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Abstract

We consider plane-symmetric spacetimes satisfying Einstein’s field
equations with positive cosmological constant, when the matter is a fluid
whose pressure is equal to its mass-energy density (i.e., a so-called stiff
fluid). We study the initial-value problem for the associated Einstein
equations and establish a global existence result. The late-time asymp-
totics of solutions is also rigorously derived, and we conclude that the
spacetime approaches the de Sitter spacetime while the matter disperses
asymptotically. A technical difficulty dealt with here lies in the fact that
solutions may contain vacuum states as well as velocities approaching
the speed of light, both possibilities leading to singular behavior in the
evolution equations.
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1 Introduction

The study of global properties of cosmological spacetimes is a fundamental
problem in mathematical relativity, as it provides a first step toward under-
standing fundamental issues such as the structure of singularities and the
cosmic censorship conjecture. Such a study can be reduced to investigating
the global existence and asymptotic behavior of solutions to the Einstein
equations, possibly coupled to the equations of motion for a specific mat-
ter model. In the present paper, we treat the class of perfect fluids whose
pressure p and mass-energy density μ ≥ 0 coincide. This is a limiting case
(γ = 2) with the class of pressure laws p = (γ − 1)μ, in which γ ∈ [1, 2] is
referred as the adiabatic exponent of the fluid. Our main result concerns
the initial-value problem for the associated Einstein equations: we establish
a global existence result and rigorously determine the late-time asymptotic
behavior of solutions. This allows us to conclude that the spacetime is future
geodesically complete and approaches the de Sitter spacetime whereas the
matter asymptotically disperses.

Observe first that singularities generically arise in initially smooth solu-
tions to the fluid equations, that is, shock waves in the general case γ ∈ (1, 2]
and shell-crossing singularities in the case γ = 1. This is true even when
gravitational effects are taken into account [4]. If the solution is to be con-
tinued beyond shock waves, it is necessary to lower the regularity of initial
data and search for weak solutions, as investigated by LeFloch (see the
review [1] and the references therein).

On the other hand, existence of smooth solutions even in a long-time
evolution can sometime be established in physically interesting situations.
This is especially true when a cosmological constant is included, as we do
in the present paper. Global-in-time solutions and the existence of future
geodesically complete spacetimes can be established under a smallness con-
dition on the initial data, as recognized by Tchapnda [10] for γ = 1 and
under the assumption of plane symmetry and, later, without symmetry and
for γ ∈ (1, 4/3), by Rodnianski and Speck [5] and Speck [6, 7].

As far as the limiting case γ = 2 is concerned, plane symmetric spacetimes
have been investigated by Tabensky and Taub [8] and LeFloch and Stewart
[2]. In particular, Tabensky and Taub [8] rely on two different coordinate
systems in their analysis, a comoving coordinate system in which the fluid
is at rest, and a characteristic coordinate system. On the other hand, the
work [1,2] introduced the notion of weakly regular solutions to the Einstein
equations.
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In the present paper, we rely on areal coordinates, a coordinate system
in which the time is defined to be the area–radius function determined by
surfaces of symmetry. In these geometry-based coordinates, we prove a
global-in-time existence theorem (in the future direction) for plane-
symmetric solutions to the Einstein-stiff fluid equations with cosmologi-
cal constant. Importantly, we also derive the leading asymptotic behavior
of solutions and conclude with the future geodesic completeness of the
constructed spacetime.

Our analysis relies on a change of fluid variables that allows us to write the
fluid equations in a way analogous to the case of a massless scalar field, and
then to take advantage of techniques for semi-linear hyperbolic equations.
(A similar structure was observed in [11].) A specific technical difficulty
overcome in this work originates in the fact that solutions may naturally
contain vacuum states as well as velocities approaching the speed of light,
both possibilities leading to singular behavior in the evolution equations.

Note finally that our results extend to compressible fluids the conclusions
obtained by Tchapnda and Rendall [9] for the Vlasov equation of (collision-
less) kinetic dynamics.

The outline of the paper is as follows. Section 2 is concerned with the
derivation of the field equations for stiff fluids under plane-symmetry. Next,
in Section 3 we develop the local existence and uniqueness theory and then,
in Section 4, determine the global geometry and asymptotic behavior of the
spacetimes under consideration.

2 Einstein-stiff fluid equations

2.1 Gravitational field equations

We consider spacetimes (M, g) such that the manifold has the topology
M = I × T

3, where I is a real interval and T
3 = S1 × S1 × S1 is the three-

torus. The metric g and the matter fields are required to be invariant under
the action of the Euclidean group E2 on the universal cover. It is also
required that the spacetime has an E2-invariant Cauchy surface of constant
areal time. In such conditions the metric can be expressed in the form

ds2 = −e2η(t,x)dt2 + e2λ(t,x)dx2 + t2(dy2 + dz2), (2.1)
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where the time variable describes t > 0 and the spatial variable the interval
x ∈ [0, 1], while the variables y and z range in [0, 2π]; the metric coefficients
η and λ are periodic in x with period 1. The Einstein equations read

Gαβ + Λgαβ = 8πTαβ , (2.2)

where Gαβ is the Einstein tensor, Tαβ the energy-momentum tensor and
Λ is the cosmological constant which we assume to be positive. We also
introduce the notation

ρ = e2ηT 00, j = eλ+ηT 01, S = e2λT 11, p = t2T 22,

which defines the fluid variables of interest.

