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Abstract

We define and study a gluing procedure for Bridgeland stability condi-
tions in the situation when a triangulated category has a semiorthogonal
decomposition. As an application, we construct stability conditions on
the derived categories of Z2-equivariant sheaves associated with ramified
double coverings of P

3. Also, we study the stability space for the derived
category of Z2-equivariant coherent sheaves on a smooth curve X, asso-
ciated with a degree 2 map X → Y , where Y is another smooth curve.
In the case when the genus of Y is ≥ 1 we give a complete description of
the stability space.

0 Introduction

Stability conditions on triangulated categories were introduced by Bridge-
land in [4] as a mathematical formalization of Douglas’ work on Π-stability
in [7, 8]. A stability condition gives a way to single out (semi)stable objects
in a triangulated category D, generalizing Mumford’s definition of stabil-
ity for vector bundles. The remarkable feature of Bridgeland’s theory is
that the set of (nice) stability conditions on D has a structure of complex
manifold. Hypothetically this manifold, called the stability space has some
interesting geometric structures, and in the case when D is the derived cat-
egory of coherent sheaves on a Calabi–Yau threefold this space should be
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relevant for mirror symmetry considerations (see [6]). However, at present
we have a quite limited stock of examples of stability conditions, so it is
important to come up with new techniques for constructing them. Recall
that a stability condition can be described via its heart, which is an abelian
category H ⊂ D, together with a central charge Z, which is a homomor-
phism K0(D) → C sending every nonzero object of H either to the (open)
upper half-plane or to R<0. The idea to consider non-obvious abelian cate-
gories sitting inside derived categories is historically related to the theory of
perverse sheaves, where such abelian categories are defined using a certain
gluing procedure associated with a stratification of a topological space (see
[3]). Thus, it seems natural to try to extend the gluing construction to stabil-
ity conditions. This is the first principal goal of the present paper. Secondly,
we consider examples of the gluing construction for stability conditions in
particular geometric situations.

The notion of an abelian category sitting nicely inside a triangulated
category D is axiomatized in [3]. Recall that such categories appear as
hearts of t-structures on D. The natural setup for gluing of t-structures is
the situation when D has a semiorthogonal decomposition D = 〈D1,D2〉. By
definition, this means that D1 and D2 are triangulated subcategories in D
such that Hom(E2, E1) = 0 for every E1 ∈ D1 and E2 ∈ D2, and for every
object E ∈ D there exists an exact triangle

E2 → E → E1 → E2[1] (0.1)

with E1 ∈ D1, E2 ∈ D2. Assume we are given hearts of t-structures H1 ⊂ D1
and H2 ⊂ D2. Under the additional assumption that

Hom≤0(H1, H2) = 0 (0.2)

the corresponding glued heart H will be the smallest full subcategory of
D, closed under extensions and containing H1 and H2. If we have stability
conditions on D1 and D2 with the above hearts then we can define a central
charge Z on D uniquely, so that it restricts to the given central charges on
D1 and D2. In order for the pair (H, Z) to determine a stability condition
on D one should check the Harder–Narasimhan property (see Section 1).
This does not seem to follow automatically from the similar property of
the original stability conditions on D1 and D2. We provide two sufficient
criteria for checking this property: the first (Proposition 3.5(a)) imposes an
additional discreteness condition on the original stability conditions on D1
and D2, while the second (Theorem 3.6) imposes a stronger orthogonality
condition than (0.2). We also check that under appropriate assumptions the
gluing operation is continuous (see Theorem 4.3 and Corollaries 4.4, 4.5).
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For technical reasons we introduce the notion of a reasonable stability
condition which is slightly stronger than that of a locally finite stability con-
dition considered by Bridgeland. Namely, we say that a stability condition
is reasonable if the infimum of |Z(E)| over all nonzero semistable objects
E, is positive. In most of our considerations we work only with reasonable
stabilities. We show in Section 1 that all (locally finite) stability conditions
considered in the works [2, 4, 5, 11] are reasonable, so this does not seem to
be much of a restriction.

