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Abstract

Given two two-dimensional conformal field theories, a domain wall —
or defect line — between them is called invertible if there is another defect
with which it fuses to the identity defect. A defect is called topological if
it is transparent to the stress tensor. A conformal isomorphism between
the two CFTs is a linear isomorphism between their state spaces which
preserves the stress tensor and is compatible with the operator prod-
uct expansion. We show that for rational CFTs there is a one-to-one
correspondence between invertible topological defects and conformal iso-
morphisms if both preserve the rational symmetry. This correspondence
is compatible with composition.
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Dualities play an important role in understanding non-perturbative proper-
ties of models in quantum field theory, statistical physics or string theory,
because they allow to relate observables in a model at weak coupling to
those of the dual model at strong coupling. Some well known examples are
Kramers-Wannier duality [1], electric-magnetic duality [2], T-duality [3],

mirror symmetry [4,5], and the AdS/CFT correspondence [6].

By their very nature, dualities are hard to find and it is difficult to
understand precisely how quantities in the two dual descriptions are re-
lated. In many examples, it has proved helpful to describe dualities by a
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‘duality domain wall’, a co-dimension one defect which separates the dual
theories [7-11]. It is then natural to ask if in any sense all dualities can
be described by such defects. For a particularly simple type of duality de-
fects — so-called invertible defects — in a particularly well understood class
of quantum field theories, namely two-dimensional rational conformal field
theories, we will answer this question in the affirmative. Let us describe the
setting and the result of this paper in more detail.

Generically, a duality transformation exchanges local fields and disor-
der fields. This is the case in the archetypical example of such dualities,
Kramers—Wannier duality of the two-dimensional Ising model. In the lat-
tice model, the duality exchanges the local spin-operator with the non-local
disorder-operator, which marks the endpoint of a frustration line on the
dual lattice. In the conformal field theory, which describes the critical point
of the Ising model, the duality accordingly provides an automorphism on
the space consisting of all local fields and all disorder fields. In particu-
lar, the Kramers—Wannier duality transformation is not an automorphism
on the space of local fields alone.

However, there is an especially simple type of duality which does give rise
to an isomorphism between the spaces of local fields for the two models re-
lated by the duality. The conformal field theory description of T-duality and
mirror symmetry on the string world sheet are examples of such dualities.
Given two conformal field theories C4 and CB, the data of such a duality
consists of an isomorphism between their spaces of states H4 and HZ which
respects the operator product expansion (OPE) and which preserves the
vacuum and the stress tensor; we will call this a conformal isomorphism.

The infinite symmetry algebra of a conformal field theory is generated
by its conserved currents. It always includes the stress tensor, accounting
for the Virasoro symmetry, but it may also contain fields that do not arise
via multiple OPEs of the stress tensor. A rational CFT, roughly speak-
ing, is a CFT whose symmetry algebra is large enough to decompose the
space of states into a finite direct sum of irreducible representations. Ex-
amples of rational CFTs are the Virasoro minimal models, rational toroidal
compactifications of free bosons, Wess—Zumino—Witten models and coset
models obtained from affine Lie algebras at positive integer level, as well as
appropriate orbifolds thereof.

Suppose that we are given two CFTs C4 and CP which are rational,
have a unique vacuum, have isomorphic algebras of holomorphic and anti-
holomorphic conserved currents, and have a modular invariant partition
function. We will show that for each conformal isomorphism that preserves
the rational symmetry, there exists (up to isomorphism) one and only one
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invertible defect, i.e., a duality domain wall, between the CFTs C4 and
CB, which implements this duality. Conversely, each invertible defect gives
rise to a conformal isomorphism. Altogether we show that for this class of
models:

There is a bijection between conformal isomorphisms and invertible

defects, both preserving the rational symmetry. (1.1)

The proof relies on the vertex algebraic description of CFTs in [12,13], on
the relation between two-dimensional CFT and three-dimensional topologi-
cal field theory [14-17], and on results in categorial algebra [18,19]. Given
this background, the proof is actually quite short, and it is phrased as a
result in categorical algebra. Let us briefly link the physical concepts with
their mathematical counterparts; more details and the proof will be given
in Section 3.

The representations of the holomorphic chiral algebra of a rational CF'T
(a vertex operator algebra) form a so-called modular category [20-22], which
we denote by C. The bulk fields of a rational CFT with unique vacuum and
with isomorphic holomorphic and anti-holomorphic chiral algebras give rise
to a simple commutative symmetric Frobenius algebra C in CXC [13,16].
Here, CXC is the product of two copies of C, where the second copy corre-
sponds to representations of the anti-chiral algebra (so that the braiding and
twist there are replaced by their inverses). We assume in addition that the
CFT is modular invariant. In this case the algebra C is maximal, a condition
on the categorical dimension of C' defined in Section 3. If the CFT is defined
on the upper half-plane and the boundary condition preserves the rational
chiral symmetry, the boundary fields give rise to a simple special symmetric
Frobenius algebra A in the modular category C [23,24]. From A one can
construct the full centre Z(A), a simple commutative maximal special sym-
metric Frobenius algebra in C X C [16]. It is proved in [16,19] that C = Z(A)
as algebras. Denote by C4j4 the monoidal category of A-A-bimodules in C.
These bimodules describe topological defect lines of the CFT, which pre-
serve the chiral symmetry [17,23]. Invertible topological defects correspond
to invertible A—A-bimodules. Let Pic(A) be the Picard group of C4 4. The
elements of Pic(A) are isomorphism classes of invertible objects in C4|4 and
the group operation is induced by the tensor product of C44. We prove
that there is an isomorphism of groups

Aut(Z(A)) = Pic(A), (1.2)

where Aut(Z(A)) are the algebra automorphisms of Z(A). In fact, we will
prove a groupoid version of this statement. The first groupoid has as ob-
jects simple special symmetric Frobenius algebras in C and as morphisms
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isomorphism classes of invertible bimodules. The second groupoid has sim-
ple commutative maximal special symmetric Frobenius algebras in CXC as
objects and its morphisms are algebra isomorphisms. We prove the equiva-
lence of these two groupoids, which is a mathematical version of the physical
statement (1.1).

This paper is organized as follows. In Section 2, we give a brief description
of CFT and defect lines, and we formulate the result of the paper in this
language. In Section 3, the result is restated in algebraic terms and proved.
Section 4 contains two examples, and with Section 5 we conclude.

2 Conformal isomorphisms and defects

Consider a CFT C# with space of states H*. By the state-field correspon-
dence, H# coincides with the space of fields of the CFT. The space of states
contains the states T4 and T, the holomorphic and anti-holomorphic com-
ponents of the stress tensor. Their modes, L,, and L,,, give rise to two
commuting copies of the Virasoro algebra. Pick a basis {¢;} of H* consist-
ing of eigenvectors! of Ly and Lg. Then we have the OPE

Z ik (2= w)dr(w), (2.1)

where z and w are two distinct points on the complex plane and each func-
tion C’i’?k (x) is determined by conformal covariance up to an overall constant;
the OPE has to be associative and commutative [25], see [12] for the math-
ematical formulation we will use in Section 3. Apart from an associative
commutative OPE, we make the following assumptions:

Uniqueness of the vacuum: There is a unique element 14 € HA, the vacuum
vector, which is annihilated by Ly, L+1 and Lg, L+1, and which has the OPE

1(2)1(w) = 1(w).