After a tedious computation in the above coordinates, (2.2) take the form
of the following evolution and constraint equations (where the subscripts
t, x denote partial differentiation):

e−2η(2tλt + 1) − Λt2 = 8πt2ρ, (2.3)

e−2η(2tηt − 1) + Λt2 = 8πt2S, (2.4)

ηx = −4πteλ+ηj, (2.5)

e−2λ(ηxx + ηx(ηx − λx)) − e−2η

(
λtt + (λt − ηt)

(
λt +

1
t

))
+ Λ = 8πp.

(2.6)

2.2 Stiff fluid equations

The so-called stiff fluid under consideration is an isentropic perfect fluid with
energy density μ > 0 equal to its pressure, that is, p = μ. The four-velocity
vector Uα of the fluid is normalized to be of unit length: UαUα = −1. The
plane symmetry allows us to set Uα := ξ(e−η, e−λu, 0, 0), where ξ = (1 −
u2)−1/2 is the relativistic factor and u is the scalar velocity satisfying |u| < 1.
The energy momentum tensor for the stiff fluid is

Tαβ = μ(2UαUβ + gαβ),

that is

T 00 = e−2η 1 + u2

1 − u2
μ =: e−2ηρ, T 01 = e−λ−η 2uμ

1 − u2
=: e−λ−ηj,

T 11 = e−2λ 1 + u2

1 − u2
μ =: e−2λS, T 22 = T 33 = t−2μ,

(2.7)
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while, due to the above assumptions, all the other components vanish iden-
tically.

The stiff fluid equations read

∇αTαβ = 0. (2.8)

We can assume that the components Tα2 and Tα3 vanish identically, while
by computing the remaining two components we arrive at the two evolution
equations

ρt + eη−λjx = −2λtρ − 2ηxeη−λj − 2
t
(ρ + μ),

jt + eη−λρx = −2λtj − 2ηxeη−λρ − 2
t
j.

(2.9)

The equations may be put into a simpler form, as follows. Observe that
the first-order principal part of (2.9) is a strictly hyperbolic system of two
equations associated with the two distinct speeds ±eη−λ. Introducing the
Riemann invariants

r :=
1 + u

1 − u
μ = ρ + j, s :=

1 − u

1 + u
μ = ρ − j, (2.10)

and the directional derivatives

D+ := ∂t + eη−λ∂x, D− := ∂t − eη−λ∂x,

and then combining the equations in (2.9) together, we obtain

D+r = −2
(

λt + ηxeη−λ +
1
t

)
r − 2

t

√
rs,

D−s = −2
(

λt − ηxeη−λ +
1
t

)
s − 2

t

√
rs.

(2.11)

Finally, the expressions for λt and ηx taken from (2.3) and (2.5) can be
plugged in (2.11), and by setting X = eη√r and Y = eη√s we arrive at

D+X = −Λte2ηX − 1
t
Y,

D−Y = −1
t
X − Λte2ηY,

(2.12)

which we will refer to as the stiff fluid equations for the unknowns r and s.
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2.3 Basic properties

It is easily checked that (2.6) is a consequence of equations (2.3)–(2.5),
(2.9). One can also check that (2.5) is a constraint equation, that is, it is
automatically satisfied for all times once it is satisfied on an initial Cauchy
hypersurface. Therefore, we will work with (2.3), (2.4) and (2.12) for the
unknowns η, λ, r and s. Observe that by definition r and s must be non-
negative. From the definition we see that S = ρ = (r + s)/2.

We will solve the initial-value problem with data prescribed on the hyper-
surface t = 1. Observe that once the fluid variables have been determined,
the metric coefficient η is obtained by integrating (2.4) in the time
direction, i.e.,

e−2η(t,x) =
e−2η(x)

t
+

1
t

∫ t

1
τ2(Λ − 4π(r + s)(τ, x)) dτ (2.13)

with η := η(1, ·). Next, η being known, the following equation (obtained
from (2.3) and (2.4)),

λt(t, x) = ηt(t, x) + Λte2η − 1
t
, (2.14)

is integrated in time to yield the second metric coefficient

λ(t, x) = λ(1, x) +
∫ t

1
λt(τ, x) dτ (2.15)

with λ = λ(1, ·). Therefore, it will be enough to concentrate on the stiff fluid
equations (2.12) together with the metric equation (2.13), that determine
an evolution system for the unknowns η, r, s.

Observe that there exists some T ∗ > 1 such that the right-hand side term
in (2.13) is positive on [1, T ∗) × [0, 1]. Estimates for r and s can easily be
derived as follows. The expressions for λt and ηx taken from (2.3) and (2.5)
can be plugged in (2.11) to yield

D+r = −
(

8πte2ηs + Λte2η +
1
t

)
r − 2

t

√
rs,

D−s = −
(

8πte2ηr + Λte2η +
1
t

)
s − 2

t

√
rs.

(2.16)

Using the fact that r and s are positive, this implies

D+r ≤ −t−1r, D−s ≤ −t−1s,
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and integrating this along the characteristic curves associated with the oper-
ators D± implies that

r ≤ r(1, ·)t−1, s ≤ s(1, ·)t−1. (2.17)

As a consequence, if η is bounded then so are X and Y .

A straightforward computation leads to the following result.

Lemma 2.1. Set

b1 = (λ − η)xeη−λ − Λte2η, b2 = −2Λtηxe2η,

b3 = (η − λ)xeη−λ − Λte2η, b = −1
t
.

If X and Y solve (2.12) then Xx and Yx satisfy

D+Xx = b1Xx + bYx + b2X,

D−Yx = bXx + b3Yx + b2Y.
(2.18)

The following result will be used to obtain bounds on derivatives of
X and Y .

Lemma 2.2. Set

K(t) = sup{(X + Y )(t, x) | x ∈ [0, 1]},
A(t) = sup{(|Xx| + |Yx|)(t, x) | x ∈ [0, 1]},
v(t) = sup{|(λ − η)x|eη−λ + Λte2η +

1
t
| x ∈ [0, 1]},

h(t) = 2Λt sup{|ηx|e2η | x ∈ [0, 1]}.

