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Abstract

We prove the existence of a large class of dynamical solutions to the
Einstein–Euler equations for which the fluid density and spatial three-
velocity converge to a solution of the Poisson–Euler equations of Newto-
nian gravity. The results presented here generalize those of [10] to allow
for a larger class of initial data. As in [10], the proof is based on a non-
local symmetric hyperbolic formulation of the Einstein–Euler equations,
which contain a singular parameter ε = vT /c with vT a characteristic
speed associated to the fluid and c the speed of light. Energy and disper-
sive estimates on weighted Sobolev spaces are the main technical tools
used to analyze the solutions in the singular limit ε↘ 0.

1 Introduction

The Einstein–Euler equations, which govern a gravitating perfect fluid, are
given by

Gij =
8πG
c4

T ij and ∇iT
ij = 0,
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where

T ij = (ρ+ c−2p)vivj + pgij ,

with ρ the fluid density, p the fluid pressure, vi the fluid four-velocity normal-
ized by vivi = −c2, c the speed of light, and G the Newtonian gravitational
constant. Defining

ε =
vT

c
,

where vT is a typical speed associated with the fluid, the Einstein–Euler
equations, upon suitable rescaling [10], can be written in the form

Gij = 2ε4T ij and ∇iT
ij = 0, (1.1)

where

T ij = (ρ+ ε2p)vivj + pgij and vivi = − 1
ε2
.

In this formulation, the fluid four-velocity vi, the fluid density ρ, the fluid
pressure p, the metric gij , and the coordinates (xi) i = 1, . . . , 4 are dimen-
sionless. By assumption, the (xi) are global Cartesian coordinates on space-
time M ∼= R

3 × [0, T ), where the (xI) (I = 1, 2, 3) are spatial coordinates
that cover R

3, and t = x4/vT is a Newtonian time coordinate that covers
the interval [0, T ). By a choice of units, we set vT = 1.

The Newtonian limit for the Einstein–Euler system refers to the limit of
solutions of the Einstein–Euler systems in the limit ε↘ 0. In this limit,
one expects that under reasonable assumptions solutions of the Einstein–
Euler system should converge to a solution of the Poisson–Euler equations
of Newtonian gravity:

∂tρ̃+ ∂I(ρ̃w̃I) = 0 (∂I := ∂xI ), (1.2)

ρ̃(∂tw̃
J + w̃I∂Iw̃

J) = −(ρ̃∂J Φ̃ + ∂J p̃) (∂J := δJI∂I), (1.3)

ΔΦ̃ = ρ̃ (Δ := δIJ∂I∂J), (1.4)

where ρ̃, p̃, and w̃J are the fluid density, pressure, and three-velocity, respec-
tively.

The difficulty of analyzing the Newtonian limit arises from the fact that
the limit ε↘ 0 is singular. The first general rigorous result on the Newtonian
limit without any symmetry assumptions is [13]. There, it is shown that
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there exists a wide class of solutions to the Einstein equations coupled to
Vlasov matter that have a well defined Newtonian limit as ε↘ 0. This
work is based on an elliptic-hyperbolic formulation of the Einstein–Vlasov
equations in a maximal slicing gauge. In [10], we used a different approach
to prove existence of a large class of non-stationary solutions to the Einstein–
Euler equations which have a Newtonian limit.

The main aim of this article is to establish the existence of a Newtonian
limit for solutions to the Einstein–Euler equations under weaker conditions
on the initial data as compared to either [10, 13]. The purpose for this is
twofold. First, it is of both theoretical and practical interest to understand
the most general situations possible for which Newtonian gravity provides
an acceptable approximation to full Einstein theory. Second, the techniques
developed here can be used to improve the results of [11] on the existence of
post-Newtonian expansions. In [11], it was shown that there exists a class of
solutions to the Einstein–Euler equations that have a first post-Newtonian
expansion. Using the methods here, this can be improved to the second
post-Newtonian order. We will report on this in a separate article.

In this article, we follow the approach of [10] to analyze the limit ε↘ 0
of solutions to the Einstein–Euler equations. This requires that we replace
the metric gij and fluid velocity vi with new variables that are compatible
with the limit ε↘ 0. The new gravitational variable is a density ūij defined
via the formula

gij =
ε

√
−det(Q)

Qij (1.5)

where

Qij =
(
δIJ 0
0 0

)
+ ε2

(
4ūIJ 0

0 −1

)
+ 4ε3

(
0 ūI4

ūJ4 0

)
+ 4ε4

(
0 0
0 ū44

)
.

(1.6)

From these formulas, it not difficult to see that the density ūij is equivalent
to the metric gij for ε > 0, and is well defined at ε = 0. For the fluid, a new
velocity variable wi is defined by

vI = wI and w4 =
v4 − 1
ε

. (1.7)

For technical reasons, we assume an isentropic equation of state

p = Kρ(n+1)/n (1.8)
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for the fluid where K ∈ R>0, n ∈ N. This allows us to use a technique of
Makino [9] to regularize the fluid equations by the use of the fluid density
variable α defined by

ρ =
1

(
4Kn(n+ 1)

)nα
2n. (1.9)

The resulting system can be put into a symmetric hyperbolic system that
is regular across the fluid–vacuum interface. In this way, it is possible to
construct solutions to the Einstein–Euler equations that represent compact
gravitating fluid bodies (i.e., stars) both in the Newtonian and relativistic
setting [9, 12].

The main point of introducing the gravitational–matter variables {ūij , wi,
α} is that in a harmonic gauge the Einstein–Euler equations can be cast into
a singular (non-local) symmetric hyperbolic system of the form

b0(εW )∂tW =
1
ε
cI∂IW + bI(ε,W )∂IW + F (ε,W ). (1.10)

As shown in [10], for appropriately chosen initial data this form is suitable
to derive ε-independent energy estimates that can be use to analyze the
behavior of the solutions as ε↘ 0, and extract a Newtonian limit. We note
that singular hyperbolic systems of the form (1.10) have been extensively
studied [3, 6, 7, 14, 15], but, as discussed in [10], these results are not directly
applicable to the Einstein–Euler equations due to initial data that does not
lie in the standard Sobolev space Hk(R3).

For general initial data, the ε-independent energy estimates from [10]
are not enough to control the solution in the limit ε↘ 0. In this paper,
we show that when the energy estimates are used in conjunction with dis-
persive estimates for the wave equation a larger class of initial data can be
chosen so that the resulting solutions still have a Newtonian limit. However,
unlike the situation in [10], the gravitational variables do not converge to an
ε-independent limit. Instead, they converge to a solution of a singular
ε-dependent wave equation. Following the terminology used in other singu-
lar hyperbolic problems [15], we refer to this type of limit as a fast limit. We
note that dispersive wave estimates have been used previously in a similar
fashion to analyze the (singular) incompressible limit for the Euler equations
[5, 16].

The precise statement of the existence of a Newtonian limit is contained in
the following Theorem, which is the main result of this article.
A proof can be found in Section 6. A definition of the weighted spaces
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Hk
δ,ε (Hk

δ := Hk
δ,1) can be found in Appendix A of [10]. We also define

XT,s,k,δ := ∩s+1
�=0 C

�([0, T ), Hk−�
δ ).

