we saw, following [30], how the topology of the Spin group
induces a natural morphism of higher smooth stacks 1

2p1 : BSpin→ B3U(1)
which differentially refines the first fractional Pontrjagin class. Recall that
this was constructed in terms of systems of smooth functions

(3.9.1) Uijkl ×Δ3 → Spin

on patches of space U times a 3-simplex, which serve as a big resolution of
cocycle data gij : Uij → Spin for Spin-principal bundles. In order to extend
this kind of construction directly to one that supports a construction of p2,
we would need to pass all the way up to 7-simplices. But the nontriviality of
the third homotopy group of Spin says that there is a topological obstruction
to further extending a smooth function

(3.9.2) Uijklm × ∂Δ4 → Spin ,
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to a map

(3.9.3) Uijklm ×Δ4 → Spin .

Specifically, we have π3(Spin) = Z, and, via the Hurewicz isomorphism,

(3.9.4) π3(Spin) ∼= H4(BSpin,Z) .

Therefore, the generator of π3(Spin) is canonically identified with the class
1
2p1, and so the vanishing of the first fractional Pontrjagin class of a Spin
bundle precisely means that the above obstruction to further lifting of the
nonabelin cocycles vanishes.

We need to be more precise here, and recall a bit of obstruction theory:
the vanishing of the cohomology class for an obstruction cocycle does not
mean that the cocycle is unobstructed, but that in the same cohomology
class we can find an unobstructed cocycle. Moreover, the datum of a trivial-
ization of the obstruction cocycle precisely tells us how to modify the cocycle
in order to get an unobstructed cocycle. So the data of a String bundle can
be read as the data of a Spin bundle together with the “instructions” to
overcome the first topological obstruction to extend the transition functions
of the bundle to higher and higher dimensional simplices. Once the first
obstruction is passed, the construction will go on until the second obstruc-
tion is met. Since πi(Spin) vanishes for 4 ≤ i ≤ 6, while π7(Spin) = Z, the
second topological obstruction for a Spin bundle is represented by the gen-
erator Q2 of H8(BSpin,Z), which involves the second Pontrjagin class p2 as
Q2 :=

1
2(p2 − λ2), which is a power of 2 multiple of the one-loop polynomial

[64]. Moreover, when further refined from Spin to String, the generator is
simply 1

6p2 (see [75]).
This can be elegantly expressed in terms of classifying spaces: let BString

be the classifying space of String bundles defined as the homotopy fiber of
the characteristic map

(3.9.5) 1
2p1 : BSpin→ K(Z, 4) .

The long exact homotopy sequence and Hurewicz theorem then tell us that
H i(BString,Z) = 0 for 0 ≤ i ≤ 7 and H8(BString,Z) = Z, so that there is
a distinguished map (unique up to homotopy)

(3.9.6) 1
6p2 : BString→ K(Z, 8)
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representing the generator of the eighth singular cohomology group. Hence,
for X a topological space, we have a second fractional Pontrjagin class

(3.9.7) [X,BString]
1

6
p2−−→ [X,K(Z, 8)] ∼= H8(X,Z) .

Moreover, the obstruction theoretic argument presented above tells us that
String bundles are precisely those Spin bundles for which we can suitably
define the ĝi0,...,in lifts of the transition functions up to n = 7, showing that
1
6p2 refines to a morphism of stacks

(3.9.8) 1
6p2 : BString→ B7U(1) .

Furthermore, by looking at the construction of the differential refinement
1
2 p̂1 presented in Section 3.6, one immediately sees that what is crucial are
the extensions ĝi0,...,in , since the extensions ω̂i0,...,in are defined in terms of
those. This means that also 1

6p2 has an analogous differential refinement [30]

(3.9.9) 1
6 p̂2 : BStringconn → B7U(1)conn

from the stack of principal String bundles with connection to the stack of
U(1)-7-bundles with connections.

Explicit models for both 1
6p2 and

1
6 p̂2 can be obtained via Lie integration

and 7-coskeletization from the canonical 7-cocycle μ7 and Chern-Simons
element cs7 on so, as in [30]. The “from the top” Lie integration approach
has the remarkable advantage of producing canonical stack morphism out
of n-cocycles and Chern-Simons elements for a Lie algebra g, directly at the
level of the (n− 1)-connected cover of a Lie group G of the Lie algebra g.
However, here we prefered to present 1

6p2 and
1
6 p̂2 in terms of a more classical

“from the bottom” construction which is probably more familiar to a wider
range of readers. However, in Sections 4.5 and 4.6 the Lie integration of L∞-
cocycles will allow us to get explicit local formulae for the Chern-Simons
functionals induced by these differentially refined characteristic maps on
String 2-connection fields.

4. The 7-dimensional nonabelian gerbe theory

We indicate in this section a precise definition and some properties of a
certain nonabelian 7-dimensional Chern-Simons theory whose configuration
space is the smooth moduli 2-stack of boundary C-field configurations, iden-
tified with that of twisted String-2-connections, described in Section 3.7 and
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Section 3.8. We show that it has the properties that the arguments in Sec-
tion 2 suggest the Chern-Simons-dual of the 5-brane worldvolume theory
should have. We present this in stages:

• in Section 4.1 we present the general
construction principle of higher Chern-Simons functionals on higher

gauge fields;

• in Section 4.2 we consider theories induced from cup product classes,
such as the abelian Chern-Simons theory in 7d as well as the non-
abelian theory induced from (12p1)

2;

• in Section 4.3 we very briefly review some aspects of the details of
C-field configurations from [29];

• in Section 4.4 we put these ingredients together to form an action
functional of “7d abelian CS with 1

4p1-background charge”; and keep-
ing also the “p1-background charge” dynamical this is refined to a
nonabelian higher Chern-Simons theory on twisted String-2-connection
fields;

• in Section 4.5 we consider the “indecomposable” 7d theory induced
from p2 on String-2-connection fields;

• finally, in Section 4.6 we put all the pieces together and discuss the
full nonabelian Chern-Simons term of 7d supergravity on String-2-
connection fields.