If (X, Y ) and (Xx, Yx) solve (2.12) and (2.18), respectively, with Xx(1) =
(eη

√
r)x and Yx(1) = (eη

√
s)x, then

A(t) ≤ A(1) +
∫ t

1

(
v(τ)A(τ) + h(τ)K(τ)

)
dτ. (2.19)
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Proof. Equations (2.18) can be written in the form

d

dt
Xx(t, γ1(t)) =

(
b1Xx + bYx + b2X

)
(t, γ1(t)),

d

dt
Yx(t, γ2(t)) =

(
bXx + b3Yx + b2Y

)
(t, γ2(t)),

where γ1 and γ2 are the integral curves corresponding to D+ and D−
respectively.

Integrating this over [1, t], taking the absolute value in each equation,
adding the resulting inequalities and taking the supremum of each term
yields (2.19). �

3 Local existence theory

3.1 Main statement of this section

We are interested in regular solutions, defined as follows.

Definition 3.1. A regular solution to the plane-symmetric Einstein-stiff
fluid equations consists of two metric coefficients η, λ and Riemann invariants
r, s given as continuously differentiable functions defined on [1, T ] × [0, 1] and
periodic in space.

We pose the initial-value problem by choosing some functions η, λ, r, s as
periodic functions on [0, 1] satisfying the constraint

ηx = −2πteλ+η(r − s), (3.1)

and, on the initial hypersurface t = 1, we impose

(η, λ, r, s)(1, ·) = (η, λ, r, s). (3.2)

Theorem 3.1 (Local existence and uniqueness theory in the Riemann vari-
ables). Given periodic, continuously differentiable data η, λ, r, s prescribed
on the initial hypersurface t = 1 and satisfying the constraint (3.1), there
exists a future development which consists of continuously differentiable func-
tions η, λ, r, s defined on some time interval [1, T ) (with T ∈ (1,∞])) that
are periodic in space and satisfy the stiff fluid equations (2.12), together with
the evolution equations (2.3) and (2.4).
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Once the Riemann invariants r and s are known, the primary fluid vari-
ables μ and u can be determined from equations (2.7) and (2.10):

μ =
√

rs, u =
√

r −√
s√

r +
√

s
.

By construction, the Riemann invariants are bounded, and this property is
equivalent to the following restriction in the fluid variables:

1 ± u

1 ∓ u
μ � 1. (3.3)

Observe that this condition allows the density to vanish, and the velocity
component u to approach ±1, which is the normalized light-speed. The
condition is equivalent to saying

0 ≤ μ � 1 − |u|2. (3.4)

Theorem 3.2 (Local existence and uniqueness theory in the fluid vari-
ables). Under the assumptions of Theorem 3.1, the problem with initial data
satisfying the uniform bound (3.4) admits a local-in-time solution which is
unique in the following (generalized) sense: if μ1, u1 and μ2, u2 denote fluid
solutions to the same initial-value problem, then

either μ1 = μ2 > 0 and u1 = u2,

or μ1 = μ2 = 0 and u1, u2 are arbitrary.

3.2 Proof of the local existence result

We rely on an iterative argument and define a sequence (ηn, rn, sn) in the
following way.

(1) For t ∈ [1, +∞) and x ∈ [0, 1], we set (η0, r0, s0)(t, x) := (η, r, s)(x),
T0 = +∞.

(2) If ηn−1, rn−1, sn−1 are regular on [1, Tn−1) × [0, 1] with Tn−1 ≤ ∞,
then we define Tn to be supremum of all t′ ∈ (1, Tn−1) such that

e−2η(x)

t
+

1
t

∫ t

1
τ2(Λ − 4π(rn−1 + sn−1)(τ, x)) dτ > 0,

for all x ∈ [0, 1] and t ∈ [1, t′], and we then set

e−2ηn(t,x) =
e−2η(x)

t
+

1
t

∫ t

1
τ2(Λ − 4π(rn−1 + sn−1)(τ, x)) dτ. (3.5)
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(3) We define rn and sn such that Xn = eηn
√

rn, and Yn = eηn
√

sn are
solutions of the system

D+
n−1Xn = an−1Xn−1 + bYn−1,

D−
n−1Yn = bXn−1 + an−1Yn−1,

(3.6)

where an−1 = −Λte2ηn−1 , b = −1
t . D±

n is the D±-operator correspond-
ing to the nth iterate. We prescribe the same initial data (3.2) for all n.

Observe that Tn ≥ T ∗ for all n, so that all the iterates are well defined
and regular on the fixed time interval [1, T ∗).

In order to prove that the sequence of iterates converges to a regular
solution, we establish uniform bounds on the iterates as well as their time
and space derivatives, and we prove their uniform convergence. This is done
in a series of lemmas.

In the sequel we denote by ‖ ‖ the sup-norm on the function space of
interest, C denotes a constant that may change at each occurrence.

Lemma 3.1. The sequences ηn, Xn, Yn, rn, sn and (ηn)t are uniformly
bounded in n, in the sup-norm by a continuous function of t, on a time
interval [1, T (1)].

Proof. Set

Pn(t) := sup{e2ηn(t,x) |x ∈ [0, 1]},
Kn(t) := sup{(Xn + Yn)(t, x) |x ∈ [0, 1]}.