Non-degeneracy: Take the first basis vector to be ¢; = 14. Then (¢;, ¢;) =

Cg?l(z) (for any z € C*) defines a non-degenerate pairing on the space of

states HA. In other words, the two-point correlator is non-degenerate.

Modular invariance: The partition function Z (1) = trya gLo—¢/24(g*)Lo—¢/24

is modular invariant, i.e., it obeys Z(7) = Z(—1/7) = Z(7 +1). Here 7 is

'We assume here that Lo and Ly are diagonalizable, i.e., we exclude logarithmic
CFTs from our treatment. We also assume the common eigenspaces of Ly and Lo are
finite-dimensional, and that their eigenvalues form a countable set. The latter condition
excludes, for example, Liouville theory.
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a complex number with im(7) > 0, ¢ = exp(27i7), and ¢ and ¢ are the left
and the right central charges.

Suppose now we are given two CFTs C4 and CB. By a conformal isomor-
phism f from C4 to CB we mean a linear isomorphism f : H* — H? which
preserves the vacuum, the stress tensor, and the OPE. This means that
f(AY =18, f(14) = T8, f(T*) = T?, and that, if we choose a basis {¢;}
of HA as above, and take ¢; = f(¢;) as basis for H?, then CA, (z) = Cgk(ac)

ijk

Next we give some background on defects. Given two CFTs C4 and C5,
we can consider domain walls — or defects — between C4 and C®. To be
specific, take the complex plane with a defect placed on the real axis, and
with CFT C4 defined on the upper half plane and CFT C? on the lower
half plane. The defect is defined by the boundary conditions obeyed by the
fields of C4 and CP on the real line. We call a defect conformal iff the stress
tensors satisfy T4 (z) — T4(x) = TB(x) — TP(x) for all x € R. The defect
is called topological iff the stronger conditions T4(x) = T8 (z) and T4(x) =
TB(z) hold for all 2 € R. Topological defects are totally transmitting and
tensionless. They can exist only if the central charges of the CFTs C4 and
CB are the same, and they can be deformed on the complex plane without
affecting the values of correlators, as long as they are not taken past field
insertions or other defects. A trivial example of a topological defect is the
identity defect between a given CF'T and itself, which simply consists of no
defect at all, i.e., all fields of the CF'T are continuous across the real line.

Conformal defects are very difficult to classify, the only models for which
all conformal defects (with discrete spectrum) are known are the Lee—Yang
model and the critical Ising model [26,27]; even for the free boson one knows
only certain examples [28,29]. Topological defects have been classified for
Virasoro minimal models [23,30] and for the free boson [9].

For topological defects one can define the operation of fusion [23,30],
whereby one places a topological defect R on the real line, and another
topological defect S on the line R + ie, and considers the limit € — 0. Since
correlators are independent of €, this procedure is non-singular (which is not
true for general conformal defects [28,29]), and it gives a new topological
defect R+ S on the real line. We call a topological defect between CFTs C'4
and CB invertible, iff there exists a defect between CE and C# such that
their fusion in both possible orders yields the identity defect of CFT C4 and
of CFT CPB, respectively.

A topological defect R between CFT C4 and CFT CP gives rise to a linear
operator D[R] : H* — HP®. This operator is obtained by placing a field ¢ of
CFT C* at the origin 0 and the defect R on the circle around 0 of radius .
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In the limit € — 0 (again, all correlators are actually independent of ¢) one
obtains a field ¥ of CFT CB. This defines the action of D[R] via ¢ = D[R]¢.
Since the defect is topological, D[R] intertwines the Virasoro actions on H
and HZ. The identity defect induces the identity map, and the assignment
is compatible with fusion of defects, D[R S] = D[R|DI[S]. In particular,
invertible defects give rise to isomorphisms between state spaces.

Given two (non-trivial) CFTs C4 and CP, it is not true that every linear
map from H? to HP can be written as DIR] for an appropriate defect
R. Indeed, a defect has to satisfy many additional conditions. One way to
formulate this is to extend the axiomatic definition of CF'T in terms of sewing
of surfaces [31] to surfaces decorated by defect lines [32]. For example, in
the setting of [32], one can show that an invertible defect X between C4
and C® provides a conformal isomorphism Z(X) from C4 to C? by setting
Z(X) = vx ' D[X], where vx € C is defined via D[X]14 = yx15.

Let us now restrict our attention to rational CFTs. More precisely, by
a rational CFT C4 we mean that H* contains a subspace V;, consisting of
holomorphic fields and V5 of anti-holomorphic fields, such that V;, and Vg
are vertex operator algebras (VOAs) satisfying the conditions of [22], and
such that Vz, ®c Vg is embedded in HA (the bar in Vg just reminds us that
the fields in Vi are anti-holomorphic). This turns HA into a Vi @c Va-
module, and by rationality of Vi ®c Vg it is finitely reducible; see [12] for
details. We call C4 a rational CFT over V; @c Vr. Note that, while bulk
fields in the image of V7 ®c Vi can always be written as a sum of (non-
singular) OPEs of a holomorphic and an anti-holomorphic field in H4, the
same is in general not true for an arbitrary field in H 4.

Given two rational CFTs C4 and C® over V;, @c Vg, we say that a con-
formal isomorphism from HA to HP preserves the rational symmetry iff it
acts as the identity on Vi ®c Vg. Similarly we say that a defect from C4
to CB preserves the rational symmetry iff all bulk fields in Vi, ®c Vi are
continuous across the defect line. Since T and T are in Vi ®c Vg, such a
defect is in particular topological.

We have now gathered in more detail all the ingredients needed to state
our main result: given two rational CFTs C* and CZ over V @c V (i.e., we
demand that V, = Vg = V), for each conformal isomorphism f from C4 to
CP there exists a unique (up to isomorphism, see Section 3) invertible defect
X such that f = Z(X). This assignment is compatible with composition.

As a special case of this result we obtain that all automorphisms of a
rational CFT over V ®¢ V which act as the identity on V ®c V are imple-
mented by defects. The existing results in the literature [33] imply that
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there is an injective group homomorphism from (isomorphism classes of)
invertible defects of the CFT to itself to conformal automorphisms. Our
result shows in addition that this map is surjective. Let us stress that this is
by no means obvious, as the defining conditions to be satisfied by conformal
isomorphisms and defects are very different: compatibility with the OPE
versus sewing relations for surfaces decorated by defect lines.

3 Proof via algebras in modular categories

The aim of this section is to prove an equivalence of groupoids, which is
the algebraic counterpart of the CFT result stated in (1.1) and detailed in
the previous section. We will start by introducing the necessary algebraic
objects — modular categories, certain Frobenius algebras, the full centre —
and describe their relation to CFT in a series of remarks.