Theorem 1.1. Suppose −1 < δ < −1/2, s ∈ Z≥2, R > 0, k ∈ Z≥3+s, α
o
,

w
o

I ∈ Hk
δ−1, supp α

o
⊂ BR, zIJ ∈ Hk+1

δ , zIJ
4 ∈ Hk

δ−1. Then there exists a
T > 0, ε0 > 0, and maps

ūij
ε (t) − ūij

ε (0), ∂I ū
ij
ε (t), ∂tū

ij
ε (t) ∈ XT,s,k,δ−1 0 < ε ≤ ε0,

˜̄uij
ε (t) − ūij

ε (0), ∂I ˜̄uij
ε (t), ∂t˜̄uij

ε (t) ∈ XT,s,k,δ−1 0 < ε ≤ ε0,

ρε(t), wi
ε(t) ∈ XT,s,k,δ−1 0 < ε ≤ ε0,

ρ̃(t), w̃I(t) ∈ XT,s,k,δ−1, Φ̃(t) ∈ XT,s,k+2,δ with ∂tΦ̃(t) ∈ XT,s,k+1,δ−1,

such that

(i) the triple {ūij
ε (x, t), ρε(x, t), wi

ε(x, t)} determines a solution to the
Einstein–Euler (1.1) in the harmonic gauge for 0 < ε ≤ ε0 on the
spacetime region (xI , t = x4) ∈ D = R

3 × [0, T ) with Arnowitt-Deser-
Misner (ADM) mass given by

mADM =
∫

R3

ρ̃(x, 0) dx3 + O(ε2),

(ii) {ρ̃(x, t), w̃I(x, t), Φ̃(x, t)} is a solution to the Poisson–Euler (1.2)–(1.4)
with initial data ρ̃|t=0 = (4Kn(n+ 1))−1α

o

2n, w̃I |t=0 = w
o

I ,

(iii) ˜̄uε(x, t) is a solution to the wave equation

ε2∂2
t
˜̄uij

ε − Δ˜̄uij
ε = −δi

4δ
j
4ρ̃+ ε2δi

4δ
j
4∂

2
t Φ̃,

with initial conditions

˜̄uij
ε

∣∣
t=0

= δi
Iδ

j
JzIJ − 2Δ−1∂Iz

IJ
4 δ

(i
4 δ

j)
J + δi

4δ
j
4

(
Φ̃
∣∣
t=0

+Δ−1∂2
IJzIJ

)
,

∂t˜̄uij
ε

∣∣
t=0

=
1
ε

(
δi
Iδ

j
JzIJ

4 − 2∂Iz
IJδ

(i
4 δ

j)
J + δi

4δ
j
4Δ

−1∂2
IJzIJ

4

)
+ δi

4δ
j
4∂tΦ̃

∣∣
t=0

,

(iv)

‖ρε(t) − ρ̃(t)‖Hk−2 + ‖wI
ε (t) − w̃I(t)‖Hk−2 + ‖w4

ε (t)‖Hk−2 � ε,

and

‖ūij
ε (t)− ˜̄uij

ε (t)‖L6 + ‖∂I ū
ij
ε (t) − ∂I ˜̄uij

ε (t)‖Hk−2 + ‖ε∂tū
ij
ε (t) − ε∂t˜̄uij

ε (t)‖Hk−2 � ε

for all (t, ε) ∈ [0, T ) × (0, ε0].
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From the above theorem, the interpretation of the limiting solution is
clear. The {ρ̃, w̃I} satisfies the standard Poisson–Euler equations of New-
tonian gravity with the obvious interpretation as the fluid density and
three-velocity, while the ˜̄uij

ε represent high-frequency gravitational radiation
propagating on a flat background with the fluid density and Newtonian
potential acting as source terms.

2 Reduced Einstein equations

To aid in deriving the appropriate symmetric hyperbolic system for the
gravitational variables, we temporarily introduce a new set of coordinates
related to old ones by the simple rescaling

x̄J = xJ , x̄4 = x4/ε,

and let

∂i =
∂

∂xi
, ∂̄i =

∂

∂x̄i
.

In the new coordinates, the metric ḡij and its inverse ḡij are given by

(ḡij) =
(
gIJ εgI4

εg4J ε2g44

)
and (ḡij) =

(
gIJ ε−1gI4

ε−1g4J ε−2g44

)
. (2.1)

Next, we consider the metric density

ḡij =
√
|ḡ| ḡij , where |ḡ| = −det(ḡij). (2.2)

We note that the metric ḡij is related to the density ḡij by the following
formula

ḡij =
1
√
|ḡ|

ḡij , where |ḡ| = −det ḡij , (2.3)

and hence

(gij) =
1
√
|ḡ|

(
ḡIJ εḡI4

εḡ4J ε2ḡ44

)
. (2.4)

To obtain a gravitational variable that is regular and non-trivial in the limit
ε↘ 0, we define

ūij :=
1

4ε2
(
ḡij − ηij

)
, (2.5)
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where

(ηij) =
(

1I3×3 0
0 −1

)

is the Minkowski metric density. As stated in the introduction, for ε > 0, the
metric gij can be recovered from the density ūij via the formulas (1.5)–(1.6).
In the (x̄i) coordinate system, the Christofell symbols are given by

Γ̄k
ij = ε2

(
ḡkm(2ḡi�ḡjp − ḡij ḡ�p)∂̄mū�p + 2(ḡ�pδ

k
(i∂̄j)ū

�p − 2ḡ�(i∂̄j)ū
k�)
)
.

(2.6)

These are related to the Christofell symbols in the (xi) coordinate system
as follows

ΓA
44 = ε−2Γ̄A

44, Γ4
44 = ε−1Γ̄4

44, Γ4
A4 = Γ̄4

A4, (2.7)

Γ4
AB = εΓ4

AB, ΓA
B4 = ε−1Γ̄A

B4 and ΓA
BC = Γ̄A

BC . (2.8)

Using (2.6), a straightforward calculation shows that the Einstein tensor
Ḡij is given in terms of the density ūij by

Gij :=
1

2ε2
|ḡ| Ḡij = ḡk�∂̄2

k�ū
ij + ε2

(
Aij +Bij + Cij

)
+Dij , (2.9)

where

|ḡ| = −det(ḡij), (2.10)

Aij = 2
(

1
2
ḡk�ḡmn − ḡkmḡ�n

)(
ḡipḡjq − 1

2
ḡij ḡpq

)
∂̄pū

k�∂̄qū
mn, (2.11)

Bij = 4ḡk�

(
2ḡn(i∂̄mūj)�∂̄nūkm − 1

2
ḡij ∂̄mūkn∂̄nūm� − ḡmn∂̄mūik∂̄nūj�

)
,

(2.12)

Cij = 4
(
∂̄kū

ij ∂̄�ū
k� − ∂̄kū

i�∂̄�ū
jk), (2.13)

Dij = ḡij ∂̄2
k�ū

k� − 2∂̄2
k�ū

k(iḡj)�. (2.14)

To fix the gauge, we assume that

∂̄iū
ij = 0. (2.15)

For ε > 0, this is equivalent to to the harmonic gauge

∂ig
ij = ∂i

(√
−det(gk�) gij

)
= 0. (2.16)
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Setting

Gij
R := Gij −Dij = ḡk�∂̄2

k�ū
ij + ε2

(
Aij +Bij + Cij

)
(2.17)

and

T ij := ε2|ḡ| T̄ ij = |ḡ|
(
ε2T IJ ε1T I4

ε1T 4J T 44

)
,

the Einstein equations Gij = 2ε4T ij in the gauge (2.15) become

Gij
R = T ij . (2.18)

We will refer to these as the reduced Einstein equations.

To write the reduced Einstein equations in first order form, we introduce
the variables

ū
ij
k := ∂̄kū

ij =

{
∂I ū

ij if k = I,

ε∂4ū
ij if k = 4.

The reduced Einstein equations then become

−ḡ44∂̄4ū
ij
4 = 2ḡ4I ∂̄I ū

ij
4 + ḡIJ ∂̄I ū

ij
J + ε2

(
Aij +Bij + Cij) − T ij ,

ḡIJ ∂̄4ū
ij
J = ḡIJ ∂̄J ū

ij
4 ,

∂̄4ū
ij = ū

ij
4 ,

or equivalently

−ḡ44∂4ū
ij
4 =

2
ε
ḡ4I∂I ū

ij
4 +

1
ε
ḡIJ∂I ū

ij
J + ε

(
Aij +Bij + Cij) − 1

ε
T ij ,

ḡIJ∂4ū
ij
J =

1
ε
ḡIJ∂J ū

ij
4 ,

∂4ū
ij =

1
ε
ū

ij
4 .

Next, we define

uij = εūij , u
ij
k = ū

ij
k , (2.19)

and let

V = {(rij) ∈ M4×4| det(ηij + 4rij) > 0}.