4.1. Higher Chern-Simons functionals and their
level quantization

The general mechanism behind all these natural Chern-Simons functionals
is the following (see in [79] Sections 2.3.21 and 4.6). Let G be any higher
smooth group (such as for instance an ordinary Lie group or the String-
2-group) and write BGconn for the higher moduli stack of G-connections.
Then assume any differential characteristic map is given

(4.1.1) ĉ : BGconn → BnU(1)conn .

(The examples that we will shortly turn to are those from Section 3.7 and
Section 3.9.) Here we may also think of the stack on the left as the the
higher moduli stack stack of higher nonabelian gauge fields for the higher
gauge group G, in that for Σ any (n-dimensional) smooth manifold, a higher
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form gauge field data on Σ is characterized by a morphism of higher stacks
φ : Σ→ BGconn. Simply by composing this representing map with the above
map ĉ we send it to a map ĉ(φ) : Σ→ BnU(1)conn. By the discussion in
Section 3.3, this now represents an n-form gauge field on Σ. Since Σ itself
is n-dimensional, we may identify this with a differential n-fom on Σ. An
assignment of a top-degree form to a field configuration we may think of as
a Lagrangian L for a field theory

(4.1.2) Lc := H(Σ, ĉ) : Fields(Σ) � H(Σ,BGconn)→ H(Σ,BnU(1)conn) .

Here Fields(Σ) is the higher groupoid of field configurations: its objects
are nonabelian higher form fields, its morphisms are gauge transformations
between these, and its 2-morphisms are gauge-of-gauge transformations, and
so on. This is the higher groupoid that the BRST-complex / Lie n-algebroid
of the gauge theory is the infinitesimal approximation to.

In order to make this into an action functional, it remains only to inte-
grate the Lagrangian over Σ. By the discussion in Section 3.5 this may be
understood as forming the n-volume holonomy of the n-form gauge fields
in BnU(1)conn. Thus the exponentiated action functional on the integrated
BRST-complex (Lie n-algebroid) Fields(Σ) of field configurations and gauge
transformation on Σ induced from ĉ is

exp(iSc(−)) := exp(2πi

∫
Σ
Lc(−)) :

(4.1.3)

Fields(Σ) � H(Σ,BGconn)
Lc �� H(Σ,BnU(1)conn)

exp(2πi
∫
Σ
(−))

�� U(1) ,

where the second morphism is the higher holonomy morphism from (3.5.12).
The action functionals obtained this way are guaranteed to satisfy the

requirements on a Chern-Simons functionals associated with a class c:

1. The Lagrangian Lc is locally given by a higher Chern-Simons form for
the de Rham image of the integral class c;

2. The action functional exp(iSc(−)) is (higher) gauge invariant.

The first property follows from the nature of differential characteristic maps
(3.6.3). It is the statement of traditional Chern-Weil theory refined to higher
gauge fields. The higher Chern-Simons forms for higher gauge fields that
appear here have been introduced in [74]. Their appearance in the higher
Lagrangians as above has been established in [30]. For more on the general
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context of higher Chern-Weil theory see in [79] Sections 2.3.18 and 3.3.14.
However, just as ordinary degree-3 Chern-Simons forms, also these higher
Chern-Simons forms by themselves are not gauge invariant.

The gauge invariance of the integrated and exponentiated Lagrangian,
hence of the action fucntional, follows in the above general construction
by the very nature of what it means to give a morphism form a higher
groupoid/stackH(Σ,BGconn) to a set such as U(1). This is what the intrinsic
formulation in terms of higher stacks here accomplishes for us. It is in fact
impossible to make a non-gauge-invariant construction in higher stack theory
as long as one sticks to universal constructions as in the above (as opposed
to direct component presentations by local differential form data).

Notice here that the subtle quantization condition on the level that is the
familiar condition on the ordinary 3-dimensional Chern-Simons action to be
gauge invariant (see [32] for a review) is all encoded in the initial choice of
the characteristic map c, which is a discrete choice. In generalization of this,
the gauge invariance and the level quantization of the above exp(iSc(−)) is
all in the fact that c is indeed a morphism of higher stacks to BnU(1), and
as such indeed a smooth refinement of an integral cohomology class.

Example. As the archetypical example for this phenomenon, consider the
the case G := Spin and ĉ := 1

2 p̂1, from (3.6.5). Feeding this into the above
machine spits out the action functional of ordinary 3d Spin-Chern-Simons
theory (this has essentially been observed in [17]) at level 1 (or at level -1,
depending on an inessential convention):

(4.1.4)

exp(iS 1

2
p1
(−)) : ω �→ exp(2πi

∫
Σ
CS3(ω))

:= exp(2πi

∫
Σ
〈ω ∧ dω〉+ 2

3
〈ω ∧ ω ∧ ω〉) .

This is the direct reflection of the fact that 1
2 p̂1 is the differential refine-

ment of the integral class 1
2p1 ∈ H4(BSpin,Z), and that this, in turn, is

the generator of H4(BSpin,Z) � Z. This is the reason for caring about the
fractional Pontrjagin class here: precisely for every integer k ∈ Z do we get
another class k

2p1 ∈ H4(BSpin,Z) and its differential refinement k
2 p̂1. Feed-

ing that into the above machine produces the ordinary action functional of
3d Spin-Chern-Simons theory at level k.

(4.1.5) exp(iS k

2
p1
(−)) : ω �→ exp(k 2πi

∫
Σ
〈ω ∧ dω〉+ 2

3
〈ω ∧ ω ∧ ω〉) .
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While this issue of gauge invariance and quantized levels is classical and
well understood by explicit computation for ordinary Chern-Simons theory,
the analogous problem in constructing higher dimensional Chern-Simons
theories on higher gauge fields quickly becomes intractable in terms of local
differential form data and its higher gauge transformations. But the above
general construction serves as an algorithm that tells us how to obtain gauge
invariant higher Chern-Simons functionals and how exactly their levels have
to be quantized.

