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Abstract

We prove the existence of a large class of dynamical solutions to the
Einstein—FEuler equations for which the fluid density and spatial three-
velocity converge to a solution of the Poisson-Euler equations of Newto-
nian gravity. The results presented here generalize those of [10] to allow
for a larger class of initial data. As in [10], the proof is based on a non-
local symmetric hyperbolic formulation of the Einstein—Euler equations,
which contain a singular parameter € = vy/c with vr a characteristic
speed associated to the fluid and ¢ the speed of light. Energy and disper-
sive estimates on weighted Sobolev spaces are the main technical tools
used to analyze the solutions in the singular limit € \ 0.

1 Introduction

The Einstein—Euler equations, which govern a gravitating perfect fluid, are
given by

GY :%T”’ and V,TY =0,
C
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where
T9 = (p+ ¢ *p)v'v’ + pg",

with p the fluid density, p the fluid pressure, v’ the fluid four-velocity normal-
ized by v'v; = —c?, ¢ the speed of light, and G the Newtonian gravitational
constant. Defining

€= —),
Cc

where vy is a typical speed associated with the fluid, the Einstein—FEuler
equations, upon suitable rescaling [10], can be written in the form

GY = 2T and VTV =0, (1.1)
where

T = (p+ 2p)v'v? +pg?  and v'v; = 3
In this formulation, the fluid four-velocity v?, the fluid density p, the fluid
pressure p, the metric g;j, and the coordinates (%) i =1,...,4 are dimen-
sionless. By assumption, the (z*) are global Cartesian coordinates on space-
time M = R3 x [0,T), where the (z) (I =1,2,3) are spatial coordinates
that cover R3, and t = 2% /vy is a Newtonian time coordinate that covers
the interval [0,7"). By a choice of units, we set vp = 1.

The Newtonian limit for the Einstein—Euler system refers to the limit of
solutions of the Einstein-Euler systems in the limit € \, 0. In this limit,
one expects that under reasonable assumptions solutions of the Einstein—
Euler system should converge to a solution of the Poisson—Euler equations
of Newtonian gravity:

op+0r(pit) =0 (9y:=d,1), (1.2)
pov? + wlor’) = —(po’ @ + 07p) (87 :=671oy), (1.3)
Ad =5 (A:=6"0;0y), (1.4)

where p, p, and @” are the fluid density, pressure, and three-velocity, respec-
tively.

The difficulty of analyzing the Newtonian limit arises from the fact that
the limit € ™\, 0 is singular. The first general rigorous result on the Newtonian
limit without any symmetry assumptions is [13]. There, it is shown that
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there exists a wide class of solutions to the Einstein equations coupled to
Vlasov matter that have a well defined Newtonian limit as € \, 0. This
work is based on an elliptic-hyperbolic formulation of the Einstein—Vlasov
equations in a maximal slicing gauge. In [10], we used a different approach
to prove existence of a large class of non-stationary solutions to the Einstein—
Euler equations which have a Newtonian limit.

The main aim of this article is to establish the existence of a Newtonian
limit for solutions to the Einstein—Euler equations under weaker conditions
on the initial data as compared to either [10,13]. The purpose for this is
twofold. First, it is of both theoretical and practical interest to understand
the most general situations possible for which Newtonian gravity provides
an acceptable approximation to full Einstein theory. Second, the techniques
developed here can be used to improve the results of [11] on the existence of
post-Newtonian expansions. In [11], it was shown that there exists a class of
solutions to the Einstein—Fuler equations that have a first post-Newtonian
expansion. Using the methods here, this can be improved to the second
post-Newtonian order. We will report on this in a separate article.

In this article, we follow the approach of [10] to analyze the limit € \, 0
of solutions to the Einstein—Euler equations. This requires that we replace
the metric g;; and fluid velocity v® with new variables that are compatible
with the limit € \, 0. The new gravitational variable is a density u* defined
via the formula

ij _ € ij
g 7_det(Q)Q (1.5)

07 5 J 0 2 4u J 0 3 0 u 4 0 0
v — €
< 0 0) ¢ 0 —1 de u 4 0 4 0 u744 )

(1.6)

From these formulas, it not difficult to see that the density 4% is equivalent
to the metric g;; for € > 0, and is well defined at € = 0. For the fluid, a new
velocity variable w® is defined by

4
I I 4 v —1

v =w' and w®= (1.7)

€

For technical reasons, we assume an isentropic equation of state

p = Kpmth/n (1.8)
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for the fluid where K € Ry, n € N. This allows us to use a technique of
Makino [9] to regularize the fluid equations by the use of the fluid density
variable « defined by

1 n
ST .

The resulting system can be put into a symmetric hyperbolic system that
is regular across the fluid—vacuum interface. In this way, it is possible to
construct solutions to the Einstein—Euler equations that represent compact
gravitating fluid bodies (i.e., stars) both in the Newtonian and relativistic
setting [9,12].

The main point of introducing the gravitational-matter variables {u"/, w’,
a} is that in a harmonic gauge the Einstein—Euler equations can be cast into
a singular (non-local) symmetric hyperbolic system of the form

V(W)W = %cfafw + bl (e, W)OrW + F(e, W). (1.10)

As shown in [10], for appropriately chosen initial data this form is suitable
to derive e-independent energy estimates that can be use to analyze the
behavior of the solutions as € \, 0, and extract a Newtonian limit. We note
that singular hyperbolic systems of the form (1.10) have been extensively
studied [3, 6, 7,14, 15], but, as discussed in [10], these results are not directly
applicable to the Einstein—Euler equations due to initial data that does not
lie in the standard Sobolev space H*(R?).