Using equations (3.6), we apply the same argument used in the proof of
Lemma 2.2 and obtain

Kn(t) ≤ K0 +
∫ t

1
mn−1(τ)Kn−1(τ) dτ, (3.7)

with

mn(t) = sup
{

Λte2ηn +
1
t
; x ∈ [0, 1]

}

≤ t(1 + Λ)(1 + Pn(t)),

so that

Kn(t) ≤ K0 + (1 + Λ)
∫ t

1
τ(1 + Pn−1(τ))Kn−1(τ) dτ. (3.8)
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On the other hand, equation (3.5) implies

(ηn)t =
1
2t

− Λ
2

te2ηn + 2πte2ηn−2ηn−1(X2
n−1 + Y 2

n−1), (3.9)

and since e−2ηn−1 ≤ e−2η+Λt3

t ≤ C(1 + Λ)t2, it follows that

Pn(t) ≤ ‖e2η‖ + C(1 + Λ)
∫ t

1
τ3(1 + Kn−1(τ))2(1 + Pn(τ))2 dτ. (3.10)

Now defining Qn(t) := sup{Km(t) + Pm(t); m ≤ n} and adding (3.7) and
(3.10) we arrive at

Qn(t) ≤ K0 + ‖e2η‖ + C(1 + Λ)
∫ t

1
τ3(1 + Qn(τ))4 dτ. (3.11)

Let [1, T (1)) (with T (1) ∈ (1, T ∗]) be the maximal interval of existence for
the solution z1 of the integral equation

z1(t) = K0 + ‖e2η‖ + C(1 + Λ)
∫ t

1
τ3(1 + z1(τ))4 dτ, z1(1) = K0 + ‖e2η‖.

Then Qn(t) ≤ z1(t), for all n ∈ N and t ∈ (1, T (1)). The same is true for Kn

and Pn. It follows that ηn, Xn, Yn, and then rn, sn and (ηn)t are uniformly
bounded. To bound (ηn)t, we use (3.9). �
Lemma 3.2. The sequences (ηn)x, (Xn)x, (Yn)x, (Xn)t, (Yn)t, (rn)x, (sn)x,
(rn)t and (sn)t are uniformly bounded in n, the sup-norm by a continuous
function of t on a time interval [1, T (2)].

Proof. Set

An(t) := sup{|(Xn)x| + |(Yn)x|(t, x) |x ∈ [0, 1]},
A0 := sup{(|Xx| + |Y x|)(x) |x ∈ [0, 1]},

Bn(t) := sup{|(e−2ηn(t,x))x| |x ∈ [0, 1]}.

Then taking the spatial derivative in (3.6) gives the following equations:

D+
n−1(Xn)x = (λn−1 − ηn−1)xeηn−1−λn−1(Xn)x − 2Λt(ηn−1)xe2ηn−1Xn

− Λte2ηn−1(Xn−1)x − 1
t
(Yn−1)x,

D−
n−1(Yn)x = (ηn−1 − λn−1)xeηn−1−λn−1(Yn)x − 2Λt(ηn−1)xe2ηn−1Yn

− Λte2ηn−1(Yn−1)x − 1
t
(Xn−1)x.
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But, using Lemma 3.1, we have

|(λn−1 − ηn−1)x(s)| = |(λ − η)x + 2Λ
∫ s

1
τ(ηn−1)xe2ηn−1 dτ |

≤ Cs2(1 + Bn−1(s)),

so that applying the same argument as in Lemma 2.2 and using Lemma 3.1
again, we obtain

An(t) ≤ A0 + C

∫ t

1
τ2(1 + Bn−1(τ))(1 + An−1(τ) + An(τ))) dτ. (3.12)

On the other hand, we have

(e−2ηn(t,x))x =
−2ηxe−2η

t
− 4π

t

∫ t

1
τ2(rn−1 + sn−1)x(τ, x)) dτ, (3.13)

which implies

Bn(t) ≤ 2‖ηxe−2η‖ + C

∫ t

1
τ2(An−1 + Bn−1)(τ) dτ. (3.14)

We have used the fact that

|(rn + sn)x| = |(e−2ηn)x(X2
n + Y 2

n ) + 2e−2ηn
(
Xn(Xn)x + Yn(Yn)x

)|
≤ C(An + Bn)(t).

Now defining En(t) := sup{Am(t) + Bm(t); m ≤ n} and adding (3.12) and
(3.14) we arrive at

En(t) ≤ A0 + 2‖ηxe−2η‖ + C

∫ t

1
τ2(1 + En(τ))2 dτ. (3.15)

Let [1, T (2)) (with T (2) ≤ T (1)) be the maximal interval of existence for the
solution z2 of the integral equation

z2(t) = A0 + 2‖ηxe−2η‖ + C

∫ t

1
τ2(1 + z2(τ))2 dτ,

z2(1) = A0 + 2‖ηxe−2η‖.

Then En(t) ≤ z2(t), for all n ∈ N and t ∈ (1, T (2)). The same is true for An

and Bn. It follows that (ηn)x, (Xn)x, (Yn)x, (Xn)t, (Yn)t, (rn)x, (sn)x and
then (rn)t, (sn)t and (ηn)tx are uniformly bounded. �
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Lemma 3.3. The sequences (ηn), (Xn) and (Yn) converge uniformly on
[1, T (3)] for all T (3) less than T (2).

Proof. For t ∈ [1, T (3)], define

θn(t) := sup{|Xn+1 − Xn|(t, x) + |Yn+1 − Yn|(t, x); x ∈ [0, 1]},
αn(t) := sup{‖(ηn+1 − ηn)(s)‖ + ‖(Xn+1 − Xn)(s)‖

+ ‖(Yn+1 − Yn)(s)‖; s ∈ [1, t]},
X̃n := Xn+1 − Xn, Ỹn := Yn+1 − Yn.