We go through some examples in the following sections. For instance, for
the indecomposable 7d theory induced by p2 on String 2-connection fields
(see Section 4.5) the quantization condition on the level is controled by the
fact that H8(BString,Z) � Z and that the generator of this integral group
is [75] the second fractional Pontrjagin class 1

6p2. Therefore the canonically
induced 7d action exp(iS 1

6
p2
(−)) is precisely the level-1 theory in 7d on non-

abelian 2-connection fields, and we get the theory at another level precisely
for any choice k ∈ Z by forming exp(iS k

6
p2
(−)).

In the following we discuss some 7-dimensional action functionals of the
above form.

4.2. The cup product of a 3d CS theory with itself

The action functional of the 7d theory involves decomposable as well as
nondecomposable terms. In this section we consider the former, which is
essentially the product of two copies of 3d Chern-Simons theory. The latter
case is discussed in Section 4.5 below.

Let G be a compact and simply connected simple Lie group and let c
the characteristic class given by the canonical generator of H4(G;Z). Then
we have the cup product of c with itself defining a degree 8 integral coho-
mology class c ∪ c. In terms of characteristic maps, this corresponds to the
composition

(4.2.1) c ∪ c : BG (c,c) �� K(Z, 4)×K(Z, 4)
∪ �� K(Z, 8) .

Such a structure is utilized in [69] to define particular such twists to Five-
brane structures in relation to the M5-brane. Since the characteristic map
c is induced by the canonical Lie algebra 3-cocycle on G, it has, by [30], a
differential refinement to a morphism of stacks

(4.2.2) ĉ : BGconn → B3U(1)conn .
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By itself, this induces ordinary 3d Chern-Simons theory, as discussed around
(4.1.4). But using a differential refinement of the cup product, its cup square
induces a 7d theory. Indeed, under the Dold-Kan correspondence (see Sec-
tion 3.1), the Beilinson-Deligne cup product, which refines the cup product
on differential cohomology classes to Deligne complexes, naturally gives a
corresponding morphism of moduli stacks

(4.2.3) ∪̂ : BkU(1)conn ×BlU(1)conn → Bk+l+1U(1)conn .

This cup product is such that for Ĉ : Σ→ BkU(1)conn a k-connection with
local connection k-forms {Ci} and globally defined curvature (k + 1)-forms
G, and for B̂ : Σ→ BlU(1)conn an l-connection with with local connection
l-forms {Bi} and globally defined curvature (l + 1)-form H, the cup product
(4.2.4)

Ĉ ∪̂ B̂ : Σ
(Ĉ,B̂) �� BkU(1)conn ×BlU(1)conn

∪̂ �� Bk+l+1U(1)conn

is a k + l + 1-connection whose local connection (k + l + 1)-forms can be
taken to be {Ci ∧H} or {G ∧Bi}, and hence whose curvature (k + l + 2)-
form is G ∧H. Moreover, the underlying integral (k + l + 2)-class of Ĝ ∪̂ Ĥ
is the ordinary cup product of the integral classes underlying Ĝ and Ĥ.
Therefore, this induces a differential refinement of the ordinary integral cup
square c ∪ c to a morphism of stacks

(4.2.5) ĉ ∪̂ ĉ : BGconn
(ĉ,ĉ) �� B3U(1)conn ×B3U(1)conn

∪̂ �� B7U(1)conn .

So if Σ is a compact oriented smooth manifold of dimension 7, we have a cup
product Chern-Simons theory induced by c: its Chern-Simons functional is

(4.2.6) exp(iSc∪c) : H(Σ,BGconn)
ĉ ∪̂ ĉ �� H(Σ,B7U(1)conn)

∫
Σ �� U(1) .

For ordinary Chern-Simons theory, the assumption that G is simply con-
nected implies that BG is 3-connected, hence that every G-principal bundle
on a 3-dimensional Σ is trivializable, so that G-principal connections on Σ
can be identified with g-valued differential forms on Σ. This is no longer
in general the case over a 7-dimensional Σ. Therefore, no simple explicit
expression of the action exp(iSc∪c(∇)) can be given in general (one can
always describe in in terms of nonabelian Cech cocycles). However, if the
underlying G-bundle of a field configuration happens to be trivial, then we
do have such a simple expression. Namely, once a trivialization is chosen,
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the G-connection ∇ is given by a globally defined g-valued 1-form A on Σ
and the explicit expression of the Beilinson-Deligne cup product mentioned
above implies that the cup product Chern-Simons action is

(4.2.7)

exp(iSc∪c(∇)) = exp

(
2πi

∫
Σ
CS3(A) ∧ dCS3(A)

)

= exp

(
2πi

∫
Σ
CS3(A) ∧ 〈FA ∧ FA〉

)
,

where CS(A) is the usual Chern-Simons 3-form, and 〈FA ∧ FA〉 is the canon-
ical de Rham representative for the cohomology class c.

Let, for instance, c = 1
2p1 be the first fractional Pontrjagin class on Spin-

connections. Its smooth differential refinement

(4.2.8)
1

2
p̂1 : BSpinconn → B3U(1)conn

was constructed in [30]. The corresponding cup product action exp(iS( 1

2
p2
1)
(−))

is the refinement to moduli stacks of the Chern-Simons term induced by the
λ2-summand (2.3.5) in the quantum corrected supergravity action.

In direct analogy we obtain standard abelian 7d-Chern-Simons theory
refined to its moduli 3-stack of field configuratiojns B3U(1)conn. The identity
morphism

(4.2.9) D̂D2 : B
3U(1)conn → B3U(1)conn

we may think of as the differential refinement of the smooth refinement
(3.8.8) of the higher Dixmier-Douady class on circle 3-bundles / bundle 2-
gerbes. The corresponding cup product 7d Chern-Simons action functional
is the composite

exp(iSDD2∪DD2
(−)) :

(4.2.10)

H(Σ,B3U(1)conn)
D̂D2 ∪̂ D̂D2 �� H(Σ,B7U(1)conn)

∫
Σ �� U(1) .