For general initial data, the e-independent energy estimates from [10]
are not enough to control the solution in the limit € \ 0. In this paper,
we show that when the energy estimates are used in conjunction with dis-
persive estimates for the wave equation a larger class of initial data can be
chosen so that the resulting solutions still have a Newtonian limit. However,
unlike the situation in [10], the gravitational variables do not converge to an
e-independent limit. Instead, they converge to a solution of a singular
e-dependent wave equation. Following the terminology used in other singu-
lar hyperbolic problems [15], we refer to this type of limit as a fast limit. We
note that dispersive wave estimates have been used previously in a similar
fashion to analyze the (singular) incompressible limit for the Euler equations
[5,16].

The precise statement of the existence of a Newtonian limit is contained in
the following Theorem, which is the main result of this article.
A proof can be found in Section 6. A definition of the weighted spaces
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Hgfe (Hf = Hf{l) can be found in Appendix A of [10]. We also define
Xr ks =Nty C1(0,7), Hy ™).

Theorem 1.1. Suppose —1 <0 < —1/2, s € Z>9, R>0, k € Z>315, «,
- - o

w! e Hé“_l, supp a C Bg, 3!/ € HZ;H, 3{1‘] € Hé“_l. Then there exists a

o o

T >0, ¢ >0, and maps

U9 (1) — U9 (0), Oru(t), i (t) € Xrops-1 0<e< e,
U9 (t) — u9(0), Oru(t), O (t) € Xreps-1 0<e< e,

pe(t), wi(t) € Xpspo—1 0<e< e,
plt), 0 (t) € Xrspo1, R(t) € Xrsppos with 0,B(t) € Xpgps15-1,
such that
(i) the triple {U?(z,t), pe(x,t), wi(x,t)} determines a solution to the
Einstein-FEuler (1.1) in the harmonic gauge for 0 < e <¢€y on the
(

spacetime region (z!,t = 2*) € D =R3 x [0,T) with Arnowitt-Deser-
Misner (ADM) mass given by

MADM = / ﬁ(:p, 0) da® + O(EQ)a
R3

(ii) {p(z,t), 0! (z,t), ®(x,t)} is a solution to the Poisson—Euler (1.2)-(1.4)
with initial data pli—o = (4Kn(n +1))"1a??, @!|i—g = w!,
o o

(iii) tic(z,t) is a solution to the wave equation
Y — AT = —558%5 + 26,6107 P,
with initial conditions
W], = 018531 — 2870154756 + 51 (8], +A 07" )
o 1/ . - . o
08|y = L (31587 — 20055(5) + SN GRslY) + 035108y
(iv)
lpe(t) = A0l g2 + l[wf (8) — @ (8) ]| iz + [[we ()| o2 Se,
and
5 (&) = ud ()] 2o + 1076 (t) — Ol ()| i + | e (¢) — €Dl ()| 2 S €

for all (t,e) € [0,T) x (0, €g].
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From the above theorem, the interpretation of the limiting solution is
clear. The {5,w!} satisfies the standard Poisson-Euler equations of New-
tonian gravity with the obvious interpretation as the fluid density and
three-velocity, while the 1¢’ represent high-frequency gravitational radiation
propagating on a flat background with the fluid density and Newtonian
potential acting as source terms.

2 Reduced Einstein equations

To aid in deriving the appropriate symmetric hyperbolic system for the
gravitational variables, we temporarily introduce a new set of coordinates
related to old ones by the simple rescaling

=2t 7 =2/,
and let
0 = 0
ai — A 81 - .
ox? oz*

In the new coordinates, the metric g;; and its inverse g% are given by

N 1J 1,14
@)= (20 ) wa @)= (A D). e

€ga) € gas e gt ey
Next, we consider the metric density
87 = lglg”, where |g| = —det(gy). (22)

We note that the metric g% is related to the density g by the following
formula

P= b whee il = -dog? 2:)
and hence
B 1 gIJ 6gl4
gy —
(g") 7l <Eg4J 2gh ) - (2.4)

To obtain a gravitational variable that is regular and non-trivial in the limit
€ \\ 0, we define

i 1
uj::z(gj—nj), (2.5)
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where

o= (" )

is the Minkowski metric density. As stated in the introduction, for € > 0, the
metric g;; can be recovered from the density u* via the formulas (1.5)-(1.6).
In the (z') coordinate system, the Christofell symbols are given by

Tl = & (6" (2008 — 0:86) 0™ + 208,008 — 28498
(2.6)

These are related to the Christofell symbols in the (z¢) coordinate system
as follows

Iy =€ Ty, Th=¢ Ty Th=T%, (2.7

Thp=elhp, Thi=e¢ 'Th and The=T3c (2.8)

_ Using (2.6), a straightforward calculation shows that the Einstein tensor
G" is given in terms of the density u* by

G .= 2%2@ G — ﬁkéézgﬁij 4 &2 (Aij + B 4 Cm’j) + DY (2.9)
where

gl = —det(g"), (2.10)

A7 =2 @gwgmn - gkmgm> (g”’gjq - ;gijgp"> put9u™,  (2.11)

. = 1 .. - _ _
BY — 48e <2gn(z mﬁ])ﬁanﬁkm - 5@2]amﬁknanﬁmf - gmnamﬁzkanﬁjé ,

(2.12)

C = 4(9,u" 9k — Ipuopud®), (2.13)

DY = g g}t — 202, uk gt (2.14)
To fix the gauge, we assume that

o = 0. (2.15)

For € > 0, this is equivalent to to the harmonic gauge

8igij = 8, ( —det(gkg) gij) = 0. (2.16)
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Setting
gj{ =GY — DY = gFa2 uv + 2 (Aij + BY + C’ij) (2.17)

and

2mlJ 114
.. o _ e“T T
TU = 62|g|TZ] = |g| <61T4J T44 > ,

the Einstein equations G¥ = 2¢*T% in the gauge (2.15) become
G =14, (2.18)
We will refer to these as the reduced Finstein equations.

To write the reduced Einstein equations in first order form, we introduce
the variables

o W ifk=1
wil o= gt = | O ’
eOuv  if k= 4.

