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1 Introduction

Sasaki–Einstein manifolds, that is Einstein manifolds whose metric cone is
Calabi–Yau, are of considerable interest in Physics because of their con-
nections to the anti-de Sitter/conformal field theory (AdS/CFT) correspon-
dence [2]. More precisely, if Y is a Sasaki–Einstein 5-manifold, then the
product manifold AdS5 × Y is a solution of type IIB supergravity that is
conjectured to be dual to an N = 1 superconformal field theory in four
dimensions. In particular, the AdS/CFT correspondence implies that the
asymptotic behavior at infinity of the Klein–Gordon propagator will carry
information on the correlation functions of the dual superconformal field
theory in four dimensions [2].

The first explicit examples of Sasaki–Einstein geometries in five dimen-
sions (other than the round 5-sphere, the homogeneous metric T 1,1 on
S2 × S3 and some quotients thereof) were discovered by Gauntlett et al.
in [9]. These manifolds, labeled by pairs of integers (p, q) and denoted by
Y p,q, are constructed as S1-bundles over an axially squashed S2-bundle over
the 2-sphere. A description of the spaces Y p,q as cohomogeneity-1 manifolds
has been given by Conti [6], while examples of Sasaki–Einstein manifolds
in higher dimensions have been obtained in [7, 10]. The associated family
of supergravity solutions AdS5 × Y p,q includes both quasi-regular mani-
folds [5], which are dual to superconformal field theories with compact
R-symmetry and rational central charges, and irregular manifolds, dual to
field theories with noncompact R-symmetry and irrational central charges.
A detailed construction of the dual superconformal quiver gauge theories
was presented in [4].

In this paper, we aim to rigorously analyze the Cauchy problem for the
Klein–Gordon equation on the manifolds AdS5 × Y p,q through the construc-
tion of a global causal propagator. Although the spaces AdS5 × Y p,q are
not globally hyperbolic, we will see that under mild technical assumptions a
unique propagator exists and can be constructed explicitly through spectral
methods. Our main result (Theorem 4.1 and Corollary 4.1) is a spectral
integral representation for this propagator.

The approach we take exploits the separability of the AdS5 × Y p,q metrics
to compute the eigenfunctions of the Laplace operator in Y p,q in quasi-closed
form, by expressing them in terms of the eigenfunctions of the Friedrichs
extension of a single second-order ordinary differential operator with seven
regular singular points. The subtle geometry of the spaces Y p,q introduces
additional complications in the analysis, since the ‘angular’ variables in
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which the metric of Y p,q separates are not defined globally. In order to
circumvent this problem, we start by constructing a Fourier-type decom-
position of the space of square-integrable functions on Y p,q adapted to the
global structure of the manifold and to the action of the Laplacian. Once
the eigenfunctions of the Laplacian in Y p,q have been computed, the anal-
ysis of the Klein–Gordon equation in AdS5 × Y p,q can be reduced to that
of a family of linear hyperbolic equations in anti-de Sitter space. We dis-
cuss the existence and uniqueness of causal propagators for these equations
using Ishibashi and Wald’s spectral-theoretic approach to wave equations on
static space-times [11, 12, 19]. For our purpose, this presents several advan-
tages over the classical method of Riesz transforms, since the latter method
only yields local solutions to the Cauchy problem in the case in which the
underlying space-time is not globally hyperbolic [3].

Our paper is organized as follows. In Section 2, we introduce a Fourier-
type decomposition of L2(Y p,q) (Lemma 2.2), which is crucial to the rest
of the paper. In Section 3, we use this Fourier decomposition to compute
the eigenfunctions of the Laplacian in Y p,q (Theorem 3.1). The expres-
sion of these eigenfunctions is totally explicit and involves the spectral
decomposition of a single ordinary differential operator, which we analyze in
Lemma 3.2. Finally, in Section 4 we prove that there exists a unique phys-
ically admissible propagator for the Klein–Gordon equation in AdS5 × Y p,q

and derive an integral representation thereof for both the homogeneous and
inhomogeneous Cauchy problem (Theorem 4.1 and Corollary 4.1). This
paper concludes with an appendix where we recall the conditions that a
propagator of a linear wave equation must satisfy in order to be physically
admissible.

2 Fourier-type expansions in Y p,q

After recalling some geometric facts about the family of cohomogeneity-
1 Sasaki–Einstein 5-manifolds Y p,q recently discovered in [9], our goal for
this section is to introduce a Fourier-type decomposition of the space of
square-integrable functions on Y p,q which is adapted to the geometry of the
manifold. This decomposition will be of crucial importance in the rest of the
paper. Each manifold Y p,q, labeled by two positive integers p < q < 2p, is
an S1-bundle over an axially squashed S2-bundle B over a round 2-sphere.
It should be noted that the integers p and q are not exactly the same as the
ones labeling the spaces Y p,q in [9]; passing from one set of integers to the
other is straightforward, but for our purposes it is slightly more convenient
to define the labeling integers as we will do below. We will recall several
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results on the global geometry of the spaces Y p,q without further mention
as we need them; proofs of these facts and further discussion can be found
in [9, 15, 16].

We begin our discussion with the four-dimensional sphere bundle B over
S2. We start with the local metric

gB :=
dy2

w(y) r(y)
+
r(y)
9

(dψ − cos θ dφ)2 +
1 − y

6
(dθ2 + sin2 θ dφ2), (2.1)

where

w(y) :=
2(a− y2)

1 − y
, r(y) :=

a− 3y2 + 2y3

a− y2
, (2.2)

and 0 < a < 1 is a real constant. The Riemannian volume measure associ-
ated to gB is thus given by

dμB := ρB(y) dy sin θ dθ dφdψ, (2.3)

with
ρB(y) :=

1 − y

18w(y)1/2
.

It was shown in [9] that the above local metric defines a unique complete
2-sphere bundle B over S2, which is conformally Khler and diffeomorphic
to S2 × S2.

In the following lemma, we present a Fourier-type decomposition of the
space of L2 functions on B that is adapted to the above coordinate system
and which will be used in turn to give a Fourier decomposition for the space
of L2 functions on Y p,q. An explicit description of the bundle structure of
B is required in order to obtain the desired decomposition, so in the proof
of the lemma we indicate how B is defined globally as a complete manifold.