Again, this has in general a complicated expression in terms of local data.
But when restricted to fields C3 in the inclusion Ω3(−)→ B3U(1)conn, the
action has the simple expression

(4.2.11) exp(iSDD2∪DD2
)(C) = exp(2πi

∫
Σ
C3 ∧ dC3) .
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4.3. The moduli stack of supergravity C-field
configurations

The 7d Chern-Simons functionals that we consider will be defined on the
fields of 11-dimensional supergravity, their reduction to 7-dimensions and
their restriction to 5-brane boundaries. The collection of these fields con-
sists locally of a 3-form (the C-field), an so-valued 1-form (the field of grav-
ity), and on the boundary also of an e8-valued 1-form, the gauge field, and
a B-field that witnesses the gauge identifications on the boundary. Glob-
ally, however, these fields are interrelated and arrange to certain nonabelian
twisted differential cocycles.

In [29] we give a detailed discussion of a smooth moduli 3-stack CField
of C-field configurations, as well as of a morphism CFieldbdr → CField
that exhibits the relative cohomology that classifies boundary C-field con-
figurations. For convenient reference in the following discussion, we briefly
list some basic statements from [29] here.

There is a close analogy with the discussion of B-field configurations on
D-branes in Section 3.4. Recall that there the moduli of abelian bulk and
nonabelian boundary field configurations were those of differential cohomol-
ogy relative to the brane inclusion Q ↪→ X and relative to the characteristic
map dd : BPU(H)→ B2U(1). The analog of this characteristic map for the
C-field is the canonical (second Chern) map

(4.3.1) a : BE8 → B3U(1)

from the moduli stack of E8-bundles to that of circle 3-bundles / bun-
dle 2-gerbes, which is constructed as a morphism of smooth 3-stacks as in
[30]. Under geometric realization (3.1.2) this becomes morphism a : BE8 →
K(Z, 4) of topological spaces representing a generating degree-4 integral
cohomology class in H4(BE8) � Z. By the higher connectedness of E8 [14]
this a is an equivalence on 15-coskeleta, which means that, while nonabelian
E8-gauge fields have a very different differential geoemtry than abelian 3-
form connections, the instanton sectors on both sides may be identified. All
this is analogous to dd and the situation for the B-field on D-branes around
(3.4.8).

So let Q→ X be a 5-brane worldvolume embedded into 11-dimensional
spacetime X. A corresponding cocycle in a-twisted relative differential coho-
mology is a homotopy commuting diagram of higher stacks
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(4.3.2)

Q
B̂ ��

��

B(E8)conn

â
��

X
Ĉ

�� B3U(1)conn

��� ����������

����������

analogous to (3.4.7). For fixed bulk field Ĉ, this is equivalently an element
in the homotopy pullback

(4.3.3)

aStrucĈ|Q(Q)

��

�� ∗
Ĉ|Q

��
H(Q,B(E8)conn)

H(Q,â)�� H(Q,B3U(1)conn)

of Ĉ|Q-twisted differential String(E8)-structures [76], which are twisted
String(E8)-2-connections onQ. Therefore, where the restriction of the abelian
B-field on a D-brane gives rise to a nonabelian 1-form gauge field, the restric-
tion of the C-field relative the a-class gives rise to a nonabelian 2-form gauge
field. This sets the main mechanism for the supergravity C-field boundary
moduli. But there the situation is a little bit more complex, due to the
additional presence of the dynamical Spin-connection.

We consider throughout the case of Spin-structures for which the class
1
2p1 is further divisible by 2. As discussed in [76], this may naturally be
understood as given by String2DD2-structures, where, for c some universal 4-
class, Stringc is a higher analog of Spinc [68], and whereDD2 is the universal
Dixmier-Douady class for 2-gerbes / circle 3-bundles. Over the spacetimes
of dimension ≤ 14 that we care about here, this are equivalently String2a-
structures, where a is the universal 4-class of E8-principal bundles.

The moduli 3-stack of C-field configurations for 1
2p1 divisible by 2 is then

the homotopy pullback

(4.3.4)

CField ��

��

B3U(1)conn

·2
��

BSpinconn ×BE8

1
2p1+2a

�� B3U(1) ,

where 1
2p1 is the smooth refinement of the first fractional Pontrjagin class

from [30]. This is a further refinement of the situation discussed in the
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introduction around (2.1.13). Along the lines of the discussion there, one
finds that a field configuration φ : Σ→ CField has an underlying circle
3-connection Ĉ, an underlying Spin-connection F̂ω, and an underlying E8-
principal bundle with class a, as well as a choice of gauge transformation

(4.3.5) H : G
�−→ a− 1

4p1

between the underlying circle 3-bundle of Ĝ and the difference between the
Chern-Simons circle 3-bundles of the Spin- and the E8-bundle.

There are two stages of boundary conditions for this data we consider,
exhibited by a sequence of maps of moduli stacks

(4.3.6) CFieldbdr0 → CFieldbdr → CField .

For boundary field configurations φ : Σ→ CFieldbdr the integral cohomol-
ogy class of Ĝ4 is required to vanish and a differential 3-form part may
remain (this is the condition for restriction to an M5-brane), while for
CFieldbdr0 the full differential cohomology class of Ĝ4 is required to vanish
(this is the condition for restriction to the orbifold fixed point of a Hořava-
Witten bounday). In both cases the E8-bundle picks up a connection over
the boundary.

In more detail, the boundary moduli CFieldbdr are given by the homo-
topy pullback of smooth 2-stacks

(4.3.7)

CFieldbdr ��

��

Ω1≤•≤3(−)
H

��
B(Spin× E8)conn 1

2 p̂1+2â

�� B3U(1)conn ,

B̂
��� �����������������������

�����������������������

where the right morphism includes the moduli 3-stack for globally defined 3-
forms and their gauge transformation canonically into the moduli 3-stack for
3-form field configurations. This is the analog for the C-field of the situation
in (3.4.1) for the B-field. Over a patch Ui of a brane Q ↪→ X it encodes a
2-form Bi with differential Hi = dBi such that

(4.3.8) Hi = Hi + (CS3(ω)− 2CS3(A)) .