In the case of the semiorthogonal decomposition associated with a full
exceptional collection (Ei) our gluing procedure for stabilities reduces to the
construction of Macr̀ı in [11] (the collection (Ei) should be Ext-exceptional,
i.e., such that Hom≤0(Ei, Ej) = 0 for i 	= j). To get new examples of stabil-
ity conditions we consider the following situation. Let X → Y be a ramified
double covering of smooth projective varieties. Then X is equipped with
an involution and we can consider the derived category D = DZ2(X) of Z2-
equivariant coherent sheaves on X. It turns out that this category has a
semiorthogonal decomposition with one block being the category of sheaves
on Y and another — sheaves on R, the ramification divisor in Y (in the
case of curves these semiorthogonal decompositions were considered in [14]).
This allows to glue together some stability conditions for sheaves on Y and
R into a stability condition on D. Using examples of stability conditions
on surfaces constructed in [2] this gives examples of stability conditions on
DZ2(X), where X is a ramified double cover of P

3.

Finally, we study in detail the case when X and Y are curves. It turns
out that in this case a lot of stability conditions on DZ2(X) are obtained by
gluing. In Theorem 6.6 we describe an open simply connected subset U of
the stability space consisting of the stability conditions that are “not too far”
from the standard one (similar to the Mumford’s stability for nonequivariant
sheaves). We show that U is the universal covering of the corresponding open
subset of central charges, where the group of deck transformations is Z. In
the case when genus of Y is ≥ 1 we describe the stability space of DZ2(X)
completely and show that it is contractible (see Section 7). Namely, we
construct an isomorphism of the stability space with an explicit open subset
of Σn × C

2, where n is the number of ramification points of X → Y , and
Σ is a certain simply connected Riemann surface of parabolic type (so Σ is
isomorphic to C). This surface Σ naturally appears as follows: we prove that
if p ∈ X is a ramification point then a stability condition on DZ2(X) restricts
to a stability condition on the subcategory Dp of objects supported at p
(provided g(Y ) ≥ 1). The stability space corresponding to Dp has form Σ ×
C, where the central charge of O2p is given by exponentiating the projection
to the second factor C. In the case when Y = P

1 the stability space seems to
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be more complicated due to the presence of additional exceptional objects
in DZ2(X). We show in this case that our open subset U contains a dense
open subset consisting of stabilities constructed from exceptional collections
(see Proposition 6.7).

Notation. For subcategories A1, . . . ,An in a triangulated category D we
denote by [A1, . . . ,An] (resp., 〈A1, . . . ,An〉) the extension-closed full
subcategory (resp., triangulated subcategory) in D generated by the Ai’s. We
work with algebraic varieties over a fixed algebraically closed field k. For a
smooth projective variety X we denote by D(X) the bounded derived cate-
gory of coherent sheaves on X. For a complex number z we denote by 
z
and �z its real and imaginary parts, and we call φ(z) := (arg z)/π the phase
of z.

1 Reasonable stability conditions

Throughout this section D denotes a triangulated category. Let us briefly
recall basic definitions and results concerning local finite stability conditions
on D, referring to Bridgeland’s original paper [4] for details.

By definition, a stability condition σ is given by a pair (Z, P ), where Z :
K0(D) → C is a homomorphism from the Grothendieck group K0(D) of D,
and P is a slicing. Such a slicing is given by a collection of subcategories P (φ)
of semistable objects of phase φ for each φ ∈ R, where Hom(P (φ1), P (φ2)) =
0 for φ1 > φ2, and P (φ)[1] = P (φ + 1). For an object E ∈ P (φ) we will
use the notation φ(E) = φ. Similarly to the case of vector bundles, for
each object E of D there should exist a Harder–Narasimhan filtration (HN-
filtration), i.e., a collection of exact triangles building E from the semistable
factors E1, . . . , En (called the HN-factors of E), where φ(E1) > · · · > φ(En)
(E1 → E is an analog of the subbundle of maximal phase, etc.). For each
interval I ⊂ R we denote by PI ⊂ D the extension-closed subcategory gen-
erated by all the subcategories P (φ) for φ ∈ I. For example, P (0, 1] denotes
the subcategory corresponding to the interval (0, 1].

