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Abstract

In this paper we discuss quantization of the Fayet–Iliopoulos parame-
ter in supergravity theories with altered nonperturbative sectors, which
were recently used to argue a fractional quantization condition. Nonlin-
ear sigma models with altered nonperturbative sectors are the same as
nonlinear sigma models on special stacks known as gerbes. After review-
ing the existing results on such theories in two dimensions, we discuss
examples of gerby moduli “spaces” appearing in four-dimensional field
theory and string compactifications, and the effect of various dualities.
We discuss global topological defects arising when a field or string theory
moduli space has a gerbe structure. We also outline how to generalize the
results of Bagger–Witten and more recent authors on quantization issues
in supergravities from smooth moduli spaces to smooth moduli stacks,
focusing particular attention on stacks that have gerbe structures.
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1 Introduction

Recently, there has been much progress in understanding Fayet–Iliopoulos
parameters in supergravity, generalizing work of, e.g., Bagger–Witten [1],
see for example [2–9]. In particular, the recent paper [7] argued that in the
special case of linearly realized group actions, Fayet–Iliopoulos parameters
could be interpreted as charges for a U(1) gauge symmetry, and so are
quantized. This result was generalized in [8] to the more nearly generic
case of nonlinearly realized group actions, by demonstrating that the Fayet–
Iliopoulos parameters determine the lift of the group action to the Bagger–
Witten [1] line bundle. As such lifts of group actions are quantized, the
Fayet–Iliopoulos parameters are therefore also quantized.

This paper will focus on another aspect of [7], specifically a proposal
for Fayet–Iliopoulos quantization when the moduli space is defined by two-
dimensional sigma models with a restriction on allowed instantons. Such
two-dimensional theories have been discussed previously in, e.g., [10–16],
and are the same as sigma models on gerbes, special kinds of stacks.

Schematically, smooth stacks are “manifolds paired with automorphisms.”
Stacks admit metrics, spinors, and all the other structures appearing in
classical field theories. The original interest in stacks in the physics com-
munity revolved around using them to form new string compactifications,
new conformal field theories, and applying them to give a more fundamental
understanding of certain existing compactifications.

Previous work on consistency conditions in supergravity theories has
assumed that the moduli space is a smooth manifold. However, in mathe-
matics, moduli “spaces” are usually stacks, and not manifolds, so to have
a broad understanding of classical consistency conditions on supergravity
theories, one must understand cases in which the moduli “space” of the
supergravity is a stack. This paper is a step in a program of understanding
consistency conditions for such more general cases.
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To be more specific, in this paper we will discuss generalizations of
consistency conditions on supergravities from moduli spaces that are mani-
folds to moduli “spaces” that are smooth Deligne–Mumford stacks, focusing
particular attention on stacks that are gerbes over manifolds. That said, in
typical examples arising in string compactifications, the moduli stack has
singularities, so our generalization to stacks will still not describe all cases
pertinent to string compactifications, but is a step towards a directly perti-
nent treatment.

We begin in Section 2 by reviewing two-dimensional sigma models on
stacks, focusing in particular on gerbes over manifolds. Two-dimensional
sigma models on gerbes over manifolds look like sigma models on the under-
lying manifolds but with a restriction on topological sectors. These have
been discussed in considerable detail in both the mathematics and physics
literature, as we review.

In Section 3 we discuss analogous four-dimensional theories. There are
some significant differences between two-dimensional and four-dimensional
cases, including issues around presentation dependence, and (on R4) a lack
of nonperturbative sectors in gerbe theories.

In Section 4 we discuss particular examples of both field and string theo-
ries whose moduli “spaces” are gerbes over manifolds. In particular, previous
work on gerbe structures in supergravity moduli spaces [7] did not give any
examples of string compactifications in which such structures would arise,
which we remedy here. We discuss the physical impact of such gerbe struc-
tures, and also discuss the action of duality groups.

In Section 5 we discuss global topological defects in theories with gerby
moduli spaces. Topological defects are classified by homotopy of the moduli
space, and gerbe structures contribute nontrivially to the homotopy. We
discuss whether the contributions to homotopy from gerbe structures have
physical meaning.

In Section 6 we outline how to generalize consistency conditions on clas-
sical supergravities in [1, 8] to moduli “spaces” that are smooth Deligne–
Mumford stacks, focusing in particular on the case of stacks that are gerbes.
In particular, we discuss the case of Bagger–Witten [1] line bundles that are
“fractional” over the gerby moduli space.

In Appendix A we discuss a four-dimensional analogue of the “decomposi-
tion conjecture” [14] that plays a vital role in understanding two-dimensional
sigma models on gerbes. In this four-dimensional analogue, we restrict sums
over four-dimensional instantons—as a result, the four-dimensional version
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is not directly relevant to four-dimensional sigma models on gerbes, but
nevertheless we thought it appropriate to discuss here.

Finally, in Appendix B we discuss two-dimensional BF theory and
analogues of gerbe structures and decomposition statements there. This
gives us an opportunity to discuss the relationship between locality and
cluster decomposition in an explicit example.

While this work was being completed, the paper [9] appeared, which has
nontrivial overlap.

2 Review of two-dimensional theories with altered
topological sectors

The recent paper [7] discussed theories defined by restricting sums over
instantons to a subset of all instantons. In this section we briefly review
some of the previous work done on such theories.

In the case of two-dimensional nonlinear sigma models, a nonlinear sigma
model in which the sum over worldsheet instantons is restricted to a subset
of all instantons is the same as a string on a gerbe, a special kind of stack,
as is discussed in the physics literature in for example [10–18] and reviewed
in conference proceedings including [19–21]. (There is also a significant
mathematics literature on Gromov–Witten invariants of stacks and gerbes;
see for example [22–25] for a few representative examples.)

Briefly, a stack is a manifold “paired with automorphisms.” (See, e.g.,
[26–28] for a more technical definition.) At the same level of brevity, a
gerbe is a stack in which one has the same automorphisms everywhere.
Mathematically, a gerbe can be thought of locally as covered by patches of
the form [U/G] where U is an open set and G acts trivially on U . Stacks
keep track of even trivial group actions, and so [U/G] is distinguished (as a
stack) from just U .

One of their properties that plays a role in this paper is that if G is a
gerbe over a manifold M , then maps into G are equivalent to maps into M
with a restriction on their degree, as discussed in for example [13]. Briefly,
a map from any space X into a gerbe G over M is equivalent1 to a map

1There is a closely related statement for bundles. Given a map g : X → E for some
bundle π : E → M , we can compose with π to produce a map f : X → M . Furthermore,
we can define a trivialization of f∗E canonically: recall

f∗E ≡ {(x, e) ∈ X × E | f(x) = π(e)}
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f : X →M into the underlying space, together with a trivialization of f∗G.
For a Zk gerbe, say, f induces a map

f∗ : H2 (M,Zk) −→ H2 (X,Zk)

which maps the characteristic class of the gerbe G (an element2 in H2(M,
Zk)) to the characteristic class of f∗G, which should vanish (otherwise f∗G
would not admit a trivialization). For example, if X = P1 and M = PN−1,
then f is characterized by an integer, its degree. In this case, f∗ acts by
multiplication by the degree of f , so if we let n denote the characteristic class
of the gerbe (mod k), and d the degree of f , then we have the constraint

d (n mod k) = 0 mod k.

In other words, dn must be a multiple of k, a constraint on the allowed
degrees of maps f . (Note the constraint depends upon the characteristic
class of the gerbe—for example, for a trivial gerbe, n ≡ 0 mod k, and so
there is no constraint.)

In mathematics, moduli “spaces” are usually stacks, hence one should not
be surprised to find stack structures arising in moduli spaces of
interest to physicists. Indeed, in this paper we shall discuss examples of
moduli “spaces” with nontrivial stack structures arising in physics, and their
analysis.

In previous work, e.g., [11–13], two-dimensional sigma models on smooth
Deligne–Mumford stacks were defined physically by using the fact that essen-
tially3 all such stacks can be described as quotients [X/G] for X some space
and G some group acting on X. The special case of a gerbe corresponds
to a subgroup of G acting trivially on X. (We shall review how physics
keeps track of even trivial group actions.) To such a quotient we associate a

so we can define a trivialization X → f∗E by x �→ (x, g(x)) for x ∈ X. Conversely, if E
is a bundle over a space M , and we are given a map f : X → M and a trivialization of
f∗E, then since there is a canonical map f∗E → E, the trivialization X → f∗E can be
composed with that canonical map to form a map g : X → E, whose composition with
the projection is f again.

2In general, the characteristic class of a G-gerbe on a manifold X is an element of
H2(X, C∞(G)). Here, since G is assumed finite, C∞(G) = G. For U(1) gerbes,

H2(X, C∞(U(1))) = H3(X,Z)

and in this fashion one recovers the usual physics description in terms of the curvature H
of the B field.

3See [12] for a discussion of rare counterexamples, and their apparent lack of physical
relevance.
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G-gauged sigma model on X. A given stack can admit multiple presenta-
tions of this form; we associate universality classes of renormalization group
flow to particular stacks. Much effort was expended in previous work to
check presentation-independence of universality classes.

A standard example4 of a gerbe is a Zk gerbe on a projective space,
defined by a supersymmetric Pn−1 model, a linear gauge theory, with n
chiral superfields Φi each of charge k instead of charge 1. As discussed
in [11], in two dimensions such theories are nonperturbatively distinct from
the ordinary Pn−1 model. On a noncompact worldsheet, this can be seen by
thinking about periodicity of the two-dimensional theta angle—such theories
can be distinguished by the existence of massive minimally charged objects,
which alter the periodicity.

Let us work through this argument in more detail. As described in [11,
Section 3], since in two dimensions the θ angle couples to TrF , we can
determine the instanton numbers through the periodicity of θ. Suppose
we have the physical theory described above, namely a GLSM with Higgs
fields of charge k, plus two more massive fields, of charges +1 and −1. In
a two-dimensional theory, the θ angle acts as an electric field, which can be
screened by pair production, and that screening determines the periodicity
of θ. If the only objects we could pair produce were the Higgs fields of charge
k, then the theta angle would have periodicity 2πk, and so the instanton
numbers would be multiples of 1/k. However, since the space is noncompact,
and the electric field fills the entire space, we can also pair produce arbitrary
numbers of the massive fields, which have charges ±1, and so the θ angle has
periodicity 2π, so the instantons have integral charges. In particular, even if
the masses of the massive fields are beyond the cutoff scale, the theta angle
periodicity can still know about them, and so they can still help determine
the low-energy effective field theory.

We can phrase this more simply as follows. In a theory with only Higgs
fields of charge k, the instanton numbers are multiples of 1/k, and so the
resulting physics is equivalent to that of a GLSM with minimal charges.
However, if we add other fields of charge ±1, then the instanton numbers
are integral, and if those fields become massive, and we work at an energy
scale below that of the masses of the fields, then we have a theory with Higgs
fields of charge k, and integral instanton numbers, giving us the physics that
corresponds to a gerbe target. (This argument was, to our knowledge, first

4This Zk gerbe has characteristic class −1 mod k, so from the previous analysis, maps
into the gerbe are maps into the underlying projective space of degree divisible by k, as
should also be clear from the description of the gauge theory.
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developed by J. Distler and R. Plesser at an Aspen summer meeting in 2004,
used with their permission in [11, Section 3] and then also described much
more recently in [7].)

On a compact worldsheet, this distinction between minimal and nonmin-
imal charges is a consequence of how matter couplings are defined globally
(i.e., as sections of bundles). In detail, to uniquely define the theory nonper-
turatively on a compact space, we must specify, by hand, the bundles that
the Higgs fields couple to. If the gauge field is described by a line bundle L,
then coupling all of the Higgs fields to L⊗k is a different prescription from
coupling all of the Higgs fields to L. As a result, the spectrum of zero modes
differs between the two theories, hence correlation functions and anomalies
differ between the two theories.

Some of the structure above—such as the theta angle argument—is spe-
cific to two dimensions, but some will generalize. Later, we will argue
that gerbes are relevant to four-dimensional physics when either the four-
dimensional spacetime is topologically nontrivial, or there are massive states
which are not invariant, mirroring aspects of the two-dimensional story
above.

In any event, here are a few physical consequences of this distinction
between minimally and nonminimally charged theories in this two-dimens-
ional example [13]:

• The axial U(1)A of the supersymmetric Pn−1 model is broken to Z2kn

by instantons instead of Z2n, when the chiral superfields have charge
k.

• The quantum cohomology ring is C[x]/(xkn − q) instead of C[x]/(xn −
q), reflecting the fact that A model correlation functions differ. (The
paper [13] provided GLSM-based physical computations of these quan-
tities, as well as a mirror symmetry computation verification, and in
addition there are also mathematical definitions and matching results;
see for some representative examples [22–25].)

• The (Toda) Landau–Ginzburg mirror can be described by a superpo-
tential with a field Υ valued in kth roots of unity,

W = eY1 + eYn−1 + Υe−Y1−···−Yn−1 ,

reflecting both the fact that the theory on a gerbe is equivalent to a
theory on a disjoint union of spaces, and the fact that mirror symmetry
dualizes nonperturbative effects into perturbative ones. (This result
was physically derived in [13] from duality for GLSM’s ala [29,30], and
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also independently derived in, e.g., [25] from mathematical considera-
tions.)