The reduced Einstein equations then become
—@445411? _ 2514[‘91’:‘? + QIJélﬁfzj + €2 (Aij + BY 4+ Cij) . T@'j,
g 5411?‘ — g 5Jﬁij ’
040" = flij,
or equivalently

9 | . - . - 1 ..
—g"ouni = “gorui + ~g o + e(A7 4 BY 4+ C) - TV,

~ 1 i
EIIJ84UZJJ = EE!UaJUZJa
S Y
oqu = ~uy.
€
Next, we define
wl =, ul =u, (2.19)
and let

V = {(r'7) € Myxa| det(n + 4r'7) > 0}.
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Then using vector notation

il = (uf ] )T

)

the reduced Einstein equations take the form

1 L L 1 .
At (ew)ou = ZCToru® + AT(w)oru + F(e,u) — =(7%,0,0)T,
€ €

where
1 — 4eu 0 0
Atew) = 0 S +aedd’ 0,
0 0 1
0o 67 0
=67 0 0],
0 0O O
sut! au!’ 0
Al(w) = (411” 0 0 ,
u) (0,0, u ,
and

Fi(u,ew) = (AY + BY + ¢ ,0,0)".
Here, we are using the notation

u=(u?) and wu = (ufcj).

The stress-energy tensor is given in terms of the u variable by

g , 1 (67p 0 e [(4ulp 0
1] _ (2 ]
(TY) = p(v'?) + < o) T 5 0 0

varl V19l
14
2 Qg p 0 4u
+€ <p(’U v )+ \/@ <4u4J -1 +4.6u44)> 9

which we can write as

1 . 0 0 g
_ 1) — 1]
L= (g 5,) + s

367

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
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where

. 0 |glv”v*
(") =p| J.o4  _—1[/|= 442 442
lglv’v® e [(lgl = ()" + ((v7)" = 1)]
+ €[g] <(P+62p)v1’vJ +1g17p(8" + 4eu’)  epo’ot + 4e|g| T Pput >
€19

epv’v* + delg| 2t p(v")? +1g| 7 2p(=1 + deu)
(2.28)
Letting (see (1.7))
w = (a,w")T, (2.29)
we can decompose S¥ as
S =8J + €Sy, (2.30)

where
Séj (U, W, eu, ew)
B 0 |glw! (1 + ew?)
P\ gl (14 ewt) e (1] - D+ ewh)? + (14 ewh)2 = 1)] )
(2.31)

and

S (w, eu, ew)
. pwlw? + pewlew” 4 |g| =/ ?pg!’ pew’ (1 + ew?) + 4|g| =/ peu’?
pew! (14 ew?) + 4|g| = ?peul*p(1 + ew)? + |g| =/ ?p(—1 + 4eu?)

(2.32)
3 Regularized Euler equations
In the coordinates (z'), the Euler equations are given by
V,T" =0, (3.1)

where T% = (p+ €%p)v'0? + pg¥ and the fluid velocity ©' is normalized
according to

V0 = ——. (3.2)



THE FAST NEWTONIAN LIMIT FOR PERFECT FLUIDS 369

To write (3.1) as a symmetric hyperbolic system, we follow [2] and differen-
tiate (3.2) to get

5,V;0' =0 and v'9;V;0' =0. (3.3)
Writing out (3.1) explicitly, we have
(Dip + E20;p)0" ! + (p + €2p) (Vo' +0'V?) + g7 dip = 0. (3.4)
The operator
L =& 4+ Ev;

projects into the subspace orthogonal to the fluid velocity 7, i.e., Lf LfC = Li
and Lg@i = 0. Using Li to project the Euler (3.4) into components parallel
and orthogonal to ¢" yields, after using the relations (3.2) to (3.3), the
following system:

7'0ip + (p+ 62p)L§-?ﬂ7j =0, (3.5)

Mij’l_)kvkl_)j + L;-éip =0, (3.6)
P

+€e2p
where

Mij = Gij + 262’171'@j.

As discussed in the introduction, we use a Makino density variable «
(see (1.9)) to regularize the fluid equations in regions where the density and
pressure vanish. After multiplying (3.5) by the square of the function

nea) = (14 gy (e?).

a short calculation shows that the Makino density « and the fluid four-
velocity 0" satisfy

h*0'0;a + qLiV ) =0, (3.7)

Mijﬁk?kﬁj + ngéjOé =0, (3.8)

where

d 1
2 p 2

dp ~ 42"
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is the square of the speed of sound, and

B 1
~ 2nh(ea)

q

Instead of solving (3.7) to (3.8), we consider the following modified system

h*5'0ia + gLV 07 = 0, (3.9)
M;o*V o7 + qLldja + (x4 — 1)MyT1,0%%" = 0, (3.10)

Here we are using
xa(e) == x(x/A) A>0,

where y € C*®(RR3) is a smooth cutoff function satisfying x(z) = 1 for |z| <
1, x(x) = 0 for |z| > 2, and 0 < x(z) < 1 for all x € R3.

Since w! = v’ and w* = v* — 1/¢, we can write (3.9) and (3.10) as

a*oyw = alOyw + b (3.11)
where
2 4 4
A h=(1 + ew®) €qL; (3.12)
eqLi  Mi(1+ew?))’
—h2w! —qL
ol — R (3.13)
—qLi —Mijw
and
—gLiT? !
bh— qLJF_ngfH : (3.14)
—Xar Mz, 070

From (2.3), (2.5), (2.19), and (2.30), we find that

Gij = Nij + fij(euw), (3.15)
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where the f;;(y) are analytic and satisfy f;;(y) = O(|y|) as y — 0, while (2.6)
shows that

= ¢
Ffj —¢ [nkm (2771-47)]7, — m-jmp)eufﬁ + 2(7)@5@614; — 2775(1-611%)] +e€ fj(eu, €y
(3.16)

for functions fl-’}(eu, €u,,) that are analytic for eu € V), linear in the eu,,, and
satisfy ffj (0,y) = 0. The expansion (3.15) allows us to write