3.1 Modular categories

We will employ the usual graphical notation for ribbon categories [21,34,35].
To fix conventions, we note that our diagrams are read from bottom to top
(the ‘optimistic’ way), and that the pictures for the braiding and the duality
morphisms are

174 U
U,V
MU@VHV@U (31)
U 1%
and i

(N . vveu i, M vev’ 21,

Uy U U Uv

U UV UV U

J 1 ey, J 1 veu

The twist is denoted by 6y : U — U. For f: U — U, the trace is defined as
tr(f) = dy o (f ® idpv) o by € End(1).

Definition 3.1 ( [21,35]). A modular category is a ribbon category, which is
C-linear, abelian, semi-simple, which has a simple tensor unit, and a finite
number of isomorphism classes of simple objects. If {U;|i € Z} denotes a
choice of representatives for these classes, in addition the complex |Z|x|Z|-
matrix s; ; defined by s; ;id; = tr(cy, u; o cy,v;) is invertible.
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Remark 3.1. For a VOA V which satisfies the reductiveness and finiteness
conditions stated in [22], it is proved in [22, Thm. 4.6] that the category
Rep V' of V-modules is modular. We will refer to a VOA satisfying these
conditions as rational.

Let C be a modular category. The dimension of U € C is defined as
dim(U)idy = tr(idy), and the global dimension of C is defined to be

DimC =) (dim ;). (3.2)
1€
The dimensions dim(U;) of the simple objects are non-zero and real [36,
Thm. 2.3 and Prop. 2.9], so that in particular DimC > 1.

If C is a modular category, then C denotes the modular category obtained
from C by replacing braiding and twist by their inverses. Given two modular
categories C and D, denote by C X D their Deligne-product [35,37], which in
this case amounts to taking pairs of objects U XV and tensor products of
Hom spaces, and completing with respect to direct sums. Every monoidal
(and in particular every modular) category is equivalent to a strict one
(which has trivial associator and unit isomorphisms). We will work with
strict modular categories without further mention.

3.2 Frobenius algebras and modular invariance

The definitions given below only require some of the structure of a modular
category, but rather than giving a minimal set of assumptions in each case,
let us take C to be a modular category in this section.

® An algebra in C is an object A € C equipped with two morphisms m4 : A ®
A — Aandny : 1 — A satisfying the usual associativity and unit properties
(more details for this and the following can be found e.g. in [38]).

m An A-left module is an object M € C equipped with a morphism pjy :
A® M — M compatible with unit and multiplication of A. Accordingly
one defines right modules and bimodules, as well as intertwiners of modules.

m A coalgebra is an object A € C equipped with two morphisms Ay : A —
A® A and e: A — 1 satisfying the usual coassociativity and counit
properties.

m A Frobenius algebra A = (A, m,n, A, €) is an algebra and a coalgebra such
that

(ida®@m)o (A®ida) =A®@m=(m®ida)o (ida ® A), (3.3)
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e., the coproduct is an intertwiner of A-A-bimodules. We will use the
following graphical representation for the morphisms of a Frobenius algebra:

A Frobenius algebra A in C is called

e haploid iff dim Hom(1, A) = 1;
e simple iff it is simple as a bimodule over itself;
e special iff mo A =(idy and eon = £id; for nonzero constants ¢,
£eC,
o symmetric iff
AY AV

A A

o commutative iff mocy 4 =m;

e mazimal iff dim A = (dim C)%, provided A is also haploid and commu-
tative;
o modular invariant iff 04 = id4 and for all W € C we have

w

dim(U,
B Z dlmC

A W A w (3.4)

All the special symmetric Frobenius algebras that will appear here are in fact
‘normalized’ special in the sense that ¢ = 1, which then implies £ = dim(A).
We will not mention the qualifier ‘normalized’ explicitly below.

As an aside, we note that the name ‘maximal’ is motivated as follows. A
A-left module M is called local iff pprrocpaccanm =pm (see [39)]
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or [40, Section 3.4]). We call a commutative algebra mazimal iff its cat-
egory of local modules is monoidally equivalent to the category of vector
spaces. If a commutative maximal algebra A is contained in another com-
mutative algebra B as a subalgebra, then B is isomorphic to a direct sum of
copies of A as an A-module. Thus, if A is haploid, it cannot be a subalgebra
of a larger commutative haploid algebra. In this sense, A is ‘maximal’. If
A is a haploid commutative Frobenius algebra of non-zero dimension, then
A is maximal iff dim(A) = (DimC)% [39, Thm. 4.5], hence the simplified
definition above.

The modular invariance condition above is the least standard (and the
most complicated) notion. It was introduced in [24] (see [19, Lem. 3.2]
for the relation to the definition above), and we included it for the sake
of Remark 3.2 below. Fortunately, for the case of interest to us it can be
replaced by a much simpler condition:

Theorem 3.1 ( [19, Thm. 3.4]). Let A be a haploid commutative symmetric
Frobenius algebra in C. Then A is modular invariant iff it is maximal. In
either case, A is in addition special.

Remark 3.2. There are many approaches to axiomatize properties of con-
formal field theories, see e.g. [20,25,31,41-47]. We will use those developed
in [12,24,48] and [15,16,49]. Let Vz and Vi be two rational VOAs such
that ¢, —cr =0 mod 24. A CFT over Vi, ®c Vg in the sense of Section 2,
is — in the nomenclature of [24,48] — a conformal full field algebra over
Vi ®c Vg with non-degenerate invariant bilinear form, which is modular
invariant and has a unique vacuum. Let C;, = RepVy and Cgr = Rep Vi.
It is shown in [24, Thm. 6.7] that CFTs over VI, ®c Vg are in one-to-one
correspondence with haploid commutative symmetric Frobenius algebras in
Cr, ® Cr which are modular invariant.

3.3 The full centre

Fix a modular category C. The braiding on C allows us to endow the functor
T :CXC — C, given by the tensor product on C, with the structure of a
tensor functor. This can be done in two ways, and we choose the convention
of [19, Section 2.4]. The functor T has an adjoint R:C — CXC, that is,
there is a bi-natural family of isomorphisms

Xy,v : Home(T'(Y), V) — Hom, gs(Y, R(V)). (3.5)
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In fact, R is both left and right adjoint to 7', but we will not need this.
Denote the two natural transformations associated to the adjunction by

idoge > RT  and TR ide. (3.6)

They are dy = X(idg(y)) and py = X !(idgny) for V €C, Y € CKC. Ex-
plicit expressions for ¥, § and p are given in [19, Section 2.4]. The functor
R obeys
R1)=PUYRU;, R(V)=(VEIL)® RQ1). (3.7)
1€
Proposition 3.1 ( [19, Prop. 2.16, 2.24, 2.25]). Let A€ C and B € CKC
be algebras.

(i) If A and B are special symmetric Frobenius, so are R(A) € CRC and
T(B) €C.