So far we have outlined how noneffective continuous group actions can
lead to new physics; the same is true of finite group actions. For exam-
ple, consider the orbifold [T 6/D4] where D4 is an eight-element group that
projects onto Z2 × Z2:

1 −→ Z2 −→ D4 −→ Z2 × Z2 −→ 1.

To specify the orbifold, we must specify the action of D4 on T 6. Let us
take the Z2 center to act trivially, so that the D4 acts by first projecting
to Z2 × Z2, and then act with a standard Calabi–Yau action of Z2 × Z2 on
T 6, as described in, e.g., [31]. Since the Z2 center acts trivially, one might
naively assume that the [T 6/D4] orbifold would be physically equivalent
to a [T 6/Z2 × Z2] orbifold. Instead, one computes that at one-loop, for
example, [14, Section 5.2]

Z
(
[T 6/D4]

)
= Z

(
[T 6/Z2 × Z2]

∐
[T 6/Z2 × Z2]d.t.

)
,

where the subscript indicates the presence of discrete torsion in one of the
two factors. We therefore see explicitly that, in this example, the string orb-
ifold knows about the trivially acting Z2 subgroups. Many additional exam-
ples have been described in detail in the references. Thus, string orbifolds
know about trivially acting subgroups, just as we saw in two-dimensional
gauge theories.

Technically, in (2,2) supersymmetric cases, these two-dimensional theo-
ries (in which a trivially acting group have been gauged) do not obey cluster
decomposition. (This is an immediate consequence of Weinberg’s ancient
argument for theories with any restriction on instanton degrees, and can
also be seen for CFT cases by, for example, computing massless spectra
and observing multiple dimension zero operators.) This would be a problem
were it not for the fact that they are equivalent to nonlinear sigma models
on disjoint unions of ordinary spaces [14], a result described there as the
“decomposition conjecture.” The latter also do not obey cluster decomposi-
tion, but are obviously nevertheless under good control, in the sense that we
can renormalize by local counterterms, and so forth. Thus, they are sums
of theories which obey cluster decomposition, and so at least morally are
“local” theories.

One of the original reasons for interest in these gerbe theories was the idea
that they might define new SCFTs, new string compactifications. Because
of the decomposition conjecture, that is not really the case in (2,2) theories,
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as one gets sums of existing theories. In (0,2) theories, on the other hand,
the story seems to be somewhat more complex; an example is outlined in [32,
Section 3.2], and a more complete description will appear in [16].

We can understand the decomposition conjecture schematically as fol-
lows. Consider a nonlinear sigma model on a space X, for simplicity with
H2(X,Z) = Z, with a restriction on worldsheet instantons to degrees divis-
ible by k. We can realize that restriction in the path integral by inserting a
projection operator

1
k

k−1∑

n=0

exp
(

i
∫
φ∗

(
2πn
k
ω

))
,

where ω is the de Rham image of a generator of H2(X,Z). Inserting this
operator into a partition function is equivalent to working with a sum of
partition functions with rotating B fields, and this is the essence of the
decomposition conjecture.

One of the applications of the result above is to Gromov–Witten theory,
where it has been checked and applied to simplify computations of Gromov–
Witten invariants of gerbes, see [33–38]. Another application is to gauged
linear sigma models [15], where it answers old questions about the meaning
of the Landau–Ginzburg point in a GLSM for a complete intersection of
quadrics, as well as corrects old lore on GLSMs.

3 Four-dimensional physics

Now, let us turn to four-dimensional theories, and discuss how the physics
differs from two-dimensional cases.

To sharply compare with the two-dimensional cases outlined in the pre-
vious section, let us work through a toy example. Consider a U(1) gauge
theory in supergravity,5 defined over spacetime R4, with supergravity mod-
uli space C2n+2, describing 2n+ 2 complex scalars, on which the U(1) acts
as follows: n fields of charge k, n fields of charge −k, one field χ of charge
+1, one field χ̃ of charge −1. Let us furthermore assume that there is a
superpotential6 W = mχχ̃, giving a mass m to the two fields of charge ±1.

5The analysis presented here is due to J. Distler, and we thank him for allowing us to
present it here.

6Since we are working in supergravity, the superpotential is a section of the Bagger–
Witten [1] line bundle, but since the supergravity moduli space is C2n+2, the Bagger–
Witten line bundle is necessarily the trivial line bundle O.
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The upshot of this construction is that at low energies, one has a U(1) gauge
theory with nonminimal charges, closely analogous to those discussed in the
last section realizing sigma models on gerbes.

Now, one might worry that at at low energies, below the cutoff scale,
perhaps all the states of the theory have charges that are a multiple of k. In
such a case, the fact that the electron charges above are nonminimal would
be physically irrelevant; at low energies, the theory would be physically
equivalent to a theory in which all fields had charge 1, not k. To settle this
issue, we need to understand the correct electric charge quantization in this
theory. In two dimensions, we could distinguish a theory with nonminimal
charges from a theory with minimal charges via nonperturbative effects,
invoking the theta angle periodicity to “see” states with masses beyond
the cutoff. Here, by contrast, note that since we are describing a U(1)
gauge theory on R4, there are no U(1) instantons. However, because this
theory is coupled to gravity, we can appeal to the existence of Reissner–
Nordström black holes. We can use them to determine the correct electric
charge quantization in the theory at places in its moduli space where the
U(1) is unbroken, and then appeal to continuity to understand the rest.

First, suppose that the mass m < MPl. When the U(1) is unbroken,
there are electrically charged Reissner–Nordström black holes. Since m <
MPl, microscopic black holes can Hawking radiate χ, χ̃, and so even if one
started with a black hole of charge a multiple of k, it could Hawking radiate
down to charge 1. Thus, at least at points where the U(1) is unbroken,
the nonminimal charges of the Higgs fields are physically relevant. At more
generic points on the moduli space, where the U(1) is Higgsed to Zk, we
need there to be excitations on which the Zk acts nontrivially, and at least
for small Higgs vev, the Reissner–Nordström black holes should7 become
such excitations.

If m > MPl, then the Hawking radiation process above cannot happen,
but demanding that physics be continuous in m leads us to believe that the
electric charges of black holes are still multiples of 1 rather than k. Thus,
again, the fact that the massless fields in the gauge theory have nonminimal
charges, is physically relevant.

So far we have discussed a four-dimensional analogue of the two-dimens-
ional theta-angle-periodicity argument for the relevance of nonminimal char-
ges, using black holes rather than theta angles. In the rest of this section we

7In effect, we are appealing to a continuity argument. As a potential loophole, we
should mention that it is known from work on wall-crossing that the spectrum of BPS
states in a supersymmetric theory does not always behave so simply. We do not need to
assume the states here are BPS, but it is possible that analogous processes may apply.



1152 SIMEON HELLERMAN AND ERIC SHARPE

shall discuss some subtleties specific to four-dimensional theories, and their
relevance to four-dimensional sigma models on stacks.

First, let us examine more closely the (lack of) nonperturbative sectors in
field theories on R4 not coupled to gravity. One of the significant properties
of two-dimensional sigma models on gerbes was that the nonperturbative
sector is altered: one sums over only some instantons, not all of them. How-
ever, in four dimensions, on R4, there is no constraint on nonperturbative
sectors:

• We have already seen the example of a U(1) gauge theory with nonmin-
imal charges on R4. Instantons in such a theory would be described by
principal U(1) bundles on S4 (the one-point compactification of R4,
taken to encode compact-support issues), and there are no nontrivial
principal U(1) bundles on S4, because H2(S4,Z) vanishes. (More-
over, on R4 or S4, for a U(1) gauge theory the quantity

∫
TrF ∧ F

vanishes identically for all gauge field configurations appearing in the
path integral (i.e., compactly supported ones), not just saddle points.)

• Next, formally consider a nonlinear sigma model summing over maps
R4 → G for G some G-gerbe (for finite G) over a smooth manifold
M . Again for compact-support reasons we can replace R4 by S4 for
the purposes of mathematical computations. As discussed in the last
section, a map X → G for any space X is the same as a map f : X →
M together with a trivialization of f∗G, and demanding that f∗G be
trivializable restricts possible maps f . In the present case, however,
since H2(S4,Z) vanishes, the pullback f∗G is always trivializable for
any G, and so demanding that f∗G be trivial is no longer a constraint
on possible maps.

In particular, unlike two dimensions, on R4 there is no reason to believe that
cluster decomposition will necessarily be violated, and there is no analogue
of the decomposition conjecture [14] for gerbe theories.

Next, let us consider a technical point in the renormalization-group flow of
the low-energy effective gauged sigma models arising in this and analogous
examples. (We would like to thank J. Distler for patient explanations of
this point.) Schematically, if v is the scale of the Higgs vev, and g the
coupling, then the low-energy effective action is an expansion in powers of
E/v. However, Higgsed gauge fields have masses which scale as gv, and so
for weak coupling g, generate E/(gv) effects which can be stronger than low-
order effective action terms. Put another way, W bosons are light relative
to the natural mass scale defining the metric. As a result, the effective field
theory arising in the infrared from a gauged sigma model often cannot be
the same as a nonlinear sigma model. There can still be a moduli space,
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a metric on the moduli space, and many other features consistent with
nonlinear sigma models (as happens with, e.g., Narain moduli spaces in
toroidally compactified heterotic strings), but strictly speaking, the infrared
limit of a low-energy effective gauged sigma model in four dimensions need
not be physically equivalent to a nonlinear sigma model.

This result implies an issue of presentation-dependence in four-dimens-
ional theories, that does not exist in two dimensions. In two dimensions,
we identify universality classes of renormalization group flow with stacks:
a given stack can have multiple presentations with different UV physical
descriptions (a nonlinear sigma model, a gauged sigma model, an orbifold)
which mathematically correspond to the same stack. Physically, it is con-
jectured that those different presentations lie in the same universality class,
that the renormalization group “washes out” all details of the presentation,
leaving physics that only depends upon the stack and not how it is described
or presented. In particular, typically we are only interested in conformal field
theories arising at endpoints of renormalization group flow, so the details of
a physical presentation of a massive UV theory are irrelevant.

Part of the point of the observation on four-dimensional low-energy effec-
tive field theories is that the presentation-independence we enjoyed in two
dimensions no longer applies in four dimensions. We can also see this from
another perspective, involving the gauge kinetic terms. A sum over maps
from a space into a stack presented as [X/G] involves a sum over G bun-
dles with connection—a sum over G-gauge fields. In two dimensions, gauge
kinetic terms are generated dynamically, so we could effectively ignore them
and identify a nonlinear sigma model on [X/G] with aG-gauged sigma model
on X—the sum over maps includes the sum over gauge fields, and the gauge
kinetic term comes for free. By contrast, in four dimensions, gauge kinetic
terms are not generated dynamically. We can describe some aspects of a
G-gauged sigma model on X with the stack [X/G], but we do not get a
gauge kinetic term automatically, the stack does not even determine a classi-
cal value of the gauge coupling. Hence, in four dimensions, merely specifying
a stack does not uniquely determine the physics.

In two-dimensional cases, we associated stacks with universality classes of
renormalization group flow. Instead, in four dimensions we will use stacks
as “universal” objects from which various different physical presentations
can be associated. The details of those presentations, the presentation-
dependence, will no longer be physically irrelevant, unlike two dimensions;
nevertheless, some (not all) of the physics will be determined by the stack.
It is in this sense that we will associate stacks with low-energy effective
four-dimensional (gauged) sigma models and related theories.
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Before going on, let us summarize the circumstances under which gerbes
will be physically meaningful in a four-dimensional theory. One way for
gerbes to be physically meaningful in a four-dimensional theory is if the four-
dimensional spacetime is topologically nontrivial, with nonzero H2(Z). In
this case, one would have nontrivial nonperturbative sectors in the
examples above. Just as in two dimensions, to uniquely define Higgs fields
one would need to specify the precise bundle the field couples to, and that
choice would be reflected in zero mode spectra, hence in anomalies and so
forth. A second way gerbes can be physically meaningful is if there are
massive non-invariant states. We have only argued this above in theories
coupled to gravity; however, we shall also see examples later where some
aspects of gerbes manifest even in four-dimensional theories on R4 not cou-
pled to gravity. Both of these cases had analogues in two dimensions—for
example, the theta-angle-periodicity argument in two dimensions relied on
the existence of massive minimally charged states. We shall see examples of
both cases in the next section.

Partly with an eye towards nonabelian applications we shall discuss later
in this paper, let us summarize the conclusions of this and the previous
section in the following slogan:

Perturbative physics is determined by the Lie algebra of the gauge
group, but nonperturbative physics is determined by the Lie
group, not just the algebra.

Just as an asymptotic series expansion does not uniquely determine the
function it is expanding, so too does the perturbative physics not uniquely
determine the nonperturbative physics.

In the rest of this paper, we will outline gerbes in four-dimensional field
theories and string compactifications.