If σ = (Z, P ) is a stability condition then P (0, 1] is a heart of a bounded
nondegenerate t-structure on D with D≤0 = P (0, +∞) and D≥0 = P (−∞, 1].
We will often refer to the abelian subcategory P (0, 1] ⊂ D as the heart of
σ. By Proposition 5.3 of [4], to give a stability condition is the same as to
give an abelian subcategory H ⊂ D (which should be the heart of a bounded
nondegenerate t-structure), together with a homomorphism Z : K0(H) → C

such that for every nonzero object E ∈ H one has either �Z(E) > 0 or
Z(E) ∈ R<0. These data should satisfy the HN property, i.e., once we define
(semi)stability for objects in H using the slopes associated with the function
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Z, then every object of H should be equipped with an analog of the HN
filtration. Checking the HN property is often an important ingredient in
constructing stability conditions (see Section 3 for examples).

A stability condition σ = (Z, P ) is called locally finite if there exists η > 0
such that for every φ ∈ R the quasi-abelian category P (φ − η, φ + η) is of
finite length. The space of all locally finite stability conditions on D is
denoted Stab(D). It can be equipped with a natural topology defined as
follows (see Section 6 of [4]). For σ = (Z, P ) ∈ Stab(D) we define a function
|| · ||σ : Hom(K0(D), C) → [0, +∞] by

||U ||σ = sup
E semistable,E �=0

|U(E)|
|Z(E)| .

The basis of open neighborhoods of a locally finite stability condition σ =
(Z, P ) in Stab(D) consists of open subsets

Bε(σ) = {τ = (U, Q) : ||U − Z||σ < sin(πε), d(P, Q) < ε},

where d(P, Q) is a natural generalized metric on the set of slicings given by

d(P, Q) = inf{ε ∈ R≥0 : Q(φ) ⊂ P [φ − ε, φ + ε] for all φ ∈ R}.

Theorem 7.1 of [4] states that for a given locally finite stability condition
σ = (Z, P ) there exists an ε0 > 0 such that if 0 < ε < ε0 then every central
charge Z ′ ∈ Hom(K0(D), C) with ||Z ′ − Z||σ < sin(πε) lifts to an element of
Bε(σ). Let us set

Wσ := {U ∈ Hom(K0(D), C) : ||U ||σ < ∞}.

The linear subspaces Wσ ⊂ Hom(K0(D), C) do not change as σ varies over
a connected component C of Stab(D). Furthermore, the natural projection
C → Wσ is a local homeomorphism (see Theorem 1.2 of [4])

In the case when D is of finite type over a field one can consider the numer-
ical Grothendieck group N (D) which is the quotient of K0(D) by the kernel
of the Euler bilinear form on K0(D) (see [4], 1.3). A stability condition is
called numerical if the corresponding central charge factors through N (D).
We denote by StabN (D) the space of numerical locally finite stability con-
ditions on D. The above theorem on the structure of Stab(D) implies that
in a neighborhood of σ ∈ StabN (D) the space StabN (D) is modeled on the
linear space WN

σ = Wσ ∩ Hom(N (D), C). A numerical stability condition σ
is called full if WN

σ = Hom(N (D), C) (see [5]).
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The space Stab(D) (resp., StabN (D)) is equipped with a canonical action

of the group ˜GL+
2 (R), which is a universal covering of the group of 2 × 2-

matrices over R with positive determinant. For a real number a let us
denote by Ra : Stab(D) → Stab(D) the operation of shifting the phase by a

which is part of this ˜GL+
2 (R)-action. More explicitly, for σ = (Z, P ) one has

Raσ = (r−πa ◦ Z, P ′), where P ′(t) = P (t + a), r−πa is the rotation in C = R
2

through the angle −πa. We refer to the transformations Ra as rotations.

Definition. A stability condition σ = (Z, P ) on D is called reasonable if

inf
E semistable,E �=0

|Z(E)| > 0,

where E runs over all nonzero σ-semistable objects.

Lemma 1.1. Let σ = (Z, P ) be a stability condition on D.

(1) If σ is reasonable then for every 0 < η < 1 one has

inf
t∈R,E∈P (t,t+η)\0

|Z(E)| > 0.