Mij = gij + 2€2§ikgjg1_}k1_}£ = 51'3' + my; (eu, ewk), (3.17)
and

L =67 + g™ = 67 — 626) + 11 (ew, ew®) (3.18)
for functions Eg(eu, ewr) and my;(eu, ew®) that satisfy fg(O, 0) =m;;(0,0) =

0, and are analytic for eu € V. Using (3.15) to (3.18), we can express the
a' and b as

at = L0 + at(eu, ew), (3.19)
0 (5,']‘
—w! —géj[
aI — 2n _|_ wI&(eu’ EW) —|— a&j(eu, E\N')7 (320)

(%
—%5{ —52‘ij

and

0
<X4R[—7I2m(2774£774p + gy i — 2(ngpoiu — 2npquil)]

. (ain(eu, €W) - euy ) . (3.21)

X4R32(6u, EW) - U

We observe that the matrices a*, @, and a’ are symmetric, and the maps a4,
a, al, by, and by are analytic (for ew € V) and satisfy a*(0,0) = 0, a’(0,0) =
0, a(0,0) =0, 131(0,0) =0, and 52(0,0) = 0. This shows that the system
(3.11) is symmetric hyperbolic on a region where (eu, ew) is small enough to
ensure that a? is positive definite. This can always be arranged by taking e
small enough and since we are interested in the limit € \, 0 no generality is
lost by assuming this.
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4 Uniform local existence

The combined systems (2.26) and (3.11) can be written as

1
V(eV, U)o,V = gcl’a[v + b1 (V, €U, eV, €U0V

1
+ fo(V, €U, eV, 2U) + ef1(V, €U, €V, 2U) + Eg(V),

(4.1)
where
U =(0,0,u7,0,0)", u¥=u[_, (4.2)
V= (uf v, 00 oy, Su = ul - e (4.3)
A (eu) 0
v (eV, V) = 4.4
(V,€0) ( 0 a*(eu, ew)) ’ (44)
¢t o
e = (O 0> ) (4.5)
Al(u) 0
b (V, €U, €V, 2U) = : (4.6)
I
0 a'(w,eu,ew)
F () — S
fO(Vv, EU, E‘/, €2U) —_ 0 (u) 80 (U,W, €u, EW) ’ (47)
b(u, w, eu, ew)
FY — 8y
SV, €U, eV, EU) = ( rw e . (w, 6W)> , (4.8)
and
g(V) = (=604p(e),0,...,0)T. (4.9)

For initial data, we will often use the notation

Z = Z‘t:().
o

In addition to solving these evolution equations, we must also solve
the following constraint equations on the initial hypersurface
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Y = {(21,0)|(2') € R?} to get a full solution to the Einstein-Euler
equations:

CI:=G% —T% =0 (gravitational constraint equations), (4.10)
H’ := 9;i/ =0 (harmonic gauge condition), (4.11)
and
1 . . N
N :=¢ep;0" + — =0 (fluid velocity normalization). (4.12)
€

To fix a region on which the system where both the evolution (4.1) and
constraint (4.10) to (4.12) are well defined, we note from (2.20), (3.19),
and the invertibility of the Lorentz metric (n*/) that there exists a constant
Ko > 0 such that

—det(n” + 4eu) > 1/16, 1+ ew* > 1/16, (4.13)
1 1
4 > — 4 > — .
A (eu) > 161[, a”(eu, ew) > 16]1, (4.14)
and
|AY(ew)] <16, |a*(eu,ew)| < 16 (4.15)

for all |eu| < 2Ky, |ew?| < 2Ky, |ea| < 2K,. The choice of the bounds 1/16
and 16 is somewhat arbitrary, and they can be replaced by any number of
the form 1/M and M for any M > 1 without changing any of the arguments
presented in the following sections. However, since we are interested in the
limit € \, 0, we lose nothing by assuming M = 16.

4.1 Newtonian initial data

To generate a one parameter family of solutions to the constraint (4.10) to
(4.12) that is regular in the limit € \, 0, we use a slight variation of the
method used in [10], which is based on previous work by Lottermoser [8].
Before we state the theorem, we note from (1.9), (1.8), and the weighted
multiplication inequality (see [10] Lemma A.8) that if « € HYF (6 <0,k >
3/2) then p,p € HE.

Proposition 4.1. Suppose —1 <35 <0, k>3/2+1, R>0 and (p,p,w’,
377,30 € (HF2)? < HE | x HY™! x Br(HE). Then there exists an ey > 0,
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an open neighborhood U of (p,p,w', 357,317, and analytic maps (—eg, €o) x
U - H(lsc_l : (Evp)p) w1)5£J73[J) = U)4, (_607 60) X U - ng : (E)p’pa wlvéiJ)

i) = @, (—eg,e0) x U — H(’f 2 (&, p,pywl, 317, 317) v vl such that for each
(p,p, w3573 € U, (¢, p,p, w!,w*, 0,044 is a solution to the three

constraints

CP=0, H' =0, and N =0,

where
IJ I
ijy _ (37w
(u ) (mJ ¢>7
IJ 92 KT
) — 34 K3
(eatu ) <—8K3KJ o mK)ﬂ
and
1 —egajw’ — /e2(gasw”)? — gaa(2grjwlw’ + 1)
wh= > + 94J 94J g44\€°91J '
€ €G44

Moreover, if we let ¢g = ¢|e=0, W = r0!|c—o, and wi = w*|—o, then ¢o, rod,
and wé satisfy the equations

Ao =p+ 833", Awl =035, and wh=0,

respectively.