4 Examples, duality in gerby moduli “spaces”

Gerby moduli “spaces”8 seem to appear in both four-dimensional field
theory and in string compactifications, as we shall outline in this section.
Briefly, a gerbe looks locally like a quotient by a trivially acting group—
although the group acts trivially, both mathematics and, at least sometimes,
physics nevertheless knows about the group action. As sigma models on

8Strictly speaking, if there is a gerbe structure, then the moduli “space” is actually
a stack, not a space, but because the language of stacks is as yet unfamiliar to many
physicists, we will call them “gerby spaces” in much of this paper.
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gerbes can be viewed as sigma models on spaces or effective quotients with
a restriction on nonperturbative sectors, these are precisely the examples
discussed recently in [7].

In this section we shall discuss examples of gerby moduli spaces appearing
in both field and string theories, and also discuss how the gerbiness behaves
under field and string theoretic dualities.

4.1 Field theory

At a purely mathematical level, it is easy to generate examples of four-
dimensional field theories with gerbe structures over their moduli spaces.
As the moduli space of a field theory is typically of the form [V/G], where
V is a vector space spanned by matter vevs and G is the gauge group,
whenever any subgroup of G acts trivially on all of the massless matter,
mathematically one could associate a gerbe structure to that moduli space.
For example, in Yang–Mills theory with adjoint matter, the maximal torus
of the gauge group acts trivially on matter vevs. Thus, if r is the rank of the
gauge group, then in such theories there is formally a U(1)r gerbe structure
generically.9 The physical content of that gerbe structure is another matter.
Morally, if not literally,10 a sigma model on U(1)r gerbe ought to be a U(1)r

gauge theory, which certainly arise in Yang–Mills theories with only adjoint
matter.

However, we need a bit more structure (such as massive noninvariant mat-
ter, or a topologically nontrivial spacetime four-manifold) before we believe
such gerbe structures are physically meaningful. In addition, in this paper
we will focus on finite gerbe structures (corresponding to Deligne–Mumford
stacks, rather than Artin stacks). In the examples we shall discuss in this
section, the gerbe structure will arise by focusing on the center of the gauge
group. If we return again to Yang–Mills theories with adjoint matter, this
means we consider the gerbe structure on the moduli space arising from the
fact that the center acts trivially on the matter.

9This stabilizer changes over the moduli space; for example, at the origin where all
vevs vanish, the stabilizer is all of G. Since the stabilizer changes, this is not, strictly
speaking, a gerbe, but rather is a more general stack, that only looks like various gerbes
on specific strata.

10A stack with non-finite stabilizers is known as an Artin stack. The geometric inter-
pretation of Artin stacks is somewhat more complicated than that of Deligne–Mumford
stacks, which the analysis of [10–16, 19–21] focused on. In this paper we also almost
exclusively focus on Deligne–Mumford stacks.
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Our first physical example will involve a topologically nontrivial space-
time four-manifold. Consider N = 4 supersymmetric theories arising in
recent work on the geometric Langlands program [39]. There, one com-
pactifies a four-dimensional N = 4 theory along a Riemann surface to get a
two-dimensional theory, a nonlinear sigma model whose target space is the
Hitchin moduli space on the compactification curve. The authors of [39]
observed that said moduli space has a number of components. An alter-
native way of understanding that fact is to utilize the finite gerbe story
outlined above. If we start with a G gauge theory in four dimensions, then
following the ansatz above, the moduli space of the four-dimensional theory
(and hence the target of the compactified two-dimensional sigma model) has
a Z(G) gerbe structure, where Z(G) denotes the center of G. Application of
the decomposition conjecture of [14] to the two-dimensional sigma model on
the gerbe then quickly reproduces the multiple component structure worked
out more painfully by [39], as discussed in [14,40].

One lesson of the example from geometric Langlands above is that these
formal gerbe structures on moduli spaces do have physical content—the
disconnectedness of the target of the two-dimensional sigma model is a con-
sequence of a gerbe structure on the moduli space. That said, duality often
does not preserve centers of gauge groups: for example, S-duality in N = 4
maps SU(n) gauge theories to SU(n)/Zn gauge theories. In effect, the cen-
ter of the gauge group is being exchanged for extra characteristic classes,
disconnectedness in the two-dimensional target moduli space. Hence, gerbe
structures are not duality-invariant.

We are often used to moduli spaces being invariant under duality operat-
ions—this is, after all, one of the standard checks of a duality. What is going
on here is that the underlying space is unchanged, only the automorphisms
that are paired with the space are changing. Therefore, the number of
flat directions, the geometry of the flat directions is unchanged, only the
automorphisms differ. Since it is only the number and geometry of the flat
directions that must necessarily be preserved by duality, the fact that gerbe
structures change does not contradict duality.

Let us examine this N = 4 duality in greater generality. Geometric Lang-
lands exchanges the center Z(G) with the dual of π1(LG), where LG denotes
the Langlands dual to G. The center Z(G) encodes a gerbe structure, and
π1(LG) describes how the moduli space breaks into components (indexed by
a characteristic class in H2(X,π1(LG))). We can see how Z(G) and π1(LG)∗
are exchanged as follows. Let M denote the weight lattice of the Lie group
G. It is a sublattice of the weight lattice of the corresponding Lie algebra,
which we shall denote Λ. (M is determined by the representations of the
Lie group, instead of the Lie algebra.) If we let R denote the root lattice,
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then in general
R ⊆M ⊆ Λ. (4.1)

The action of Langlands duality is to dualize each of these three lattices:

R �→ LR ≡ Hom(Λ,Z),

M �→ LM ≡ Hom(M,Z),

Λ �→ LΛ ≡ Hom(R,Z),

and it is straightforward to see from (4.1) that

LR ⊆ LM ⊆ LΛ.

In this language, the center and π1 of G are determined by the lattices above,
as follows:

Z(G) = (M/R)∗ = Hom (M/R,Z) ,

π1(G) = (Λ/M)∗ = Hom (Λ/M,Z)

(the first equality comes from the fact that Z(G) is the kernel of the adjoint
action, whose weights generate the root lattice), which should make it clear
that

Z(G) = π1(LG)∗, π1(G) = Z(LG)∗.

In other words, Langlands duality exchanges the center of a group G with
(the dual of) π1 of the Langlands dual group LG.

The Hitchin moduli stack, the target of the two-dimensional sigma model,
is a Z(G)-gerbe over a disconnected space with multiple components. One
has different components corresponding to the fact that there is a charac-
teristic class in H2(X,π1(G)), and the components are indexed by the value
of that characteristic class. The effect of Langlands duality is to exchange
Z(G) gerbiness with π1(LG) disconnectness (see, e.g., [41] for a more detailed
discussion). One might ask if there is an alternative description as some
Z(G) × Z(LG) gerbe over another space, giving a duality-invariant stack,
but we are told [42] such a construction does not exist.

Let us next consider some examples of gerbe structures appearing in the
field theories discussed in [43–46]. These papers discuss examples in which
an N = 1 supersymmetric gauge theory with a gerbe structure on its mod-
uli space is (Seiberg-)dual to another N = 1 supersymmetric gauge theory
which has monopoles. The massive, non-invariant matter on the gerbe side
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is dual to the monopoles. Just as in the geometric Langlands story above,
the gerbe structure is not preserved by duality.

The prototype for these examples is discussed in [44]. That paper argued
that a Spin(8) gauge theory with Nf fields in the 8V and one field in the 8S

is dual to a chiral SU(Nf − 4) theory with a symmetric tensor and Nf fields
in the antifundamental representation. When the 8S is given a mass, the
dual SU(Nf − 4) theory is Higgsed to SO(Nf − 4) with Nf vectors. More-
over, that SO(Nf − 4) theory admits a monopole, since π2(SU(Nf − 4)/
SO(Nf − 4)) = π1(SO(Nf − 4)) = Z2. The perturbatively massive spinor
in the Spin(8) theory is dual to the monopole in the SO(Nf − 4) theory.

In the original (unHiggsed) dual pair, on neither side does the moduli
space admit a gerbe structure: no part of the center of Spin(8) acts trivially
on both 8V and 8S , and the center of SU(Nf − 4) does not act trivially
on the antifundamentals. After Higgsing, a Z2 subgroup of the center of
Spin(8) acts trivially on the remaining 8V fields, hence that branch of the
moduli space (formally) admits a Z2 gerbe structure. (Its dual still does not
have a gerbe structure on its moduli space.)

The upshot is that we have two dual theories, one with a gerbe structure
on its moduli space and a massive spinor, dual to a theory without a gerbe
structure on its moduli space, but with a massive monopole instead. For
example, a Wilson loop in the spinor representation of Spin(8) is mapped
to the ’t Hooft loop in the magnetic Z2 [45].

Just as in geometric Langlands, we see that gerbe structures are not
preserved by duality. This interpretation is reiterated (albeit without
explicitly naming a gerbe structure) in [45, Section 2, 46] in terms of screen-
ing effects, and further examples of the same general form are given
in [45,46].

For completeness, note that the presence of massive nonminimally charged
matter plays an important role in this story, just as it did in two-dimensional
examples of theories with gerbe structures.

4.2 String theory

Just as in field theory, one can also (formally) associate gerbe structures to
various moduli spaces, whenever there is a subset of the low-energy gauge
group that acts trivially on massless fields (and nontrivially on at least one
massive field). In this section, we will outline examples of gerby moduli
spaces appearing in string compactifications.
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The first example is the Narain moduli space of toroidally compactified
heterotic string theories. Just as with Yang–Mills theories with adjoint
matter, there are at least two natural ways to formally add a stack structure
to such moduli spaces, both of which revolve around the fact that part of
the Narain moduli space describes flat connections on a torus. If we take
the moduli stack of flat G-connections to be

[Hom(π1, G)/G] ,

then we have a stack which along strata has variable gerbe structures along
strata (though as the stabilizer varies across strata, it is not considered
globally to be a gerbe, unless G has a nontrivial center). For example, at
the point on the moduli space where low-energy adjoint scalars vanish, one
has a G gerbe; at more nearly generic points, where only a maximal torus
T commutes with adjoint scalars, one has a T gerbe. The mathematical
interpretation of such structures is just as in the field theory discussion
previously.

In the case of field theories, we observed that a different stack structure
may have greater physical relevance, involving only finite centers of stabiliz-
ers rather than the entire stabilizer. This structure also varies across strata,
giving rise along any one stratum to a variety of possible gerbe structures.
Globally, the entire stack would have a Z(G) gerbe structure, where Z(G)
is the center of G, which can be enhanced over various strata. In the case
of geometric Langlands, this was the gerbe structure that gave rise to the
disconnectedness of the target Hitchin moduli space of the two-dimensional
theory.

Phrased more simply, ordinarily we think of toroidally compactified het-
erotic strings as having a Narain moduli space (or rather, more generally [47],
a moduli space with several components, one of which is the Narain moduli
space). Here we are observing that the Narain moduli space (and other
components) carry additional structure, at least formally, namely that of
a gerbe. The moduli stack of toroidally compactified heterotic strings is a
gerbe over a stack with, in general, several components, one of which is the
Narain moduli space, plus enhanced gerbe structures on various strata. (A
more formal discussion of such phenomena in the context of Hitchin moduli
spaces can be found in, e.g., [41].)

In the case of a Spin(32)/Z2 heterotic string compactification, the mod-
uli space of the toroidally compactified string theory generically (and for-
mally) has a Z2 gerbe structure, since the center of Spin(32)/Z2 is Z2. As
described elsewhere, for such a gerbe structure to be meaningful for a theory
on R4, we also need massive states which are not invariant under the group.
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In the present case, the Spin(32)/Z2 heterotic string has at its first mas-
sive level states transforming in the spinor representation of Spin(32)/Z2,
which is not invariant under the Z2 [48, Section 6.3.1, 49, Section 2.3],
exactly as needed for a gerbe description of the moduli space to be physi-
cally relevant.

On the 10-dimensional heterotic string worldsheet, this proposed Z2 gerbe
structure on the CFT moduli space manifests itself as the quantum sym-
metry11 [51] associated with the left-moving GSO analogue that defines
the Spin(32)/Z2 string in its RNS presentation. (The center of Spin(32) is
Z2 × Z2, and the GSO analogue itself is responsible for the Z2 quotient in
Spin(32)/Z2. As the action of the center is being expressed on associated
vectors, not on the group itself, it manifests in terms of orbifolds and quan-
tum symmetries. There is a closely analogous story for the Spin(16)/Z2 in
E8 and RNS constructions of E8 × E8 heterotic strings.) In particular, all of
the massless 10-dimensional states arise from a left-moving NS sector, and
the only charged states are adjoints; all of the left-moving R sector states
are massive. The quantum symmetry leaves the left-moving NS sector states
invariant and multiplies the left-moving R sector states by a phase, which
matches the effect of the Z2 gerbe structure.

For completeness, let us also consider the string-dual type I theory in 10
dimensions. The gauge group of the type I string is SO(32), different from
that of its dual 10-dimensional heterotic string. We have seen that under
dualities, gauge groups will change—this is a typical property of Langlands
duality, for example. The massless spectrum is invariant under the Z2 center
of SO(32), suggesting a gerbe structure; however, all of the massive states
are also invariant, as the perturbative spectrum of the type I string in 10
dimensions contains only symmetric and antisymmetric 2-tensors [49, Sec-
tion 2.3], compatible in principle with a gauge group

SO(32)/Z2 = Spin(32)/ (Z2 × Z2) .