THE FAST NEWTONIAN LIMIT FOR PERFECT FLUIDS 367

Then using vector notation

uij = (uij
4 , u

ij
J , u

ij)T,

the reduced Einstein equations take the form

A4(εu)∂4u
ij =

1
ε
CI∂Iu

ij +AI(u)∂Iu
ij + F̄ ij(ε,u) − 1

ε
(T ij , 0, 0)T, (2.20)

where

A4(εu) =

⎛

⎝
1 − 4εu44 0 0

0 δIJ + 4εuIJ 0
0 0 1

⎞

⎠ , (2.21)

CI =

⎛

⎝
0 δIJ 0
δIJ 0 0
0 0 0

⎞

⎠ , (2.22)

AI(u) =

⎛

⎝
8u4I 4uIJ 0
4uIJ 0 0

0 0 0

⎞

⎠ , (2.23)

F̄ ij
0 (u) = (0, 0, uij

4 )T, (2.24)

and

F̄ ij(ū, εu) = (Aij +Bij + Cij , 0, 0)T. (2.25)

Here, we are using the notation

u = (uij) and uk = (uij
k ).

The stress-energy tensor is given in terms of the u variable by

(T ij) = ρ(vivj) +
1
√

|ḡ|

(
δIJp 0

0 0

)
+

ε
√
|ḡ|

(
4uIJp 0

0 0

)

+ ε2

(

p(vivj) +
p
√
|ḡ|

(
0 4uI4

4u4J −1 + 4εu44

))

, (2.26)

which we can write as

1
ε
(T ij) =

(
0 0
0 ε−1ρ

)
+ Sij , (2.27)
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where

(Sij) = ρ

(
0 |ḡ|vIv4

|ḡ|vJv4 ε−1[(|ḡ| − 1)(v4)2 + ((v4)2 − 1)]

)

+ ε|ḡ|
(

(ρ + ε2p)vIvJ + |ḡ|−1/2p(δIJ + 4εuIJ)

εpvJv4 + 4ε|ḡ|−1/2pu4J

εpvIv4 + 4ε|ḡ|−1/2puI4

p(v4)2 + |ḡ|−1/2p(−1 + 4εu44)

)

.

(2.28)

Letting (see (1.7))

w = (α,wi)T, (2.29)

we can decompose Sij as

Sij = Sij
0 + εSij

1 , (2.30)

where

Sij
0 (u,w, εu, εw)

= ρ

(
0 |ḡ|wI(1 + εw4)

|ḡ|wJ(1 + εw4) ε−1[(|ḡ| − 1)(1 + εw4)2 + ((1 + εw4)2 − 1)]

)

,

(2.31)

and

Sij
1 (w, εu, εw)

= |ḡ|
(

ρwIwJ + pεwIεwJ + |ḡ|−1/2pḡIJpεwJ (1+ εw4) + 4|ḡ|−1/2pεuJ4

pεwI(1 + εw4) + 4|ḡ|−1/2pεuI4p(1 + εw4)2 + |ḡ|−1/2p(−1 + 4εu44)

)

.

(2.32)

3 Regularized Euler equations

In the coordinates (x̄i), the Euler equations are given by

∇̄iT̄
ij = 0, (3.1)

where T̄ ij = (ρ+ ε2p)v̄iv̄j + pḡij and the fluid velocity v̄i is normalized
according to

v̄iv̄
i = − 1

ε2
. (3.2)
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To write (3.1) as a symmetric hyperbolic system, we follow [2] and differen-
tiate (3.2) to get

v̄i∇̄j v̄
i = 0 and v̄j v̄i∇̄j v̄

i = 0. (3.3)

Writing out (3.1) explicitly, we have

(∂̄iρ+ ε2∂̄ip)v̄iv̄j + (ρ+ ε2p)(v̄j∇̄iv̄
i + v̄i∇̄iv̄

j) + ḡij ∂̄ip = 0. (3.4)

The operator

Lj
i = δj

i + ε2v̄j v̄i

projects into the subspace orthogonal to the fluid velocity v̄i, i.e., Lj
iL

i
k = Lj

k

and Lj
i v̄

i = 0. Using Lj
k to project the Euler (3.4) into components parallel

and orthogonal to v̄i yields, after using the relations (3.2) to (3.3), the
following system:

v̄i∂̄iρ+ (ρ+ ε2p)Li
j∇̄iv̄

j = 0, (3.5)

Mij v̄
k∇̄kv̄

j +
1

ρ+ ε2p
Li

j ∂̄ip = 0, (3.6)

where

Mij = ḡij + 2ε2v̄iv̄j .

As discussed in the introduction, we use a Makino density variable α
(see (1.9)) to regularize the fluid equations in regions where the density and
pressure vanish. After multiplying (3.5) by the square of the function

h(εα) =
(

1 +
1

4n(n+ 1)
(εα)2

)
,

a short calculation shows that the Makino density α and the fluid four-
velocity v̄i satisfy

h2v̄i∂̄iα+ qLi
j∇̄iv̄

j = 0, (3.7)

Mij v̄
k∇̄kv̄

j + qLj
i ∂̄jα = 0, (3.8)

where

s2 =
dp

dρ
=

1
4n2

α2
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is the square of the speed of sound, and

q =
1

2nh(εα)
α.

Instead of solving (3.7) to (3.8), we consider the following modified system

h2v̄i∂̄iα+ qLi
j∇̄iv̄

j = 0, (3.9)

Mij v̄
k∇̄kv̄

j + qLj
i ∂̄jα+ (χ4R̄ − 1)MijΓ̄

j
k�v̄

kv̄� = 0, (3.10)

Here we are using

χλ(x) := χ(x/λ) λ > 0,

where χ ∈ C∞(R3) is a smooth cutoff function satisfying χ(x) = 1 for |x| ≤
1, χ(x) = 0 for |x| ≥ 2, and 0 ≤ χ(x) ≤ 1 for all x ∈ R

3.

Since wI = v̄I and w4 = v̄4 − 1/ε, we can write (3.9) and (3.10) as

a4∂4w = aI∂Iw + b (3.11)

where

a4 =

(
h2(1 + εw4) εqL4

j

εqL4
i Mij(1 + εw4)

)

, (3.12)

aI =

(
−h2wI −qLI

j

−qLI
i −Mijw

I

)

, (3.13)

and

b =

(
−qLi

jΓ̄
j
i�v̄

�

−χ4R̄MijΓ̄
j
k�v̄

kv̄�

)

. (3.14)

From (2.3), (2.5), (2.19), and (2.30), we find that

ḡij = ηij + fij(εu), (3.15)
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where the fij(y) are analytic and satisfy fij(y) = O(|y|) as y → 0, while (2.6)
shows that

Γ̄k
ij = ε

[
ηkm

(
2ηi�ηjp − ηijη�p

)
εulp

m + 2
(
η�pδ

k
(iεu

�p
j) − 2η�(iεu

k�
j)

)]
+ εfk

ij(εu, εum)
(3.16)

for functions fk
ij(εu, εum) that are analytic for εu ∈ V, linear in the εum, and

satisfy fk
ij(0, y) = 0. The expansion (3.15) allows us to write

Mij = ḡij + 2ε2ḡikḡj�v̄
kv̄� = δij +mij(εu, εwk), (3.17)

and

Lj
i = δj

i + ε2ḡikv̄
kv̄j = δj

i − δ4i δ
j
4 + �ji (εu, εw

k) (3.18)

for functions �ji (εu, εw
k) and mij(εu, εwk) that satisfy �ji (0, 0) = mij(0, 0) =

0, and are analytic for εu ∈ V. Using (3.15) to (3.18), we can express the
ai and b as

a4 =
(

1 0
0 δij

)
+ â4(εu, εw), (3.19)

aI =

⎛

⎝
−wI − α

2n
δI
j

− α

2n
δI
i −δijwI

⎞

⎠+ wI â(εu, εw) + αâI(εu, εw), (3.20)

and

b =
(

0
χ4R̄[−ηim(2η4�η4p + η�p)u

lp
m − 2(η�pδ

i
4u

�p
4 − 2η�4u

i�
4 )]

)