In order to state this lemma, we set some notation. The cubic equation

a− 3y2 + 2y3 = 0 (2.4)

has three real roots for any a ∈ (0, 1), one negative and two positive. In what
follows, the negative root will be denoted by y− and the smallest positive
root by y+ so that y− < 0 < y+ < a. We will also use the cover {V1, V2} of
S2 given by

V1 := {θ ∈ [0, π), φ ∈ R/2πZ}, V2 := {θ ∈ (0, π], φ ∈ R/2πZ},

so that V1 (resp. V2) stands for the sphere minus the north (resp. south)
pole.
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Lemma 2.1. Let B denote the complex Hilbert space

B := {(unm)n,m∈Z : unm ∈ L2((y−, y+), ρB(y) dy) ⊗ L2((0, π), sin θ dθ)},

endowed with the norm defined by

‖(Φnm ⊗ Θnm)n,m∈Z‖2
B

:=
∑

n,m∈Z

(∫ y+

y−
|Φnm(y)|2 ρB(y) dy

)(∫ π

0
|Θnm(θ)|2 sin θ dθ

)
.

Then the map defined by

B � (Φnm ⊗ Θnm)n,m∈Z �→
∑

n,m∈Z

Φnm(y) Θnm(θ)
ei(nφ+2mψ)

2π
∈ L2(B),

(2.5)
defines an isomorphism between B and L2(B).

Proof. In order to show that the local metric (2.1) can be promoted to a
complete metric on a 4-manifold, we choose θ ∈ [0, π] and φ ∈ R/2πZ so
that, for each fixed y ∈ (y−, y+), the last two terms in (2.1) yield the metric
of a round 2-sphere.

The range of y is taken to be [y−, y+]. This ensures that w is strictly
positive in this interval and r � 0, vanishing only at the endpoints y±. If
we identify ψ periodically, the part of gB given by

dy2

w(y) r(y)
+
r(y)
9

dψ2

describes a circle fibered over the interval (y−, y+), the size of the circle
shrinking to zero at the endpoints. Remarkably, the (y, ψ) fibers are free of
conical singularities if the period of ψ is 2π, in which case the circles collapse
smoothly and the (y, ψ) fibers are diffeomorphic to a 2-sphere.

One must now check that the 2-spheres described by the coordinates (y, ψ)
fiber properly over the 2-spheres defined by (θ, φ). For that, it suffices to
consider the circles associated to the coordinate ψ for fixed y ∈ (y−, y+), so
we will consider the corresponding S1-bundles By over S2. The curvature
of the connection form 1

2π cos θ dφ defines an integral de Rham cohomology
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class in the base because

− 1
2π

∫

S2

d(cos θ dφ) =
1
2π

∫ 2π

0

∫ π

0
sin θ dθ dφ = 2. (2.6)

Therefore, for all y, a well-known theorem of Kobayashi [13] then ensures
that − cos θ dφ defines a connection on a principal S1-bundle By over S2 iso-
morphic to S3/Z2 (or to the 2-sphere’s unit tangent bundle). Since {V1, V2}
is a trivializing cover of S2, the S1-bundle By is uniquely determined by this
cover and the transition function F12 : V1 ∩ V2 → R/2πZ given by F12 := π.

The set V1 ∩ V2 is the sphere minus the north and south poles, so it has full
measure in V1 and V2. Hence, by the definition of the transition function
and the expression of the induced volume element in By, an L2 function
on By can be identified with a measurable function fy : (0, π) × (R/2πZ) ×
(R/2πZ) → C which satisfies

fy(θ, φ, ψ) = fy(θ, φ, ψ + F12(θ, φ)) = fy(θ, φ, ψ + π)

a.e. and
∫ 2π

0

∫ 2π

0

∫ π

0
|fy(θ, φ, ψ)|2 sin θ dθ dφdψ <∞

As usual, ψ + π refers to the group operation in R/2πZ, so it is to be under-
stood modulo 2π. This leads to the Fourier-type expansion

fy(θ, φ, ψ) =
∑

n,m∈Z

fynm(θ) ei(nφ+2mψ),

which converges in L2 sense. Formula (2.5) immediately follows from the
latter equation by taking into account the dependence on y and using (2.3)
and Fubini’s theorem to carry out the integration in φ and ψ. �

Remark 2.1. Since φ and ψ have period 2π, the difference between equa-
tion (2.5) and the ordinary Fourier decomposition for 2π-periodic functions
of φ and ψ lies in the fact that only the even Fourier modes in ψ appear
in (2.5). As we have seen, this reflects the fact that the bundle B is diffeo-
morphic but not isometric to the product of two round 2-spheres. Notice
that F12 must be constant because ∂/∂ψ is a globally defined Killing vector.
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We now consider Fourier decompositions of L2 functions on the manifolds
Y p,q. We begin with the local metric given by

g := gB + w(y) (dα+ h(y) (dψ − cos θ dφ))2, (2.7)

where

h(y) :=
a− 2y + y2

6(a− y2)

and gB and w are defined as in (2.1)–(2.2). It can be verified that g
is (locally) Sasaki–Einstein, with Ric = 4g, and that the corresponding
Riemannian measure is

dμ := ρ(y) sin θ dy dθ dφdψ dα, (2.8)

where ρ(y) := (1 − y)/18.

It was proved in [9] that, for any pair of positive integers p and q with
p < q < 2p, one can choose a constant a ∈ (0, 1) such that

h(y+) − h(y−)
2h(y+)

=
p

q
, (2.9)

and that in this case there exists a unique complete, simply connected man-
ifold Y p,q whose metric is locally given by (2.7). Furthermore, Y p,q is a
Sasaki–Einstein principal S1-bundle over B diffeomorphic to S2 × S3. In
the rest of the paper, we shall always assume that a has been chosen so
that (2.9) is satisfied, with p and q coprime. Note that

h(y±) =
y± − 1
6y±

,

so ∓h(y±) > 0.

The main result of this section is the following lemma, where we present a
Fourier-type decomposition of L2(Y p,q) that which will be crucial for the rest
of the paper. In order establish this decomposition, we introduce another
open cover {U−, U+} of the sphere, which will be used to describe the fibers
of the sphere bundle B. These sets again correspond to the whole sphere
minus a pole, and can be characterized in terms of y and ψ as

U− := {y ∈ [y−, y+), ψ ∈ R/2πZ}, U+ := {y ∈ (y−, y+], ψ ∈ R/2πZ}.

Moreover, let us call Σ0 the S2-fiber at any fixed point (θ0, φ0) in the base
and let Σ± � S2 be the submanifolds of B given by y = y±. It is then easy
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to see that {Σ0,Σ+} defines a basis of the homology group H2(B; Z). In the
following lemma, we denote by lcm{x1, . . . , xk} the least common multiple
of the positive integers x1, . . . , xk.