(i) A morphism f:T(B) — A is an algebra homomorphism iff X(f) :
B — R(A) is an algebra homomorphism.

The structure morphisms for R(A) and T'(B) in part (i) are given in [19,
Section 2.2]. Part (ii) shows in particular that p4 : TR(A) — A is an algebra
map.

For an algebra in a braided category one can define a left and a right
centre [50,51]. We will only need the left centre. Given an algebra A in
C, its left centre Cy(A) — A is the largest subobject of A such that the
composition

CUARA—>ARA LN Ao A4 4 (3.8)

coincides with the composition
CllA®A— A A A, (3.9)

If A is special symmetric Frobenius (and C abelian), the left centre exists
and can be written as the image of an idempotent defined in terms of m4,
Ay, ca 4 and the duality morphisms, see [40, Section 2.4] for details.

Definition 3.2 ( [16, Def. 4.9]). The full centre of a special symmetric
Frobenius algebra A in a modular category C is Z(A) = C;(R(A)) € CKC.

The full centre has a natural generalization to algebras in general monoidal
categories, in which case it provides a commutative algebra in the monoidal
centre of the category and is characterized by a universal property [52].
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Denote the subobject embedding and restriction morphisms by
ez Z(A) — R(A) and rz:R(A) —» Z(A). (3.10)

They obey 1z 0ez =idy(4), i.e. Z(A) is a direct summand of R(A). By
construction of the algebra structure on Z(A), the map ez is an algebra
homomorphism.

Theorem 3.2 ( [18, Prop. 2.7] and [19, Thm. 3.22]). Let C be a modular
category.

(i) The full centre of a simple special symmetric Frobenius algebra in C is
a haploid commutative maximal special symmetric Frobenius algebra
in CRC.

(ii) Every haploid commutative mazimal special symmetric Frobenius al-
gebra in CXC is isomorphic as an algebra to the full centre of some
simple special symmetric Frobenius algebra in C.

3.4 Bimodules and defects

Fix a modular category C. Let A, B,C be algebras in C. An A-B-bimodule
X is an A-left module and a B-right module such that the two actions
commute. Given a B—C-bimodule Y, we define the A-C-bimodule X ®p Y
as a cokernel in the usual way. If B is special symmetric Frobenius, X ®p Y
can be written as the image of an idempotent on X ® Y, and so in this case
X®pY — X®Y is a direct summand (as a bimodule). We denote the
embedding and restriction maps as

eB:X®BY‘—>X®Y, T‘BIX@YH-)X@BYV, (3.11)

such that rp o ep = idxg,v. To keep the notation at bay, we will not include
labels for X and Y.

Remark 3.3. In the approach to CFT correlators via three-dimensional
topological field theory given in [15,16,49], a CFT is specified by a special
symmetric Frobenius algebra A in Rep V. In this approach, one automati-
cally obtains an open/closed CFT which satisfies genus 0 and genus 1 consis-
tency conditions (and, subject to modular functor properties of higher genus
conformal blocks, is in fact well-defined on surfaces of arbitrary genus). The
bulk CFT one finds in this way is the CFT over V ®¢ V described by Z(A)
via Remark 3.2, see [16, Section 4.3].

In the TFT approach, one can also describe CFTs in the presence of
topological defect lines which respect the V ®¢ V' symmetry [17]. Different
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patches of the CFT world sheet are labelled by special symmetric Frobenius
algebras and the defects (or domain walls) between them by bimodules.
The fusion of defect lines translates into the tensor product of bimodules
over their intermediate algebra. In this way, CFTs over V ®c V become a
bicategory [53], where objects are CFTs, 1-morphisms are topological de-
fects preserving V ®c V, and 2-morphisms are ‘defect fields’ in the vacuum
representation (described by intertwiners of bimodules).

3.5 Equivalence of groupoids

Definition 3.3. Let C be a modular category.

(i) P(C) is the groupoid whose objects are simple special symmetric Frobe-
nius algebras A, B, ... in C and whose morphisms A — B are isomor-
phism classes of invertible B—A-bimodules.

(ii) A(C) is the groupoid whose objects are simple commutative maximal
special symmetric Frobenius algebras C, D, ... in C and whose mor-
phisms C' — D are algebra isomorphisms from C to D.

In the remainder of this section, we will prove the statement announced
in the introduction, namely that the two groupoids P(C) and A(CXC) are
equivalent (Theorem 3.3 below). The proof will be split into several lemmas.
We start by constructing a functor Z : P(C) — A(CXC). On objects it is
given by taking the full centre (hence the notation ‘Z’),

Z(A) = C)(R(4)), for A€ P(C). (3.12)

In order to define the functor Z on morphisms, we need some more notation.
Fix two objects A, B € P(C), i.e., two simple special symmetric Frobenius
algebras. Given a B—A-bimodule X, we define a morphism ¢x : Z(A4) —
Z(B) as in [33] and [18, Lem. 3.2],

Z(B)

(3.13)

Z(A)
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where ez and rz have been introduced in (3.10). We define the functor Z
on morphisms of P(C) as

Z(X)=¢x, for X:A— B. (3.14)

The following lemma implies that Z is well-defined and functorial.

Lemma 3.1 ( [18, Lem. 3.1, 3.2, 3.3]). Let A, B,C be simple special sym-
metric Frobenius algebras in C and let X, X' be C—B-bimodules and Y a
B-A-bimodule. Then

1) If X 2 X' as bimodules, then ¢x = dx.
(ii) ¢a =idz(a)-
(iil) ¢x o dy = Px@zy-
(iv) If XV @p X 2 A or X @4 XV = B as bimodules, then ¢ x is an algebra
isomorphism.

In the following, we will give a series of lemmas that will show that the
functor Z is full, faithful and essentially surjective.

Let J4 be a label set for the isomorphism classes of simple left A-modules
and let {M,|xk € Ja} be a choice of representatives. Define

Ta= P MY 04 M, (3.15)
AET A

Each of the objects My ®4 M) is naturally a haploid algebra in C (see
e.g. [18, Lem. 4.2]), and thus also T4 is an algebra (non-haploid in general).
Define the morphisms

wi MY @4 My Ta, eq:=Ta 5 MY ®4 M, <5 MY ® M,
Tt Ty — MY @4 My, 1ei=M' @M, 5 M’ @M, Ty, (3.16)

where e4 and 74 where given in (3.11). Note that by definition of the algebra
structure on T4, 7, is an algebra map, while ¢, respects the multiplication
but not necessarily the unit.

From Proposition 3.1, we know that T(Z(A)) is a special symmetric
Frobenius algebra (because A is), and from (3.7) we have T'(R(A)) = @,
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A®UY @ U;. Using the maps (3.10) we can define

T(ez) v
ei=TZ(A) — TR(A) » AU ®U,
v T(rz)
=AU ®@U;—TR(A) — TZ(A). (3.17)

Using these ingredients we define two morphisms ¢ : TZ(A) — T4 and ¢ :
Ty — TZ(A) by

TZ(A)

dim(U;) dim (M,
Z Z ( DlmC .

i€ KETA

=22

i€L KETA

(3.18)
It has been shown in [18, Prop. 4.3 and Lem. 4.6, 4.7] that ¢ and ¢ are
inverse to each other, and that they are algebra isomorphisms.