Proof. The proof follows from a simple adaptation of the proof of Proposition
5.1 in [10]. O

Corollary 4.2. For —1 < < —1/2, the ADM mass of the 1-parameter
family of initial data constructed in Proposition 4.1 satisfies

MADM —/ pdx?’—i—O(e).
R3

Proof. For fixed (p,p,w!,317,3!7) € (H§:22)2 X Hé‘:_l X H§:11 X H(’;“7 it fol-
lows from Proposition 4.1 that for ¢y small enough, the maps

[0,e0) 2 e— g4 € H(lf and [0,€) 2 € — €0,gi5 € Hg“:ll (4.16)
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are analytic (see (2.1) and (2.5)). Moreover, a short calculation shows that

gi; = nij + 262 <nkluk£mj — kaukengj> + 0(€?), (4.17)

and
d%@HZZQGQ(nMUT%U‘—kauyn@)‘+CX€%a (4.18)

where
(u’) = <Z’Ij mé) : (4.19)
Wy do

(ui) = (_;i;KJ :gﬁf’g) 7 (4.20)

and

Apo=p+ 02,37, Awl=—0317. (4.21)

Since —1 < 6 < —1/2, it follows from Proposition 4.5 of [1] that the total
ADM energy-momentum P = (IP;) for the initial data (g;;, €0;gi;) on the ini-
tial hypersurface ¥ = {(2,0)| (z!) € R3} can be calculated using the stan-
dard formulas

1
Py = —4% (81g1J — (SIKajng) ClSJ, (4.22)
Soo
1 _
Pr=3 }[ (Kf$o15 — K1) dS7, (4.23)

9]

where the extrinsic curvature K;; is given by (see (2.6))
_ 1,
K]’J = — @FL}‘ (424)

[0,e0) 3 e — (P;) € R? (4.25)

Furthermore, the map

is smooth by (4.16) and Theorem 5.1 of [1].
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By (2.6), (4.17), (4.18), and (4.24), we find the following expansions for
the extrinsic curvature:

Kij=¢€ <2U£J + 41 (UZM - 5keU{f£) +20ut + 231164‘]) +0(e%). (4.26)

The smoothness of the map (4.25) and the two expansions (4.17) and (4.26)
show that the ADM energy—momentum can be expanded as

Py = —¢> jf (01 po — 0s5"7) dS; + O(?), (4.27)
P, = 627{ (670wl — 87wl — Oyrod? —517) dS; + O(e}).  (4.28)
Seo

Using the divergence theorem and (4.21), the energy—momentum expansions
(4.27) and (4.28) simplify to

P, = —62/ pdx® 4+ 0(e®) and P = 0(e). (4.29)
R3
The proof of the corollary now follows from the above expansions and the
definition
1 »
MADM = :2\/77”]13’1‘]?]‘
of the ADM mass. O

4.2 Uniform existence

To prove local existence of solutions to (4.1) on a uniform time interval
independent of ¢, we take the same approach as in [11] and use a non-local
modification of (4.1). The modified system is constructed as follows. First,
we replace g(V') in (4.1) with

9(V) = (=0i87xzp(a),0,....0), (4.30)
and we define the Newtonian potential by
Ad = xpp. (4.31)

Next, we use the Newtonian potential to define a new combined
gravitational-matter variable W via the formula

W=V —do, (4.32)
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where
d® = (0,54610;9(a),0,0,0). (4.33)

Note that the transformation (4.32) leaves the matter variables unaffected.
Consequently, we can define W by

W=, W/, ou”, a,w')",

and treat ® and d® as a function of W. To formulate the evolution equation
entirely in terms of W, we need the time derivative of the ® map. So we
define

2ana2”*1

@Rn(n Dy @ ew) 7o (w, e, ew)orw

D(W,eU, eW, 2U) = A1 (
+ b(u, w, eu, ew)])) , (4.34)

where TI((o,w")T) = a is a constant projection map. By construction,
® = 0;® when evaluated on a solution of (4.1). To fit with the above nota-
tion, we also define

dd = (0,0,650;9,0,0,0)7.
Noting that
VO (eV,2U) = b°(eW, €2U) and bI(V, U, eV, %) = bI(VV, U, eW, e2U),

(4.35)
we can write (4.1) as

1
VO (eW, EUNOW = =L oW + b1 (W, €U, eW, E2U)0; W
€
+ Fo(W, eU, eW, 2U) + eFL(W, U, eW, 2U),  (4.36)
where

Fo(W,eU, eW, 2U) = fo(W + d®(W), U, e(W + d®(W)), €2U)
— b (eW, W) dd(W, U, eW, €2U)
+ bl (W, eU, eW)31dd (W), (4.37)

and

Fi(W,eU,eW, 2U)) = fL(W + d®(W), U, e(W + d®(W)), e2U).  (4.38)
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In the following Proposition, the constant Cggp, is defined to be the
e-independent in the weighted Sobolev inequality || - le oo < Csopl| - || HE,

which holds for ¢ >3/2+41 and 0 < e <¢y (see Lemma A.7 in [10] for a
proof).

Proposition 4.3. Suppose —1 <6 < —1/2, ¢ >0, s€Ng, R>0, K1 <
Ko/(2/€0Cs0), T>2K1/Csop, R>167+ R, k>3+s, a,w! e HY |,
o o0
supp « C Bpg, 3!/ € Hg“, 3 € Hgﬂl. Let ug, O and w? be the ini-
o o o o

tial data constructed in Proposition 4.1, which, by choosing ¢y <1 small
enough, satisfies

. T
L » .
‘(eatuy,aluy—agaia]A p,o,a,wg) ‘ . <Ky
[ [ o o o H&—l,e
g K,
and ||| e < —0
0 "Hs V€0 Csob

for all € € (0,€]. Then there exists a T > 0 independent of € € (0, €], and
maps

W. = woWww
€ — (U4’€, I 5u?7 aﬁ)wé> € XTG,S,k,é—l 0<e <€

such that

(i) Te > T for 0 <e < e,
(ii) We is the unique solution to (4.36) with initial data