For this reason, we do not identify a gerbe structure on the moduli space
of compactified type I strings. Furthermore, in close analogy with our
discussion of, e.g., [43–46] in the previous subsection, there exists a

11The symmetry we are describing leaves the NS sector states invariant, but multiplies
the R sector states by a sign. A Z2 quantum symmetry leaves the untwisted sector invari-
ant, and multiplies the twisted sector by a sign, which is consistent with the symmetry in
this case if one remembers that we are using R, NS to describe states on the cylinder, but
the quantum symmetry is defined by (un)twisted sectors on the complex plane, and the
conformal transformation between the two exchanges R and NS sectors [50, Section 7.1].
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particle-type topological defect in type I string theory, arising from an ele-
ment of π8(SO(32)), which transforms as a spinor of the Lie algebra [52],
the same property as a massive perturbative state in the dual heterotic
Spin(32)/Z2 theory.

Along special loci this gerbe structure can be enhanced, as expected on
general grounds from our discussion of moduli stacks of flat connections.
Consider Higgsing a toroidally compactified E8 × E8 heterotic string, for
example. There is no gerbe structure over the entire moduli space (as E8

has no center). Now Higgs one of the E8’s to a Spin(16)/Z2 subgroup. As
all of the adjoint-valued scalars in the theory are derived by dimensionally
reducing a 10-dimensional gauge field, Higgsing the E8 should lift all compo-
nents of those scalars that are not adjoints under Spin(16)/Z2. The center of
Spin(16)/Z2 is Z2, and it acts trivially on the adjoints, the surviving mass-
less matter. However, it does not act trivially on all of the string modes.
The adjoint representation of E8 decomposes as

248 = 120 + 128,

where 120 is the adjoint representation of Spin(16)/Z2, and 128 is a spinor.
By Higgsing the E8 to Spin(16)/Z2, we give a mass to the 128, which is not
invariant under the center of Spin(16)/Z2. Thus, we have, at low energies,
a gauge group with nontrivial (Z2) center that acts trivially on massless
matter, but nontrivially on massive matter.

Note that we can construct examples with N = 1 supersymmetry in four
dimensions and gerbe structures on their moduli spaces by compactifying
a Spin(32)/Z2 heterotic string on a nontrivial Calabi–Yau threefold. For
simplicity, let us consider such a heterotic string compactification with the
standard embedding.

One way to see the existence of the gerbe structure on the moduli space
is from worldsheet considerations. Just as in the 10-dimensional theory, all
of the massless states arise from left-moving NS sectors; the left-moving R
sectors contribute only massive states. As a result, the quantum symmetry
associated to the left-moving GSO analogue (which leaves left NS sectors
invariant, but acts by a phase on left R sectors) leaves the massless states
invariant, but acts by a phase on massive states.

We can also see the gerbe structure on the moduli space in the low-energy
effective field theory. Consider for simplicity a Spin(32)/Z2 heterotic string
compactification on a nontrivial Calabi–Yau threefold with the standard
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embedding. The low-energy gauge group is12

Spin(26) × U(1)
Z4

.

The U(1) factor is typically anomalous and Higgsed via a four-dimensional
version of the Green–Schwarz mechanism [54, 55], closely related to a
(field-dependent, hence not directly relevant to this paper) Fayet–Iliopoulos
parameter. The remaining Z2 center of Spin(32)/Z2 descends to part of the
center of the group above, and the massless states are all invariant under
this Z2, as the massless states all descend from invariant representations of
Spin(32)/Z2.

In the context of heterotic compactifications on elliptically fibered Calabi–
Yau’s, the moduli stack ofG-bundles for a groupG has, in essence, directions
corresponding to moduli of the spectral cover and directions corresponding
to the moduli of a line bundle on the spectral cover. The latter has, at least
formally, a Z(G)-gerbe structure. In the dual F theory compactification,
such moduli dualize to moduli of G flux, suggesting [42] that the moduli of

12We can compute this as follows. We are embedding SU(3) into a Spin(6) = SU(4)
subgroup, so we begin by observing that Spin(32) has the subgroup [53] [Appendix A]

Spin(26) × Spin(6)

Z2
.

Since the center of both Spin(26) and Spin(6) is Z4, there is only one diagonally acting Z2

subgroup. We can describe the center of the group above as generated by a, b, subject to
the relations a4 = b4 = 1, a2 = b2. Now, we want the subgroup of Spin(32)/Z2, and after
taking the second Z2 quotient we could have either a Z2 × Z2 or Z4 quotient of Spin(26) ×
Spin(6), corresponding to quotienting either a2 or ab, respectively. We can distinguish
them as follows. For simplicity, replace Spin(26) by Spin(6), to form subgroups of Spin(12),
and use the fact that Spin(6) = SU(4), the 4, Alt34 = 4 are the spinor representations, and
Alt24 = 6 the vector. The Z2 quotient (originally of Spin(32), now Spin(12)) should flip
the sign of the 12 = (6,1) ⊕ (1,6), and preserve only one of the two spinor representations.
Since a, b both act by multiplying the 4 by a fourth root of unity, it is straightforward
to check that a2 leaves the vector representation invariant, whereas ab flips the sign of
the vector representation. (Both preserve only one spinor of Spin(12).) Thus, we should
quotient by ab, and hence the correct subgroup of Spin(32)/Z2 is

Spin(26) × Spin(6)

Z4
.

Embedding SU(3) into SU(4) = Spin(6) leaves us with the maximal commutant shown.
We would like to thank A. Knutson for a useful discussion of this issue.
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G fluxes has a gerbe structure. In fact, naively not only do moduli spaces of F
theory compactifications admit gerbe structure, but at least sometimes there
is evidence that duals to some heterotic string compactifications are F the-
ory compactifications on gerbes [42]. Specifically, it has been observed [42]
that the multisection structures appearing in [56] in the F theory duals of
heterotic CHL strings have an alternative interpretation in terms of elliptic
fibrations over Z2 gerbes. Part of the point is that a heterotic compactifica-
tion on an elliptic fibration with multisection is described by a spectral cover
in a gerbe over the relative Jacobian, together with a (possibly fractional, in
a sense we describe later) line bundle over the restriction of the gerbe to the
spectral cover. The G fluxes then behave as a torsor under the appropriate
Deligne cohomology group. We shall not pursue such F theory structures
further here.

We do not expect such gerbe structures to always appear in CFT moduli
spaces. For example, consider a heterotic E8 × E8 string compactified on
a simply connected Calabi–Yau threefold, with the standard embedding.
Although one has embedded an SU(3) bundle, and SU(3) has a nontrivial
center (Z3), it has been embedded into an E8, which has no center. We
can determine the existence of a gerbe structure by looking at the charged
matter in the low-energy effective field theory. To get a gerbe structure, the
matter would all have to be invariant under the center of the low-energy
effective gauge group (in this case, E6, with center Z3). Neither 27’s nor
27’s are invariant under the center of E6 [57], hence we do not expect to get
a gerbe structure on the CFT moduli space, since there is no gerbe structure
on the field theory moduli space.

More generally, it is worth emphasizing that many moduli spaces which
do not have gerbe structures globally will still have gerbe structures on
subvarieties. For a simple example, the quotient stack [C2/Z2] looks like the
quotient space C2/Z2 everywhere except at the origin, where there is a copy
of the classifying stack BZ2 inserted, which mathematically desingularizes
the quotient space. In that example, one has a Z2 gerbe over the origin
(as BZ2 is a gerbe over a point), but nowhere else. We have already seen
such structures in moduli stacks of flat connections, and they can also arise
in moduli stacks of spaces: for example, the moduli stack of elliptic curves
admits special points which are locally quotients, and so have finite gerbe
structures. (The elliptic curves at those points have automorphisms not
possessed by generic elliptic curves.) Sometimes (though not always) a gerbe
structure at a subvariety on a moduli space will reflect an orbifold structure.
For example, the moduli space of K3 surfaces contains a Z2 orbifold point,
at which the K3 is represented by [T 4/Z2]. In this example, the orbifold
structure on the moduli space reflects the quantum symmetry of the orbifold
theory (though as already noted, this is not always the case).
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In passing, we should also mention that there may be further examples
of string theories with gerby moduli spaces implicit in [58], which “geomet-
rically engineers” four-dimensional theories with nonabelian gauge groups
from type II compactifications on singular spaces.

5 Topological defects and gerby moduli spaces

Recall stable topological defects are classified by the homotopy groups of
the moduli space M : cosmic strings13 arise from π1(M), monopoles from
π2(M), textures from π3(M). Homotopy groups can be defined for moduli
stacks (see, e.g., [60] and references therein), and in particular for moduli
spaces with gerbe structures, and are not quite the same as the homotopy
groups of the underlying spaces. In this section we will outline such homo-
topy and discuss their potential application to topological defects.

Let us begin by outlining some pertinent facts about homotopy of gerbes.
For M a G-gerbe14 over M , there is a homotopy long exact sequence

· · · −→ πn(BG) −→ πn(M) −→ πn(M) −→ πn−1(BG) −→ · · · .

In the sequence above, BG denotes the “classifying stack” of G (so named
because of formal similarities with the classifying space of G). Technically,
the classifying stack is defined as

BG ≡
[
point
G

]
.

If we think of a gerbe as being analogous to a fiber bundle, then the fibers
are copies of BG. In terms of homotopy groups, it can be shown that
πn(BG) = πn−1(G). In particular, for finite G, π1(BG) = G. (As maps from
a space X → BG are defined by principal G-bundles over X, and principal

13For example, the stringy cosmic strings of [59] arise from the fact that π1 of the
moduli stack of elliptic curves is SL(2,Z). (This stack should be distinguished from
its Deligne–Mumford compactification. That compactification maps onto S2, hence its
homotopy groups have all of the complexity of the homotopy groups of S2 and more [42].)
However, the higher homotopy groups all vanish, so from compactifications on elliptic
curves, the only topological defects one can get are stringy cosmic strings.

14In the special case that the gerbe is trivial, i.e., M = M × BG = [M/G] for trivially
acting G, M is a G-bundle over M, and so there is an additional long exact sequence

· · · −→ πn(G) −→ πn(M) −→ πn(M) −→ πn−1(G) −→ · · · .
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G-bundles over S1 are classified by conjugacy classes in G, not elements of
G, this also means we should be careful about interpreting π1 as a group of
maps from a circle.)

Now, let us apply the description above to cosmic strings, and discuss
whether topological defects should be classified by homotopy groups of the
gerbe or the underlying space.

Consider, for example, a moduli space with a Zn gerbe structure, call it
M. If we denote the underlying (technically, “coarse”) moduli space by M ,
then topological defects would ordinarily be computed by homotopy of M .
The effect of the gerbe is to add a BZn fiber over each point of M . Over
any point of M , therefore, is a copy of BZn, which has π1 = Zn.

If topological defects are classified by homotopy groups of the moduli
stack, not the underlying moduli space M , then we would get a cosmic string
defined by a loop around BZn fibers, which may or may not be globally
stable depending upon global properties15 of the gerbe. This would be some
new type of cosmic string, as ordinary cosmic strings arise from π1(M). In
this new type of cosmic string, the moduli space scalars would be unchanged
as one walks around the string, except that the theory would undergo some
Zn gauge transformation around such a loop. Only massive noninvariant
fields would see that gauge transformation.

Let us now turn to physical examples. The hypothetical cosmic string
above sounds very similar to the Zn cosmic string discussed in, e.g., [61,
Section 4.2.2]. There, one has an SU(2) gauge theory with a pair of triplet-
valued Higgs fields which are required (by virtue of a potential term) to be
orthogonal. Giving the first Higgs triplet a vev breaks SU(2) to U(1); giving
the second an (orthogonal) vev breaks U(1) to Z2. After both symmetry
breakings have occurred, one has Z2 cosmic strings, as π1(SU(2)/Z2) = Z2.
In such a theory, the moduli space of possible Higgs vevs has a natural Z2

gerbe structure, and the cosmic strings described by [61] seem to naturally

15Suppose, for example, the gerby moduli space M is the nontrivial Zn gerbe over P1

defined by taking two homogeneous coordinates x, y to have weight n under C×. The
space S3 is a circle bundle over this gerbe, so we have a homotopy long exact sequence of
the form

· · · −→ πn(S1) −→ πn(S3) −→ πn(M) −→ πn−1(S
1) −→ · · · .

In particular, since π0(S
1) ∼= π0(S

3) and π1(S
3) = 0, we have that π1(M) = 0, and so the

gerbe M is simply connected. Thus, our hypothetical cosmic string would not be globally
stable.
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coincide with the cosmic strings we have outlined above arising from homo-
topy of the gerbe. In fact, our homotopy considerations would appear to
give a new perspective on the Zn cosmic strings of [61], as they are discussed
there only as homotopy of group cosets, and here we seem to have found the
same structure in homotopy of a moduli stack.

Unfortunately, further analysis does not seem to bear out this perspective.
One seeming counterexample arises in [62, Section 4.2]. That reference also
describes Zn cosmic strings, though in that case, the adjoints act primarily as
spectators, and the cosmic string solution naturally involves winding of vevs
of massless fundamentals, with a potential fixing their vevs to be nonzero.
In the present case, for physical relevance of a gerbe structure, we need
noninvariant fields, albeit massive noninvariant fields. If the noninvariant
fields are massive, then its vev vanishes, and any sort of winding solution of
the form outlined in [62, Section 4.2], unlikely.