Combining equations (3.6) written for n + 1 and n gives

D+
n X̃n = anX̃n−1 + bỸn−1 + Fn,

D−
n Ỹn = bX̃n−1 + anỸn−1 + Gn,

(3.16)

with

Fn = −(e2ηn − e2ηn−1)ΛtXn−1 − (eηn−λn − eηn−1−λn−1)(Xn)x,

Gn = −(e2ηn − e2ηn−1)ΛtYn−1 + (eηn−λn − eηn−1−λn−1)(Yn)x.

Reasoning as in the proof of Lemma 2.2, we have

θ(t) ≤
∫ t

1

(
mn(τ)θn−1 + sup{|Fn(τ, x)| + |Gn(τ, x)|; x ∈ [0, 1]}) dτ, (3.17)

and this implies that

|X̃n| + |Ỹn| ≤ C

∫ t

1
αn−1(τ) dτ, (3.18)

we have used the mean value theorem to handle the terms e2ηn − e2ηn−1 and
eηn−λn − eηn−1−λn−1 , and the previous lemmas.
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On the other hand, equation (3.9) implies

(ηn+1 − ηn)t = −Λ
2

t(e2ηn+1 − e2ηn) + 2πte2ηn+1−2ηn
(
(X2

n+1 − X2
n)

+ (Y 2
n+1 − Y 2

n )
)

+ 2πt(e2ηn+1−2ηn − e2ηn−2ηn−1)(X2
n + Y 2

n ),

and using Lemma 3.1 and the mean value theorem it follows after integration
in time that

|ηn+1 − ηn| ≤ C

∫ t

1
(|ηn+1 − ηn| + |ηn − ηn−1| + |Xn+1 − Xn|

+ |Yn+1 − Yn|)(τ) dτ,

so that

|ηn+1 − ηn| ≤ C

∫ t

1
(αn + αn−1)(τ) dτ. (3.19)

Combining (3.18) and (3.19) leads to

αn(t) ≤ C

∫ t

1
(αn + αn−1)(τ) dτ,

which, by Gronwall’s inequality, implies

αn(t) ≤ C

∫ t

1
αn−1(τ) dτ,

and by induction

αn(t) ≤ Cn+1

n!
,

and so αn → 0 as n → ∞. This establishes the uniform convergence of ηn,
Xn and Yn. �

It follows from (3.9) that the sequence (ηn)t converges uniformly as well.
In the following lemma, the uniform convergence of other iterates derivatives
is proven.

Lemma 3.4. The sequences (ηn)x, (Xn)x, (Yn)x, (Xn)t and (Yn)t converge
uniformly on [1, T (4)], where [1, T (4)] ⊂ [1, T (3)].
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Proof. We set

βn(t) := sup
{
‖(ηn+1 − ηn)x(s)‖ + ‖(Xn+1 − Xn)x(s)‖

+ ‖(Yn+1 − Yn)x(s)‖; s ∈ [1, t]
}
.

Taking the space derivative in equations (3.6) gives

D+
n (Xn+1)x = C̃n, D−

n (Yn+1)x = D̃n (3.20)

with

C̃n = (λn−ηn)xeηn−λn(Xn+1)x−2Λt(ηn)xe2ηnXn−Λte2ηn(Xn)x− 1
t
(Yn)x,

D̃n = (ηn−λn)xeηn−λn(Yn+1)x−2Λt(ηn)xe2ηnYn−Λte2ηn(Yn)x− 1
t
(Xn)x.

Let γ1
n and γ2

n be the integral curves corresponding to D+
n and D−

n respec-
tively, that start from the point (s, x) that is, for each n,

(γ1
n)t = eηn−λn , (γ2

n)t = −eηn−λn , γ1
n(s) = γ2

n(s) = x. (3.21)

Integrating the first equation in (3.20) along γ1
n, the second one along γ2

n

yields after subtraction

(Xn+1 − Xn)(s) =
∫ s

1

(
C̃n(τ, γ1

n(τ)) − C̃n−1(τ, γ1
n−1(τ))

)
dτ,

(Yn+1 − Yn)(s) =
∫ s

1

(
D̃n(τ, γ1

n(τ)) − D̃n−1(τ, γ1
n−1(τ))

)
dτ.

(3.22)

But we have

|C̃n(τ, γ1
n(τ)) − C̃n−1(τ, γ1

n−1(τ)|
≤ |C̃n(τ, γ1

n(τ)) − C̃n(τ, γ1
n−1(τ)| + |(C̃n − C̃n−1)(τ)|. (3.23)

Given now any ε > 0, we find, for any sufficiently large n,

|C̃n(τ, γ1
n(τ)) − C̃n(τ, γ1

n−1(τ)| ≤ Cε, (3.24)

we have used the uniform convergence of ηn, the uniform continuity of C̃n

over the compact set [1, T (4)] × (
γ1

n([1, T (4)]) ∪ γ1
n−1([1, T (4)])

)
, and the fol-

lowing inequality which follows from (3.21)

|γ1
n − γ1

n−1|(τ) ≤ C sup
{
‖(e2ηn − e2ηn−1)(t)‖ ; t ∈ [1, T (4)]

}
. (3.25)
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For the second term of the right-hand side in (3.23) we have

C̃n − C̃n−1

=
(
(λn − ηn)x − (λn−1 − ηn−1)x

)
eηn−λn(Xn+1)x + (λn−1 − ηn−1)x

×
(
eηn−λn(Xn+1 − Xn)x + (eηn−λn − eηn−1−λn−1)(Xn+1)x

)

− 2Λt(ηn − ηn−1)xe2ηnXn − 2Λt(ηn−1)x

×
(
e2ηn(Xn − Xn−1) + (e2ηn − e2ηn−1)(Xn−1)

)

− Λt(e2ηn − e2ηn−1)(Xn)x − Λte2ηn−1

× (
(Xn)x − (Xn−1)x

) − 1
t

(
(Yn)x − (Yn−1)x

)
,

and

(λn − ηn)x = (λ − η)x + 2Λ
∫ t

1
t(ηn)xe2ηn dτ,

so that

|(λn−ηn)x− (λn−1−ηn−1)x| ≤ Cε+C sup{‖(ηn−ηn−1)x(t)‖; t ∈ [1, T (4)]}.