W.(0) = <eatg§j , algij - 535@1&15, 0,a, %)T ,
(iii)
Wellms_, < 2Ky, elloWe®)llgp-1 1,
and

max{||etid (t) 2=, [ece(t)]| o=, lew' (#) ]|} < 2Ko

for all (t,e) € [0, T] x (0, €],
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(iv) for each € € (0, €], if

lim sup ||We () |l1,00 < 00,
t/Te

and

sup {[letd (t)l|ze, llece(t)] 2=, ew' (t)]| 2=} < 2K,
0<t<Te

then the solution We(t) can be uniquely extended for some time
r > T,

(v) for any time T. which is strictly less than the mazimal existence time
and for which

S {llew? (#)| o<, leae(t)l|zoe, [lew' (t) | oo } < 2K

>1le

holds, the support of a. satisfies
supp a.(t) C By, YVt €[0,T.]

where Re := 16supy, 7. [|w!(t)||L= + R,
(vi) supp a.(t) C By for all (t,€) € [0,T] x (0, ], B -

(vii) dud = e 'y, and Opwd =Wy +6;601%(a) where ud = gl? +
e Louis,

(viii) the triple {ii o, wi} determines, via the formulas (1.7), (1.9), (2.4),
and (2.5), a solution to the full Einstein—FEuler system (1.1) in the
harmonic gauge (2.16) on the spacetime region D. = R3 x [0,T], and

(ix) the conclusions (vii)-(vili) continue to hold on any region of the form
D, =R3 x [0, T.] provided supp a.(t) C Bg for all 0 <t < T..

Proof. (i)—(vii): First we observe, that proof of statements (i)—(vii) follow
from a slight modification of the proof of Proposition 3.4 in [11].

(viii)—(ix): Let 1), satisfy the initial value problem
0" Othe = 0: 1e(0) = x3/2(0), (4.39)

and define

M:¢M2¢<evivi+1>.
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Next, we observe that (3.10) contracted with #° yields
2o o
(1 — 2eN) W O;N; — 270 10,0 + €(1 — 2eN) (x4 — )00 T}0, = 0.
Multiplying this equation by . then gives

o
(1 — 2eN ) ;N — Uja alN; + (1 — 2eN e (x45 — 1)0°0 vak =0.

(4.40)

From statements (i)—(vii), we have that

wi(t) € Xrsks-1 (4.41)
and
bl S @l S1 V(0 €0.T) x (0 (442)
Since

70; = (14 ew})d, + wloy,
we get from (4.41), (4.42), and the hyperbolic (4.39) that ) € X7 5-1 and
[Ye@llgr <1V (L) €[0,T) x (0, €.

From the finite propagation speed property of hyperbolic equations, we con-
clude that there exists a time Ty € (0,T) such that

Ye(t)|B =1, and supp¥(t) C Byp VY (t,¢€) €[0,T%) x (0,€0]. (4.43)
In particular, this implies that
N(t,z) = Ne(t,z) Y (t,z,€) €[0,T.) x Bp x (0, ), (4.44)
and
(xap(2) — Dbe(t,x) =0V (t,x,€) € [0,T%) x R x (0, €] (4.45)

Using (4.45), (4.40) reduces to

5 2

(1 — 26M) N ﬂ’l)]a OéN =0

for all (t,z,€) € [0,T%) x R3 x x (0, €0). But Ne(0) =0 from the choice of ini-
tial data which implies that A.(0) = 0. By the uniqueness of solutions to



THE FAST NEWTONIAN LIMIT FOR PERFECT FLUIDS 381

hyperbolic equations, we conclude that /\N/'e(t, x) = 0forall (t,z,¢) € [0,Ty) X
R3 x (0, €0, and hence N (t,z) =0 for all (t,z,¢€) € [0,T%) x Bg x (0, €]
This implies that the fluid velocity normalization v'v; = —1/€? is satis-
fied for all (¢,x,¢) € [0,T%) X Br X (0,€0]. Using this and the fact that
supp a.(t) C Bgr for all (¢,€) € [0,Ty) x (0, €], it is not difficult to verify
from the evolution (3.9) to (3.10) that

{174(15, x)=1+ ew?(t,x),ﬁl(t,m) = wg(t,x),
pe(t,x) := (4Kn(n + 1))_”af"(t,x)}

satisfy the Euler (3.4) (or equivalently (3.1)) for all (¢,z,¢) € [0,T%) x R? x
(0, €0]. With the Euler equations satisfied, the remainder of the proof follows
as in the proof of Proposition 3.4 in [11]. O

5 Limit equations

In this section, we describe the limit equations that govern the gravitational
and matter fields in the limit € \, 0. We show in the next section that
solutions to these equations approximate the solutions to the full Einstein—
Euler equations up to a remainder term that is of order e.

5.1 Fluid limit equations

The fluid limit equations are

~ - ~ 07 ~
O = —wlora — %(%wl, (5.1)
o’ = =076 — ' 00’ — X507, (5.2)
AD=p (p:=(4Kn(n+1))""a™). (5.3)

Proposition 5.1. Let k, s, R, §, o, and w be as in Proposition 4.3. Then
o o

there exists a mazimal time To4 > 0 and a unique solution

a,w' e C°([0,79"), H 1) nC([0,Tv), H}~}),
® e CO[0, 79N, HF YY) nCH ([0, Ty"), HFM),  9,@ € C°([0,Ty"), HE)
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to (5.1)~(5.3) satisfying a(0) = a and W' (0) = w!. Moreover,
o

o

JU =
aw € Xpm k51, PEXpum gios

0% = —01 A (pw") € Xpav g pi1 g1
and
supp &(t) C B

where R(t) = R+ tsupp<s<; [ ()] o< -

Proof. The proof follows from a trivial modification of the proof in Propo-
sition 3.7 in [11]. O

Remark 5.2. Since R > R, it is clear from Proposition 5.1 and the weighted
Sobolev inequality (see Lemma A.7 in [10]) that there exists a time Tj €
(0, Ths) such that

supp &(t) C B,p for all t € [0,Tp). (5.4)
In particular, this shows that
p(t)xup = p(t) forall t € [0, Tp], (5.5)

which in turn implies that the pair {5(¢),@w!(t)} satisfies the Poisson-Euler
(1.2) to (1.4) on the time interval [0, Tp].