Here is a more convincing counterexample. Consider an SU(2) gauge
theory containing only a single Higgs triplet, the SU(2) would only be broken
to U(1), and although the resulting theory has monopoles (as π2(SU(2)/
U(1)) = Z), it does not have cosmic strings (as π1(SU(2)/U(1)) = 0). Thus,
in this case, the homotopy of the gerbe gives a misleading result.

One potential fix to the counterexample above is to replace Deligne–
Mumford stacks with more general Artin stacks (which are not required to
have finite stabilizers). In the example above, an SU(2) gauge theory with a
single Higgs triplet, an Artin moduli stack would naturally have a U(1) gerbe
structure. Now, π2(BU(1)) = π1(U(1)) = Z, so the same homotopy analysis
of the gerbe would imply the existence of monopoles in this example, match-
ing the physical result. For that matter, as π1(BU(1)) = π0(U(1)) = 0, there
is no prediction of cosmic strings, also matching the physics. On the other
hand, as the gerbe structure would only see the unbroken part of the gauge
group, not the original gauge group, it seems unlikely that the example
above would generalize to give accurate results in other cases.

Our tentative conclusion is that, at least for Deligne–Mumford moduli
stacks, the homotopy of the gerbe is misleading, the extra elements of π1

that one encounters do not reflect physically meaningful new cosmic string
solutions, and that topological defects should be counted by homotopy of
the underlying space. This then begs the question of how to understand
cosmic strings and other topological defects when the moduli space is a
more complicated stack.

For completeness, let us also formally discuss higher defects in Deligne–
Mumford stacks, though as already established, their physical relevance may
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not be significant. To be specific, consider the Zn gerbe over P1 defined
by taking two homogeneous coordinates x, y to have weight n under C×,
rather than weight 1. Call this gerbe M. We shall consider hypothetical
monopoles arising from the moduli stack M. From the long exact sequence
for homotopy, we have

π2(BZn) −→ π2(M) −→ π2(P1) −→ π1(BZn) −→ π1(G).

Now, π2(BZn) = 0, and it can be shown π1(M) = 0, so we have

0 −→ π2(M) −→ π2(P1) −→ Zn −→ 0.

Thus, the total number of stringy monopoles arising from this gerby moduli
space would be countable, just as for an ordinary projective space, but note
that not every monopole arising from P1 arises when the moduli stack is
a gerbe over P1, closely mirroring the fact that in two-dimensional sigma
models on gerbes there is a restriction on degrees of allowed maps.

We leave for future work a detailed discussion of global topological defects
for more general moduli stacks. Our results here suggest that global gerbe
structures may not be relevant, at least for Deligne–Mumford moduli stacks.
It is possible that this is ultimately a reflection of subtleties in low-energy
effective actions discussed in Section 3. We shall not attempt to address the
relevance of homotopy of gerbe structures that exist only over subvarieties,
or homotopy of Artin moduli stacks.

In passing, we should mention that [9, Section 4.2] speculated on the
existence of cosmic strings of the form above in cases with gerby moduli
spaces.

6 Consistency conditions on classical supergravity

In this section we will discuss consistency conditions on classical supergravi-
ties. We begin by reviewing results [1,7,8] for the case that the moduli space
is a smooth manifold, and then we generalize to smooth Deligne–Mumford
stacks, focusing on gerbes over manifolds.

6.1 Review of standard supergravity case

First, let us recall the argument of Bagger and Witten [1] that the Kähler
class of the moduli space of scalars of a supergravity theory is quantized,
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in the case that that moduli space is a smooth manifold. First, recall that
across coordinate patches on the moduli space, the Kähler potentialK trans-
forms as

K �→ K + f + f,

where f is a holomorphic function of moduli, which must be accompanied
by a rotation of the gravitino ψμ and the superpartners χi of the scalar fields
on the moduli space:

χi �→ exp
(

+
i
2
Im f

)
χi, ψμ �→ exp

(
− i

2
Im f

)
ψμ. (6.1)

Consistency of the rotations (6.1) across triple overlaps (even within clas-
sical physics) implies that the f ’s define a line bundle with even c1. If
we denote that line bundle by L⊗2, then the gravitino is a spinor-valued
section of TX ⊗ φ∗L−1, where X is the four-dimensional low-energy effec-
tive spacetime and φ : X →M the boson of the four-dimensional nonlinear
sigma model on the compactification moduli space M , and that the fermions
χi are spinor-valued sections of φ∗(TM ⊗ L). Similarly, one shows that the
superpotential is a holomorphic section of L⊗2, and, in order to have a
positive-definite metric, L−2 (whose c1 matches the cohomology class of the
Kähler form) must be ample.16

The recent paper [8] extended the analysis of [1] to gauged group actions.
If we gauge the action of some group G on the target space of the nonlin-
ear sigma model in the supergravity theory, then we have to lift that group
action to the Bagger–Witten line bundle L⊗2 in order to define the gauging
globally. We can see this explicitly in the supergravity gauge transforma-
tions. Under an infinitesimal group action

δφi = ε(a)X(a)i,

16Specifically, positive-definiteness of the metric implies that every closed analytic sub-
variety of the moduli space M has positive volume with respect to c1(L−2), i.e., for Y ⊂ M
closed of dimension p,

∫

Y

c1(L−2)p > 0,

which is equivalent to L−2 being ample.
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where X(a) is a holomorphic Killing vector describing the infinitesimal group
action, the superpartners χi, gaugino λ(a), and gravitino ψμ transform as

δχi = ε(a)

(
∂X(a)i

∂φj
χj +

i
2
Im F (a)χi

)

,

δλ(a) = fabcε(b)λ(c) − i
2
ε(a)Im F (a)λ(a),

δψμ = − i
2
ε(a)Im F (a)ψμ,

where F (a) = X(a)K + iD(a) (K the Kähler potential), and F (a) is easily
checked to be holomorphic. For real ε(a), the Kähler potential undergoes a
standard Kähler transformation

δK = ε(a)F (a) + ε(a)F
(a)
,

hence in the gauge transformations above, terms proportional to Im F (a) are
precisely encoding the Kähler transformations on fermions given in equa-
tion (6.1). Thus, the gauge-transformation terms proportional to Im F (a)

are encoding an infinitesimal lift of the group action to L.

To define the gauge theory, we must extend the infinitesimal action enco-
ded in supergravity to an action of the group, not just the Lie algebra. In
general, lifts of group actions to line bundles need neither exist nor be unique.
The existence issue provides a constraint on possible consistent supergrav-
ities. (Lack of) uniqueness is encoded in the Fayet–Iliopoulos parameter,
as it is argued in [8] that implicit in the supergravity is the statement that
the Fayet–Iliopoulos parameter determines different lifts of the action of G
to L⊗2. As such lifts are quantized, the Fayet–Iliopoulos parameter is nec-
essarily quantized, and corresponds to an element of Hom(G,U(1)) for G
the gauge group. Just as D-terms are understood in rigid supersymmetry in
terms of symplectic quotients, the paper [8] argues that the structure above
in supergravity can be understood in terms of “geometric invariant theory”
quotients (see, e.g., [63–65]), the algebro-geometric analogue of symplectic
quotients. In particular, in a geometric invariant theory quotient, the ana-
logue of the Fayet–Iliopoulos parameter is quantized, because it is realized
as a lift of a group action to a line bundle.

In the rest of this section we shall extend the analysis of [1, 8] to smooth
Deligne–Mumford stacks, focusing on gerbes over manifolds.
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6.2 Generalization to smooth Deligne–Mumford stacks

The original work of Bagger–Witten [1] and follow-ups [8], reviewed above,
only considered supergravity theories in which the moduli space is a smooth
manifold. However, moduli spaces which are smooth manifolds are van-
ishingly rare—more typically, they have singularities and/or various stack
structures, and a generalization of [1, 8] to such cases would be useful.

Formally, generalizing [1, 8] to moduli “spaces” that are smooth17

Deligne–Mumford stacks is very straightforward—the analysis of [1,8] applies
with only minimal modification. The main caveat is that specifying a
“nonlinear sigma model on a stack” does not uniquely specify the physics;
we must choose a presentation of the stack, and we could get different
physics according to the choice. Put another way, there are multiple
distinct physical theories, components of possibly multiple supergravities,
that can be interpreted as a nonlinear sigma model on a single fixed stack.
In four dimensions, we use stacks to provide a “universal” four-dimensional
object for which any given physical realization corresponds to a
presentation.

Let us outline the analysis in two different presentations:

• Deligne–Mumford stacks have coverings by open sets, so first con-
sider a presentation in which the atlas is such a collection. Then,
we can work patch-by-patch. Physically, this means we have a non-
linear sigma model on each open set, with perhaps a discrete gauge
group. Just as for spaces, transformations of the Kähler potential
across coordinate patches imply that there is a line bundle L over the
moduli space, to which the gravitino ψμ and chiral superpartners χi

couple. In other words, just as for the case that the moduli stack M
is a space, the gravitino is a spinor-valued section of TX ⊗ φ∗L−1 (X
the four-dimensional spacetime, φ : X →M), and the superpartners
χi are spinor-valued sections of φ∗(TM ⊗ L). The superpotential is
a section of L⊗2. The Fayet–Iliopoulos parameter is a choice of lift
of group action to L, and such choices, possible values of the Fayet–
Iliopoulos parameter are elements of Hom(G,U(1)) for G the gauge
group.

• Now, let us consider another presentation. Nearly all (see [12] for
a discussion of exceptions) smooth Deligne–Mumford stacks can be

17Experts should note that since we are implicitly working over the complex numbers,
“smooth” implies, for example, that there are no nonreduced scheme structures [42].
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presented as global quotients of ordinary smooth manifolds by (not
necessarily finite) groups, whose actions need not be effective. To such
presentations we can associate gauged supergravities, to which we can
immediately apply [8]. To be specific, suppose the moduli stack is
presented as [Y/G] for some smooth manifold Y and some group G,
corresponding physically to a supergravity theory with moduli space
Y and gauged18 G action. In this case, the Bagger–Witten line bun-
dle on the cover Y with a G-equivariant structure (specified when one
defines the gauge theory [8]) is equivalent to a (Bagger–Witten) line
bundle on [Y/G]. Other results follow analogously. For example, in
this presentation, quantization of the Kähler form on the stack [Y/G]
follows from both quantization of the Kähler form on Y [1] and from
quantization of Fayet–Iliopoulos parameters [8]. In all cases, generaliz-
ing Bagger–Witten [1] to this presentation intertwines the analyses and
results of [1,8]. (The toy example of [7] was realized by a presentation
of this form.)

There exist more types of presentations of stacks (e.g., groupoid quotients),
and so possibly more physical theories; in this paper, we shall discuss only
the presentations above. As emphasized in Section 3, even in the IR these
presentations can be physically distinct.

Regarding metric positivity, notions of ampleness and corresponding con-
straints on stacks are discussed in [60]; we assume, but have not carefully
checked, that they are pertinent here.

In other words, formally, the results of [1,8] carry over more or less imme-
diately to smooth Deligne–Mumford stacks, at least in presentations of the
form above. The only significant differences are as follows:

• A technical point is that cohomology of stacks more naturally lives in
a different stack, the “associated inertia stack,” not the stack itself.
Thus, the analysis of [1] still implies that the cohomology class of the
Kähler form on the moduli stack should match the cohomology class
of c1 of the Bagger–Witten line bundle on the stack, but although the
Kähler form and Bagger–Witten line bundles themselves live on the
stack, the cohomology lives in the associated inertia stack, and must
be compared there. This adds no essential physical constraint.

• Because the stack is, roughly, a space with (finite) automorphisms,
coordinate patches need match only up to (finite) automorphisms.

18The stack does not specify a classical gauge coupling; again, in four dimensions, we
associate stacks to physics but not physics to stacks.
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Hence, for bundles on stacks, transition functions on triple overlaps
need only close up to finite automorphisms. This means an honest
bundle on a stack can be a “twisted” or “fractional” bundle on a
space—objects which are not bundles in the ordinary sense. (We
shall define these below.) Put another way, there are more bundles
on stacks than on underlying spaces, and many things on spaces that
are not quite bundles, become honest bundles on stacks. Therefore,
we need to carefully examine possible Bagger–Witten line bundles on
stacks for possible physical subtleties.

Let us examine the second issue above, in the special case of smooth
Deligne–Mumford stacks that have a (finite) gerbe structure over a smooth
manifold. A twisted bundle on a space (see, e.g., [66–69]) is a bundle in which
the transition functions close only up to a higher cocycle;
schematically:

gαβgβγgγα = hαβγ

for some Cech cocycle hαβγ , where the gαβ are transition functions. Con-
sistency requires that the rank of a twisted bundle be related to the order
of the cohomology element defined by (hαβγ); since we are interested in line
bundles, no nontrivial twisted bundles can contribute. Therefore, we need
only consider the possibility that the Bagger–Witten line bundle might be
a fractional line bundle.