This corresponds ot Equation (2.1.2) in the introduction.
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The 2-stack CFieldbdr0 is defined analogously, but with the right mor-
phism being the inclusion ∗ → B3U(1)conn of the entirely trivial 3-form con-
nection. Comparison with (3.8.4) shows that therefore these C-field bound-
ary moduli are equivalent to those of 2a-twisted String 2-connections discuss
in Section 3.8

(4.3.9) CFieldbdr � BString2aconn .

Then for Q→ X a brane in an 11-dimensional spacetime X, the 3-stack
of bulk and boundary field configurations is that of homotopy commuting
squares of 3-stacks

(4.3.10)

Q
B̂ ��

��

CFieldbdr

����
X

Ĉ �� CField .

This is the C-field analog of what for the B-field is (3.4.7). More details are
discussed in [29].

4.4. 7d CS theory with charges on the
supergravity C-field

We can directly combine the above two kinds of Chern-Simons theories to
their direct product theory, given by the action functional

exp(iS 1

2
p1∪ 1

2
p1
) exp(iSDD2∪DD2

) :

(4.4.1)

H(Σ,BSpinconn ×B3U(1)conn)
( 1

2
p̂1∪̂ 1

2
p̂1+D̂D∪̂D̂D)

�� H(Σ,B7U(1)conn)

exp(2πi
∫
Σ
(−))

��
U(1) ,

defined on pairs consisting of a Spin-connection and a 3-form field. To incor-
porate the interrelation between these fields in supergravity, we precompose
this with the canonical projection map from the moduli of supergravity
C-field configurations, as discussed in Section 4.3. Precomposing with the
paired projections out of the defining homotopy pullback (4.3.4) gives the
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action functional

H(Σ,CField)

��

U(1) .

H(Σ,BSpinconn ×B3U(1)conn)
( 1

2
p̂1∪̂ 1

2
p̂1+D̂D∪̂D̂D)

�� H(Σ,B7U(1)conn)

∫
Σ

��

This is now a functional defined on 11-dimensional supergravity fields whose
local form data is {Ci} (the C-field) and {ωi} (the spin connection), and
whose integral classes satisfy the quantization condition

(4.4.2) G4 = a− 1
4p1 ∈ H4(Σ,Z) .

The action functional is locally given by

(4.4.3) (ωi, Ci) �→
∫

(Ci ∧ dCi − CS(ωi) ∧ tr(Fω ∧ Fω)) .

This may be further restricted to the C-field boundary configuration along
the morphism of moduli stacksCFieldbdr → CField to an action functional

H(Σ,CFieldbdr)

��

U(1) .

H(Σ,BSpinconn ×B3U(1)conn)
( 1

2
p̂1∪̂ 1

2
p̂1+D̂D∪̂D̂D)

�� H(Σ,B7U(1)conn)

∫
Σ

��

By the equivalence (4.3.9) the fields in H(Σ,CFieldbdr) are twisted
String-2-connections. As discussed in Section 3.8, there is a higher gauge
in which these are locally given by form data (ωi, Ai, Bi,Hi) subject to
some constraints. In terms of this local data the local value of the action
functional still reads as in the functional (4.4.3). However, the local data is
insufficient to accurately judge the nature of the field content. For one, the
relations (3.8.9) satisfied by the local form data means that equivalently the
local action is given by expression such as

(4.4.4)
(ωi, Ai, Bi,Hi) �→

∫
(Ci ∧ dCi −Hi ∧ dHi − 2Hi ∧ 〈FA ∧ FA〉
− CS(Ai) ∧ tr(FA ∧ FA)) .

Moreover, as discussed in Section 3.7, there are other gauges in which equiv-
alently a nonabelian 2-form Bi appears. Finally, in either case the global
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value of the action functional involves in general contributions from gauge
transformations between local patches, and gauge-of-gauge transformations
between these, which are not immediately evident from the above local for-
mulae. A general account of the complete formulae in terms of nonabelian
Čech cocycles with coefficients in L∞-algebra valued forms [74] is in [30].

Whichever way one uses to derive (or guess, should that indeed be pos-
sible) these correct explicit formulae for the higher nonabelian gauge field
actions, the above simple constructions in terms of canonical Chern-Simons
action functionals on mapping stacks guarantees that these formulae exist,
are indeed gauge invariant, and are controled by the defining characteristic
classes in the way they should. It is then a straightforward matter of apply-
ing the general machinery to obtain any level of explicit detail as desired.

4.5. 7d indecomposable CS theory on String
2-connection fields

We now turn to the 7-dimensional Chern-Simons theory that is induced by
the second Pontrjagin class p2 on BSpin and its fractional refinement 1

6p2 on
BString. As discussed in Section 3.6 (Equation (3.6.8)) we have a canonical
differential characteristic map

(4.5.1) 1
6 p̂2 : BStringconn → B7U(1)conn

from the moduli 2-stack of String-2-connections to the moduli 7-stack of
U(1)-6-gerbes with connection. By the general mechanism described at the
beginning of Section 4, this induces a 7-dimensional Chern-Simons theory:
for Σ a compact 7-dimensional oriented smooth manifold, define exp(iS 1

6
p2
(−))

to be the Chern-Simons action functional
(4.5.2)

exp(iS 1

6
p2
(−)) : H(Σ,BStringconn)

1

6
p̂2 �� H(Σ,B7U(1)conn)

∫
Σ �� U(1) .

This can be explicitly described as follows. To begin with notice that since
the classifying space BString of principal String bundles is 8-connected, the
underlying String bundle to an object in H(Σ,BStringconn) is trivial, for
any 7-dimensional Σ. Therefore the local differential forms data defining a
String connection can actually be chosen to be globally defined. (But this
is true only as long as we ignore here for the moment the twist that arises
when passing to String2a-connections, as in the previous section.)