Fix another simple special symmetric Frobenius algebra B and let p:
My ® B — M) be a right B-action on a simple left A-module M), which
commutes with the left A-action. Denote the resulting A—B-bimodule by
M) (p) and define the morphism

M (p)
9(p) = “dim(A) e ‘ (3.19)

MY ®a My

One quickly checks that gy(p) is an intertwiner of B—B-bimodules.
Lemma 3.2. The following equality of morphisms Z(A) — Z(B) holds:

Doty (p)y =Tz © X(ga(p) 0 T 0 ). (3.20)
Proof. The identity can be established by composing the graphical expres-

sions of ¢, ga(p) and x (see [19, Eqn. (2.43)]) and comparing the result to
the graphical expression (3.13) for ¢x. O
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Lemma 3.3. Let A, B € P(C) be haploid. Given an algebra isomorphism f :
Z(A) — Z(B), there exist \y € Ja and a right B-action pg on My, such that

(1) My, (py) is an invertible A-B-bimodule,
(i) Z(Mx,(ps)¥) = .

Proof. Given the algebra isomorphism f and an index A\ € J4, we can define
the map

Tez
—

TR(B) % B.
(3.21)

hFA) : MY @4 My D Ty & 12(4) 29 12(B)

It is shown in part e) of the proof of [18, Thm. 1.1] that there exists a unique
Af € Ja such that h(f, Af) # 0. We have already seen that all the individ-
ual maps above respect the algebra multiplication. In general, the map ¢,
does not preserve the unit, but because My ®4 M) and B are haploid, the
composite map h(f, \) does. This amounts to the argument in part b) and
e) of the proof of [18, Thm. 1.1], which shows that h(f, A¢) is an algebra iso-
morphism. We can use the isomorphism A(f, Ay) to define a right B-action
on M = M), by setting

id®h(f,A 7)1 . S
pr®BM>M®M\/®AM1d®€A M®M\/®M d]\,j@’th
(3.22)

By construction, we now have h(f,A\f): MV ®s M — B as B-B-
bimodules, which implies that M is an invertible A—B-bimodule (see e.g. [17,
Lem. 3.4]). This proves part (i).

Let us now turn to part (ii). We first claim that

9x;(py) = h(f, Ap)- (3.23)

To see this identity first note that both sides are intertwiners of B—B-
bimodules. Furthermore, MY ®4 M and B are both simple as B-B-
bimodules (because B is simple). Thus gx,(py) = §h(f, Ay) for some § € C.
To determine £ we let both sides act on the unit r4 o (N)M of MY @4 M. As
h(f,Af) is an algebra map, it gives np. For the left-hand side one uses the
explicit form (3.19) together with [18, Lem. 3.3 and Eqns. (3.4), (3.7)] to
find that it is also equal to np. Thus £ = 1.
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Next consider the equalities

1
h(f ) oma 002 ST h(fN) om0
AeTA

2 Y poT(ezof)ogoomoyp
AET A
3) . 4)
D soT(ezo )Y g ez o /) (3.24)
Step (1) uses that h(f,A) is only non-zero for A = Ay, in step (2) we in-
serted the definition (3.21) of h(f, A), and step (3) amounts to the identity
Yoataomy =idy, and the fact that ¢ is the inverse of . Finally, step (4)

follows from the definition of p and naturality of x, see [19, Eqn. (2.53)]. By
Lemma 3.2, (3.23) and (3.24) we have

Z(Mx(ps)") =712z 0 X(h(f, Af) 0 mr; 0 ¢0)
=rzoX(X'(ezo f)) = f. (3.25)

This shows part (ii). O

Lemma 3.4. Let A, B € P(C) be haploid. Let X be an invertible B—A-
bimodule and let f = Z(X) : Z(A) — Z(B) be the corresponding algebra iso-

morphism (Lemma 3.1 (iv)). Choose Ay and py as in Lemma 3.3. Then
X = My, (ps)" as B-A-bimodules.

Proof. Since X is invertible, it is necessarily simple as a B—A-bimodule (see
e.g. [17, Lem. 3.4]). In fact, it is even simple as a right A-module, be-
cause, if X 2 M @ N as right A-modules, then X @4 XV = M @4 MY &
N®aNV@--- would not be haploid. But X ®4 XV = B, as X is invert-
ible, and so X ®4 X" is haploid.

Thus there is a A\g € Ja such that M), = X Vv as left A-modules. We will
now show that A\g = Ay. Denote by p the right B-action on M), induced by
the isomorphism M), = XV. By Lemma 3.2 we have Z(X) = rz o x(gx,(p) ©
T © ¢). Then,

WZ(X), k) Y poTles02(X)) oo,
= X ez orzox(grn(p) omy 0p)) o Poi,
= )A(il(f((g)\o(p) 0T © 90)) 0 Yo

5
D 000 (0) 0 T2 © 1 2 Oxg 1 920 (), (3.26)
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where step (1) is the definition of the map h from (3.21), in step (2) we
inserted the expression for Z(X) just obtained, step (3) amounts to [18,
Lem. 3.1 (iv)], step (4) uses that ¢ is the inverse of ¢, and step (5) is just
the definition of the maps 7y, and ¢, in (3.16).

In the proof of Lemma 3.3, A is defined to be the unique element of J4
for which h(f,\) is non-zero. Thus the above calculation shows Ay = Ag.
On the other hand, it follows from (3.23) and the above calculation that

I (Pr) = 9re(P)- (3.27)

This equality in turn implies that p = p;, and thus the right B-actions on
My, (py) and My, = XV agree, i.e., My, (ps) = X" as A-B-bimodules. [

We have now gathered the necessary ingredients to prove our main result.

Theorem 3.3. Let C be a modular category. The groupoids P(C) and
A(CXC) given in Definition 3.3 are equivalent.

Proof. By Theorem 3.2 (ii) the functor Z is essentially surjective. Fix two
objects A, B € P(C). We need to show that Z provides an isomorphism
between the morphism spaces A — B and Z(A) — Z(B). By [18, Prop. 4.10]
there exist haploid algebras A’, B" € P(C) and invertible bimodules X : A —
A’ and Y : B — B’. Tt is thus enough to show that

Z(—) : Homp () (A, B') — HomA(Cga(Z(A’),Z(B’)) (3.28)
is an isomorphism. By Lemma 3.3, Z(—) is full, and by Lemma 3.4, it is
faithful. O
4 Examples

4.1 Simple currents models

Let V' be a rational VOA with the property that C = Rep V is pointed, i.e.,
every simple object of C is invertible. In other words, C is generated by
simple currents. A large class of examples of such VOAs are provided by
lattice VOAs (see for example [44]).