To explain fractional line bundles, which will play a crucial role in this
section, let us give an explicit example. Consider19 a Zk gerbe on Pn defined
by n+ 1 homogeneous coordinates of weight k, i.e.,

[
Cn+1 − 0

C×

]
,

where the C× acts as

(x0, . . . , xn) �→
(
λkx0, . . . , λ

kxn

)
.

19This example could not arise physically because of anomalies. We give it here
as a purely mathematical demonstration and explanation of fractional line bundles,
no more.
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On this gerbe one can define line bundles with arbitrary weight under the
C×. For example, a line bundle of weight m has total space20

[
(Cn+1 − 0) × C

C×

]
,

where the C× acts as

(x0, . . . , xn; y) �→
(
λkx0, . . . , λ

kxn;λmy
)
.

When m is divisible by k, this is the pullback of an honest line bundle on
Pn, namely O(m/k). More generally, the line bundle above on the gerbe is
sometimes (ambiguously) denoted O(m/k) even when m is not divisible by
k. In such cases, one has a “fractional” line bundle. (See [16] for a more
complete description of fractional line bundles.)

In passing, the properties of fractional branes at orbifold points are not
unrelated to fractional bundles. Ultimately the reason for the relationship is
that in an orbifold, there is a gerbe structure appearing over orbifold points,
which has the effect of desingularizing the orbifold.

It should now be clear that these fractional line bundles on the gerbe are
precisely what is being described in the example of [7], and more generally
whenever one has “fractional Fayet–Iliopoulos parameters.” If one were to
pick a different physical presentation of the gerby moduli “space,” say as a
nonlinear sigma model with a restriction on nonperturbative sectors rather
than as a gauged linear sigma model, then the line bundle L of which the
superpotential is a section would just be taken to be a fractional line bundle
from the outset.

20Curiously, total spaces of fractional line bundles over gerbes often have the property
that they are honest spaces with orbifolds, instead of gerbes, as is implicit in the expression
given. Despite the existence of the orbifold structure along the zero section, one still has
a notion of local trivializations; over the gerbe, the total spaces of the fractional bundles
above have a local description of the form U × BZk × C for U an open patch on Pn and
BZk the classifying stack of Zk. The point is that for any vector space V , the quotient
[V/G] is the same stack as the total space of a vector bundle of fiber V over BG. The
difference between the two descriptions might be described as distinguishing fibers over
“gerby points” from fibers over “variety points”: in the former case, one speaks of a
vector bundle over BG, whereas in the latter, one speaks of [V/G]. Put another way, the
(representable) projection map to the gerbe on Pn has two types of fibers: the fiber over
a point of Pn is

[
C×

k × Cm

C×

]

(with subscripts indicating weights), whereas the fiber over a BZk is just C.
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Now that we have explained fractional line bundles, let us return to our
discussion of them as possible Bagger–Witten line bundles arising when
the moduli stack possesses a (finite) gerbe structure, and discuss possible
consistency conditions. We see two possibilities:

(1) One possibility is that allowed Kähler forms can have cohomology
classes matching the (image of the) first Chern class of any line bundle
on the gerbe, including any fractional line bundle.

(2) Another possibility is that allowed Kähler forms can have cohomology
classes matching the (image of the) first Chern class only of line bun-
dles which are pullbacks of line bundles on the underlying space—no
fractional line bundles allowed.

The recent paper [7] argued the former case, that if the moduli “space” of the
supergravity theory were actually a gerbe over an ordinary space then the
quantization condition of Bagger–Witten should be modified, and fractional
values of the Fayet–Iliopoulos parameter should be allowed. We shall now
study this claim in detail.

Let us re-examine the example21 of a U(1) gauge theory coupled to
supergravity discussed in Section 3, in the spirit of [7]. In this theory, the
supergravity moduli space is C2n+2, and under the gauged U(1), the fields
have the following charges: n fields φi of charge k, n fields φ̃i of charge −k,
one field χ of charge +1, one field χ̃ of charge −1. Furthermore, the fields
of charge ±1 have mass m.

Restricting to the massless fields, the D-term condition has the form

∑

i

k|φi|2 −
∑

i

k|φ̃i|2 = r,

where r is the Fayet–Iliopoulos parameter. As discussed elsewhere [7, 8], in
supergravity r is constrained to be an integer, so [7] observed that when we
divide by the common factor of k, the D-term condition becomes

∑

i

|φi|2 −
∑

i

|φ̃i|2 = r/k,

formally giving a fractional Fayet–Iliopoulos parameter (albeit normalized
in such a way as to make that fact less explicit).

21The supersymmetric CPn model would be marginally simpler to describe, but is also
anomalous.
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Naively, the model above appears to describe a loophole in the anal-
ysis of Bagger–Witten [1], by allowing for fractionally quantized metrics.
However, as discussed in Section 3, the infrared limit of a four-dimensional
gauged sigma model (in effective field theory) need not be the same as a
four-dimensional nonlinear sigma model. Thus, the example above is not
describing a loophole in Bagger–Witten, as it does not RG flow to a theory
of the form analyzed by Bagger–Witten. Rather, it is giving a quantization
condition on a different theory than is considered by Bagger–Witten. (We
would like to thank J. Distler for emphasizing this point to us.)

The physics above maps to a stack, a Zk gerbe over a space C2n//C×,
and a fractional line bundle that extracts the “universal” aspects of the
physics above. The fractional line bundle over the gerbe corresponds to
the equivariant structure implicit in the choice of Fayet–Iliopoulos parame-
ter. We cannot consistently construct a low-energy effective field theory by
integrating out the Higgsed gauge field, and so there is no regime in which
we can consistently talk about a fractionally quantized metric; however, we
can nevertheless apply stacks to give a “universal” object encoding some
essential aspects of the physics, and the gauge theory in question would be
described mathematically by a fractional line bundle on a gerbe.

So far we have discussed the interpretation of certain choices of equivariant
structures on Bagger–Witten line bundles. It remains to understand whether
those choices that lead to fractional line bundles on gerbes are physically
consistent.

In particular, let us examine the kinetic terms for the gravitino ψμ and
superpartners χI more systematically. Recall the gravitino ψμ is a spinor-
valued section of TX ⊗ φ∗L−1, and the fermions χI are spinor-valued sec-
tions of φ∗(TM⊗L), where X is the four-dimensional low-energy effective
spacetime, and φ : X → M is the bosonic map in the four-dimensional non-
linear sigma model in the supergravity. If the moduli space admits a gerbe
structure, and the Bagger–Witten line bundle L is fractional, then there are
some potential issues:

• First, fractional line bundles have no smooth (or even continuous)
single-valued sections.

• Second, as noted earlier, seen as bundles over the underlying space,
fractional bundles have orbifold singularities in their fibers, making a
metric on those fibers potentially singular. As that metric appears in
the fermion kinetic terms, this is potentially a hazard.

In principle, both of these problems are solved by the fact that if the moduli
space M has a gerbe structure, then the path integral only sums over maps
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φ with degrees satisfying certain divisibility properties—this is one of the
defining properties of a nonlinear sigma model on a gerbe. (That said, if the
four-dimensional spacetime X is R4, then as discussed before this matter
is somewhat trivial, but let us describe the most general case here.) That
same divisibility criterion ensures that φ∗L is an honest line bundle, not
anything fractional. As a result, even when L is fractional, the gravitino
ψμ and fermions χI do exist as single-valued objects, coupling to honest
bundles, with smooth fiber metrics.

In passing, let us mention another potential issue. If the SCFT moduli
space admits a gerbe structure, and the Kähler form arises from a fractional
line bundle, then there is an interesting structure on the worldsheet opera-
tors over SCFT moduli space (see [70] for a discussion for ordinary moduli
spaces). Specifically, as we walk around the SCFT moduli space, some of the
worldsheet operators (including the spectral flow operator) acquire phases
from the (fractional) line bundle, and hence are necessarily multi-valued over
the SCFT moduli space. This is at least odd, though not necessarily a phys-
ical contradiction. For example, the SL(2,Z) transforms in monodromies
on the u-plane in Seiberg–Witten theory tell us that the low-energy effective
action there is really only globally defined on an SL(2,Z)-Riemann surface
covering the u-plane, not the u-plane itself. The situation here is closely
analogous.

As indirect consistency checks that these theories with fractional Bagger–
Witten line bundles are consistent, let us point out some closely related (and
consistent) examples:

• One example occurs in two-dimensional (0,2) SCFTs, describing het-
erotic strings on gerbes. If one compactifies a heterotic string on a
gerbe with a fractional or twisted gauge bundle (i.e., a bundle on the
gerbe that is not a pullback from the underlying space), the result
looks like a sigma model on a space with a non-honest bundle, and a
restriction on degrees of maps such that the pullbacks of non-honest
bundles are honest. These will be discussed in detail in [16]. (Note
the left-moving worldsheet fermions in this example are closely anal-
ogous to the four-dimensional gravitino and so forth we have been
discussing—both couple to pullbacks of fractional bundles.) One way
to construct examples is through asymmetric orbifolds, that act inef-
fectively on right-movers but effectively on left-movers. Examples can
also be constructed in (0,2) GLSMs, such as the (anomaly-free, frac-
tional) bundle

0 −→ E −→ O(1)⊕9 −→ O(9) −→ 0
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over P3
[2,2,2,4][10], a Z2 gerbe over P3

[1,1,1,2][5]. Other two-dimensional
examples have been constructed by dimensional reduction of twisted
four-dimensional N = 2 theories, as in [32]. These examples all seem
to be consistent.

• It is perhaps worth observing that nonlinear sigma models on total
spaces of fractional bundles are well-behaved. Consider a (2,2) super-
symmetric gauged linear sigma model describing

[
(C2 − 0) × C

C×

]
,

where the C× acts on (C2 − 0) with weight 2, and on C with weight
1, say. This is the total space of the (fractional) line bundle O(1) over
a Z2 gerbe on P1; it is also a modification of the exceptional set away
from the weighted projective stack P2

[1,2,2]. This is a consistent (2,2)
supersymmetric theory.

• A four-dimensional gauge theory can also be constructed with closely
analogous properties. Consider an SU(n) gauge theory with matter
in the fundamental of SU(n). We can interpret this as the Feynman
diagrams of SU(n)/Zn gauge theory with a subset of the SU(n)/Zn

instantons (omitting fractional instantons), restricted so as to make
the fundamental matter always well-defined. (We cannot precisely
call this an SU(n)/Zn gauge theory with a restriction on instantons,
because the SU(n)/Zn gauge transformations are not well-defined on
the matter fields. For this reason, both the SU(n) and the SU(n)/Zn

gauge theories obey cluster decomposition.) After all, perturbatively
an SU(n) and SU(n)/Zn gauge theory are identical (same Lie algebra,
same Lagrangian, same Feynman diagrams), the difference between the
data given is that an SU(n)/Zn has additional (“fractional”) instan-
tons not present in the SU(n)/Zn theory. One could imagine splitting
an SU(n) instanton into SU(n)/Zn instantons, but if one does so,
one would have to introduce topological defects in order to allow the
matter in the fundamental representation to be well-defined globally.

This last example perhaps best exemplifies the slogan

Perturbative physics is determined by the Lie algebra of the gauge
group, but nonperturbative physics is determined by the Lie
group, not just the algebra.

mentioned in Section 3.
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Our tentative conclusion is that “fractional Fayet–Iliopoulos parameters”
are consistent in supergravity theories in which the moduli stack is a gerbe,
and are a reflection of stacky subtleties arising in more general
supergravity theories. One should be careful about asserting that this
implies a loophole in Bagger–Witten’s old quantization result [1], as the
infrared limit of a four-dimensional gauged sigma model need not be the
same as a nonlinear sigma model. We leave a more detailed analysis of
consistency conditions in supergravity theories with moduli stacks to
future work.

7 Conclusions

In this paper we have reviewed recent discussions of quantization of the
Fayet–Iliopoulos parameter in supergravity theories. We began this paper
by reviewing previous work on two-dimensional theories with restrictions on
nonperturbative sectors—equivalently, sigma models on gerbes—and more
general aspects of two-dimensional sigma models on stacks, followed by a dis-
cussion subtleties appearing in four-dimensional analogues. We gave exam-
ples in both field and string theory of models with gerbe structures on their
moduli spaces, and discussed the action of duality. We discussed global
topological defects when the moduli space is a stack, focusing on stacks that
are gerbes over smooth manifolds. We then discussed consistency condi-
tions on classical supergravity theories for moduli spaces that are smooth
Deligne–Mumford stacks, after reviewing the state-of-the-art for smooth
manifolds.

In the text we listed a number of interesting possible follow-ups. Another
direction that would be interesting to pursue is sigma model anomalies, in
the sense of Moore–Nelson [71–73], in cases where the target space is a gerbe
or other stack.

Yet another direction concerns deformation issues. Briefly, stacks and
underlying spaces do not always admit the same deformations. To illustrate
the principle, consider a local quotient stack structure resolving an orbifold
singularity on a Calabi–Yau. (Moduli spaces are typically not Calabi–Yau,
but this will provide a simple example of the deformation theory issue.)
Although quotient spaces often admit Calabi–Yau blowups, corresponding
quotient stacks do not. (In string compactifications on stacks, this leads
to an apparent mismatch in moduli which was discussed in [12].) Notions
of blowup still exist, but are usually not Calabi–Yau. For moduli stacks
appearing in field theory and string theory, then, a natural question to ask
is whether the existence of a quotient stack structure “resolving” an orbifold
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singularity on the moduli space reflects any obstruction to resolution or
deformation of the singularity. It would be interesting to understand if
this deformation-theoretic mismatch had any applications in either field or
string theory.