Lemma 2.2. Let Y be the complex Hilbert space

Y := {(unml)n,m,l∈Z : unml ∈ L2((y−, y+), ρ(y) dy) ⊗ L2((0, π), sin θ dθ)},

endowed with the norm

‖(Φnml ⊗ Θnml)n,m,l∈Z‖2
Y

:=
∑

n,m,l∈Z

(∫ y+

y−
|Φnml(y)|2ρ(y) dy

)(∫ 2π

0
|Θnml(θ)|2 sin θ dθ

)
,

and let us set

τ := −2h(y+)/q, σ := lcm{2, pq, 2p− q}. (2.10)

Then the map defined by

Y � (Φnml ⊗ Θnml)n,m,l∈Z

�→
∑

n,m,l∈Z

Φnml(y) Θnml(θ)
ei(nφ+2mψ+σlα/τ)

(2π)3/2
∈ L2(Y p,q), (2.11)

defines an isomorphism between Y and L2(Y p,q).

Proof. If we periodically identify α by making it take values in R/2πτZ, then
for each fixed y ∈ [y−, y+] the term w(y) dα2 in (2.7) describes a circle whose
size does not shrink to zero. To see that the metric (2.7) corresponds to a
complete compact manifold, notice that, by a theorem of Kobayashi [13],
A := h(y)(dψ − cos θ dφ) defines a connection in a principal S1-bundle over
B if and only if the (globally defined) curvature 2-form dA/(2πτ) defines an
integral de Rham cohomology class in B.

An easy computation shows that

∫

Σ0

dA
2πτ

=
h(y−) − h(y+)

τ
,

∫

Σ+

dA
2πτ

=
2h(y+)

τ
.

By (2.9), it follows that dA/(2πτ) ∈ H2(B; Z) if we set τ := −2h(y+)/q,
in which case the periods of dA/(2πτ) around Σ0 and Σ+ are respectively
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given by p and −q. Since p and q are coprime, it follows that Y p,q is simply
connected.

The bundle Y p,q is completely determined by the cover {Vi × Uε : i =
1, 2, ε = ±} and the associated transition functions

Fijεη : (Vi ∩ Vj) ∩ (Uε ∩ Uη) → R/2πτZ.

The transition functions Fii−+, i = 1, 2, are easily derived using the fact
that

∫

Σ0

dA

2πτ
= p

for any (θ0, φ0), since this means that dα+A defines on Σ0 an S1-bundle
with winding number p. Hence this bundle is isomorphic to the lens space
S3/Zp [18] and Fii−+ = 2πτ/p. Similarly, F12++ = −2πτ/q because

∫

Σ+

dA
2πτ

= −q.

To determine F12−−, it suffices to observe that
∫

Σ−

dA
2πτ

= 2p− q

by (2.9). Note that 2p− q is granted to be strictly positive. In this case,
dα+A determines a connection on a principal S1-bundle over Σ− with
winding number 2p− q, so that F12−− = 2πτ/(2p− q). As

Fijεη = Fiiεη + Fijηη,

the full set of transition functions is uniquely determined from Fii−+ and
F12εε.

Since (Vi ∩ Vj) × (Uε ∩ Uη) has full measure in Vi × Uε, an L2 function in
Y p,q can now be identified with a measurable function

f : (0, π) × (R/2πZ) × (y−, y+) × (R/2πZ) × (R/2πτZ) → C,

such that:

(i) f(θ, φ, y, ψ, α) = f(θ, φ, y, ψ, α+ 2πτ/p) = f(θ, φ, y, ψ, α− 2πτ/q) =
f(θ, φ, y, ψ, α+ 2πτ/(2p− q)) a.e., by definition of the transition func-
tions Fijεη.



1192 ALBERTO ENCISO AND NIKY KAMRAN

(ii) f(θ, φ, y, ψ, α) = f(θ, φ, y, ψ + π, α) = f(θ, φ, ψ, α+ π) a.e., because of
the way the sets Vi × Uε are patched to yield the bundle B, as analyzed
in Lemma 2.1 using the auxiliary S1-bundles By.

(iii) The integral
∫

|f(θ, φ, y, ψ, α)|2 ρ(y) dy sin θ dθ dφdψ dα

is finite, by the expression of the Riemannian measure (2.8).

From (i) and (ii), we see that f must be 2πτ/σ-periodic in its last argument,
with σ := lcm{pq, 2p− q, 2} the least common multiple of 2, p, q and 2p− q,
and π-periodic in its fourth argument. This leads to the L2 Fourier expansion

f(θ, φ, y, ψ, α) =
∑

n,m,l∈Z

fnml(y, θ) ei(nφ+2mψ+lσα/τ),

which readily gives (2.11) after recalling equation (2.8) and carrying out the
integrals in φ, ψ and α. It should be noticed that all the Fourier frequen-
cies compatible with the above periodicity condition must appear in the
decomposition formula due to the simple connectedness of Y p,q. �

3 The Laplacian in Y p,q

Our goal in this section is to derive a manageable formula for the spectral
resolution associated to the Laplacian in Y p,q. As we shall see, the compu-
tation of the spectral decomposition of the Laplacian actually boils down to
the analysis of a single Fuchsian ordinary differential operator depending on
three parameters.

It is well known that the Laplacian on Y p,q, which we denote by Δ,
defines a nonnegative, self-adjoint operator whose domain is the Sobolev
space H2(Y p,q) of square-integrable functions with square-integrable second
derivatives. The Laplacian is given in local coordinates as

Δ := gij∇i∇j =
1

ρ(y)
∂

∂y
ρ(y)w(y) r(y)

∂

∂y
+

1
w(y)

∂2

∂α2
+

9
r(y)

(
∂

∂ψ
− h(y)

∂

∂α

)2

+
6

1 − y

[
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

(
∂

∂φ
+ cos θ

∂

∂ψ

)2
]
.