A pointed braided monoidal category C is characterized by a finite abelian
group A (the group of simple currents) together with a quadratic function
g : A — C* encoding their braid statistics [34, Section 3]. C is modular if the
quadratic function is non-degenerate, i.e., if the associated bi-multiplicative
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function o : A x A — C* defined by

o(a,b) = g(ab)g(a)~'q(b) ™! (4.1)

is non-degenerate in the sense that for each a # 1 the homomorphism
o(a,—): A — C* is non-trivial.

The structure of a modular category is encoded in the group of (iso-
morphism classes of) simple objects A, a 3-cocycle a € Z3(A,C*), which
controls the associativity constraint and a certain function ¢: A x A — C*,
controlling the braiding (see [34, Section 3] for the conditions on ¢). The
pair (a,c) is known as an abelian 3-cocycle of A with coefficients in C*.
It was shown in [67] that the group of classes of abelian 3-cocycles mod-
ulo coboundaries coincides with the group of quadratic functions. In other
words up to a braided equivalence a pointed category depends only on the
quadratic function ¢, defined by ¢(a) = c(a, a) (see [34, Section 3]). We will
denote a representative of this class by C(A4,q).

Isomorphism classes of haploid special symmetric Frobenius algebras (also
called Schellekens algebras in this context [54, Def. 3.7]) are labelled by pairs
(B, 3), where B C A is a subgroup and : B x B — C* is a symmetric bi-
multiplicative function such that 3(b,b) = q(b) for b € B [54, Def. 3.17 and
Prop. 3.22]. A Schellekens algebra corresponding to (B, ) is commutative
iff 3 = 1. This means that commutative Schellekens algebras correspond to
isotropic subgroups (subgroups on which g restricts trivially).

The details of the following discussion will appear elsewhere.

A commutative Schellekens algebra is maximal iff the corresponding sub-
group is maximal isotropic, i.e., Lagrangian. In particular, commutative
maximal Schellekens algebras in C(A,q) XC(4,q) =C(A,q)XC(A, ¢ t) =
C(A x A,q x ¢~1) correspond to subgroups in A x A, Lagrangian with re-
spect to ¢ x ¢~'. The full centre of a Schellekens algebra R = R(B,3) in
C(A,q) for a pair (B, 3) corresponds to the Lagrangian subgroup

I'(B,B) = {(a,a”'b)| a € A, b€ B, such that o(c,a) = 8(c,b) Vc € B}
(4.2)

in A x A. The construction of I' gives an isomorphism between the set of
pairs (B, ) and the set of Lagrangian subgroups in A x A. This also pro-
vides the isomorphism [19, Cor. 3.25] between the set of Morita classes of
simple special symmetric Frobenius algebras in C(A, ¢) and the set of isomor-
phism classes of simple commutative maximal special symmetric Frobenius

algebras in C(A, q) XC(A,q)).




INVERTIBLE DEFECTS AND ISOMORPHISMS 63

The automorphism group of a Schellekens algebra R corresponding to
(B, ) is the dual group B = Hom(B,C*) (the group of characters). In par-

ticular the automorphism group of the full centre of R is the group F@,\ﬁ)
This is in agreement with [17, Prop. 5.14], where it was established that the
group Pic(R) of isomorphism classes of invertible R—R-bimodules fits into a
short exact sequence

B — B x A — Pic(R), (4.3)

where the first map sends b € B into (8(—,b)~1,b). It is easy to see that
the group I'(B, (3) fits into a short exact sequence

I'(B,3) — Ax B — B, (4.4)

where the first map is (u,v) — (u,uv), and the second map sends (a, b) into
o(—,a)B(—,b)"!. The sequence (4.3) is isomorphic to the sequence dual
to (4.4).

4.2 Holomorphic orbifolds

Let V be a holomorphic VOA, i.e. a VOA whose only simple module is V
itself. Suppose a finite group G is acting on V by VOA automorphisms.
Then the fixed point set V¢ is again a VOA, the orbifold VOA.

It was argued in [55] that the category of modules of V& is equivalent to a
(twisted) group-theoretic modular category Z(G,«) where « is a 3-cocycle
on G. We assume for simplicity that « is trivial. Thus our modular category
is Z(G). This category can be described as the category of representations
of the Drinfeld double D(G), see [56, Section IX.4.3, XIIIL.5] or [57, Sec. 3.1]
for an explicit description of Z(G).

Morita equivalence classes of simple special symmetric Frobenius alge-
bras in Z(G) were classified in [58]. They are in one-to-one correspondence
with conjugacy classes of pairs (H, ), where H C G x G is a subgroup and
v € H?(H,C*) is a 2-cocycle. Simple commutative maximal special symmet-
ric Frobenius algebras in Z(G) X Z(G) = Z(G x G) were described in [57,
Thm. 3.5.1 & 3.5.3]. They are labelled by the same data (again making
explicit the isomorphism [19, Cor. 3.25]).

The details of the following will again appear elsewhere. The auto-
morphism group I'(H,~) of the simple commutative maximal algebra in
Z(G x Q) corresponding to the pair (H,) is an extension

H —T(H,7) — Stng,omya(), (4.5)
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where Ny (H) is the normalizer of H in G x G. The quotient Ngwq(H)/H
has a well-defined action on the cohomology H?(H,C*) by conjugation in
each argument; Sty . (@), () is the stabilizer of the class v with respect
to this action. In particular — and in contrast with the previous example
— the automorphism group I'(H,~) is often non-abelian.

5 Conclusion

We have shown that in a particularly well-understood class of quantum
field theories, namely two-dimensional rational conformal field theories, all
invertible duality transformations — which are nothing but conformal iso-
morphisms — can be implemented by one-dimensional domain walls (i.e.
defect lines) provided both are compatible with the rational symmetry. In
fact, given a rational VOA V with category of representations C = Rep V,
in Theorem 3.3 we proved an equivalence of groupoids between
e CFTs over V ® V and conformal isomorphisms acting as the identity
on V@&V (the groupoid A(CKC) in the algebraic formulation), and
e CFTs over V ® V and (isomorphism classes of) invertible defect lines
which preserve V @ V' (the groupoid P(C) in the algebraic formula-
tion).

We would also like to note that this equivalence of groupoids has an appli-
cation even for the best studied class of rational conformal field theories, the
Virasoro minimal models [25]. There, it is in principle possible to compute
all bulk structure constants for all minimal models in the A—D-E classifica-
tion of [59] using the methods of [15,60]. But these are cumbersome to work
with, and their conformal automorphisms have not been computed directly.
Our result allows us to instead compute fusion rules for bimodules, which
is much easier to do (nonetheless they have not appeared in print explicitly
for all minimal models). Our result also allows us to make contact with [61],
where modular properties where used to investigate automorphisms of uni-
tary minimal models.