There are several other potential applications of such gerbe and stack
structures in field theory moduli spaces that we can imagine. For example,
it would be interesting to understand whether “stacky” resolutions of quo-
tient singularities on moduli spaces, i.e., [Cn/G] versus Cn/G, convey any
additional information about the theory, such as properties of light particles.
It would also be interesting if gerbe structures could be used to help dis-
entangle confusing potential Seiberg duals. Examples of such are discussed
in, for example, [74], and there is a gerbe structure on some of the moduli
spaces of the field theories discussed there. Similarly, it would be inter-
esting to understand the three-dimensional “mirrors” [75] to theories with
nonminimally charged electrons. In two dimensions, such mirrors turned
out to involve either discrete-valued fields [13] or, equivalently, disconnected
targets [14].

It would also be interesting to understand if the ideas in this paper could
be applied to understand the distinctions between SU(2) and SO(3) Don-
aldson and related mathematical invariants, see, e.g., [76] and references
therein.
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Appendix A. Four-dimensional decomposition conjecture

In this appendix, we will discuss a four-dimensional analogue of the decom-
position conjecture for two-dimensional CFTs discussed in [14]. This will
arise via restricting four-dimensional instantons (mathematically, c2’s, not
c1’s), and so will not be directly relevant for the gerbes studied elsewhere in
this paper.

Consider a four-dimensional SCFT obtained from a gauge theory, e.g.,
N = 4 SU(n) SYM, or N = 2 SU(n) SYM with 2n hypermultiplets in the
fundamental, or one of the N = 1 SCFTs.

In that gauge theory, restrict the nonperturbative sector to instantons of
degree divisible by k. Note that the resulting theory will not be associated to
gerbes—we are here imposing a restriction on Pontryagin classes of bundles,
visible to four-dimensional theta angles, whereas gerbe structures would only
affect analogues of the first Chern class. This theory automatically violates
cluster decomposition, by Weinberg’s ancient argument; we shall describe
how it can be written formally as a sum of other theories with rotating theta
angle.

In this theory, since the instantons have degrees divisible by k, the
Chern–Simons vacua split into k separate sets. The allowed instantons
define tunnelling only between Chern–Simons vacua within the same set. In
this fashion, one recovers k separate zero-energy ground states. Under the
assumption that when the gauge field is extended flatly in extra dimensions,
the Chern–Simons number is cobordism invariant, the Chern–Simons number
is conserved modulo k.

Using the state-operator correspondence for conformally invariant theo-
ries, one can build k different zero-energy states, which for the reasons above
obey the same multiplicative rules as twist fields in the two-dimensional the-
ories discussed in [14], and hence can be used to define projection operators.

Thus, we conjecture that the four-dimensional SCFT above with theta
angle θ can be decomposed into a sum of k SCFTs, and we further conjecture
that those k SCFTs are copies of the SCFT with theta angles θ + 2πn/k
for n = 0, . . . , k − 1, where θ has period 2π in the theory where instanton
number 1 configurations are allowed. (This sum has the effect of cancelling
out gauge field configurations in the path integral whose instanton degrees
are not multiples of k.)

For the two-dimensional decomposition conjecture pertinent to sigma
models on gerbes, there is now abundant evidence, including all-genera
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partition function computations in orbifold examples [14], checks in mir-
ror symmetry and quantum cohomology [14], applications to gauged linear
sigma models [15], and now checks of predictions for Gromov–Witten invari-
ants [33–38]. By contrast, in the four-dimensional case above, we have no
independent evidence, no examples, only the arguments above.

Appendix B. Two-dimensional BF theory and cluster
decomposition

In this section we will examine BF theory in two dimensions, as an example
of a manifestly local theory that does not obey cluster decomposition. Let
B be a circle-valued scalar, i.e., identified under B �→ B + 2π. Let A be an
abelian gauge field with the usual gauge transformation, so that locally

A �→ A+ dχ,

F ≡ dA,

where χ is a circle-valued gauge parameter: χ ≡ χ+ 2π. Then the field
strength F then satisfies the Dirac quantization condition,

∫
F ∈ 2πZ.

The action for BF theory is

S =
k

2π

∫
BF

and the Euclidean action is

SE =
i k
2π

∫
BF.

This theory is simple enough that it can be solved exactly and explicitly. To
do this we solve for the dimension of the Hilbert space of states on a spatial
slice S1 and for the action of the operator algebra on that Hilbert space.
The particular point to which we draw attention is the absence of cluster
decomposition: inside the local operator algebra of the theory is a pair of
local operators O±1 that disobey the condition for cluster decomposition, in
the sense that

lim
x→∞〈O1(x)O−1(0)〉 �= lim

x→∞〈O1(x)〉〈O−1(0)〉.
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B.1 Hilbert space of the BF theory

First, we compute the overall dimension of the Hilbert space of states on S1.
To do this, we compute the partition function on a spatial circle at finite
temperature β−1:

Z(β) =
∑

k

exp {−βEk}. (B.1)

Since the two-dimensional metric does not appear in the BF action, we
expect that the theory is topological and that the energies Ek should all
vanish identically, and that the partition function Z(β) is therefore inde-
pendent of β. We will see that this is indeed the case.

To compute the partition function at finite temperature β−1, we perform
the path integral in Euclidean signature with Euclidean time compactified
with a radius of r2 ≡ β

2π . We also compactify the spatial direction with
radius r1, so that the Hilbert space becomes manifestly separable. We have
then reduced the finite-temperature partition function to a path integral
over a discretely infinite set of variables, the Fourier modes of the B field
and the U(1) gauge connection. The path integral over the nonzero modes
is purely Gaussian, and can be performed straightforwardly so long as we
divide appropriately by the measure for the local U(1) gauge group. The
path integral over the zero modes we perform separately.

B.2 Path integral measure on a finite torus

Path integrals in finite volume require a bit of care in order to get the overall
normalization correct—we mostly follow the method of [77], deviating from
the presentation there only in details particular to the application here.

Define the measure—for the gauge group, the gauge field, and the B
field—as in [77], in a local way. To do this, decompose the fields and the
gauge parameter into normal modes:

Ai(x) ≡
∑

M

a(M)φi,(M)(x),

B(x) ≡
∑

N

b(N)φ(N)(x),

χ(x) ≡
∑

N

c(N)φ(N)(x),
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where φ(N) is a set of unit-orthonormalized real eigenfunctions of the scalar
Laplacian, and φi,(N) is a set of unit-orthonormalized real vector eigenfields
of the vector Laplacian:

∫
d2x

√
g φ(N)(x)φ(N ′)(x) = δN ′N ,

∫
d2x

√
g gij φi,(M)(x)φj,(M ′)(x) = δM ′M , (B.2)

and the a(M), b(N), c(N) are mode amplitudes, the Fourier transforms of the
dynamical fields. Then define the path integral measures

DA ≡
∏

(M)

da(M),

DB ≡
∏

(N)

db(N),

Dχ ≡
∏

(N)

dc(N),

with unit normalization.

Concretely, for the torus, we can let N run over the values 0 and ([p], re),
where ([p], im). Here, the symbol [p] represents a pair {pi,−pi} of equal
and opposite nonzero momenta obeying appropriate quantization conditions,
and re and im represent the real and imaginary parts of the mometum
eigenfunction.

As for M , we let it run over nonzero modes ([p], re,⊥), ([p], im,⊥), ([p],
re, ‖), and ([p], im, ‖), and also over zero modes labelled (0, I). Here [p]
means the same as it does for the scalar eigenmodes, i.e., a pair of equal
and opposite nonzero momenta on the two-torus, and re and im represent
the real and imaginary parts of a plane wave. The symbols ⊥ and ‖
denote the transverse and longitudinal polarizations for the nonzero modes,
and the I labelling the zero modes (Wilson lines) runs over the two directions
of the torus.

B.3 Path integral over nonzero modes

Let us now perform the path integral over nonzero modes. For a given
pair [p], we have two multiplicative contributions to Z(r1, r2): First, we
have the Gaussian path integral over the nonzero modes b([p],re), b([p],im) and
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a([p],re,⊥), a([p],im,⊥). And then, we also have the Jacobian determinant of
the gauge transformation of a([p],re,‖), a([p],im,‖) by c([p],re), c([p],im). First, we
combine the real and imaginary parts of the plane waves into the natural
complex combinations:

Φi,([p],⊥) ≡
1√
2

(φi,([p],re,⊥) + iφi,([p],im,⊥)), (B.3)

Φi,([p],‖) ≡
1√
2

(φi,([p],re,‖) + iφi,([p],im,‖)), (B.4)

Φ[p] ≡
1√
2

(φ([p],re) + iφ([p],im)), (B.5)

a([p],⊥) ≡
1√
2

(a([p],re,⊥) + i a([p],im,⊥)), (B.6)

a([p],‖) ≡
1√
2

(a([p],re,‖) + i a([p],im,‖)), (B.7)

b[p] ≡
1√
2

(b([p],re) + i b([p],im)), (B.8)

c[p] ≡
1√
2

(c([p],re) + i c([p],im)). (B.9)

In terms of the complex combinations above, the measure is

dare daim = 2 d2a = 2 d(Rea) ∧ d(Ima),

dbre dbim = 2 d2b = 2 d(Reb) ∧ d(Imb),

dcre dbim = 2 d2c = 2 d(Re c) ∧ d(Im c),

(B.10)

where we have suppressed the indices [p],⊥, and ‖, and we have used the
standard convention

d2z ≡ i
2
dz ∧ dz̄ = d(Rez) ∧ d(Imz) (B.11)

for the measure on a complex variable z.

The expansion of Ai(x), B(x), and χ(x) in eigenmodes takes the form

Ai(x) = (zero modes) +
∑

[p]

a([p],⊥) Φi,([p],⊥) + a([p],‖) Φi,([p],‖)

+ a∗
([p],⊥) Φ∗

i,([p],⊥) + a∗
([p],‖) Φ∗

i,([p],‖), (B.12)
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B(x) = (zero mode) +
∑

[p]

b[p] Φ[p] + b∗
[p] Φ

∗
[p],

χ(x) = (zero mode) +
∑

[p]

c[p] Φ[p] + c∗[p] Φ
∗
[p].

The orthonormality conditions for the complex normal modes are

∫
d2x

√
gΦ∗

[p]Φ[p′] =
∫

d2x
√
g gij Φ∗

i,([p],⊥)Φj,([p′],⊥)

=
∫

d2x
√
g gij Φ∗

i,([p],‖)Φj,([p′],‖) = δ[p],[p′], (B.13)
∫

d2x
√
g gij

(
Φ∗

i,([p],⊥)Φj,([p′],‖) + Φ∗
i,([p′],‖)Φj,([p],⊥)

)

=
∫

d2x
√
g gij Φi,([p],⊥)Φj,([p′],‖) = 0,

∫
d2x

√
gΦ[p]Φ[p′] =

∫
d2x

√
g gij Φi,([p],⊥)Φj,([p′],‖) = 0.

and the transversality conditions are

gij∂iΦj,([p],⊥) = εij∂iΦj,([p],‖) = 0. (B.14)

A natural choice for the normal modes is

Φ[p] =
√

1
vol2

exp {ip · x},

Φi,([p],⊥) =
√

1
vol2

√
|g|

gmnpmpn
εikg

klpl exp {ip · x}, (B.15)

Φi,([p],‖) =
√

1
vol2

√
1

gmnpmpn
pi exp {ip · x}.

Now we want to write the Euclidean action in terms of the complex nor-
mal modes. The action is of course a topological invariant, but since the
normalization conditions of the normal modes are written in terms of the
metric, it is useful to write the action as

SE = +
ik
2π

∫
d2x

√
|g| εij

2
√|g| B Fij , (B.16)
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In terms of the complex normal modes the action is

SE =
∑

[p]

S[p],

S[p] ≡ +
k

2π
|p|

(
b[p]a

∗
([p],⊥) − b∗

[p]a([p],⊥)

)

= (b∗
[p] a

∗
([p],⊥))O

(
b[p]

a([p],⊥)

)
,

where O is the anti-Hermitean matrix

O ≡ − ik|p|
2π

· σ2, |p| ≡
√
gijpipj . (B.17)

Since the operator O has imaginary eigenvalues, we can define the path
integral by the prescription

O → O + ε |p|2 · 12×2, (B.18)

and let ε→ 0+ be a positive real parameter approaching zero from above.
With this definition the action is still local and reduces in the ε→ 0+ limit
to the undeformed action, but the path integral over each set of modes is
convergent.