(2) σ is reasonable if and only if for every t and every 0 < η < 1 the point
0 is an isolated point of Z(P (t, t + η)).

(3) If σ is reasonable then every category P (t, t + η) for 0 < η < 1 is of
finite length, hence, σ is locally finite.

(4) If the image of Z in C is discrete then σ is reasonable.

Proof. (1) Let

c = inf
E semistable,E �=0

|Z(E)| > 0.

Given an object E ∈ P(t, t + η) let Ei be the HN-factors of E. Then all
numbers Z(Ei) (and Z(E)) lie in the cone C(t, t + η) of complex numbers
with phases between t and t + η. Let h : C → R denote the scalar product
with the unit vector of phase t + η/2. Then we have cos(πη/2)|z| ≤ h(z) ≤
|z| for all z ∈ C(t, t + η). Hence,

|Z(E)| ≥ h(Z(E)) =
∑

i

h(Z(Ei)) ≥ cos(πη/2)c.

(2) The “only if” part follows from (1). Conversely, assuming that 0 is an
isolated point of Z(P (0, 3/4)) and of Z(P (1/2, 5/4)) we see that there is
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a universal lower bound for |Z(E)|, where E is semistable of the phase in
(0, 1]. This implies that σ is reasonable.

(3) This is similar to Lemma 4.4 of [5]. The point is that if h : C → R denotes
the scalar product with the unit vector of phase t + η/2 then h(A) > c > 0
for a fixed constant c, where A is a nonzero object of P (t, t + η). Since
h is an additive function with respect to strict short exact sequences, the
assertion follows.

(4) This is clear. �

Proposition 1.2. Let Σ be a connected component of Stab(D) containing
some reasonable stability condition. Then every σ ∈ Σ is reasonable.

Proof. Let σ = (Z, P ), σ′ = (Z ′, P ′) be points of Σ. Assume first that σ′

is reasonable, and σ′ ∈ Bε(σ), where ε < 1/4. Then for every σ-semistable
object E of phase t we have |Z ′(E) − Z(E)| < sin(πε)|Z(E)| and E ∈ P ′(t −
ε, t + ε). Hence, by Lemma 1.1(1), there exists a constant c > 0 independent
of E such that |Z ′(E)| > c. Therefore,

|Z(E)| > (1 + sin(πε))−1|Z ′(E)| > (1 + sin(πε))−1c,

so σ is reasonable. This shows that the set of reasonable stabilities is
closed. Conversely, assume that σ is reasonable and σ′ ∈ Bε(σ), where ε
is sufficiently small. Given a σ′-semistable object E of phase t we have
E ∈ P (t − ε, t + ε). Let (Ei) be the HN-factors of E with respect to σ.
Then Ei ∈ P (t − ε, t + ε) ⊂ P ′(t − 2ε, t + 2ε). Let us denote by h : C → R

the scalar product with the unit vector of phase t. Then

|Z ′(E)| = h(Z ′(E)) =
∑

i

h(Z ′(Ei)) ≥ 1
2

∑

i

|Z ′(Ei)|

provided ε is small enough. But |Z ′(E1)| > (1 − sin(πε))|Z(E1)| which is
bounded below by a positive constant depending only on ε. Hence, σ′ is
reasonable, so the set of reasonable stabilities is open. �

Corollary 1.3. If Σ ⊂ Stab(D) is a connected component containing some
stability condition such that the corresponding central charge has discrete
image, then every σ ∈ Σ is reasonable.

Note that this corollary implies that all (locally finite) stability conditions
constructed in [2, 4, 5, 11] are reasonable.
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2 Gluing construction

The general gluing construction for t-structures was invented in [3]. We
start by stating a particular case of this construction (see Section 3.1 of
[15] for a related construction). Let D be a triangulated category equipped
with a semiorthogonal decomposition D = 〈D1,D2〉. Note that for E ∈ D
the objects E1 ∈ D1 and E2 ∈ D2 from the exact triangle (0.1) depend func-
torially on E. Namely, E2 = ρ2(E), where ρ2 is the right adjoint functor to
the inclusion D2 → D, and E1 = λ1(E), where λ1 is the left adjoint functor
to the inclusion D1 → D.