It turns out that our main result is not an isolated phenomenon. A result
analogous to ours, but one categorical level higher, has recently been proved
in [62,63]. In [62], a fully faithful embedding of 2-groupoids was obtained,
where the role of P(C) is taken by the 2-groupoid of fusion categories, bi-
module categories, and isomorphism classes of equivalences of bimodule cate-
gories, and the role of A(CXC) is taken by braided fusion categories, braided
equivalences, and isomorphisms of braided equivalences. The functor is pro-
vided by the monoidal centre. This hints at a corresponding statement for
Turaev—Viro theories. Although an axiomatic treatment of Turaev—Viro
theories with domain walls is not yet available, a Hamiltonian version of
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Turaev—Viro theories — the so-called Levin—Wen models [64] — is carefully
studied in [63]. It is shown there that a bimodule category over two unitary
tensor categories determines a domain wall between two bulk phases in a
lattice model, and the monoidal centre describes anyon excitations in each
bulk phase. Again, one has a one-to-one correspondence between invertible
defects and equivalences (as braided tensor categories) between excitations
in the bulk.

Even when staying within two-dimensional models, an important unan-
swered question is how much, if anything, of our analysis carries over from
the maximally well-behaved class of models studied here to more compli-
cated theories. For example, it would be very interesting (at least to us) to
investigate logarithmic conformal field theories (see e.g. [65]) or topological
conformal field theories [66].

Acknowledgment

The authors would like to thank Jiirgen Fuchs for helpful comments on a
draft of this paper. AD thanks Max Planck Institut fiir Mathematik (Bonn)
for hospitality and excellent working conditions. LK is supported in part
by the Gordon and Betty Moore Foundation through Caltech’s Center for
the Physics of Information, and by NSF Grant No. PHY-0803371, the Basic
Research Young Scholars Program and the Initiative Scientific Research Pro-
gram of Tsinghua University, and NSFC Grant No. 11071134.

References

[1] H. A. Kramers and G. H. Wannier, Statistics of the two-dimensional
ferromagnet. Part 1, Phys. Rev. 60 (1941), 252-262.

[2] C. Montonen and D. I. Olive, Magnetic monopoles as gauge particles?
Phys. Lett. B72 (1977), 117-120.

[3] A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string
theory, Phys. Rep. 244 (1994), 77-202, [arXiv:hep-th/9401139].

[4] W. Lerche, C. Vafa and N. P. Warner, Chiral rings in N = 2 supercon-
formal theories, Nucl. Phys. B324 (1989), 427-474.

[5] B. R. Greene and M. R. Plesser, Duality in Calabi—Yau moduli space,
Nucl. Phys. B338 (1990), 15-37.

[6] J. M. Maldacena, The large N limit of superconformal field theories and
supergravity, Adv. Theor. Math. Phys. 2 (1998), 231-252 [Int. J. Theor.
Phys. 38 (1999), 1113-1133], [arXiv:hep-th/9711200].



66

[7]

8]

[12]
[13]

[14]

ALEXEI DAVYDOV, LIANG KONG AND INGO RUNKEL

J. Frohlich, J. Fuchs, I. Runkel and C. Schweigert, Kramers—Wannier
duality from conformal defects, Phys. Rev. Lett. 93 (2004), 070601,
[arXiv:cond-mat/0404051].

J. Fuchs, C. Schweigert and K. Waldorf, Bi-branes: target space ge-
ometry for world sheet topological defects, J. Geom. Phys. 58 (2008),
576-598, [arXiv:hep-th/0703145].

J. Fuchs, M. R. Gaberdiel, I. Runkel and C. Schweigert, Topolog-
ical defects for the free boson CFT, J. Phys. A40 (2007), 11403,
[arXiv:0705.3129 [hep-th]].

D. Gaiotto and E. Witten, S-duality of boundary conditions in N=4
super Yang-Mills theory, [arXiv:0807.3720 [hep-thl].

A. Kapustin and M. Tikhonov, Abelian duality, walls and boundary
conditions in diverse dimensions, J. High Energy Phys. 11 (2009), 006,
[arXiv:0904.0840 [hep-th]].

Y.-Z. Huang and L. Kong, Full field algebras, Comm. Math. Phys. 272
(2007), 345-396, [arXiv:math.QA/0511328].

L. Kong, Full field algebras, operads and tensor categories, Adv. Math.
213 (2007), 271-340, [arXiv:math.QA/0603065].

G. Felder, J. Frohlich, J. Fuchs and C. Schweigert, Conformal
boundary conditions and three-dimensional topological field theory,
Phys. Rev. Lett. 84 (2000), 16591662, [arXiv:hep-th/9909140].

J. Fuchs, I. Runkel and C. Schweigert, Conformal correlation func-
tions, Frobenius algebras and triangulations, Nucl. Phys. B624 (2002),
452-468, [arXiv:hep-th/0110133].

J. Fjelstad, J. Fuchs, I. Runkel and C. Schweigert, Uniqueness of
open/closed rational CFT with given algebra of open states, Adv. Theor.
Math. Phys. 12 (2008), 1283-1375, [arXiv:hep-th/0612306].

J. Frohlich, J. Fuchs, I. Runkel and C. Schweigert, Duality and defects
in rational conformal field theory, Nucl. Phys. B763 (2007), 354-430,
[arXiv:hep-th/0607247].

L. Kong and I. Runkel, Morita classes of algebras in
modular tensor categories, Adv. Math. 219 (2008), 1548-1576,
[arXiv:0708.1897 [math.CT]].

L. Kong and I. Runkel, Cardy algebras and sewing constraints, I, Comm.
Math. Phys. 292 (2009), 871-912, [arXiv:0807.3356 [math.QA]].

G. W. Moore and N. Seiberg, Classical and quantum conformal field
theory, Comm. Math. Phys. 123 (1989), 177-254.

V. G. Turaev, Quantum invariants of knots and 3-Manifolds, de
Gruyter, New York, 1994.



INVERTIBLE DEFECTS AND ISOMORPHISMS 67

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Y.-Z. Huang, Rigidity and modularity of wvertex tensor
categories, Comm. Contemp. Math. 10 (2008), 871-911,
[arXiv:math.QA/0502533].

J. Fuchs, I. Runkel and C. Schweigert, TFT construction of RCFT
correlators. I: partition functions, Nucl. Phys. B646 (2002), 353-497,
[arXiv:hep-th/0204148].

L. Kong, Cardy condition for open-closed field algebras, Comm. Math.
Phys. 283 (2008), 25-92, [arXiv:math.QA/0612255].

A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite con-
formal symmetry in two-dimensional quantum field theory, Nucl. Phys.
B241 (1984), 333-380.

M. Oshikawa and 1. Affleck, Boundary conformal field theory approach
to the critical two-dimensional Ising model with a defect line, Nucl.
Phys. B495 (1997), 533-582, [arXiv:cond-mat/9612187].

T. Quella, I. Runkel and G. M. T. Watts, Reflection and transmis-
sion for conformal defects, J. High Energy Phys. 0704 (2007), 095,
[arXiv:hep-th/0611296].

C. Bachas, J. de Boer, R. Dijkgraaf and H. Ooguri, Permeable con-
formal walls and holography, J. High Energy Phys. 06 (2002), 027,
[arXiv:hep-th/0111210].