Then, recall from Section 3.7 the different incarnations of the local dif-
ferential form data for string 2-connections. With this in mind we have:
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Proposition 4.5.1. (i) in terms of the strict string Lie 2-algebra (Ω̂so→
P∗so), an object in H(Σ,BStringconn) is the datum of a pair of nonabelian
differential forms A ∈ Ω1(Σ, P∗so), B ∈ Ω2(Σ, Ω̂∗so)and exp(iS 1

6
p2
(−)) takes

this to

(4.5.3) exp(iS 1

6
p2
(A,B)) = exp

(
2πi

∫
Σ
CS7(A(1))

)
,

where A(1) ∈ Ω1(Σ, so) is the 1-form obtained by evaluating on the endpoint
1 the path Lie algebra-valued 1-form A, and CS7 is the standard degree-7
Chern-Simons element on so from (2.3.14).

(ii) in terms of the skeletal string Lie 2-algebra soμ3
, an object in H(Σ,

BStringconn) is the datum of a pair of differential forms A ∈ Ω1(Σ, so), B ∈
Ω2(Σ,R), and exp(iS 1

6
p2
(−)) takes this to

(4.5.4) exp(iS 1

6
p2
(A,B)) = exp

(
2πi

∫
Σ
CS7(A)

)
.

Notice that, while the 2-form B does not appear explicitly in the inte-
grands on the right, it does nevertheless affect the kinematics of the theory.
Its presence forces the connection A to be such that the first Pontrjagin
term 〈FA ∧ FA〉 is exact (see [74] and [30] for details).

Note also that the universal differential map 1
6 p̂2 plays a role already

on the 10-dimensional boundary of spacetime, as the differential twist that
induces the Green-Schwarz mechanism in magnetic heterotic String theory
[75, 76]. In dimension 10 a String 2-connection field configuration φ : X →
BStringconn is in general far from being given by globally defined differential
form data, and the 2-form B appears more prominently in the relevant
formulae, see [30, 76].

4.6. 7d CS theory in 11d supergravity on
String-2-connection fields

In this section we can put the ingredients together and construct a 7-
dimensional Chern-Simons theory induced by the quantum corrected Chern-
Simons term in 11-dimensional supergravity (2.3.7). This is a twisted com-
bination of the two 7-dimensional Chern-Simons action functionals from 4.2
and 4.5 which naturally lives on (a higher conected cover of) the moduli
2-stack CField(−)bdr of boundary C-field configurations from Section 4.3.

Recall from the introduction that our task is to find a 7d Chern-Simons
functional that is induced from a characteristic class of the form (2.3.5)
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I8 =
1
48(p2 + (12p1)

2) on fields that satisfy a quantization condition (2.3.10)
given by 1

2p1 = 2a. For the universal characteristic class p2 + (12p1)
2 on the

universal Spin-bundle over BSpin, the divisibility is (see [64])

(4.6.1) 24I8 =
1
2(p2 − (12p1)

2) ∈ H8(BSpin,Z) .

If, however, we fix an 8-dimensional oriented manifold TX : X → BSO(8)
which admits a Spin-structure

(4.6.2)

BSpin(8)

��
X

TX ��

���
�

�
�

�
BSO(8)

,

then index theory shows (Equation (3.2) in [92]) that the pullback of the
universal class to X has now divisibility by 6

(4.6.3) 8I8(X) =
1

6
(p2(X)− (12p1(X))2) ∈ H8(X,Z) .

In order to eventually formulate this is the form of canonical Chern-Simpns
theories defined on moduli stacks as in Section 4.1, observe that this means
that we have the following diagram of differential cohomology sets/groups

(4.6.4)

H(Σ,B7U(1)conn)

·3
��

Fields(Σ) ��

��

H(Σ,
1
6 (p̂2−( 12 p̂1)2)) ��

H(Σ,BSpinconn)

��

H(Σ,
1
2 p̂2−( 12 p̂1)2)

�� H(Σ,B7U(1)conn)

H(Σ, BSpin(8))

��
∗ TΣ �� H(Σ,BSO(8))

.

Here Field(Σ) denotes the connected comonents of the homotopy pullback
of H(Σ,BSpinconn)→ H(Σ,BSO) along TΣ, which is encodes the gauge
equivalence classes of Spin-connections on all possible Spin-structures on
the tangent bundle TX. The existence of the top arrow expresses the fact
that restricted to such fields, the universal differential class 1

2(p̂2 − (12p1)
2) is
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further divisible by 3, where up to here the differential refinements (denoted
by the hats) can still be given by classical Chern-Weil theory.

However, this is still not the refined Chern-Simons functional (so far
on gauge equivalence classes) that we need. While this cannot be further
divided, also Fields(Σ) here is not the correct field configuration space yet.
The correct configuration space for the boundary values of C-field configu-
rations has to satisfy the quantization condition (2.3.9) saying that 1

2p1 is
further divisible by 2. By (3.7.4) the classifying space for such configura-
tions is BString2DD, whose smooth and differential refinement is the mod-
uli 2-stack BString2DD

conn , which is such that a map X → BString2DD
conn is a

Spin-connection ω and a choice of divisibility morphism of the correspond-
ing Pontrjagin class. So the quantization condition may be implemented in a
gauge equivariant way by replacing in the above the moduli stack BSpinconn
with the moduli 2-stack BString2DD

conn . Then by the discussion on p. 9 of [92]
we then have

(4.6.5)

H(Σ,B7U(1)conn)

·24
��

Fields1
2λ
(Σ) ��

��

H(Σ,
1
48 (p̂2−( 12 p̂1)2))

��

H(Σ,BString2DD
conn )

��

H(Σ,
1
2 p̂2−( 12 p̂1)2)

�� H(Σ,B7U(1)conn) .

∗ TΣ �� H(Σ,BSO(8))

Here Fields1
2λ

is the connected components of the homotopy pullback of

H(Σ,BString2DD)→ H(Σ,BSO(8)) along TΣ, which encodes the gauge
equivalence classes of String2DD-2-connections on the tangent bundle of X.
The curved morphism indicates that on this configuration space now the
7d Chern-Simons action has the full divisibility with prefactor 1

48 . In order
to add dynamical E8-gauge fields on the boundary we invoke the canonical
morphism BString2a → BString2DD which implements the condition that
1
2 p̂1 is not just divisible further by 2, but that half of it is the class of a given
E8-bundle with given E8-connection.