Therefore, it is not difficult to see that the action of the Laplacian on a
function of the form u(y, θ) ei(nφ+2mψ+lσα/τ) (which are globally well defined,
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as discussed in Lemma 2.2) is given by

Δ(u(y, θ) ei(nφ+2mψ+lσα/τ)) = (Δnmlu(y, θ)) ei(nφ+2mψ+lσα/τ), (3.1)

where

Δnml :=
1

ρ(y)
∂

∂y
ρ(y)w(y) r(y)

∂

∂y
− 1
w(y)

(
σl

τ

)2

− 9
r(y)

(
2m− h(y)

σl

τ

)2

+
6

1 − y
Tnm (3.2)

and

Tnm :=
1

sin θ
∂

∂θ
sin θ

∂

∂θ
−
(
n+ 2m cos θ

sin θ

)2

. (3.3)

Equation (3.1) suggests that the computation the spectral resolution
of Δ should be equivalent to finding an appropriate orthonormal basis of
eigenfunctions of the differential operators Δnml on L2((y−, y+), ρ(y) dy) ⊗
L2((0, π), sin θ dθ). In the rest of this section we shall show how this can be
accomplished. We begin by constructing an orthonormal basis of L2((0, π),
sin θ dθ) consisting of eigenfunctions of Tnm. If I ⊂ R is an open interval,
we shall denote by AC1(I) the set of continuously differentiable functions
v : I → C whose derivative is absolutely continuous on any compact subset
of I.

Lemma 3.1. Let us denote the Jacobi polynomials by P (ā,b̄)
j and set

Cnmj :=
(

(2j + |n+ 2m| + |n− 2m| + 1) j! (j + |n+ 2m| + |n− 2m|)!
2 (j + |n+ 2m|)! (j + |n− 2m|)!

)1/2

.

Then the analytic functions vnmj : [0, π] → R given by

vnmj(θ) := Cnmj sin|n+2m| θ
2 cos|n−2m| θ

2 P
(|n+2m|,|n−2m|)
j (cos θ), j ∈ N,

define an orthonormal basis of L2((0, π), sin θ dθ) and satisfy the eigenvalue
equation Tnmvnmj = −Λnmjvnmj, with

Λnmj := 2(2j(j + 1) + (|n+ 2m| + |n− 2m|)(2j + 1)

+ |n+ 2m||n− 2m| + 2m2 + n2).
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Proof. In terms of the variable z := sin2 θ
2 , the differential equation

Tnmv(θ) = −Λv(θ) can be rewritten as

T̃nmṽ(z) = −Λṽ(z), (3.4)

where

T̃nm := z(1 − z)
∂2

∂z2
+ (1 − 2z)

∂

∂z
− (n+ 2m− 4mz)2

4z(1 − z)
, (3.5)

and ṽ(z) stands for the expression of the function v(θ) in the variable z. It
is not difficult to show that this equation has three regular singular points,
located at 0, 1 and ∞, whose characteristic exponents are respectively given
by ±(n2 +m), ±(n2 −m) and 1

2 [1 ± (1 + Λ + 4m2)1/2].

It then follows that the symmetric operator on L2((0, 1)) defined by the
action of (3.5) on C∞

0 ((0, 1)) is in the limit point case at 0 (resp. at 1) if
and only if n �= −2m (resp. n �= 2m). When both conditions are satisfied,
there exists a unique self-adjoint extension, whose domain is the set of ṽ ∈
AC1((0, 1)) such that T̃nmṽ ∈ L2((0, 1)). When n �= −2m (resp. n �= 2m), we
take the Friedrichs extension of the above operator, which is determined [14]
by the boundary condition

lim
z↘0

z ṽ′(z) = 0
(

resp. lim
z↗1

z ṽ′(z) = 0
)
.

We shall see that this choice of boundary conditions will preclude the appear-
ance of logarithmic singularities. With a slight abuse of notation, we shall
still denote by T̃nm the self-adjoint operators under consideration.

If equation (3.4) holds, a simple calculation shows that

v̂(z) := z−|n+2m|/2 (1 − z)−|n−2m|/2 ṽ(z)

satisfies the hypergeometric equation

z(1 − z) v̂′′(z) + (c̄− (ā+ b̄+ 1)z) v̂′(z) − āb̄ v̂(z) = 0, (3.6)

with parameters

2ā = 1 + |n+ 2m| + |n− 2m| − (Λ + 4m2 + 1)1/2,

2b̄ = 1 + |n+ 2m| + |n− 2m| + (Λ + 4m2 + 1)1/2, c̄ = |n+ 2m| + 1.

The characteristic exponents of this equation at 0 and 1 are given respec-
tively by (0,−|n+ 2m|) and (0,−|n− 2m|).
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It can be readily checked that ṽ belongs to the domain of T̃nm if and only
if v̂ is a bounded solution of equation (3.6), which implies [1, 15.3.6] that
v̂ is a polynomial. This only happens if ā or b̄ equals a nonpositive integer
−j, that is, when

Λ = 2(2j(j + 1) + (|n+ 2m| + |n− 2m|)(2j + 1)

+ |n+ 2m||n− 2m| + 2m2 + n2).

In this case, v̂(z) is a constant multiple of the Jacobi polynomial
P

(|n+2m|,|n−2m|)
j (1 − 2z). The spectral theorem ensures that the correspond-

ing eigenfunctions ṽ of T̃nm define an orthogonal basis of L2((0, 1)), while
their squared norm

∫ 1
0 |ṽ(z)|2 dz can be readily shown to be [1, 22.2.1]

∫ 1

0
z|n+2m|(1 − z)|n−2m| P (|n+2m|,|n−2m|)

j (1 − 2z)2 dz

=
(j + |n+ 2m|)! (j + |n− 2m|)!

(2j + |n+ 2m| + |n− 2m| + 1) j! (j + |n+ 2m| + |n− 2m|)! . (3.7)

Since the change of variables θ �→ z defines a unitary isomorphism

L2((0, π), sin θ dθ) � v �→ ṽ ∈ L2((0, 1), 2 dz),

the statement of the lemma readily follows by inverting this transformation
and normalizing the eigenfunctions using (3.7). �

Let us now consider the differential operator

Sml(Λ) :=
1

ρ(y)
∂

∂y
ρ(y)w(y) r(y)

∂

∂y
− 1
w(y)

(
σl

τ

)2

− 9
r(y)

(
2m− h(y)

σl

τ

)2

− 6Λ
1 − y

, (3.8)

arising from (3.2), which depends on a real parameter Λ � 0. It is clear that
we cannot hope to express the solutions of the formal eigenvalue equation

Sml(Λ)w = −λw (3.9)

in closed form using special functions because (3.9) is a Fuchsian differential
equation with seven regular singular points, located at the three roots of
the cubic (2.4), at 1, at ±a1/2 and at infinity. However, the information
contained in the following lemma will suffice for our purposes:
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Lemma 3.2. For all Λ � 0, the differential operator (3.8) defines a non-
negative self-adjoint operator in L2((y−, y+), ρ(y) dy), which we also denote
by Sml(Λ), whose domain consists of the functions w ∈ AC1((y−, y+)) such
that Sml(Λ)w ∈ L2((y−, y+)) and

lim
y↘y−

y w′(y) = 0 if m = (2p− q)σl/4 and lim
y↗y+

y w′(y) = 0 if m = −qσl/4.