Lemma 2.1. Assume we have a semiorthogonal decomposition D = 〈D1,D2〉
and t-structures (D≤0

i ,D≥0
i ) with the hearts Hi on Di (where i = 1, 2), such

that Hom≤0
D (H1, H2) = 0. Then there is a t-structure on D with the heart

H = {X ∈ D | λ1(X) ∈ H1, ρ2(X) ∈ H2}. (2.1)

With respect to this t-structure on D the functors λ1 : D → D1 and ρ2 : D →
D2 are t-exact.

Proof. Set D[a,b] = {X ∈ D‖ λ1(X) ∈ D[a,b]
1 , ρ2(X) ∈ D[a,b]

2 }. First, we have
to check that Hom(D≤0,D≥1) = 0. Note that our orthogonality assumption
for the hearts is equivalent to

HomD(D≤0
1 ,D≥0

2 ) = 0. (2.2)

Now given X ∈ D≤0 and Y ∈ D≥1, the canonical exact triangles for X and
Y show that it is enough to check the vanishings

Hom(ρ2(X), ρ2(Y )) = Hom(ρ2(X), λ1(Y )) = Hom(λ1(X), ρ2(Y ))

= Hom(λ1(X), λ1(Y )) = 0.

The first and the fourth groups vanish since we start with t-structures on
D1 and D2. The second group vanishes by semiorthogonality, and the third
— by (2.2).

Next, let us check that for every E ∈ D there exists an exact triangle

A → E → B → A[1]

with A ∈ D≤0 and B ∈ D≥1. Consider the canonical triangle (0.1). We are
going to construct A and B in such a way that A (resp., B) will be an
extension of τ1

≤0E1 by τ2
≤0E2 (resp., of τ1

≥1E1 by τ2
≥1E2), where τ1

∗ and τ2
∗
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denote the truncation functors on D1 and D2, respectively. First, apply-
ing the octahedron axiom to the exact triangles E2 → E → E1 → · · · and
τ1
≤0E1 → E1 → τ1

≥1E1 → · · · we construct an exact triangle

Ã → E → τ1
≥1E1 → · · · ,

where Ã is an extension of τ1
≤0E1 by E2. Next, consider the exact triangle

τ2
≤0E2 → E2 → τ2

≥1E2 → · · · .

Condition (2.2) implies that Hom1(τ1
≤0E1, τ

2
≥1E2) = 0. Hence, there exists

an exact triangle

A → Ã → τ2
≥1E2 → · · · ,

where A is an extension of τ1
≤0E1 by τ2

≤0E2. Applying the octahedron axiom
once more we deduce the required statement. �

Note that in the situation of the above lemma we have H1 ⊂ H and
H2 ⊂ H. Furthermore, every object E ∈ H fits into an exact sequence in H

0 → ρ2(E) → E → λ1(E) → 0, (2.3)

where ρ2(E) ∈ H2 and λ1(E) ∈ H1. Therefore, we also have

H = [H2, H1], (2.4)

and (H2, H1) is a torsion pair in H (see [10] for the definition and basic
properties of torsion pairs).

Assume now that the hearts H1 and H2 are equipped with stability func-
tions Zi : K0(Hi) → C. Then the formula

Z(X) = Z1(λ1(X)) + Z2(ρ2(X)) (2.5)

defines a stability function on the glued heart H.

Definition. Suppose we have stability conditions σ1 = (Z1, P1) on D1 and
σ2 = (Z2, P2) on D2, such that the corresponding hearts H1 = P1(0, 1] and
H2 = P2(0, 1] satisfy Hom≤0

D (H1, H2) = 0. Then we say that a stability con-
dition σ = (Z, P ) on D is glued from σ1 and σ2 if Z is given by (2.5), and
the heart H = P (0, 1] is given by (2.1) (or equivalently, by (2.4)).
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Note that this glued stability condition is uniquely determined by σ1 and
σ2. It exists if and only if the HN property for the stability function Z on
the glued heart H is satisfied. We have the following easy properties of glued
stability conditions.