+

(
αb̂1(εu, εw) · εuk

χ4R̄b̂2(εu, εw) · uk

)

. (3.21)

We observe that the matrices â4, â, and âI are symmetric, and the maps â4,
â, âI , b̂1, and b̂2 are analytic (for εu ∈ V) and satisfy â4(0, 0) = 0, âI(0, 0) =
0, â(0, 0) = 0, b̂1(0, 0) = 0, and b̂2(0, 0) = 0. This shows that the system
(3.11) is symmetric hyperbolic on a region where (εu, εw) is small enough to
ensure that a4 is positive definite. This can always be arranged by taking ε
small enough and since we are interested in the limit ε↘ 0 no generality is
lost by assuming this.
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4 Uniform local existence

The combined systems (2.26) and (3.11) can be written as

b0(εV, ε2U)∂tV =
1
ε
cI∂IV + bI(V, εU, εV, ε2U)∂IV

+ f0(V, εU, εV, ε2U) + εf1(V, εU, εV, ε2U) +
1
ε
g(V ),

(4.1)

where

U = (0, 0, ū
o

ij , 0, 0)T, ū
o

ij = ūij
∣∣
t=0

, (4.2)

V = (uij
4 , u

ij
J , δu

ij , α, wi)T, δuij = uij − εū
o

ij , (4.3)

b0(εV, ε2U) =
(
A4(εu) 0

0 a4(εu, εw)

)
, (4.4)

cI =
(
CI 0
0 0

)
, (4.5)

bI(V, εU, εV, ε2U) =

(
AI(u) 0

0 aI(w, εu, εw)

)

, (4.6)

f0(V, εU, εV, ε2U) =

(
F̄ ij

0 (u) − Sij
0 (u,w, εu, εw)

b(u,w, εu, εw)

)

, (4.7)

f1(V, εU, εV, ε2U) =

(
F̄ ij

1 (u, εu) − Sij
1 (w, εu, εw)

0

)

, (4.8)

and

g(V ) = (−δi
4δ

j
4ρ(α), 0, . . . , 0)T. (4.9)

For initial data, we will often use the notation

z
o

= z|t=0.

In addition to solving these evolution equations, we must also solve
the following constraint equations on the initial hypersurface



THE FAST NEWTONIAN LIMIT FOR PERFECT FLUIDS 373

Σ = {(xI , 0) | (xI) ∈ R
3} to get a full solution to the Einstein–Euler

equations:

Cj := G4i − T 4i = 0 (gravitational constraint equations), (4.10)

Hj := ∂̄iū
ij = 0 (harmonic gauge condition), (4.11)

and

N := εv̄iv̄
i +

1
ε

= 0 (fluid velocity normalization). (4.12)

To fix a region on which the system where both the evolution (4.1) and
constraint (4.10) to (4.12) are well defined, we note from (2.20), (3.19),
and the invertibility of the Lorentz metric (ηij) that there exists a constant
K0 > 0 such that

−det(ηij + 4εuij) > 1/16, 1 + εw4 > 1/16, (4.13)

A4(εu) ≥ 1
16

1I , a4(εu, εw) ≥ 1
16

1I , (4.14)

and

|A4(εu)| ≤ 16, |a4(εu, εw)| ≤ 16 (4.15)

for all |εu| ≤ 2K0, |εwi| ≤ 2K0, |εα| ≤ 2K0. The choice of the bounds 1/16
and 16 is somewhat arbitrary, and they can be replaced by any number of
the form 1/M and M for any M > 1 without changing any of the arguments
presented in the following sections. However, since we are interested in the
limit ε↘ 0, we lose nothing by assuming M = 16.

4.1 Newtonian initial data

To generate a one parameter family of solutions to the constraint (4.10) to
(4.12) that is regular in the limit ε↘ 0, we use a slight variation of the
method used in [10], which is based on previous work by Lottermoser [8].
Before we state the theorem, we note from (1.9), (1.8), and the weighted
multiplication inequality (see [10] Lemma A.8) that if α ∈ Hk

δ (δ ≤ 0, k >
3/2) then ρ, p ∈ Hk

δ .

Proposition 4.1. Suppose −1 < δ < 0, k > 3/2 + 1, R > 0 and (ρ̃, p̃, w̃I ,

z̃IJ
4 , z̃IJ) ∈ (Hk−2

δ−2 )2 ×Hk
δ−1 ×Hk−1

δ−1 ×BR(Hk
δ ). Then there exists an ε0 > 0,
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an open neighborhood U of (ρ̃, p̃, w̃I , z̃IJ
4 , z̃IJ), and analytic maps (−ε0, ε0) ×

U → Hk
δ−1 : (ε, ρ, p, wI , zIJ

4 , zIJ) 
→ w4, (−ε0, ε0) × U → Hk
δ : (ε, ρ, p, wI , zIJ

4 ,

zIJ) 
→ φ, (−ε0, ε0) × U → Hk
δ : (ε, ρ, p, wI , zIJ

4 , zIJ) 
→ wI such that for each
(ρ, p, wI , zIJ

4 , zIJ) ∈ U , (ε, ρ, p, wI , w4, ūij
4 , ∂̄4ū

ij) is a solution to the three
constraints

Cj = 0, Hj = 0, and N = 0 ,

where

(ūij) =
(

zIJ wI

wJ φ

)
,

(ε∂tū
ij) =

(
zIJ
4 −∂KzKI

−∂KzKJ −∂KwK

)
,

and

w4 = −1
ε

+
−εḡ4Jw

J −
√
ε2(ḡ4JwJ)2 − ḡ44(ε2ḡIJwIwJ + 1)

εḡ44
.

Moreover, if we let φ0 = φ|ε=0, wI
0 = wI |ε=0, and w4

0 = w4|ε=0, then φ0, wI
0,

and w4
0 satisfy the equations

Δφ0 = ρ+ ∂2
IJzIJ , ΔwI

0 = −∂LzLJ
4 , and w4

0 = 0,

respectively.

Proof. The proof follows from a simple adaptation of the proof of Proposition
5.1 in [10]. �

Corollary 4.2. For −1 < δ < −1/2, the ADM mass of the 1-parameter
family of initial data constructed in Proposition 4.1 satisfies

mADM =
∫

R3

ρ dx3 + O(ε).

Proof. For fixed (ρ, p, wI , zIJ
4 , zIJ) ∈ (Hk−2

δ−2 )2 ×Hk
δ−1 ×Hk−1

δ−1 ×Hk
δ , it fol-

lows from Proposition 4.1 that for ε0 small enough, the maps

[0, ε0) � ε 
−→ ḡij ∈ Hk
δ and [0, ε0) � ε 
−→ ε∂tḡij ∈ Hk−1

δ−1 (4.16)
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are analytic (see (2.1) and (2.5)). Moreover, a short calculation shows that

ḡε
ij = ηij + 2ε2

(
ηklu

k�ηij − 2ηiku
k�η�j

)
+ O(ε3), (4.17)

and

ε∂tḡij = 2ε2
(
ηklu

k�
4 ηij − 2ηiku

k�
4 η�j

)
+ O(ε3), (4.18)

where

(uij) =

(
zIJ wI

0

wJ
0 φ0

)

, (4.19)

(uij
4 ) =

(
zIJ
4 −∂KzKI

−∂KzKJ −∂KwK
0

)

, (4.20)

and

Δφ0 = ρ+ ∂2
IJzIJ , ΔwI

0 = −∂LzLJ
4 . (4.21)

Since −1 < δ < −1/2, it follows from Proposition 4.5 of [1] that the total
ADM energy–momentum P = (Pj) for the initial data (ḡij , ε∂tḡij) on the ini-
tial hypersurface Σ = {(xI , 0) | (xI) ∈ R

3} can be calculated using the stan-
dard formulas

P4 = −1
4

∮

S∞

(
∂I ḡIJ − δIK∂J ḡIK

)
dSJ , (4.22)

PI =
1
2

∮

S∞

(
K̄K

K δIJ −KIJ

)
dSJ , (4.23)

where the extrinsic curvature K̄IJ is given by (see (2.6))