In conclusion, the canonical boundary 7d Chern-Simons functional induced
by the quantum correction term (2.3.7) and consistent at any given level,
hence consistent for any number of 5-branes N ∈ N is the composite func-
tional
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H(Σ,CFieldbdr)

�
��

LI8

�� H(Σ,B7U(1)conn)

·24
��

H(Σ,BString2aconn)
�� H(Σ,BString2DD2

conn )
L24I8 �� H(Σ,B7U(1)conn)

exp(2πi
∫
Σ
(−))

��
U(1) .

Notice here that, by the high connectedness of E8, we have over a 7-dimension-
al Σ that

(4.6.6) H(Σ,BE8)→ H(Σ,B3U(1))

is an isomorphism on gauge equivalence classes, identifying E8-instantons
sectors with higher magnetic charge sectors of 3-bundles / 2-gerbes. But
since as smooth stacks BE8 is different from B3U(1) (the gauge transfor-
mations are very different!) this is not an equivalence of the 2-groupoids of
gauge transformations and gauge-of-gauge transformations. Moreover, the
differential refinement

(4.6.7) H(Σ, (BE8)conn)→ H(Σ,B3U(1)conn)

is not even an isomorphism on gauge equivalence classes: E8-gauge fields are
much more refined than the 3-form Chern-Simons gauge fields induced from
them. For these reasons, also the morphism

(4.6.8) H(Σ,BString2aconn)→ H(Σ,BString2DD
conn )

appearing in the above composition is far from being an equivalence of of
gauge field configuration data, even though the gauge equivalence classes of
the underlying instanton/charge sectors are canonically identified.

By the discussion in Section 3.6 we have the Lagrangian LI8 := H(Σ, Î8)
universally defined, by higher Lie integration, on the universal 7-connected

cover moduli 2-stack B ̂String2aconn of the moduli 2-stack BString2aconn, and
the Lagrangian down on the latter is obtained by consistent quotienting
from that. By the discussion in Section 4.1 the action exp(iSI8) is guarateed
to locally be of the required form (2.3.12), while at the same time having
the correct global properties and be gauge invariant under higher gauge
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transformations of nonabelian String2a 2-form connections fields, by level
quantization.

An explicit presentation of the full Lagrangian on B ̂String2aconn can be
constructed directly with the tools in [30]. Instead of going here through
the full details, which are spelled out there in general, we close by pointing
out how the full functional exp(iSI8) restricts to the special cases which we
discussed before. Namely, by the universal property of the homotopy pull-
back, and by the “pasting law” for homotopy pullbacks we have a canonical
morphism of moduli 2-stacks

(4.6.9) BString→ BString2a

given as the universal dashed arrow in the diagram

(4.6.10)

BString ��

���
�
�

∗

��
BString2a ��

��

BE8

2a
��

BSpin

1
2p1

�� B3U(1) .

The action functional exp(iSI8) may be restricted along this morphism to
the configuration 2-stack of untwisted String-2-connections. This restric-
tion then coincides with the “indecomposable” 7-dimensional Chern-Simons
functional exp(iS1

6p2

) discussed in Section 4.5.
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Appendix: Two models for string, six models for String

In ordinary gauge theory, any two different but equivalent incarnations of,
say, a Lie algebra are related by an isomorphism. In practice this typically
appears simply as a linear transformation between two choices of basis of
the underlying vector space, and is typically easily recognized and known as
such. In contrast, there is a somewhat subtle new phenomenon that appears
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when passing beyond ordinary nonabelian gauge theory to higher nonablian
gauge theory. Due to the higher gauge freedom, we have in general a plethora
of possibly very different looking but nevertheless equivalent incarnations
of a given higher gauge group, its Lie n-algebra and hence of the local
differential form data of higher gauge fields. This accounts for a good bit
of the subtlety of higher nonabelian gauge theory, the effects of which have
not always been dealt with appropriately in existing proposals, in particular
concerning the characterization and identification of what it means to have
a “nonabelian 2-form theory”.

Discussing this requires a slightly higher level of mathematical detail
than we wanted to use in the main text here, since these can be found
discussed extensively in our previous publications. But because awareness of
this phenomenon helps to put the higher nonabelian gauge theories discussed
here in the proper perspective, we here briefly review some relevant facts for
the case of the String-2-group and its Lie 2-algebra string (see here Section
3.7 for more discussion). Analogous comments would apply to their twisted
versions String2a and stringe8 from Section 3.8.

First we consider two different incarnations of the Lie 2-algebra string,
from one of main theorems in [7]. Let g be a semisimple Lie algebra. Write
〈−,−〉 : g⊗2 → R for its Killing form and

(A.1) μ = 〈−, [−,−]〉 : g⊗3 → R

for the canonical 3-cocycle Lie algebra cocycle.

Definition A.1 (skeletal version of string). Write gμ for the Lie 2-
algebra whose underlying graded vector space is

gμ = g⊕ R[−1] ,
and whose nonvanishing brackets are defined as follows.

• The binary bracket is that of g when both arguments are from g and
0 otherwise.

• The trinary bracket is the 3-cocycle

[−,−,−]gμ
:= 〈−, [−,−]〉 : g⊗3 → R .

Definition A. 2 (strict version of string). Write (Ω̂g
h→ P∗g) for the

Fréchet Lie 2-algebra whose underlying vector space is

(Ω̂g→ P∗g) = P∗g⊕ (Ωg⊕ R)[−1] ,
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where P∗g is the vector space of smooth maps γ : [0, 1]→ g such that γ(0) =
0, and where Ωg is the subspace for which also γ(1) = 0, and whose non-
vanishing brackets are defined as follows

• [−]1 = ∂ := Ωg⊕ R→ Ωg ↪→ P∗g;

• [−,−] : P∗g⊗ P∗g→ P∗g is given by the pointwise Lie bracket on g as

[γ1, γ2] = (σ �→ [γ1(σ), γ2(σ)]) ;

• [−,−] : P∗g⊗ (Ωg⊕ R)→ Ωg⊕ R is given by pairs

(A.2) [γ, (�, c)] :=

(
[γ, �], 2

∫ 1

0
〈γ(σ), d�

dσ
(σ)〉dσ

)
,

where the first term is again pointwise the Lie bracket in g.