Thus, for n sufficiently large,

‖(C̃n − C̃n−1)(τ)‖ ≤ Cε + C(βn + βn−1)(τ). (3.26)

It then follows from (3.22)–(3.24) and (3.26) that for n sufficiently large,

|(Xn+1 − Xn)x|(s) ≤ Cε + C

∫ s

1
(βn + βn−1)(τ) dτ,

|(Yn+1 − Yn)x|(s) ≤ Cε + C

∫ s

1
(βn + βn−1)(τ) dτ.

(3.27)

On the other hand, taking the spatial derivative in (3.9), subtracting the
resulting equations written for n + 1 and n gives

(ηn+1 − ηn)tx

= −Λt(ηn+1 − ηn)xe2ηn+1 − Λt(ηn)x(e2ηn+1 − e2ηn)

+ 4πt(ηn+1 − ηn)xe2(ηn+1−ηn)(X2
n + Y 2

n )

− 4πt(ηn − ηn−1)xe2(ηn−ηn−1)(X2
n−1 + Y 2

n−1)

+ 4πte2(ηn+1−ηn)
(
(Xn − Xn−1)xXn + (Yn − Yn−1)xYn

)
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+ 4πte2(ηn+1−ηn)
(
(Xn−1)xXn + (Yn−1)xYn

)
− 4πte2(ηn−ηn−1)

(
(Xn−1)xXn−1 + (Yn−1)xYn−1

)
,

from this and the previous lemmas, it follows that, for n sufficiently large,

|(ηn+1 − ηn)x|(s) ≤ Cε + C

∫ s

1
(βn + βn−1)(τ) dτ. (3.28)

Combining (3.27) and (3.28), and taking the supremum over s ∈ [1, t] yields,
for n sufficiently large,

βn(t) ≤ Cε + C

∫ t

1
(βn + βn−1)(τ) dτ,

and by Gronwall’s lemma it follows that, for n sufficiently large and t ∈
[1, T (4)],

δn(t) ≤ Cε,

where δn(t) := sup{βm, m ≤ n}. The uniform convergence of (ηn)x, (Xn)x,
(Yn)x, (Xn)t and (Yn)t follows. �

Lemmas 3.3 and 3.4 allow us to pass to the limit in (3.5) and (3.6) and
obtain a regular solution (η, X, Y ) to our system on a time interval [1, T ).
It is easily checked that this solution is unique. Namely, let (ηi, Xi, Yi),
i = 1, 2, be two regular solutions of the Cauchy problem for the same initial
data (η,X, Y ) at t = 1. Using the same argument as in the proof of iterates
convergence leads to

α(t) ≤ C

∫ t

1
α(τ) dτ,

where α(t) = sup{‖(η1 − η2)(s)‖ + ‖(X1 − X2)(s)‖ + ‖(Y1 − Y2)(s)‖ s ∈
[1, t]}. It follows that α(t) = 0, for t ∈ [1, T ) i.e., the solution is unique.

We have thus established the existence of a unique, local-in-time regular
solution (η, λ, r, s) to the Cauchy problem for the plane symmetric Einstein-
stiff fluid equations written in areal coordinates.

4 Global existence theory and asymptotics

4.1 Global existence

We are now in a position to establish the following main result, which takes
advantage of our assumption Λ > 0.
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Theorem 4.1 (Global existence theory and asymptotics). Under the
assumptions in Theorem 3.1, the solution constructed therein is defined up
to T = +∞, the spacetime is future geodesically complete, and the following
asymptotic properties hold at late times:

η = − ln t(1 + O
(
(ln t)−1)

)
, λ = ln t(1 + O

(
(ln t)−1)

)
,

r = O(t−1), s = O(t−1),

ηt = −1
t
(1 + O(t−1)), λt =

1
t
(1 + O(t−1)),

ηx = O(1).

(4.1)

Consequently, the generalized Kasner exponents associated with this space-
time (cf. (4.11), below) tend to 1/3:

lim
t→∞

κ1
1(t, x)

κ(t, x)
= lim

t→∞
κ2

2(t, x)
κ(t, x)

= lim
t→∞

κ3
3(t, x)

κ(t, x)
=

1
3
,

where κ = κi
i denotes the trace of the second fundamental form κj

i .

In particular, this shows that the spacetime approaches the de Sitter
spacetime asymptotically. To establish this global result, we begin with a
continuation criterion, based on the same notation as in the previous section.

Lemma 4.1. Let [1, T ) be the maximal interval of existence of solutions to
the system under consideration. If sup{|η(t, x)| |x ∈ [0, 1], t ∈ [1, T )} < +∞
then T = +∞.

Proof. It suffices to prove that under the assumption that η is bounded
on [1, T ), the same is true for ηx, ηt, X, Y , Xx, Yx, Xt and Yt. First of
all, by definition we have X = eη√r and Y = eη√s and it follows from the
decay inequalities (2.17) that X and Y are bounded. Next, recalling that
ηx = −2πteη+λ(r − s) and ηt = 1

2t + 2πt(X2 + Y 2) − Λt
2 e2η, we find that ηx

and ηt are bounded as well. Here, we have used the fact that

λ(t, x) = (λ − η)(x) + η(t, x) − ln t + Λ
∫ t

1
τe2η(τ, x) dτ.