K̄IJ = −
√

−1
ḡ44

Γ̄4
IJ . (4.24)

Furthermore, the map

[0, ε0) � ε 
−→ (Pj) ∈ R
4 (4.25)

is smooth by (4.16) and Theorem 5.1 of [1].
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By (2.6), (4.17), (4.18), and (4.24), we find the following expansions for
the extrinsic curvature:

K̄IJ = ε2
(
2uIJ

4 + δIJ

(
u44

4 − δk�u
k�
4

)
+ 2∂Ju

4I + 2∂Iu
4J
)

+ O(ε3). (4.26)

The smoothness of the map (4.25) and the two expansions (4.17) and (4.26)
show that the ADM energy–momentum can be expanded as

P4 = −ε2
∮

S∞

(
∂Iφ0 − ∂JzIJ

)
dSI + O(ε3), (4.27)

PI = ε2
∮

S∞

(
δJ
I ∂KwK

0 − ∂JwI
0 − ∂Iw

4J
0 − zIJ

4

)
dSJ + O(ε3). (4.28)

Using the divergence theorem and (4.21), the energy–momentum expansions
(4.27) and (4.28) simplify to

P4 = −ε2
∫

R3

ρ dx3 + O(ε3) and PI = O(ε3). (4.29)

The proof of the corollary now follows from the above expansions and the
definition

mADM =
1
ε2

√
ηijPiPj

of the ADM mass. �

4.2 Uniform existence

To prove local existence of solutions to (4.1) on a uniform time interval
independent of ε, we take the same approach as in [11] and use a non-local
modification of (4.1). The modified system is constructed as follows. First,
we replace g(V ) in (4.1) with

g(V ) = (−δi
4δ

j
4χR̄ρ(α), 0, . . . , 0)T, (4.30)

and we define the Newtonian potential by

ΔΦ = χR̄ρ. (4.31)

Next, we use the Newtonian potential to define a new combined
gravitational–matter variable W via the formula

W = V − dΦ, (4.32)
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where

dΦ = (0, δi
4δ

j
4∂JΦ(α), 0, 0, 0). (4.33)

Note that the transformation (4.32) leaves the matter variables unaffected.
Consequently, we can define W by

W = (uij
4 ,W

ij
I , δu

ij , α, wi)T,

and treat Φ and dΦ as a function of W . To formulate the evolution equation
entirely in terms of W , we need the time derivative of the Φ map. So we
define

Φ̇(W, εU, εW, ε2U) = Δ−1

(
2nχR̄α

2n−1

(4Kn(n+ 1))n
Π(a4(εu, εw)−1[aI(w, εu, εw)∂Iw

+ b(u,w, εu, εw)])
)
, (4.34)

where Π((α,wi)T) = α is a constant projection map. By construction,
Φ̇ = ∂tΦ when evaluated on a solution of (4.1). To fit with the above nota-
tion, we also define

dΦ̇ = (0, δi
4δ

j
4∂IΦ̇, 0, 0, 0)T.

Noting that

b0(εV, ε2U) = b0(εW, ε2U) and bI(V, εU, εV, ε2) = bI(W, εU, εW, ε2U),
(4.35)

we can write (4.1) as

b0(εW, ε2U)∂tW =
1
ε
cI∂IW + bI(W, εU, εW, ε2U)∂IW

+ F0(W, εU, εW, ε2U) + εF1(W, εU, εW, ε2U), (4.36)

where

F0(W, εU, εW, ε2U) = f0(W + dΦ(W ), εU, ε(W + dΦ(W )), ε2U)

− b0(εW, ε2W )dΦ̇(W, εU, εW, ε2U)

+ bI(W, εU, εW )∂IdΦ(W ), (4.37)

and

F1(W, εU, εW, ε2U)) = f1(W + dΦ(W ), εU, ε(W + dΦ(W )), ε2U). (4.38)
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In the following Proposition, the constant CSob is defined to be the
ε-independent in the weighted Sobolev inequality ‖ · ‖

W 1,∞
η,ε

≤ CSob‖ · ‖H�
η,ε

which holds for � > 3/2 + 1 and 0 ≤ ε ≤ ε0 (see Lemma A.7 in [10] for a
proof).

Proposition 4.3. Suppose −1 < δ < −1/2, ε0 > 0, s ∈ N0, R > 0, K1 <
K0/(2

√
ε0CSob), τ ≥ 2K1/CSob, R̄ > 16τ +R, k ≥ 3 + s, α

o
, w

o

I ∈ Hk
δ−1,

supp α
o
⊂ BR, zIJ ∈ Hk+1

δ , zIJ
4 ∈ Hk

δ−1. Let ū
o

ij
ε , ∂tū

o

ij
ε and w

o

4
ε be the ini-

tial data constructed in Proposition 4.1, which, by choosing ε0 ≤ 1 small
enough, satisfies

∥
∥∥
(
ε∂tū

o

ij
ε , ∂I ū

o

ij
ε − δi

4δ
j
4∂IΔ−1ρ

o
, 0, α

o
, w

o

i
ε

)T∥∥∥
Hk

δ−1,ε

≤ K1,

and ‖ū
o

ij
ε ‖Hk+1

δ
≤ K0√

ε0CSob

for all ε ∈ (0, ε0]. Then there exists a T > 0 independent of ε ∈ (0, ε0], and
maps

Wε =
(
u

ij
4,ε,W

ij
I,ε, δu

ij
ε , αε, w

i
ε

)T
∈ XTε,s,k,δ−1 0 < ε ≤ ε0

such that

(i) Tε > T for 0 ≤ ε ≤ ε0,
(ii) Wε is the unique solution to (4.36) with initial data

Wε(0) =
(
ε∂tū

o

ij
ε , ∂I ū

o

ij − δi
4δ

j
4∂IΔ−1ρ

o
, 0, α

o
, w

o

i
ε

)T

,

(iii)

‖Wε(t)‖Hk
δ−1,ε

≤ 2K1, ε‖∂tWε(t)‖Hk−1
δ−1,ε

� 1,

and

max{‖εūij
ε (t)‖L∞ , ‖εαε(t)‖L∞ , ‖εwi(t)‖L∞} < 2K0

for all (t, ε) ∈ [0, T ] × (0, ε0],
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(iv) for each ε ∈ (0, ε0], if

lim sup
t↗Tε

‖Wε(t)‖W 1,∞ <∞,

and

sup
0≤t<Tε

{‖εūij
ε (t)‖L∞ , ‖εαε(t)‖L∞ , ‖εwi(t)‖L∞} < 2K0,

then the solution Wε(t) can be uniquely extended for some time
T ∗

ε > Tε,
(v) for any time T̃ε which is strictly less than the maximal existence time

and for which

sup
0≤t≤Tε

{‖εūij
ε (t)‖L∞ , ‖εαε(t)‖L∞ , ‖εwi(t)‖L∞} < 2K0

holds, the support of αε satisfies

supp αε(t) ⊂ BR̄ε
∀ t ∈ [0, T̃ε]

where R̄ε := 16 sup0≤t≤T̃ε
‖wI

ε (t)‖L∞ +R,
(vi) supp αε(t) ⊂ BR̄ for all (t, ε) ∈ [0, T ] × (0, ε0],
(vii) ∂tū

ij
ε = ε−1ū

ij
4,ε, and ∂I ū

ij
ε = W ij

I,ε + δi
4δ

j
4∂IΦ(αε) where ū

ij
ε = ū

o

ij
ε +

ε−1δuij,
(viii) the triple {ūij

ε , αε, w
i
ε} determines, via the formulas (1.7), (1.9), (2.4),

and (2.5), a solution to the full Einstein–Euler system (1.1) in the
harmonic gauge (2.16) on the spacetime region Dε = R

3 × [0, T ], and
(ix) the conclusions (vii)–(viii) continue to hold on any region of the form

Dε = R
3 × [0, T̃ε] provided supp αε(t) ⊂ BR̄ for all 0 ≤ t ≤ T̃ε.

Proof. (i)–(vii): First we observe, that proof of statements (i)–(vii) follow
from a slight modification of the proof of Proposition 3.4 in [11].