Its spectrum consists of a decreasing sequence of eigenvalues (−
mlk(Λ))k∈N

↘ −∞ of multiplicity one whose associated normalized eigenfunctions
wmlk(Λ) are O((y+ − y)|m+qσl/4|) as y ↗ y+ and O((y − y−)|m+(q−2p)σl/4|)
as y ↘ y−.

Proof. Let yε be one of the endpoints of the interval (y−, y+) and set ζ :=
y − yε. An easy computation shows that

a− 3y2 + 2y3 = −6yε(1 − yε) ζ + O(ζ2), r(y) = − ζ

3yε
+ O(ζ2),

as y → yε, which shows that the differential equation (3.9) can be asymp-
totically written as

− (12yε ζ + O(ζ2)) w̃′′(ζ) − (12yε + O(ζ)) w̃′(ζ) +

[
3yε
ζ

(
2m− h(yε)

σl

τ

)2

+ O(1)

]
w̃(ζ) = 0,

with w̃(ζ) := w(ζ + yε) standing for the expression of the function w(y) in
the new variable ζ.

It then follows that the characteristic exponents of the equation (3.9) at
yε are ±νε, with νε := |m− h(yε)σl/(2τ)|. Using (2.9) and (2.10), one can
immediately derive the more manageable formula

ν+ = |m+ qσl/4|, ν− = |m+ (q − 2p)σl/4|. (3.10)

Since σ is even by Lemma 2.2, it stems from the latter equation that 2 νε is a
nonnegative integer. Therefore, it is standard that the symmetric operator
defined by (3.8) on C∞

0 ((y−, y+)) is in the limit point case at yε if and only
if νε �= 0. If ν+ν− �= 0, the latter operator is then essentially self-adjoint on
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C∞
0 ((y−, y+)), and has a unique self-adjoint extension of domain [8]

D := {w ∈ AC1((y−, y+)) : Sml(Λ)w ∈ L2((y−, y+))}.

When ν+ν− = 0, the above symmetric operator is not essentially self-
adjoint. In this case, in order to rule out logarithmic singularities we shall
choose its Friedrichs extension [14], whose domain consists of the functions
w ∈ D such that

lim
y↘y−

y w′(y) = 0 if ν− = 0 and lim
y↗y+

y w′(y) = 0 if ν+ = 0.

It is well known [8] that Sml(Λ) is then a nonnegative operator with compact
resolvent and that its eigenvalues are nondegenerate. �

Remark 3.1. It should be noticed that the critical exponents (3.10) are
half-integers rather than integers because in |y − yε| is proportional to the
square of the distance to the pole yε, as discussed in [9].

Lemmas 3.1 and 3.2 provide us with all the information we need in order
to derive the following eigenfunction expansion for the Laplacian, which is
the main result of this section:

Theorem 3.1. Let unmlkj : Y p,q → C be the analytic functions on Y p,q given
by

unmlkj := vnmj(θ)wmlk(Λnmj)(y)
ei(nφ+2mψ+σlα/τ)

(2π)3/2
(3.11)

and set λnmlkj := 
mlk(Λnmj). Then {unmlkj : j, k ∈ N, l,m, n ∈ Z} is an
orthonormal basis of L2(Y p,q) and

Δunmlkj = −λnmlkj unmlkj . (3.12)

Proof. We know that, by construction, {vnmj ⊗ wmlk : j, k ∈ N} is a
basis of L2((y−, y+), ρ(y) dy) ⊗ L2((0, π), sin θ dθ) for each n,m, l ∈ Z. By
Lemma 2.2, this implies that {unmlkj : j, k ∈ N, l,m, n ∈ Z} is then a basis
of L2(Y p,q). In the light of Lemma 3.1, or after a short computation, it
is apparent that the functions unmlkj are analytic, and therefore lie in the
domain H2(Y p,q) of the Laplacian. From equations (3.1)–(3.3) and (3.8) and
from Lemmas 3.1 and 3.2 we subsequently infer that the Laplace operator
in diagonal in this basis and equation (3.12) holds, as claimed. �
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Remark 3.2. It should be observed that the proof fails if one takes vnmj
or wmlk(Λ) to be the eigenfunction basis corresponding to a different self-
adjoint extension of (3.3) or (3.8), since in this case the above eigenfunctions
will present logarithmic singularities which will prevent some of the elements
unmlkj of the basis of L2(Y p,q) from being in the domain of the Laplacian.
This is due to the fact that the action of the Laplacian on these logarithmi-
cally divergent functions will give rise to Dirac-type singularities.

To conclude, some remarks on the form of the eigenfunctions (3.11) are
in order. First, one should observe that the angular dependence of the
eigenfunctions (in α and ψ) is quite different from, e.g., that of axisymmetric
eigenfunctions in Euclidean space. This is a consequence of the considerable
geometric complexity of the manifold Y p,q and its fibration structure, and
indeed one can gain some additional insight into its geometry by fixing
y = y± or (θ, φ) = (θ0, φ0) and studying the expression of the eigenfunctions.
From an analytic point of view, the main advantage of Theorem 3.1 is that
most of the properties of the Laplacian in Y p,q can be analyzed through
the simpler one-dimensional Sturm–Liouville operator Sml(Λ). Theorem 3.1
will be crucial in our analysis of the wave equation in M , which is the main
result of this paper.

4 The Klein–Gordon equation in AdS5 × Y p,q

We will denote by AdS5 the simply connected Lorentzian 5-manifold of
constant sectional curvature −κ, for fixed κ > 0. It is well known that AdS5

is diffeomorphic to R
5. If ϑ ≡ (ϑ1, ϑ2, ϑ3) ∈ [0, π] × [0, π] × R/2πZ are the

standard coordinates on the 3-sphere, the metric on AdS5 can be globally
written as

gκ :=
−dt2 + dx2 + cos2 x gS3

κ sin2 x
,

where t ∈ R, x ∈ (0, π/2] and

gS3 := (dϑ1)2 + sin2 ϑ1 (dϑ2)2 + sin2 ϑ1 sin2 ϑ2 (dϑ3)2

is the canonical metric on S3. The Laplacian and the Riemannian volume
measure on S3 will be respectively denoted by ΔS3 and

dω := sin2 ϑ1 sinϑ2 dϑ1 dϑ2 dϑ3.
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Let us now focus of the 10-dimensional Lorentzian manifold AdS5 × Y p,q,
endowed with the metric ḡ := gκ ⊕ g. It is apparent that there is no loss of
generality in assuming that the Ricci curvature of Y p,q is 4g, as in Section 2.
Its associated wave operator will be denoted by � := ḡij ∇i∇j , and we shall
call ΣT the spacelike hypersurface in AdS5 × Y p,q defined by t = T . We will
occasionally use the above coordinates to naturally identify each ΣT with a
fixed time slice Σ and define the measure dν dω dμ on Σ or ΣT , with dν :=
2 cot3 x dx. Notice that dν dω dμ is not the hypersurface measure on ΣT .