C. Bachas and I. Brunner, Fusion of conformal interfaces, J. High En-
ergy Phys. 0802 (2008), 085, [arXiv:0712.0076 [hep-th]].

V. B. Petkova and J.-B. Zuber, Generalised twisted partition functions,
Phys. Lett. B504 (2001), 157-164, [arXiv:hep-th/0011021].

G. Segal, The definition of conformal field theory, preprint 1988; also
in: U. Tillmann (ed.), Topology, geometry and quantum field theory,
London Math. Soc. Lect. Note Ser. 308 (2002), 421-577.

I. Runkel and R. R. Suszek, Gerbe-holonomy for surfaces with
defect networks, Adv. Theor. Math. Phys. 13 (2009), 1137-1219,
[arXiv:0808.1419 [hep-th]].

J. Fuchs, I. Runkel and C. Schweigert, The fusion algebra
of bimodule categories, Appl. Cat. Str. 16 (2008), 123-140,
[arXiv:math.CT/0701223].

A. Joyal and R. Street, Braided tensor categories, Adv. Math. 102
(1993), 20-78.

B. Bakalov and A. A. Kirillov, Lectures on tensor categories and mod-
ular functors, American Mathematical Society, Providence, 2001.

P. I. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann.
Math. 162 (2005), 581-642, [arXiv:math.QA/0203060].



68
[37]

3]

[41)
[42]
[43)
[44]
5]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

ALEXEI DAVYDOV, LIANG KONG AND INGO RUNKEL

P. Deligne, Catégories tannakiennes, Grothendieck Festschrift,
Birkh&user, Boston, (2007), 111-195.

J. Fuchs and C. Schweigert, Category theory for conformal
boundary conditions, Fields Inst. Comm. 39 (2003), 25-70,
[arXiv:math.CT/0106050].

A. A. Kirillov and V. Ostrik, On g-analog of McKay correspondence
and ADE classification of sl(2) conformal field theories, Adv. Math.
171 (2002), 183-227, [arXiv:math.QA/0101219].

J. Frohlich, J. Fuchs, I. Runkel and C. Schweigert, Correspon-
dences of ribbon categories, Adv. Math. 199 (2006), 192-329,
[arXiv:math.CT/0309465].

D. Friedan and S. H. Shenker, The analytic geometry of Two-
dimensional conformal field theory, Nucl. Phys. B281 (1987), 509-545.

R. E. Borcherds, Vertex algebras, Kac—Moody algebras, and the mon-
ster, Proc. Natl. Acad. Sci. USA 83 (1986), 3068-3071.

C. Vafa, Conformal theories and punctured surfaces, Phys. Lett. B199
(1987), 195-202.

I. B. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras
and the monster, Academic Press, Boston, 1988.

Y.-Z. Huang, Geometric interpretation of vertex operator algebras,
Proc. Natl. Acad. Sci. USA 88 (1991), 9964-9968.

M. R. Gaberdiel and P. Goddard, Aziomatic conformal field theory,
Comm. Math. Phys. 209 (2000), 549-594, [arXiv:hep-th/9810019].

A. Kapustin and D. Orlov, Vertex algebras, mirror symmetry, and D-
branes: the case of complezx tori, Commun. Math. Phys. 233 (2003),
79-136, [arXiv:hep-th/0010293].

Y.-Z. Huang and L. Kong, Modular invariance for conformal full

field algebras, Trans. Amer. Math. Soc. 362 (2010), 3027-3067,
[arXiv:math.QA/0609570].

J. Fjelstad, J. Fuchs, I. Runkel and C. Schweigert, TFT construction
of RCFT correlators. V: proof of modular invariance and factorisation,
Theo. Appl. Cat. 16 (2006), 342-433, [arXiv:hep-th/0503194].

F. Van Oystaeyen and Y. H. Zhang, The Brauer group of a braided
monoidal category, J. Algebr. 202 (1998), 96-128.

V. Ostrik, Module categories, weak Hopf algebras and modular
invariants, Transform. Groups 8 (2003), 177-206, [arXiv:math.
QA/0111139].

A. Davydov, Centre of an algebra, Adv. Math. 225 (2010), 319-348,
[arXiv:math.CT/0908.1250].



INVERTIBLE DEFECTS AND ISOMORPHISMS 69

[53]

[54]

[55]
[56]
[57]

[58]

[59]

[66]

[67]

C. Schweigert, J. Fuchs and I. Runkel, Categorification and correlation
functions in conformal field theory, [arXiv:math.CT/0602079].

J. Fuchs, I. Runkel and C. Schweigert, TFT construction of RCFT
correlators. III: simple currents, Nucl. Phys. B694 (2004), 277-353,
[arXiv:hep-th/0403157].

A. Kirillov, Modular categories and orbifold models, Comm. Math.
Phys. 229 (2002), 309-335, [arXiv:math.QA/0104242].

C. Kassel, Quantum groups, in: ‘Graduate texts in mathematics’, 155,
Springer Verlag, New York, 1995.

A. Davydov, Modular invariants for group-theoretic modular data I, J.
Algebr. 323 (2010), 1321-1348, [arXiv:math.QA/0908.1044].

V. Ostrik, Module categories over the Drinfeld double of a
finite group, Int. Math. Res. Not. 27 (2003), 1507-1520,
[arXiv:math.QA/0202130].

A. Cappelli, C. Itzykson and J.B. Zuber, The ADE classification of
minimal and A1(1) conformal invariant theories, Comm. Math. Phys.
113 (1987), 1-26.

J. Fuchs, I. Runkel and C. Schweigert, TFT construction of RCFT cor-
relators. IV: structure constants and correlation functions, Nucl. Phys.
B715 (2005), 539638, [arXiv:hep-th/0412290].

P. Ruelle and O. Verhoeven, Discrete symmetries of unitary
minimal conformal theories, Nucl. Phys. B535 (1998), 650-680,
[arXiv:hep-th/9803129].

P. I. Etingof, D. Nikshych and V. Ostrik, with an appendix by E. Meir,
Quant. Topol. 1 (2010), 209273, [arXiv:0909.3140 [math.QAI].

A. Kitaev and L. Kong, Models for gapped boundaries and domain walls,
[arXiv:1104.5047 [cond-mat.str-el]].

M. A. Levin and X. G. Wen, String-net condensation: a physical
mechanism for topological phases, Phys. Rev. B71 (2005), 045110,
[arXiv:cond-mat/0404617].

M. R. Gaberdiel, An algebraic approach to logarithmic confor-
mal field theory, Int. J. Mod. Phys. A18 (2003), 4593-4638,
[arXiv:hep-th/0111260].

K. Costello, Topological conformal field theories and Calabi-Yau cate-
gories, Adv. Math. 210 (2007), 165-214, [arXiv:math.QA/0412149].
S. Eilenberg and S. Mac Lane, On the groups H(p,n), I, II, Ann. Math.
58 (1953), 55-106; S. Eilenberg and S. Mac Lane, 70 (1954), 49-137.