Proposition A.1. The linear map

P∗g⊕ (Ωg⊕ R)[−1]→ g⊕ R[−1] ,

which in degree 0 is evaluation at the endpoint

γ �→ γ(1)

and which in degree 1 is projection onto the R-summand, induces an equiv-
alence of Lie 2-algebras

(Ω̂g→ P∗g) � gμ .

This is Theorem 30 in [7].
By Section 3.4.1 in [79], Lie n-algebras g for all n can naturally be under-

stood as infinitesimal smooth n-stacks bg ↪→ BG, forming the infinitesimal
neighbourhood of the canonical base point in the moduli n-stacks BG inte-
grating them. In this context, any Lie algebra n-cocycle μ is a morphism
of infinitesimal n-stacks μ : bg→ bnR, explicitly models for which are dis-
cussed in [74][30]. Therefore we may ask for the homotopy fiber of a Lie
algebra cocylce and make the following definition.

Definition A.3. For g a semisimple Lie algebra as in (A.1), the Lie 2-
algebra string(g) is, up to weak equivalence, the loop space object of the
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homotopy fiber bstring(g) in

bstring(g) ��

��

∗

��
bg

μ �� b3R

.

For the case g = soN we we write for short

string := string(so) .

Notice the analogy to (3.7.1). With this we have

Proposition A.2. With g as above, both gμ as well as (Ω̂g→ P∗g) are
equivalent incarnations of string(g).

Remark A.1. The two models gμ and (Ω̂g→ P∗g) are at two opposite
extremes of all possible models: while gμ is singled out by having trivial
unary bracket, (Ω̂g→ P∗g) is singled out by having trivial trinary bracket.
Analogous statements apply to the models of the String 2-group, to which
we now turn.

In direct analogy to how Lie algebras integrated to Lie groups in classical
Lie theory, so higher Lie algebras integrate to higher smooth groups in higher
Lie theory.

Proposition A.3. The degreewise ordinary Lie integration of the differ-
ential crossed module (Ω̂so→ P∗so) yields the Fréchet Lie crossed module
(Ω̂Spin→ P∗Spin), where Ω̂Spin is the level-1 Kac-Moody central extension
of the smooth loop group of Spin. This is naturally a strict Fréchet Lie 2-
group.

The nontrivial part to check is that the action of P∗so on Ω̂so lifts to
a compatible action of P∗Spin on Ω̂Spin which lifts the infinitesimal action
and such as to satisfy the axioms of a crossed moduel. This is prop. 24 in
[7]. In the above, the group operation in P∗G and in ΩG is the pointwise
multiplication of parameterized paths in G, which in Ω̂G is twisted by the
action of a 2-cocycle on loops. There are two evident variants of this.

• One may consider forming thin homotopy equivalence classes of paths
inG, which form a group not under pointwise multiplication, but under
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composition. The corresponding strict 2-group

(A.3) (Ω̂thG→ PthG)

is constructed in def. 4.1.20 of [79].

• One may consider a different cocycle on the loop group, known as
Mickelsson’s cocycle. This yields a strict 2-group StringMick given in
prop. 4.1.26 of [79].

One may also form a universal higher Lie integration of gμ as in [43], which
in [30] was put in the context of higher smooth stacks as used here. This
yields a weak smooth 2-group Ωτ2 exp(gμ).

Theorem A.1. All these 2-groups are equivalent models for the smooth
2-group String as defined in (3.7.1), as are their smooth moduli 2-stacks.

This is Theorem 4.1.29 in [79].
There are further, very different looking models. In [55] a strict model is

given whose degree-0 group is the actual topological string 2-group, but
equipped with a smooth structure, and whose degree-1 group is is con-
tractible group. All these models so far are degreewise presented by infinite-
dimensional smooth spaces. In [77] an algorithm is given for constructing
models of String by degreewise finite dimensional manifolds. In [88] this is
explicitly related to the construction of multiplicative bundle gerbes on the
group. This construction has at times been motivated as a plausible prerequi-
site for a tractable discussion of the differential geometry of String-geometry.
But notice two things

1. Constructions as in [30] show that, contrary to that expectation, it is
the model Ωτ2 exp(gμ) which is most directly accessible by ordinary
differential geometric methods and differential form computations as
in [74]. Most of the local formulae for String 2-connections and their
twisted version that we used here are constructed and controled by
this model. One may understand this from the fact that, while when
thought of as a graded (simplicial) space this model is degreewise
infinite-dimensional, when thought of as a presentation of a higher
stack — which is what we are actually interested in — then its probes
by maps X → Ωτ2 exp(gμ) from a smooth manifold X are character-
ized by classical and tractable differential form data on X, which has
immediate and useful interpretation in physics.
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2. If one simply drops the requirement that a model has Kan fillers (which
is not a necessary requirement) and allows spaces with arbitrary many
connected components, then every higher smooth stack has a model
that is degreewise a finite-dimensional smooth manifold. This is prop.
2.1.49 in [79]. The construction given there also shows that, while they
are guaranteed to exist, these degreewise finite-dimensional models
are typically not useful for practical computations with local differen-
tial form data. Instead, as shown there, their existence is most useful
for abstract considerations in the homotopy theory of higher stacks,
because they serve as cofibrant models.

On the other hand, of course every concrete model for a higher group has its
advantages and disadvantages. The more models one has, the more aspects
one sees of the abstractly defined higher group for which all these models
are, after all, models. From the point of view of the corresponding higher
gauge theory, the equivalences between the different models play the role of
higher gauge transformations between higher gauges. Already from ordinary
gauge theory it is a familiar fact that different gauges have their different
uses, and the more of them are under control, the better for understanding
the intrinsic, gauge invariant, nature of the theory.
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