In this section, we shall show that, under appropriate assumptions to be
made precise below, the Klein–Gordon equation in AdS5 × Y p,q,

(� −M2)ϕ = 0, (4.1a)

with Cauchy data

ϕ

∣∣∣∣Σ0 = ϕ0,
∂ϕ

∂t

∣∣∣∣
Σ0

= ϕ1, (4.1b)

admits a unique propagator, for any value of the constant M � 0. By a
propagator we mean a bilinear map

R : C∞
0 (Σ) × C∞

0 (Σ) → C∞(AdS5 × Y p,q) ∩ C∞(R, L2(Σ,dν dω dμ)),

which maps each Cauchy data (ϕ0, ϕ1) ∈ C∞
0 (Σ) × C∞

0 (Σ) to a smooth solu-
tion ϕ ≡ R(ϕ0, ϕ1) of the Cauchy problem (4.1).

The analysis of the Cauchy problem (4.1) presents some additional diffi-
culties related to the fact that AdS5 × Y p,q is not globally hyperbolic. Gen-
erally speaking, the existence or uniqueness of global solutions to the Cauchy
problem for the Klein–Gordon equation is not granted on a manifold which
fails to be globally hyperbolic. The case of static, nonglobally hyperbolic
manifolds such as AdS(κ) × Y p,q is quite special, however, and propagators
on these spaces can be analyzed using results of Wald [19] and Ishibashi and
Wald [11, 12].

For various linear hyperbolic equations, Ishibashi and Wald discuss the
existence and uniqueness of propagators satisfying three essential assump-
tions [11, Section 2] which that are required for the propagation to be phys-
ically sensible. Roughly speaking, these conditions mean that the propaga-
tion in causal, invariant under time translation and reflection, and that it
preserves an appropriate energy functional. For the reader’s convenience,
we present these assumptions in the Appendix. Propagators for the Cauchy
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problem (4.1) which satisfy Assumptions A.1–A.3 in the appendix will be
called admissible. Our main result is Theorem 4.1, where we prove that
the Cauchy problem (4.1) has a unique admissible propagator and derive a
manageable integral spectral representation for the solution.

Before stating this theorem, we need to introduce some further notation.
Let us consider the linear differential operators defined by

L(s, λ) := − ∂2

∂x2
+ 3(tanx+ cotx)

∂

∂x
+
s(s+ 2)
cos2 x

+
M2 + λ

κ sin2 x
, (4.2)

where s ∈ N and λ � 0 are constants. We shall denote by L0(s, λ) the pos-
itive symmetric operator in L2((0, π2 ),dν) with domain C∞

0 ((0, π2 )) defined
by (4.2).

An orthonormal basis of L2(S3,dω) is given by the spherical harmonics
(cf. e.g. [17])

Y s1s2s3(ϑ) := Ns1s2s3 sins2 ϑ1C
(s2+1)
s1−s2 (cosϑ1)P s3s2 (cosϑ2) eis3ϑ3

, (4.3)

where C(l)
r and Pml , respectively, denote the Gegenbauer polynomials and

the associated Legendre functions, (s1, s2, s3) ∈ N
2 × Z with s1 � s2 � |s3|,

and the normalization constants are

Ns1s2s3 :=
(

22s2−1(s1 + 1) (2s2 + 1) (s1 − s2)! (s2 − s3)! (s2!)2

π2(s1 + s2 + 1)! (s2 + s3)!

)1/2

.

The spherical harmonics satisfy the differential equation

ΔS3Y s1s2s3 = −s1(s1 + 2)Y s1s2s3 . (4.4)

For the ease of notation, we will consider the set of multi-indices

B := {β ≡ (β1, . . . , β8) : β1, β2, β7, β8 ∈ N, β3, β4β5, β6 ∈ Z, β1 � β2 � |β3|}

and denote by Ψβ : S3 × Y p,q → C the smooth functions given by

Ψβ(ϑ, η) := Y β1β2β3(ϑ)uβ4β5β6β7β8(η),

where unmlkj was defined in (3.11). We shall also use the notation

λβ := λβ4β5β6β7β8 and cβ :=
(

4 +
M2 + λβ

κ

)1/2

. (4.5)
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A multi-index β should be thought of as an ordered 8-uple consisting of the
spectral parameters (s1, s2, s3, n,m, l, k, j) used in (3.11) and (4.3).

Lemma 4.1. For each β ∈ B, the operator L0(β1, λβ) is essentially self-
adjoint. If Lβ denotes its closure and and F : [0,∞) → C is a bounded
continuous function, then

F (Lβ) f(x) =
∑

i∈N

F (Ωβ
i )

(∫ π
2

0
f(x′) fβi (x′) dν(x′)

)
fβi (x) (4.6)

a.e. for all f ∈ L2((0, π2 ), dν), where for each i ∈ N the function

fβi (x) :=
(

2(2i+ s+ cβ + 2) i! Γ(i+ s+ cβ + 2)
(i+ s+ 1)! Γ(i+ cβ + 1)

)1/2

cosβ1 x sin2+cβ x

× P
(β1+1,cβ)
i (− cos 2x) (4.7)

is a normalized eigenfunction of Lβ with eigenvalue

Ωβ
i := (2i+ s+ cβ + 2)2. (4.8)

Proof. Let us consider the change of variables ξ := cos2 x, which maps
L2((0, π2 ),dν) onto L2((0, 1), ξ(1 − ξ)−2dξ) and transforms the ordinary dif-
ferential equation L(β1, λβ)f = Ωf into

4ξ(1 − ξ) f̃ ′′(ξ) + 4(2 − ξ) f̃ ′(ξ) +

(
Ω − β1(β1 + 2)

ξ
−

c2β
1 − ξ

)
f̃(ξ) = 0,

(4.9)
where f̃ stands for the expression of the function f under the above change
of variables. This is a Fuchsian differential equation with three regular
singular points: 0 (with characteristic exponents β1/2 and −1 − β1/2), 1
(with characteristic exponents 1 + cβ/2 and 1 − cβ/2) and infinity (with
characteristic exponents ±Ω1/2/2). From the expression for the exponents
and equation (4.5), it is manifest that equation (4.9) does not admit any
solutions in L2((0, 1), ξ(1 − ξ)−2dξ) when Im Ω �= 0, which implies that the
only self-adjoint extension of L0(β1, λβ) is its closure, Lβ .