(viii)–(ix): Let ψε satisfy the initial value problem

v̄k∂̄kψε = 0 : ψε(0) = χ3R̄/2(0), (4.39)

and define

Ñε = ψNε = ψ

(
εv̄iv̄

i +
1
ε

)
.
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Next, we observe that (3.10) contracted with v̄i yields

(1 − 2εNε)v̄j ∂̄jNε −
ε2α

2nh
v̄j ∂̄jαNε + ε(1 − 2εNε)(χ4R̄ − 1)v̄iv̄jΓ̄k

ij v̄k = 0.

Multiplying this equation by ψε then gives

(1 − 2εNε)vbj ∂̄jÑε −
ε2α

2nh
v̄j ∂̄jαÑε + ε(1 − 2εNε)ψε(χ4R̄ − 1)v̄iv̄jΓ̄k

ij v̄k = 0.

(4.40)

From statements (i)–(vii), we have that

wi
ε(t) ∈ XT,s,k,δ−1 (4.41)

and

‖wi(t)‖Hk � ‖wi(t)‖Hk
δ−1,ε

� 1 ∀ (t, ε) ∈ [0, T ) × (0, ε]. (4.42)

Since

v̄j∂i = (1 + εw4
ε )∂t + wI

ε∂I ,

we get from (4.41), (4.42), and the hyperbolic (4.39) that ψ ∈ XT,s,k,δ−1 and

‖ψε(t)‖Hk � 1 ∀ (t, ε) ∈ [0, T ) × (0, ε].

From the finite propagation speed property of hyperbolic equations, we con-
clude that there exists a time T∗ ∈ (0, T ) such that

ψε(t)|BR̄
= 1, and suppψε(t) ⊂ B4R̄ ∀ (t, ε) ∈ [0, T∗) × (0, ε0]. (4.43)

In particular, this implies that

Nε(t, x) = Ñε(t, x) ∀ (t, x, ε) ∈ [0, T∗) ×BR̄ × (0, ε0], (4.44)

and

(χ4R̄(x) − 1)ψε(t, x) = 0 ∀ (t, x, ε) ∈ [0, T∗) × R
3 × (0, ε0]. (4.45)

Using (4.45), (4.40) reduces to

(1 − 2εNε)vbj ∂̄jÑε −
ε2α

2nh
v̄j ∂̄jαÑε = 0

for all (t, x, ε) ∈ [0, T∗) × R
3 × (0, ε0]. But Nε(0) = 0 from the choice of ini-

tial data which implies that Ñε(0) = 0. By the uniqueness of solutions to



THE FAST NEWTONIAN LIMIT FOR PERFECT FLUIDS 381

hyperbolic equations, we conclude that Ñε(t, x) = 0 for all (t, x, ε) ∈ [0, T∗) ×
R

3 × (0, ε0], and hence Nε(t, x) = 0 for all (t, x, ε) ∈ [0, T∗) ×BR × (0, ε0].
This implies that the fluid velocity normalization v̄iv̄i = −1/ε2 is satis-
fied for all (t, x, ε) ∈ [0, T∗) ×BR × (0, ε0]. Using this and the fact that
suppαε(t) ⊂ BR for all (t, ε) ∈ [0, T∗) × (0, ε0], it is not difficult to verify
from the evolution (3.9) to (3.10) that

{v̄4(t, x) = 1 + εw4
ε (t, x), v̄

I(t, x) = wI
ε (t, x),

ρε(t, x) := (4Kn(n+ 1))−nα2n
ε (t, x)}

satisfy the Euler (3.4) (or equivalently (3.1)) for all (t, x, ε) ∈ [0, T∗) × R
3 ×

(0, ε0]. With the Euler equations satisfied, the remainder of the proof follows
as in the proof of Proposition 3.4 in [11]. �

5 Limit equations

In this section, we describe the limit equations that govern the gravitational
and matter fields in the limit ε↘ 0. We show in the next section that
solutions to these equations approximate the solutions to the full Einstein–
Euler equations up to a remainder term that is of order ε.

5.1 Fluid limit equations

The fluid limit equations are

∂tα̃ = −w̃I∂I α̃− α̃

2n
∂Iw̃

I , (5.1)

∂tw̃
J = − α̃

2n
∂J α̃− w̃I∂Iw̃

J − χ4R̄∂
J Φ̃, (5.2)

ΔΦ̃ = ρ̃
(
ρ̃ := (4Kn(n+ 1))−nα̃2n

)
. (5.3)

Proposition 5.1. Let k, s, R̄, δ, α
o
, and w

o
be as in Proposition 4.3. Then

there exists a maximal time TM
0 > 0 and a unique solution

α̃, w̃I ∈ C0([0, TM
0 ), Hk

δ−1) ∩ C1([0, T0), Hk−1
δ−1 ),

Φ̃ ∈ C0([0, TM
0 ), Hk+2

δ ) ∩ C1([0, TM
0 ), Hk+1

δ ), ∂tΦ̃ ∈ C0([0, TM
0 ), Hk+1

δ−1 )
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to (5.1)–(5.3) satisfying α̃(0) = α
o

and w̃I(0) = w
o

I . Moreover,

α̃, w̃I ∈ XT M
0 ,s,k,δ−1, Φ̃ ∈ XT M

0 ,s,k+2,δ,

∂tΦ̃ = −∂IΔ−1(ρ̃w̃I) ∈ XT M
0 ,s,k+1,δ−1,

and

supp α̃(t) ⊂ BR(t)

where R(t) = R+ t sup0≤s≤t ‖w̃I(s)‖L∞.

Proof. The proof follows from a trivial modification of the proof in Propo-
sition 3.7 in [11]. �

Remark 5.2. Since R̄ > R, it is clear from Proposition 5.1 and the weighted
Sobolev inequality (see Lemma A.7 in [10]) that there exists a time T0 ∈
(0, TM ) such that

supp α̃(t) ⊂ B4R̄ for all t ∈ [0, T0]. (5.4)

In particular, this shows that

ρ̃(t)χ4R̄ = ρ̃(t) for all t ∈ [0, T0], (5.5)

which in turn implies that the pair {ρ̃(t), w̃I(t)} satisfies the Poisson–Euler
(1.2) to (1.4) on the time interval [0, T0].

5.2 Gravitational-limit equations

The gravitational-limit equations are defined by

∂tXε =
1
ε
CI∂IXε + (0, 0, Xij

4,ε)
T, (5.6)

where

Xε = (Xij
4,ε, X

ij
I,ε, X

ij
ε )T.
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Proposition 5.3. Let δ, k, α
o
, ∂tū

o

ij
ε , ∂I ū

o

ij
ε be as in Proposition 4.3, and

Xε(0) =
(
ε∂tū

o

ij
ε , ∂I ū

o

ij
ε − ∂IΔ−1(δi

4δ
j
4ρ

o
), 0
)T ∣∣∣

ε=0
. (5.7)

Then there exists a unique solution

Xε ∈ C0([0,∞), Hk
δ−1) ∩ C1([0,∞), Hk−1

δ−1 )

to (5.6) with initial data (5.7) that satisfies Xε ∈ X∞,s,k,δ−1 and the
estimates:

(i)

‖Xε(t)‖Hk
δ−1,ε

+ ε‖∂tXε(t)‖Hk−1
δ−1,ε

� eCt,

‖Xij
ε (t)‖L∞

δ,ε
+ ‖DXij

ε (t)‖Hk−1
δ−1,ε

� eCtε,

for all (t, ε) ∈ [0,∞) × (0, ε0] and some fixed constant C > 0, and
(ii) for any Λ > 0,

‖Xij
I,ε(t)‖W �,∞(BΛ(R3) + ‖Xij

4,ε(t)‖W �,∞(BΛ(R3))

� ε3/2
√

Λ + 1
(ε+ t)3/2

0 ≤ � < k − 3/2

for all (t, ε) ∈ [0,∞) × (0, ε0].