5.2 Gravitational-limit equations
The gravitational-limit equations are defined by
1 .
WX, =-ClorX. + (0,0, x7)7T, (5.6)
6 t

where

XG = (XZU X;{a XEZ])T
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Proposition 5.3. Let 6, k, a, 8tﬁij, o1 be as in Proposition 4.3, and
o o o

(5.7)

e=0

T
X (0) = <eatu? ,0ru? — oA~ (5467 p), 0)
o o o)
Then there exists a unique solution
X. € C°([0,00), Hy_1) N C" ([0, 00), Hy )

to (5.6) with initial data (5.7) that satisfies X € Xoo sk s—1 and the
estimates:

(i)
X zs, -+ 0K ey S e,

) ) .
IX5(0) 152 +DXI W) gar S e,

for all (t,e) € [0,00) x (0,€0] and some fized constant C' > 0, and
(ii) for any A >0,

X7, () llwee (B m3) + IXE () lieoo (3, )

< S2VA+1

S et e 0<l<k—-3/2

for all (t,¢) € [0,00) x (0, €o].

Proof. Since —1 < 6 < —1/2, it follows from Lemma A.11 of [10] and Propo-
sition 4.1 that

IXeO) 2o S 1K) S 1. (5.8)

1€

This inequality together with the weighted energy estimates (see Lemma 7.1
in [10]) gives

IXe@ s | S e IXe(O)l| g | S e (5.9)

d—1,¢

for some fixed positive constant C.
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From the evolution (5.6) and the choice of initial data, we see that
o (0rX7.(1) = 9,X7.) =0 and 9,XY,(0) - 9,X7, =0,
which implies that
O XY.(t) — 01X (t) = 0. (5.10)
Also, it is not difficult to show that
0 (01 XY — eX{) =0 (5.11)
follows from (5.6). Combining (5.10) and (5.11) then yields
O XU (1) = e (X}'{e(t) . X}{e(o)) . (5.12)
Next, we note that

1X0 e, S IDXE |y + el X5 (5.13)

1,e

follows from the weighted Sobolev inequalities (see Lemma A.7 in [10]).
Collecting the estimates (5.9), (5.12), and (5.13), we arrive at

X0z, + DXy, S e

1,e

To prove the last two estimates for X}je and X}l .» We observe that X}je
and X}le satisfy the wave equations

EORXY —AXY =0 and XY — AXY =0. (5.14)

Since the initial data for these equations satisfy (5.8) and —1 < < —1/2,
we can apply the weighted dispersive estimates from Theorem 1.1 in [4]
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to obtain
’ X Oz, + 101X (0] -
IDLXY (t,2)] S —— ’ 2 (5.15)
' (L+t/e+ |z))\/|1+ |t/e — |z||
and
} X, + 107X (0] o
DEXY(t2)] § ———— M (5.16)
’ (14+t/e+|z)\/|1+ |t/e — |z]|
for 0 </ < k—3/2. But
L+ t/el <1+ t/e—|z|+ |z|| <1+ A+ |t/e — |z
<A+ + [t/e—[zl])
for |x| < A, and so the inequalities (5.15) and (5.16) imply that
.. .. 63/2‘/A+ ]_
[ X7 Ollweoe (By@s)) + 1 XL () lweso sy @3y S e
for 0 < ¢ <k—3/2. O

Remark 5.4. From the initial value problem (5.6)—(5.7) (see (5.12)) and
Propositions 4.1 and 5.1, it is not difficult to verify that

W= %Xﬁj + (535?,;,” — 207198067 4 sigj A (5 - a},{"))
+ (‘i)(t) - <i>(0)) 5iod (5.17)
satisfies the identities
du = %X;{E +05010:®, O = X+ 61670,9, (5.18)
and the wave equation

PN — ALY = —5585 + 656107 ®, (5.19)
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with initial conditions

W],y = 010757 — 287 0531 6067 + oo (8] _,+ 2710750 ) |
(5.20)

o 1/ ;L — s
0| g = — (310531 — 201570167 + 61610707 317 ) + 10300 .
(5.21)
5.3 The combined system
Collecting the fluid and gravitation limit variables into a single vector
Y. = (X, a, 00, a4) " (5.22)

we can write the combined gravitational-fluid limit equations in the follow-
ing form:

1 - -
WY, = —clorY + blorYe + Fo + clogw (5.23)
€
where
- (00 —ao' 5]
bl = - ol = - 2n"Jj 5.24
’ (0 aI) e <—2’Z5¢I —5@"“3[) ’ 24

.. .. T .. PO .. ..
o= (H.,00,00) ol =055, W) —oa7 (2007505
(5.25)

and

Fo= (_ZP@J5y5i),—(918,5‘1)5}15;~1,Xf,0, —X4Rafq>,o) : (5.26)

6 The fast Newtonian limit

We begin by defining the error Z, between the limit Y. and the full solution
We by

We =Y.+ e(we + Z¢). (6.1)
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Next, we let

F = Fo(Y.,0,0,0), and b =bl(Y,,0,0,0),
and observe that

F=7Fy+eF, and 51:564—65{,

where
L XM 4x17 0
i 1 0 Al _ 1J
bl_e<0 0)’ S e
0 0 0
and
= 1 g2 & _ 50 xid) §i50 £
Fi=- (4 (X6 07,® — Pm‘le”) 5251,0,0,0,ﬂ)
with
= —xan [67 (X3 + den X[P) + 4x]1),
and

]‘1{1 = —X4R (Xflli + (5KLXfEL) .