An easy computation shows that f̂(ξ) := ξ−β1/2(1 − ξ)−1−cβ/2 f̃(ξ) satis-
fies the hypergeometric equation

ξ(1 − ξ) f̂ ′′(ξ) + (c̄− (ā+ b̄+ 1)ξ) f̂ ′(ξ) − āb̄ f̂(ξ) = 0,
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with parameters

ā :=
2 + β1 + cβ − Ω1/2

2
, b̄ :=

2 + β1 + cβ + Ω1/2

2
, c̄ := β1 + 2.

It is standard (cf. e.g. [1, 15.3.6]) that a solution f̃ to the above equation
lies in L2((0, 1), ξ(1 − ξ)−2dξ) if and only if f̂ is a polynomial. In turn, this
is equivalent to say that ā = −i with i ∈ N, i.e., that

Ω = (2i+ s+ cβ + 2)2,

which implies that f̂(ξ) is proportional to the polynomial P
(β1+1,cβ)
i

(1 − 2ξ). When rewritten in terms of the variable x, this readily yields
the expressions (4.7) and (4.8) for the eigenvalues and eigenfunctions of Lβ ,
the normalization constant being easily read off from the formula [1, 22.2.1]

∫ 1

0
ξβ1+1(1 − ξ)cβP (β1+1.cβ)

i (1 − 2ξ)2 dξ

=
(i+ β1 + 1)! Γ(i+ cβ + 1)

2(2i+ β1 + cβ + 2) i! Γ(i+ β1 + cβ + 2)
,

with Γ being Euler’s Gamma function. Equation (4.6) now follows through
continuous functional calculus [8]. �

Theorem 4.1. There exists a unique admissible propagator for the Cauchy
problem (4.1), which is given by

ϕ(t, x, ϑ, η) :=
∑

β∈B

⎛

⎝cos(tL1/2
β )ϕ0

β(x) +
sin(tL1/2

β )

L1/2
β

ϕ1
β(x)

⎞

⎠ Ψβ(ϑ, η).

(4.10)

Here

ϕjβ(x) :=
∫

S3×Y p,q

ϕj(x, ϑ, η) Ψβ(ϑ, η) dω(ϑ) dμ(η), j = 0, 1,

and cos(tL1/2
β )ϕjβ and L−1/2

β sin(tL1/2
β )ϕjβ are defined through the

formula (4.6).
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Proof. The wave operator in AdS5 × Y p,q reads

� = κ

(
− sin2 x

∂2

∂t2
+ sin2 x tan3 x

∂

∂x
cot3 x

∂

∂x
+ tan2 xΔS3

)
+ Δ.

(4.11)

Let us assume that R is a propagator for the Cauchy problem (4.1) and set
ϕ := R(ϕ0, ϕ1), so that ϕ|ΣT ∈ L2(Σ,dν dω dμ) for almost every T ∈ R. Let
us decompose ϕ as

ϕ(t, x, ϑ, η) =
∑

β∈B
ϕβ(t, x) Ψβ(ϑ, η),

with
ϕβ(t, x) :=

∫

S3×Y p,q

ϕ(t, x, ϑ, η) Ψβ(ϑ, η) dω(ϑ) dμ(η).

From equation (4.11) it then follows that ϕβ satisfies the Cauchy problem

∂2ϕβ
∂t2

+ L(β1, cβ)ϕβ = 0, ϕβ(0, ·) = ϕ0
β ,

∂ϕβ
∂t

(0, ·) = ϕ1
β , (4.12)

where, by hypothesis, ϕjβ ∈ C∞
0 ((0, π2 ]) ⊂ L2((0, π2 ),dν) for j = 0, 1. If we

additionally assume that ϕjβ ∈ C∞
0 ((0, π2 )), a theorem of Ishibashi and

Wald [11] ensures that the only admissible solutions of (4.12) such that
ϕβ(T, ·) ∈ L2(Σ,dν dω dμ) for a.e. T ∈ R are given by

ϕβ(t, x) = cos(t L̃1/2
β )ϕ0

β(x) +
sin(t L̃1/2

β )

L̃
1/2
β

ϕ1
β(x), (4.13)

where L̃β is a positive self-adjoint extension of L0(β1, λβ). As L0(β1, λβ)
is essentially self-adjoint by Lemma 4.1, L̃β necessarily coincides with the
Friedrichs extension Lβ , which proves Theorem 4.1 under the additional
hypothesis that the support of (ϕ0, ϕ1) does not contain the point of Σ0 given
by x = 0. To remove this hypothesis, it suffices to observe that (4.13) still
solves the Cauchy problem (4.12) for arbitrary ϕjβ ∈ C∞

0 ((0, π2 ]), thus ensur-
ing the validity of (4.10) for arbitrary Cauchy data (ϕ0, ϕ1) ∈ C∞

0 (Σ0) ×
C∞

0 (Σ0), which is what we had to prove. �

It is clear that Theorem 4.1 and its proof remain valid when the Cauchy
data are not assumed smooth and compactly supported but taken in a
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Sobolev space of sufficiently high order, but we shall not pursue this gen-
eralization here. It is also well known that solutions to the inhomogeneous
Cauchy problem can be constructed through time integration of solutions
to (4.1) using Duhamel’s principle. In this case, the propagator is a trilinear
map

R̂ :C∞
0 (AdS5 × Y p,q) × C∞

0 (Σ0) × C∞
0 (Σ0)

→ C∞(AdS5 × Y p,q) ∩ C∞(R, L2(Σ,dν dω dμ))

mapping (Θ, ϕ0, ϕ1) to a solution Φ ≡ R̂(Θ, ϕ0, ϕ1) of the PDE

(� −M2)Φ = Θ, Φ
∣∣∣∣Σ0 = ϕ0,

∂Φ
∂t

∣∣∣∣
Σ0

= ϕ1. (4.14)

For completeness we state the analog of Theorem 4.1 for the inhomogene-
ous equation, which follows using the same reasoning as in Theorem 4.1. It
should be noticed that the admissibility conditions presented in the appendix
can be readily extended to the case of inhomogeneous equations, mutatis
mutandis.