Proof. Since −1 < δ < −1/2, it follows from Lemma A.11 of [10] and Propo-
sition 4.1 that

‖Xε(0)‖Hk
δ−1,ε � ‖Xε(0)‖Hk

δ−1
� 1. (5.8)

This inequality together with the weighted energy estimates (see Lemma 7.1
in [10]) gives

‖Xε(t)‖Hk
δ−1

� eCt‖Xε(0)‖Hk
δ−1,ε

� eCt. (5.9)

for some fixed positive constant C.
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From the evolution (5.6) and the choice of initial data, we see that

∂t

(
∂IX

ij
J,ε(t) − ∂JX

ij
I,ε

)
= 0 and ∂IX

ij
J,ε(0) − ∂JX

ij
I,ε = 0,

which implies that

∂IX
ij
J,ε(t) − ∂IX

ij
J,ε(t) = 0. (5.10)

Also, it is not difficult to show that

∂t

(
∂IX

ij
ε − εXij

I,ε) = 0 (5.11)

follows from (5.6). Combining (5.10) and (5.11) then yields

∂IX
ij
ε (t) = ε

(
Xij

I,ε(t) −Xij
I,ε(0)

)
. (5.12)

Next, we note that

‖Xij
ε ‖L∞

δ,ε
� ‖DXij

ε ‖Hk
δ−1,ε

+ ε‖Xij
ε ‖L2

δ−1,ε
(5.13)

follows from the weighted Sobolev inequalities (see Lemma A.7 in [10]).
Collecting the estimates (5.9), (5.12), and (5.13), we arrive at

‖Xij
ε (t)‖L∞

δ,ε
+ ‖DXij

ε ‖Hk
δ−1,ε

� eCtε.

To prove the last two estimates for Xij
I,ε and X4

I,ε, we observe that Xij
I,ε

and X4
I,ε satisfy the wave equations

ε2∂2
tX

ij
I,ε − ΔXij

I,ε = 0 and ε2∂2
tX

ij
4,ε − ΔXij

I,ε = 0. (5.14)

Since the initial data for these equations satisfy (5.8) and −1 < δ < −1/2,
we can apply the weighted dispersive estimates from Theorem 1.1 in [4]
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to obtain

∣∣D�
xX

ij
I,ε(t, x)

∣∣ �
‖Xij

I,ε(0)‖Hk
δ−1

+ ‖∂IX
ij
4,ε(0)‖Hk−1

δ−2

(1 + t/ε+ |x|)
√
|1 + |t/ε− |x||

, (5.15)

and

∣∣D�
xX

ij
4,ε(t, x)

∣∣ �
‖Xij

4,ε(0)‖Hk
δ−1

+ ‖∂IXij
I,ε(0)‖Hk−1

δ−2

(1 + t/ε+ |x|)
√

|1 + |t/ε− |x||
(5.16)

for 0 ≤ � < k − 3/2. But

1 + |t/ε| ≤ 1 + |t/ε− |x| + |x|| ≤ 1 + Λ + |t/ε− |x||
≤ (Λ + 1)(1 + |t/ε− |x||)

for |x| ≤ Λ, and so the inequalities (5.15) and (5.16) imply that

‖Xij
I,ε(t)‖W �,∞(BΛ(R3)) + ‖Xij

4,ε(t)‖W �,∞(BΛ(R3)) � ε3/2
√

Λ + 1
(ε+ t)3/2

for 0 ≤ � < k − 3/2. �

Remark 5.4. From the initial value problem (5.6)–(5.7) (see (5.12)) and
Propositions 4.1 and 5.1, it is not difficult to verify that

˜̄uij
ε :=

1
ε
Xij

ε +
(
δi
Iδ

j
JzIJ − 2Δ−1∂Iz

IJ
4 δ

(i
4 δ

j)
J + δi

4δ
j
4Δ

−1

(
ρ
o

+ ∂2
IJzIJ

))

+
(
Φ̃(t) − Φ̃(0)

)
δi
4δ

j
4 (5.17)

satisfies the identities

∂t˜̄uij
ε =

1
ε
Xij

4,ε + δi
4δ

j
4∂tΦ̃, ∂I ˜̄uij

ε = Xij
I,ε + δi

4δ
j
4∂IΦ̃, (5.18)

and the wave equation

ε2∂2
t
˜̄uij

ε − Δ˜̄uij
ε = −δi

4δ
j
4ρ̃+ δi

4δ
j
4ε

2∂2
t Φ̃, (5.19)
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with initial conditions

˜̄uij
ε

∣∣
t=0

= δi
Iδ

j
JzIJ − 2Δ−1∂Iz

IJ
4 δ

(i
4 δ

j)
J + δi

4δ
j
4

(
Φ̃
∣∣
t=0

+Δ−1∂2
IJzIJ

)
,

(5.20)

∂t˜̄uij
ε

∣∣
t=0

=
1
ε

(
δi
Iδ

j
JzIJ

4 − 2∂Iz
IJδ

(i
4 δ

j)
J + δi

4δ
j
4Δ

−1∂2
IJzIJ

4

)
+ δi

4δ
j
4∂tΦ̃

∣∣
t=0

.

(5.21)

5.3 The combined system

Collecting the fluid and gravitation limit variables into a single vector

Yε =
(
Xε, α̃, w̃

I , w̃4
)T
, (5.22)

we can write the combined gravitational–fluid limit equations in the follow-
ing form:

∂tYε =
1
ε
cI∂IY + b̃I0∂IYε + F̃0 + cI∂Iω (5.23)

where

b̃I0 =
(

0 0
0 ãI

)
, ãI =

(
−w̃I − α̃

2nδ
I
j

− α̃
2nδ

I
i −δijw̃I

)
, (5.24)

ω =
(
ωij

4 , ω
ij
I , 0, 0, 0, 0

)T
, ωij

4 = ∂tΦ̃δi
4δ

j
4, ωij

I = ∂IΔ−1
(
2ρw̃Jδ

(i
J δ

j)
4

)
,

(5.25)

and

F̃0 =
(
−2ρw̃Jδ

(i
J δ

j)
4 ,−∂I∂tΦ̃δi

4δ
4
j , X

ij
4 , 0,−χ4R̄∂

IΦ̃, 0
)T

. (5.26)

6 The fast Newtonian limit

We begin by defining the error Zε between the limit Yε and the full solution
Wε by

Wε = Yε + ε(ωε + Zε). (6.1)
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Next, we let

F̃ = F0(Yε, 0, 0, 0), and b̃I = bI(Yε, 0, 0, 0), (6.2)

and observe that

F̃ = F̃0 + εF̃1, and b̃I = b̃I0 + εb̃I1, (6.3)

where

b̃I1 =
1
ε

(
ÃI 0
0 0

)
, ÃI =

⎛

⎜
⎝

8X4I
ε 4XIJ

ε 0
4XIJ

ε 0 0
0 0 0

⎞

⎟
⎠ , (6.4)

and

F̃1 =
1
ε

(
4
(
XIJ

ε ∂2
IJ Φ̃ − ρ̃ηijX

ij
ε

)
δi
4δ

j
4, 0, 0, 0, F̃ i

1

)T
(6.5)

with

F̃I
1 = −χ4R̄

[
δIJ
(
X44

J,ε + δKLX
KL
I,ε

)
+ 4XJ4

4

]
,

and

F̃4
1 = −χ4R̄

(
X44

4,ε + δKLX
KL
4,ε

)
.

Now, let T∗ = min{T0, T} where T and T0 are as defined in Proposi-
tions 4.3 and Remark 5.2, respectively. Then by Propositions 4.3, 5.1, and
5.2, for any ε ∈ (0, ε0], the error Zε(t) (see (4.36), (5.23), and (6.1)–(6.3))
satisfies the initial value problem

b0ε∂tZε =
1
ε
cI∂IZε + bIε∂IZε + Rε, (6.6)

Zε(0) =
1
ε

(Wε(0) − Yε(0)) − ω(0), (6.7)

on the interval 0 ≤ t ≤ T∗, where

b0ε = b0(εWε, ε
2Uε), bIε = bI(Wε, εUε, εWε, ε

2Uε), (6.8)

Fε = F0(Wε, εUε, εWε, ε
2Uε) + εF1(Wε, εUε, εWε, ε

2Uε), (6.9)
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and

Rε = bIε∂Iω − b0ε∂tω +
bIε − b̃I

ε
∂IY +

Fε − F̃
ε

+
b0ε − 1I
ε2

ε∂tY + b̃I1∂IY + F̃1.