387

(6.4)

Now, let T, = min{7y, T} where T" and T are as defined in Proposi-
tions 4.3 and Remark 5.2, respectively. Then by Propositions 4.3, 5.1, and
5.2, for any € € (0, ¢o], the error Z.(t) (see (4.36), (5.23), and (6.1)—(6.3))

satisfies the initial value problem

1
W20, 7. = Zcfalze + 01017 + R,

Z(0) =~ (W.(0) - Y.(0)) - w(0),

€

on the interval 0 <t < T,, where

) =0 (eW,, 2U.), bl = bl (W, eU., eW,, U,),

Fe = Fo(We, €U, eW,, €U, + eFL(We, eUe, eW,, €2U,),

(6.6)

(6.7)
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and

bl —b! Fo—F -1 " .
Rfﬂmw—g@w+ee oY + ———+ = €dY +blory + Fi.

(6.10)

Proposition 6.1. Let 0, k, s > 2, T, and W(t) be as in Proposition 4.3,
Ty as in Remark 5.2, Yc(t) as defined by (5.22), and T, = min{Ty,T}. Then
for eg > 0 small enough

IWe(®) = Ye(O)ll gr-2 Se
for all (t,e) € [0,T%) x (0, €o].

Proof. By Propositions 4.1, 4.3, and 5.1, there exists a positive constant Cy
such that

HZe(O)HH(;;_1 < Cp for all € € (0, €. (6.11)

Next, choosing ¢p small enough, it follows directly from Propositions 3.5 and
3.6 of [11] and Propositions 5.1 and 5.3 of the previous section that

~

- . — F
b o — o + =gy, 4 e 1o
€

S1+ ||Ze||H§:12€ (6'12)

k—2
H671,5

for all (¢,¢) € [0,T) x (0, €] provided ||Ze(t)||H§72 < 2Cy/e. Also, from
—1,e
Lemmas A.1 and A.4 of [10], and Proposition 5.1 and 5.3, we see that

‘ Ve

(€ +1)3/2
for all (¢,€) € [0,T%) x (0, €].

W1

€2

<1+ (6.13)

@n+%@n+ﬁ‘

k-2
5—1,€

Defining the energy norm

I le-2se =Y (DEOIBIDE()),

|| <k—2
we see via Proposition 4.3 that
I Wz S0 Demgmre S - llgp2

uniformly for (¢,¢€) € [0,T%) x (0,€p]. Setting Z. = eZ, the evolution (6.6)
and the weighted energy estimates (see the proof of Theorem B.1 in [11]) in
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conjunction with Proposition 4.3 and the estimates (6.12)—(6.13) show that
there exists a fixed constant Cy > 0 such that

d ¢ \3/2
TN Ze@llr—26-1.6 <Cr [ 1Ze(®)lh-25-1, + €+ ,
dt

e+t

for all ¢ such that ||Zc(t)||x—25-1, < 2Co. Gronwall’s inequality and (6.11)
then show that

O (t—s)

t t
Cit Ci(t—s) 3/2 -
IZe()lk-25-1,c < € Ce + € /0 €7 ds + € /0 o

Clt<00+1+f/ 6—|—83/2 >
< eeclt(C’o +3),

again for all t such that || Z(t)|x—2,5-1, < 2Cy. Therefore choosing €y > 0
small enough we obtain

”Ze(t)HHg_—iE S 1
for all (¢,¢€) € [0,T%) x (0, €o], and the proof is complete. O
We are now ready to prove the main theorem.

Proof of Theorem 1.1.

(i): Since the ADM mass is conserved, statement (i) follows directly from
Corollary 4.2 and Proposition 4.3.

(ii)—(iv): From the definition of W, and Y;, we have

lae() = a0 gz + ek (6) = @7 (1) o-a+ [ (0)]yes
< IW(t) = Vel -

and hence, by Proposition 6.1,
lae(t) = &)z + 0l (6) = &' @)l oz + Nl (Ol gez e (6.14)

for all (t,€) € [0,T%) x (0,€]. Also by the weighted multiplication Lemma
(see Lemma A.8 in [10]) and Propositions 4.3 and 5.1, we have

15(t) = 7Ol -2 S llaelt) = G(0) a2 (6.15)
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for all t € [0,T%) x (0, o], while

I9e(t) = A gz + 0! (2) = @7 (1) a2 + [ (8) a2
S lpe®) = 5Ol s+ el (1
0 (0) s+ Ol pes. (6.16)

is a consequence of Lemma A.11 and (A.24) of [10]. Combining the inequal-
ities (6.14)—(6.16), we arrive at

lpe() = )l n— + llwl (t) = @ ()| gr2 + [lwe (@)l gn—2 S e (6.17)
for all t € [0,T%) x (0, €]
Next, we observe that
[0r®e(t) — 31@(75)”1{;_712’6 +lle®e(t)l|gr2 S

for all (t,¢) € [0,T%) x (0, €] by Propositions 4.3 and 6.1, and Lemmas 3.2
and 3.3 of [11]. From the above estimate, the identities W}’ = drud +

52618#1% and uZE — ¢0,ii¥ (see Proposition 4.3), and the relations (5.17) to
(5.18), we get

190 (t) = Ot (1)l =2+ leOnted (8) — €O (8)| i
SIWE) = XPeOl oz + [WEe(t) = XE (0| o2+
S IWelt) ~ Yelt) s +e
and hence, by Proposition 6.1 and Lemma A.7 of [10],
I (8) = 62 (D), + 1975 () = O (D) =2

+ [l (t) — e () 2 < e

for all (¢,€) € [0,T%) x (0,¢]. Finally, it follows from Lemma A.11 and
(A.24) of [10], and the above estimate that

157 (£) — u (t)| s + 1071 (2) — O (1) o2
+ [|ednil (t) — €Ot (1) w2 < €

for all (¢,¢) € [0,T%) x (0, €p]. This completes the proof. O
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