For an operator O with positive-definite real part, the Gaussian path
integral over a vector of complex variables A is given by

∫ ∏

(N)

(2 d2A(N)) exp
{
−A†OA

}
=

[
det

( O
2π

)]−1

, (B.19)

so, letting

A ≡
(

b[p]

a([p],⊥)

)
, (B.20)

O ≡ − ik|p|
2π

σ2,

we find that the path integral over b[p] and a([p],⊥) is 16 π4

k2 |p|2 . The other
contributing factor, from equal and opposite nonzero momenta [p], is the
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Fadeev–Popov determinant d2a([p],‖)
d2c[p]

. The gauge transformation of a([p],‖) is

δ a([p],‖) = i |p| · δ c[p], δ a∗
([p],‖) = −i |p| · δ c∗[p], (B.21)

so the Jacobian of the gauge transformation is given by

d2a([p],‖)
d2c[p]

= |p|2. (B.22)

Thus for each equal and opposite pair [p] of nonzero momenta there is a
cancellation of |p|-dependence between the dynamical Gaussian path integral
and the Fadeev–Popov determinant, leaving a factor of +16π4

k2 for each [p].

Formally, then, the path integral over nonzero modes, modulo the volume
of the group of gauge transformations at nonzero momentum, is

Znonzero = exp {Fnonzero}, Fnonzero =
∑

[p]

F[p],

F[p] = ln
(

16π4

k2

)
= −ln

(
k2

16π4

)
. (B.23)

The set of equal and opposite pairs [p] in the sum above is indexed by a
set of half the momenta. Since the summand is invariant under p→ −p, it
is easier to halve the summand and let the sum run over all momenta:

Fnonzero =
∑

p

Fp, kFp ≡ 1
2
F[p] = +ln

(
4π2

k

)
= −ln

(
k

4π2

)
. (B.24)

Formally, then, the path integral over the nonzero modes B and A, dividing
out by the volume of gauge group at nonzero momenta, is given by

Znonzero = exp
{
−F · ln

(
k

4π2

)}
,

F ≡
∑

p 	=0

1. (B.25)

The quantity F awaits regularization and renormalization. For the moment
we assert that F = −1 + q · vol2 for any local renormalization procedure,



1188 SIMEON HELLERMAN AND ERIC SHARPE

where vol2 is the volume 4π2r1r2 = 2πβr1 of the two-torus, and q is a
counterterm adjusting the effective vacuum energy density:

q = ρΛ/ln
(

k

4π2

)
. (B.26)

The choice of q (or equivalently ρΛ) is a local counterterm and the magnitude
of its finite piece is inherently ambiguous in the absence of some symmetry
principle to determine it. Since the classical action is scale invariant, we
are motivated to choose the value of q that restores scale-invariance, namely
q = 0. The magnitude of the non-extensive piece of F cannot be absorbed
into a local counterterm, is unambiguously determined, and should be the
same for any local renormalization procedure to define F . Thus we will
choose a renormalization procedure of the general form

F → Fregulated + (Δq) · vol2, (B.27)

where (Δq) is always chosen so that the extensive piece of F for whatever
regulator we choose:

Δq = − lim
vol2→∞

Fregulated

vol2
. (B.28)

Then we exploit the fact that the summand is just a constant 1, and
thus infrared-finite for small |p|, to write F as −1 plus a counterterm plus a
factorized sum, where each sum depends only on the momentum in a single
direction:

Fregulated = −1 + (Δq) vol2 + F1,regulated F2,regulated. (B.29)

For any local regulator characterized by a scale Λ, the sums F1,regulated and
F2,regulated vanish up to a UV divergent piece proportional to Λ r1 (resp.
Λr2), as well as terms vanishing more quickly than Λ−1. Thus for appro-
priately chosen Δq, the sum Fregulated goes to −1 plus terms that vanish at
least as quickly as a negative power of Λ when Λ is sent to ∞.

The sum Fregulated is also −1 in zeta-function regularization: the term
F1,regulated is defined by

F1,regulated ≡
∑

p1

μ2s (g11(p1)2)−s = (μr1)2s
∑

n1

n−2s
1

= (μr1)2s

⎛

⎝1 + 2
∑

n≥1

n−2s
1

⎞

⎠ = (μr1)2s (1 + 2ζ(2s)) , (B.30)
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where ζ is the Riemann zeta function. This sum is convergent for s > 1
2 but

is defined uniquely by analytic continuation for all values s �= 1. Remov-
ing the regulator corresponds to evaluating s = 0. Since ζ(0) = −1

2 we have
F1,regulated = 0, and likewise F2,regulated = 0. Thus there is no need for coun-
terterms in zeta-function regularization: Δq = 0 and F = −1.

So we have found that the appropriately renormalized value of F is simply
−1, and thus the renormalized path integral over nonzero modes, dividing
appropriately by the nonzero mode gauge group measure, is

Znonzero =
k

4π2
. (B.31)

The partition function over nonzero modes alone is nonlocal in all directions,
does not have a Hilbert space interpretation and need not be integer, which
is as it should be. To derive an appropriate Hilbert space interpretation
of the vacuum amplitude, we need to include the contributions of the zero
modes.

B.4 Integral over the zero modes

We now compute the volume of the zero modes of Ai and B, and divide by
the volume of the zero mode of χ. The measure for the dynamical zero modes
is just given by

∏
I=1,2 da0,Idb0 and the measure for the χ zero mode is dc0.

For both integrals the integrand is 1 and all that remains is to compute the
region of integration.

The zero mode pieces of the dynamical fields Ai, B, and the gauge param-
eter χ are

Ai|zero mode =
∑

I

φi,(0,I) a(0,I),

B|zero mode = φ0 b0, (B.32)

χ|zero mode = φ0 c0,

where φ0 and φ(0,I) are zero modes of the Laplacian satisfying the orthonor-
mality conditions. We take

φ0 =
1√
vol2

, kφi,(0,I) = δiI

√
gii

vol2
. (B.33)
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To determine the fundamental region for the Wilson lines a(0,I), recall that
the Wilson lines are identified under large gauge transformations,

Ai|zero mode ∼ Ai +
2π
Δxi

, (B.34)

where Δxi is the extent of the coordinate xi. In terms of the orthonormalized
zero modes, this translates into

a(0,I) ∼ a(0,I) +
2π δiI

√
vol2√

giiΔxi
=

2π δiI
√

vol2
Li

, (B.35)

where Li ≡ √
giiΔxi is the physical length of the cycle in the xi direction.

As for the zero modes of B and χ, both are identified under 2π, and their
zero modes have the same normalization, so their zero modes have the same
identifications:

b0 ∼ b0 + 2π
√

vol2, k c0 ∼ c0 + 2π
√

vol2. (B.36)

So the total partition function for the zero modes is

Zzero =
Za0 Zb0

Zc0

. (B.37)

The b0 and c0 zero mode integrals are the same,

Zb0 =
∫ 2π√

vol2

0
d b0 = Zc0 , (B.38)

so their ratio is unity, and we are left with contributions from the a0 zero
modes:

Zzero = Za0 =
∫ 2π

√
vol2

L1

0

∫ 2π
√

vol2
L2

0
d2a(0,I) =

4π2 vol2
L1L2

. (B.39)

The product of the lengths of cycles of a rectangular torus is equal to the
volume, L1L2 = vol2, so

Zzero = 4π2. (B.40)

Thus the total partition function over the torus is the product of the zero
mode and renormalized nonzero mode path integrals:

Z = ZzeroZnonzero = (4π2)
k

4π2
= k, (B.41)
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independent of r1 and r2. So we conclude that the BF theory has exactly k
quantum states, all of the same energy, which can be set exactly to zero by
a choice of counterterm for the two-dimensional vacuum energy density. We
see that the BF theory at level k ≥ 2 is the minimal Lagrangian realization
of a quantum field theory with k degenerate vacua—it is minimal in the
sense that it contains only the degenerate vacuua, and nothing else.

B.5 Hilbert space interpretation of the
vacuum amplitude

The vacuum amplitude is purely topological: with the appropriate choice of
vacuum energy density counterterm, the partition function is independent
of r1 and r2. Interpreting the Euclidean vacuum amplitude on the torus
as a thermal partition function at temperature β−1 = 1

2πr2
, we see that the

dimension of the Hilbert space is k, and all states have exactly zero energy.
Note, however, that even if we had chosen a different value for Δq, we
would have had k degenerate states, with common energy E = 2πr1ρΛ =
2πr1(Δq)/ln

(
k

4π2

)
.

B.6 Spectrum and commutation relations of local
operators and line operators

The operators in question are

On(x) ≡ : exp (inB(x)) :,

which clearly obey On · Om = On+m. We also have the Wilson line operators

Wn ≡ : exp
(

in
∮
A

)
:,

with the line integral taken over a spatial cycle. As we shall show shortly,
the Wilson line operators obey simple equal-time commutation relations
with the local operators Om(x):

WnOm = ξnmOmWn

for ξ = exp(−2πi/k). As a result, W and O commute like clock and shift
operators.

Given the dimension of the Hilbert space and the fact that the opera-
tors W and O are invertible, it follows that the operators W and O not
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only commute but actually act as clock and shift operators in the standard
k-dimensional representation. The commutation relations define an algebra
whose smallest nontrivial representation is k-dimensional. Since the oper-
ators W and O are invertible, their representation on the Hilbert space
cannot act as zero identically, so their representation must be nontrivial,
and the standard k-dimensional representation is the only one that is suffi-
ciently small.

B.7 Commutation relations

Now we shall compute the commutation relations between the Wilson line
operators and the On. We will work in timelike gauge: A0 = 0. In this case,
we can take the action to be

S =
k

2π

∫
B∂0A1

hence the conjugate momenta are

πA1 =
kB

2π
, πB = −kA1

2π
,

so we have the equal-time commutators

[B(x1), A1(x2)] = −i
2π
k
δ(x1 − x2).

From this one immediately derives

[A1(x), f(B(y))] =
2πi
k
f ′(B(y))δ(x− y).

Define

L =
∮
dxA1(x),

so that

[L, f(B)] =
2πi
k
f ′(B),

so in particular

[
L, eiαB

]
= −2πα

k
eiαB
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for any constant α. It is then straightforward to compute that

eiβLeiαBe−iβL = exp
(
−2πiαβ

k

)
eiαB

for any constants α, β. Thus, in particular,

WnOm = exp
(
−2πimn

k

)
OmWn.

We have already seen that the dimension of the Hilbert space of states in
this theory is k. Now we see that this k-dimensional Hilbert space carries a
minimum-dimensional representation of the finite-dimensional analogue of
the Heisenberg algebra, generated by clock and shift operators at level k,
which are generated by natural local operators and line operators of the
theory.

Concretely, the operator On acts on the Hilbert space as

On ∼

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0
0 ξn 0 · · · 0
0 0 ξ2n · · · 0
...

...
...

...
0 0 0 · · · ξ(k−1)n

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

Note also that the On exhaust the set of linearly independent local oper-
ators, as opposed to line operators, in the theory, and therefore that the
state-operator correspondence holds in this theory, despite its unfamiliar
features: the dimension of the Hilbert space is k, matching the number of
independent On.

Having established the action of the On on the k-dimensional Hilbert
space, it is then possible from linear combinations of the On to construct k
independent projection operators that are also local operators, which con-
firms the decomposition hypothesis that we have conjectured to hold in
general for two-dimensional conformal theories not satisfying cluster decom-
position [14]. For example, the operator P0 projecting onto states invariant
under the continuous B → B + ε symmetry is given by

P0 =
1
k

k−1∑

i=0

Oi.
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Of course, projection operators always exist in any finite-dimensional (or
even separable) Hilbert space. The existence of the projectors has special
significance, indicating the failure of cluster decomposition, only because
they are local operators.

B.8 Direct demonstration of non-cluster-decomposition

We can also demonstrate the failure of cluster decomposition directly in
this theory, without considering Wilson lines; we can simply compute the
correlation function of two local O-operators made from B, and note that the
correlation function is not equal to the product of one-point functions, even
when the spacelike separation between the operators becomes arbitrarily
large. Correlation functions containing only B’s are particularly simple,
receiving only contributions from the zero modes of B—nonzero modes do
not contribute. This is because B is a field that enters only linearly in
the Lagrangian. In terms of Feynman diagrams, the propagator is purely
anti-diagonal between B and A:

B A

and there are no interaction vertices. Thus, the expectation value of a set
of B nonzero-modes is equal to its classical value, i.e., the value where all
nonzero modes of B are set to zero, because in the absence of A modes
the external B lines have nowhere to terminate. This argument does not
apply to zero modes of B because these modes do not have a well-defined
propagator and there is no diagrammatic calculation of their correlation
functions.

One implication is that On · Om = On+m. In particular, this means that

〈On〉 = 〈On
1 〉

and from integrating over the circle of B zero modes, we find that

〈On
1 〉 = 〈1〉δn,0 mod k.

The result above shows directly that cluster decomposition does not hold
in the BF theory at level k ≥ 2. If cluster decomposition were to hold, it
would mean that

lim
x→∞〈O1(x)O−1(0)〉 = lim

x→∞
〈O1(x)〉〈O−1(0)〉

〈1〉 . (B.42)
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On the other hand, from the results above, we know that

〈O1(x)O−1(0)〉 = 〈1〉,
〈O±1(x)〉 = 0 k(unless k = 1),

so the property (B.42) does not hold for k ≥ 2: the operators O±1 are cor-
related with one another at arbitrary spacelike separation, as expected from
a summation over multiple degenerate vacua labeled by expectation values
of the O±1.
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