Taking the spatial derivative in this equation implies

(λ − η)x(t, x) = (λ − η)(x) + 2Λ
∫ t

1
τ(ηxe2η)(τ, x) dτ,
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so that v(t), defined in Lemma 2.2, is bounded. Rewriting (2.19)

A(t) ≤ A(1) +
∫ t

1

(
v(τ)A(τ) + h(τ)K(τ)

)
dτ,

and using the fact that h and K are bounded, Gronwall’s lemma allows us
to conclude that A, and then Xx and Yx are bounded. Bounds on Xt and
Yt then follow from (2.12). �

We now prove that η is bounded in order to conclude that T = +∞.

Lemma 4.2. The function η satisfies

sup
{|η(t, x)|/x ∈ [0, 1], t ∈ [1, T )

}
< +∞.

Proof. We can deduce from (2.13) that e−2η(t,x) ≤ e−2η(x)+Λt3

t , i.e.,

e2η(t,x) ≥ t

C + Λt3
, (4.2)

which provides a (negative, say) lower bound on η. Now, let us prove that

∫ 1

0
(eη+λρ)(t, x) dx ≤ Ct−4, t ∈ [1, T ), x ∈ [0, 1], (4.3)

which will eventually lead us to an upper bound for η.

Using the equations (2.3), (2.4) and (2.9), after some computations we find

d

dt

(∫ 1

0
(eη+λρ)(t, x) dx

)
=

∫ 1

0
eη+λρ

(
−1

t
− Λte2η

)
dx

−
∫ 1

0
e2η

(
jx + 2ηxj

)
dx −

∫ 1

0

2
t
eη+λμ dx.

Since μ ≥ 0 and

∫ 1

0
e2η

(
jx + 2ηxj

)
dx =

∫ 1

0

(
e2ηj

)
x

dx = 0,

it follows that

d

dt

(∫ 1

0
(eη+λρ)(t, x) dx

)
≤ 1

t

∫ 1

0
eη+λρ

( − 1 − Λt2e2η
)

dx. (4.4)
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Thanks to (4.2), we have

−Λt2e2η ≤ −Λt3

C + Λ
3 t3

≤ −3 +
9C

Λ
t−3,

so that (4.4) implies

d

dt

(
t4

∫ 1

0
(eη+λρ)(t, x) dx

)

= 4t3
∫ 1

0
(eη+λρ)(t, x) dx + t4

d

dt

(∫ 1

0
(eη+λρ)(t, x) dx

)

≤ 4t3
∫ 1

0
(eη+λρ)(t, x) dx + t3

∫ 1

0
eη+λρ

(
−4 +

9C

Λt3

)
dx

≤ 9C

Λt4
t4

∫ 1

0
(eη+λρ)(t, x) dx,

from which we deduce (4.3) by integration.

We are now in a position to make use of the integral estimate (4.3). Recall-
ing that ηx = −4πteη+λj and 0 ≤ j ≤ ρ, we control the spatial oscillation of
η at each time, as follows:
∣∣∣∣η(t, x) −

∫ 1

0
η(t, τ) dτ

∣∣∣∣ =
∣∣∣∣
∫ 1

0

∫ x

τ
ηx(t, σ) dσ dτ

∣∣∣∣ ≤
∫ 1

0

∫ 1

0
|ηx(t, σ)| dσ dτ

≤ 4πt

∫ 1

0
(eη+λj)(t, σ) dσ ≤ 4πt

∫ 1

0
(eη+λρ)(t, σ) dσ,

and thanks to (4.3), this implies that
∣∣∣∣η(t, x) −

∫ 1

0
η(t, τ) dτ

∣∣∣∣ ≤ Ct−3, t ∈ [1, T ), x ∈ [0, 1]. (4.5)

We will have the desired upper bound on η, provided we can control its
integral. Recalling that ηt − λt = 1

t − Λte2η and using (4.2) gives

∂

∂t
eη−λ = (ηt − λt)eη−λ ≤ eη−λ

(
1
t
− Λt2

C + Λ
3 t3

)
,

and, after integration,

eη−λ ≤ C
t

C + Λ
3 t3

≤ Ct−2, t ∈ [1, T ), x ∈ [0, 1]. (4.6)
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Next, using (2.4), (4.2), (4.3) and (4.6), we have

∫ 1

0
η(t, x) dx =

∫ 1

0
η(x) dx +

∫ t

1

∫ 1

0
ηt(s, x) dxds

≤ C +
∫ t

1

1
2s

∫ 1

0

(
1 + e2η(8πs2ρ − Λs2)

)
dxds

≤ C +
1
2

ln t + 4π

∫ t

1

∫ 1

0
seη−λeη+λρ dxds

−
∫ t

1

∫ 1

0

Λ
2

se2η dxds,

thus

∫ 1

0
η(t, x) dx ≤ C +

1
2

ln t + C

∫ t

1
s−5 ds − 1

2

∫ t

1

Λs2

C + Λ
3 s3

ds

≤ C +
1
2

ln

(
Λt

C + Λ
3 t3

)
.

It then follows from (4.5) that

η(t, x) ≤ C(1 + t−3) +
1
2

ln

(
Λt

C + Λ
3 t3

)
,

which leads to an upper bound for η, i.e.,

e2η(t,x) ≤ Ct−2, t ∈ [1, T ), x ∈ [0, 1],

and the proof is complete. �

4.2 Late-time asymptotics

We determine now the explicit leading asymptotic behavior of r, s, η, λ, λt,
ηt and ηx, and then check that each of the generalized Kasner exponents
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tends to 1/3. We have proven that (see equation (2.17))

r = O(t−1), s = O(t−1), (4.7)

and equation (2.13) implies

(te−2η)t = Λt2 − 4πt2(r + s).