(6.10)

Proposition 6.1. Let δ, k, s ≥ 2, T , and Wε(t) be as in Proposition 4.3,
T0 as in Remark 5.2, Yε(t) as defined by (5.22), and T∗ = min{T0, T}. Then
for ε0 > 0 small enough

‖Wε(t) − Yε(t)‖Hk−2
δ−1,ε

� ε

for all (t, ε) ∈ [0, T∗) × (0, ε0].

Proof. By Propositions 4.1, 4.3, and 5.1, there exists a positive constant C0

such that

‖Zε(0)‖Hk
δ−1

≤ C0 for all ε ∈ (0, ε0]. (6.11)

Next, choosing ε0 small enough, it follows directly from Propositions 3.5 and
3.6 of [11] and Propositions 5.1 and 5.3 of the previous section that

∥∥∥bIε∂Iω − b0ε∂tω +
bIε − b̃I

ε
∂IYε +

Fε − F̃ 0

ε

∥∥∥
Hk−2

δ−1,ε

� 1 + ‖Zε‖Hk−2
δ−1,ε

(6.12)

for all (t, ε) ∈ [0, T∗) × (0, ε0] provided ‖Zε(t)‖Hk−2
δ−1,ε

≤ 2C0/ε. Also, from

Lemmas A.1 and A.4 of [10], and Proposition 5.1 and 5.3, we see that

∥∥
∥
b0ε − 1I
ε2

ε∂tYε + b̃I1∂IYε + F̃1

∥∥
∥

Hk−2
δ−1,ε

� 1 +
√
ε

(ε+ t)3/2
(6.13)

for all (t, ε) ∈ [0, T∗) × (0, ε0].

Defining the energy norm

||| · |||k−2,δ,ε :=
∑

|α|≤k−2

〈Dα
x (·)|b0εDα

x (·)〉,

we see via Proposition 4.3 that

‖ · ‖Hk−2
δ−1,ε

� ||| · |||k−2,δ−1,ε � ‖ · ‖Hk−2
δ−1,ε

,

uniformly for (t, ε) ∈ [0, T∗) × (0, ε0]. Setting Zε = εZε, the evolution (6.6)
and the weighted energy estimates (see the proof of Theorem B.1 in [11]) in
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conjunction with Proposition 4.3 and the estimates (6.12)–(6.13) show that
there exists a fixed constant C1 > 0 such that

d

dt
|||Zε(t)|||k−2,δ−1,ε ≤ C1

(

|||Zε(t)|||k−2,δ−1,ε + ε+
(

ε

ε+ t

)3/2
)

,

for all t such that ‖Zε(t)‖k−2,δ−1,ε ≤ 2C0. Gronwall’s inequality and (6.11)
then show that

|||Zε(t)|||k−2,δ−1,ε ≤ eC1tC0ε+ ε

∫ t

0
eC1(t−s) ds+ ε3/2

∫ t

0

eC1(t−s)

(ε+ s)3/2
ds

≤ εeC1t

(
C0 + 1 +

√
ε

∫ t

0

1
(ε+ s)3/2

ds

)

≤ εeC1t(C0 + 3),

again for all t such that ‖Zε(t)‖k−2,δ−1,ε ≤ 2C0. Therefore choosing ε0 > 0
small enough we obtain

‖Zε(t)‖Hk−2
δ−1,ε

� 1

for all (t, ε) ∈ [0, T∗) × (0, ε0], and the proof is complete. �

We are now ready to prove the main theorem.

Proof of Theorem 1.1.

(i): Since the ADM mass is conserved, statement (i) follows directly from
Corollary 4.2 and Proposition 4.3.

(ii)–(iv): From the definition of Wε and Yε, we have

‖αε(t) − α̃(t)‖Hk−2
δ−1,ε

+ ‖wI
ε (t) − w̃I(t)‖Hk−2

δ−1,ε
+ ‖w4

ε (t)‖Hk−2
δ−1,ε

≤ ‖Wε(t) − Yε(t)‖Hk−2
δ−1,ε

,

and hence, by Proposition 6.1,

‖αε(t) − α̃(t)‖Hk−2
δ−1,ε

+ ‖wI
ε (t) − w̃I(t)‖Hk−2

δ−1,ε
+ ‖w4

ε (t)‖Hk−2
δ−1,ε

� ε (6.14)

for all (t, ε) ∈ [0, T∗) × (0, ε0]. Also by the weighted multiplication Lemma
(see Lemma A.8 in [10]) and Propositions 4.3 and 5.1, we have

‖ρ̃ε(t) − ρ̃ε(t)‖Hk−2
δ−1,ε

� ‖αε(t) − α̃(t)‖Hk−2
δ−1,ε

(6.15)
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for all t ∈ [0, T∗) × (0, ε0], while

‖ρε(t) − ρ̃(t)‖Hk−2 + ‖wI
ε (t) − w̃I(t)‖Hk−2 + ‖w4

ε (t)‖Hk−2

� ‖ρε(t) − ρ̃(t)‖Hk−2
δ−1,ε

+ ‖wI
ε (t)

− w̃I(t)‖Hk−2
δ−1,ε

+ ‖w4
ε (t)‖Hk−2

δ−1,ε
(6.16)

is a consequence of Lemma A.11 and (A.24) of [10]. Combining the inequal-
ities (6.14)–(6.16), we arrive at

‖ρε(t) − ρ̃(t)‖Hk−2 + ‖wI
ε (t) − w̃I(t)‖Hk−2 + ‖w4

ε (t)‖Hk−2 � ε (6.17)

for all t ∈ [0, T∗) × (0, ε0].

Next, we observe that

‖∂IΦε(t) − ∂IΦ̃(t)‖Hk−2
δ−1,ε

+ ‖ε∂tΦε(t)‖Hk−2
δ−1,ε

� ε

for all (t, ε) ∈ [0, T∗) × (0, ε0] by Propositions 4.3 and 6.1, and Lemmas 3.2
and 3.3 of [11]. From the above estimate, the identities W ij

I,ε = ∂I ū
ij
ε +

δi
4δ

j
4∂IΦε and u

ij
4,ε = ε∂tū

ij
ε (see Proposition 4.3), and the relations (5.17) to

(5.18), we get

‖∂I ū
ij
ε (t) − ∂I ˜̄uij

ε (t)‖Hk−2
δ−1,ε

+ ‖ε∂tū
ij
ε (t) − ε∂t˜̄uij

ε (t)‖Hk−2
δ−1,ε

� ‖W ij
I,ε(t) −Xij

I,ε(t)‖Hk−2
δ−1,ε

+ ‖uij
4,ε(t) −Xij

4,ε(t)‖Hk−2
δ−1,ε

+ ε

� ‖Wε(t) − Yε(t)‖Hk−2
δ−1,ε

+ ε

and hence, by Proposition 6.1 and Lemma A.7 of [10],

‖ūij
ε (t) − ˜̄uij

ε (t)‖L6
δ,ε

+ ‖∂I ū
ij
ε (t) − ∂I ˜̄uij

ε (t)‖Hk−2
δ−1,ε

+ ‖ε∂tū
ij
ε (t) − ε∂t˜̄uij

ε (t)‖Hk−2
δ−1,ε

� ε

for all (t, ε) ∈ [0, T∗) × (0, ε0]. Finally, it follows from Lemma A.11 and
(A.24) of [10], and the above estimate that

‖ūij
ε (t) − ˜̄uij

ε (t)‖L6 + ‖∂I ū
ij
ε (t) − ∂I ˜̄uij

ε (t)‖Hk−2

+ ‖ε∂tū
ij
ε (t) − ε∂t˜̄uij

ε (t)‖Hk−2 � ε

for all (t, ε) ∈ [0, T∗) × (0, ε0]. This completes the proof. �
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