Corollary 4.1. There exists a unique admissible propagator R̂ for the inho-
mogeneous Cauchy problem (4.14). The propagator is given by Φ ≡
R̂(Θ, ϕ0, ϕ1) = ϕ+ ϕ̃, with ϕ as in (4.10) and ϕ̃ defined by

ϕ̃(t, x, ϑ, η) :=
∑

β∈B

⎛

⎝
∫ t

0

sin[(t− T )L1/2
β ]

L1/2
β

Θβ(T, x) dT

⎞

⎠ Ψβ(ϑ, η), (4.15)

where

Θβ(t, x) :=
∫

S3×Y p,q

Θ(t, x, ϑ, η) Ψβ(ϑ, η) dω(ϑ) dμ(η)

and the integral in (4.15) is defined through the formula (4.6).

Appendix

In this appendix, we will state and briefly discuss Ishibashi and Wald’s
assumptions [11], which must be satisfied by any physically meaningful prop-
agator R of the Klein–Gordon equation (4.1). To this end, we will denote by
ϕ ≡ R(ϕ0, ϕ1) : AdS5 × Y p,q → C the solution of the Cauchy problem (4.1)
determined by R.
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Let us start by defining the time translation and reflection operator on
C∞(AdS5 × Y p,q):

(TTΦ)(t, x, θ, η) := Φ(t+ T, x, θ, η), (PΦ)(t, x, θ, η) := Φ(−t, x, θ, η),

with T ∈ R. The causal future (resp. past) of a set U ⊂ AdS5 × Y p,q will
be denoted by J+(U) (resp. J−(U)). The first condition we must impose
on the propagator is that a solution ϕ of (4.1) must be compatible with
causality:

Assumption A.1. The support of ϕ is contained in J+(supp(|ϕ0| + |ϕ1|) ∪
J−(supp(|ϕ0| + |ϕ1|)).

The second assumption is that the propagation is compatible with the
time translation and reflection symmetries. In order to state this condi-
tion, we need to recall [11, Lemma 2.1] that Assumption A.1 ensures that
for any initial conditions (ϕ0, ϕ1) ∈ C∞

0 (Σ0) × C∞
0 (Σ0) there exists some

ε(ϕ0, ϕ1) > 0 such that the function ϕT (x, ϑ, η) := ϕ(T, x, ϑ, η) is smooth
and compactly supported for all |T | < ε(ϕ0, ϕ1). (Of course, the function ϕT
would be compactly supported for all T in a globally hyperbolic manifold.)

Assumption A.2. Let ϕ be the solution associated with the Cauchy data
(ϕ0, ϕ1) and |T | � ε(ϕ0, ϕ1). Then the solution associated with the Cauchy
data (ϕT , (∂ϕ/∂t)T ) (resp. (ϕ0,−ϕ1)) is T−Tϕ (resp. Pϕ).

To state the third assumption, let us introduce the vector space

V :=

{
Φ ≡

N∑

i=1

TTiR(ϕ0
i , ϕ

1
i ) : N ∈ N, Ti ∈ R,

(ϕ0
i , ϕ

1
i ) ∈ C∞

0 (Σ0) × C∞
0 (Σ0)

}

of all finite linear combinations of solutions of the form TTR(ϕ0, ϕ1). In
the case of a globally hyperbolic manifold, this would simply be the space
R(C∞

0 (Σ0) × C∞
0 (Σ0)) of solutions to the Cauchy problem (4.1) with data

in C∞
0 .

Assumption A.3 consists of three related conditions ensuring the exis-
tence of a well-defined conserved energy functional E. The first one asserts
that this energy is invariant under time translations and reflections. By
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equation (4.11), the equation (4.1a) can be rewritten as

(
− ∂2

∂t2
+ tan3 x

∂

∂x
cot3 x

∂

∂x
+

ΔS3

cos2 x
+

Δ −M2

κ sin2 x

)
ϕ = 0, (A.1)

so the second condition guarantees that the E reduces to the ‘naive’ energy
functional for equation (A.1) in certain cases. Finally, the third condition
requires that the topology defined by the energy functional be compatible
with the weak C∞ topology on the Cauchy data.

Assumption A.3. There exists an inner product E : V × V → C such that
the following properties hold:

(i) For all Φ1,Φ2 ∈ V and T ∈ R,

E(Φ1,Φ2) = E(PΦ1,PΦ2) = E(TTΦ1, TTΦ2).

(ii) For all Φ ∈ V,

E(Φ, ϕ) =
∫

Σ0

[
∂Φ
∂t

ϕ1 − Φ
(
∂2

∂x2
+ 3(tanx+ cotx)

∂

∂x
+

ΔS3

sin2 x

+
Δ −M2

κ sin2 x

)
ϕ0

]
dν dω dμ.

(iii) Let (Φn)n∈N ⊂ V be a Cauchy sequence with respect to the norm
‖ · ‖E defined by E and suppose that there exists Φ ∈ V such that the
sequences (Φn|Σ0)n∈N and (∂Φn/∂t|Σ0)n∈N respectively tend to Φ|Σ0

and ∂Φ/∂t|Σ0 in the weak C∞(Σ0) topology. Then

lim
n→∞ ‖Φn − Φ‖E = 0.
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[7] M. Cvetic, H. Lü, D. N. Page and C. N. Pope, New Einstein–Sasaki
spaces in five and higher dimensions, Phys. Rev. Lett. 95 (2005),
071101.

[8] N. Dunford and J. T. Schwartz, Linear operators II, Wiley, New York,
1988.

[9] J. P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki–
Einstein metrics on S2 × S3, Adv. Theor. Math. Phys. 8 (2004),
711–734.

[10] J. P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, A new infinite
class of Sasaki–Einstein manifolds, Adv. Theor. Math. Phys. 8 (2004),
987–1000.

[11] A. Ishibashi and R. M. Wald, Dynamics in non-globally-hyperbolic static
spacetimes II. General analysis of prescriptions for dynamic, Class.
Quantum Gravit. 20 (2003), 3815–3826.

[12] A. Ishibashi and R. M. Wald, Dynamics in non-globally-hyperbolic static
spacetimes III. Anti-de Sitter spacetime, Class. Quantum Gravit. 21
(2004), 2981–3013.

[13] S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal
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