Integrating over [1, t] and using (4.7), we obtain
∣∣∣∣te−2η − Λ

3
t3

∣∣∣∣ ≤ Ct2,

that is, e−2η = (Λ/3)t2(1 + O(t−1)), so that

eη =

√
3
Λ

t−1(1 + O(t−1)).

In view of ηt = (1/2t) − (Λ/2)te2η + 2πte2η(r + s), one has

ηt = −1
t
(1 + O(t−1)), (4.8)

and, after integration over [1, t], η = − ln t(1 + O
(
(ln t)−1)

)
.

Since λt = ηt + Λte2η − (1/t), one also has

λt =
1
t
(1 + O(t−1)), (4.9)

and integrating over[1, t] gives λ = ln t(1 + O
(
(ln t)−1)

)
. This implies eλ =

O(t), and recalling that ηx = −2πteλ+η(r − s) one deduces that

ηx = O(1). (4.10)

Consider the generalized Kasner exponents which take the following form
for the metric under consideration (see for instance [3]):

κ1
1(t, x)

κ(t, x)
=

tλt

tλt + 2
,

κ2
2(t, x)

κ(t, x)
=

κ3
3(t, x)

κ(t, x)
=

1
tλt + 2

, (4.11)

where κ(t, x) = κi
i(t, x) is the trace of the second fundamental form κij(t, x)

of the metric. It follows from (4.9) that as t tends to ∞, each of these
quantities tends to 1/3, uniformly in x.
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4.3 Future geodesic completeness

The late-time asymptotic expansion above allows us to establish that the
spacetime is future geodesically complete, as follows. Let τ �→ (

γα
)
(τ) (with

t = γ0(τ)) be a future-directed causal geodesic defined on an interval [1, τ+)
with τ+ maximal, and normalized so that γ0(τ0) = t(τ0) = 1 for some τ0 ∈
[1, τ+). We are going to prove that τ+ = +∞.

Since γ is causal and future directed, we have

gαβγα
τ γβ

τ = −m2, γ0
τ > 0,

where m = 0 if γ is null, and m �= 0 if γ is timelike. Since dt
dτ = γ0

τ > 0, the
geodesic can be parameterized by the coordinate time t. With respect to
this coordinate time the geodesic exists on the whole interval [1, +∞) since
on each bounded interval of t the Christoffel symbols are bounded and the
right-hand sides of the geodesic equation (written in coordinate time) are
linearly bounded in γ1

τ , γ2
τ and γ3

τ .

Along the geodesic we define

w := eλγ1
τ , F := t4

(
(γ2

τ )2 + (γ2
τ )3

)
.

Using the geodesic equation it is easily checked that

dw

dτ
= −λtγ

0
τ w − e2η−ληx(γ0

τ )2,
dF

dτ
= 0.

The relation between coordinate time and proper time is then given by

dτ

dt
= (γ0

τ )−1 =
eη√

m2 + w2 + F/t2
. (4.12)

We will now exhibit a lower bound for dτ/dt by a function with divergent
integral on [1, +∞) and, to this end, an estimate on w as a function of the
coordinate time is needed.

Assume that w(t) > 0 for some t ≥ 1. Then, as long as w(s) > 0, we have

dw

ds
= −λtw − eη−ληx

√
m2 + w2 + F/s2

= 4πse2η(j
√

m2 + w2 + F/s2 − ρw) +
1
2t

w − Λ
2

se2ηw. (4.13)
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Using the elementary inequality
√

a + b ≤ √
a +

√
b and equation (4.2), we

obtain

dw

ds
≤ 4πse2η(|j| − ρ)w +

1 − Λs2e2η

2s
w + 4πse2η|j|

√
m2 + F/s2.

We can drop the first two terms which are negative since |j| ≤ ρ and

1 − Λs2e2η ≤ C

Λ
s−3 − 2 < 0, s sufficiently large,

and we estimate the third term by Cs−2 (since |j| ≤ Cs−1 and e2η ≤ Cs−2).
It then follows that

dw

ds
≤ Cs−2. (4.14)

Let t0 ∈ [1, t) be the smallest time such that w(s) > 0 for all s ∈ [t0, t).
Then integrating (4.14) over [t0, t] gives

w(t) ≤ C.

For the case w(t) < 0, it follows from (4.13) that, as long as w(s) < 0

dw

ds
≥ 4πse2η(−ρ

√
m2 + w2 + F/s2 − ρw) +

1 − Λs2e2η

2s
w

≥ −4πse2ηρ
√

m2 + F/s2 + 8πse2ηρw

≥ Cs−2(−1 + w),

we have used the fact that |j| ≤ ρ, 1−Λs2e2η

2s < 0 for large s and the elemen-
tary inequality

√
a + b ≤ √

a +
√

b. Therefore we have

1
1 − w

d(1 − w)
ds

≤ Cs−2. (4.15)

Let t1 ∈ [1, t) be the smallest time such that w(s) < 0 for all s ∈ [t1, t). Then
integrating (4.15) over [t1, t] implies

−w(t) ≤ C.

In either case, we arrive at

|w(t)| ≤ C, t ≥ 1.
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On the other hand, equation (4.2) implies that

eη ≥ Ct−1, t ≥ 1,

so we then deduce from (4.12) that

dτ

dt
≥ Ct−1

√
m2 + C + F

,

and since the integral of the right-hand side over [1, +∞) diverges, it follows
that τ+ = +∞ and the proof of future geodesic completeness is completed.
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