Proposition 2.2. (1) A stability condition σ = (Z, P ) on D is glued from
σ1 = (Z1, P1) on D1 and σ2 = (Z2, P2) on D2 if and only if Zi = Z|Di for
i = 1, 2, Hom≤0(H1, H2) = 0 and Hi ⊂ H for i = 1, 2, where H = P (0, 1],
Hi = Pi(0, 1].

(2) Let σ be a stability condition on D with the central charge Z and the
heart H. Assume that H is glued from the hearts H1 ⊂ D1 and H2 ⊂ D2,
where Hom≤0(H1, H2) = 0, so that (2.1) holds. Then for i = 1, 2 there exists
a stability condition σi on Di with the heart Hi and the central charge Zi =
Z|Di, so that σ is glued from σ1 and σ2.

(3) If σ = (Z, P ) is glued from σ1 = (Z1, P1) and σ2 = (Z2, P2) then for
every φ ∈ R one has P1(φ) ⊂ P (φ) and P2(φ) ⊂ P (φ).

Proof. (1) Let us observe that for every E ∈ D one has the equality [E] =
[ρ2(E)] + [λ1(E)] in K0(D), so definition (2.5) is equivalent to the condi-
tion Z|Di = Zi for i = 1, 2. It remains to note also that the embeddings
H1, H2 ⊂ H imply that [H1, H2] ⊂ H. Since both are hearts of nondegener-
ate t-structures this is equivalent to equality (2.4).

(2) The subcategory H1 ⊂ H (resp., H2 ⊂ H) is exactly the kernel of the
exact functor ρ2 : H → H2 (resp., λ1 : H → H1). It follows that these sub-
categories are closed under passing to subobjects and quotient objects in H.
This easily implies that the HN property holds for Z|Hi on Hi, i = 1, 2, so
we obtain the stability conditions on D1 and D2. The fact that σ is glued
from these stabilities follows from definition.

(3) It is enough to check this in the case when φ ∈ (0, 1]. Then this follows
immediately from the fact that H1 and H2 are stable under subobjects and
quotient-objects in H. �

In the case of semiorthogonal decompositions associated with a full excep-
tional collection (E1, . . . , En) the above gluing procedure was considered
by Macr̀ı in [11]. Namely, we can consider the semiorthogonal decomposi-
tion D = 〈〈E1〉, . . . , 〈En〉〉, and equip 〈Ei〉 with the t-structure for which Ei

belongs to the heart. Then our orthogonality condition on the hearts reduces
to the condition that the collection is Ext-exceptional, i.e., Hom≤0(Ei, Ej) =
0 for i < j, and the glued heart is H = [E1, . . . , En]. We say that a stabil-
ity condition σ = (Z, P ) on D is glued from an Ext-exceptional collection
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(E1, . . . , En) if P (0, 1] = H. Note that in this case the HN property is auto-
matically satisfied for any stability function on H. We will generalize this
in Proposition 3.5.

3 HN property and gluing of stability conditions

In this section we show how to check the HN property for the glued stability
function under different sets of additional assumptions.

We start with the following basic criterion which is a slight generalization
of Proposition 2.4 of [4] (the proof is the same as in [4], using properties of
quasi-abelian categories). Recall that φ(z) denotes the phase of z ∈ C.

Proposition 3.1. Suppose A is a quasi-abelian category with a stability
function Z : K0(A) → C. Assume that for a pair of Z-semistable objects
E, F ∈ A such that φ(E) > φ(F ) one always has HomA(E, F ) = 0, where we
denote φ(E) := φ(Z(E)). Assume also that the following chain conditions
are satisfied:

(1) there are no infinite sequences of strict monomorphisms in A

· · · ⊂ Ej+1 ⊂ Ej ⊂ · · · ⊂ E2 ⊂ E1

with φ(Ej+1) > φ(Ej) for all j,
(2) there are no infinite sequences of strict epimorphisms in A

E1 � E2 � · · · � Ej � Ej+1 � · · ·

with φ(Ej) > φ(Ej+1) for all j.

Then Z has the HN property on A.

Quasi-abelian categories often arise as follows. Consider an abelian cat-
egory A equipped with a torsion pair (T ,F). Then both T and F are
quasi-abelian categories. Indeed, this follows from Lemma 1.2.34 of [16],
using the tilted abelian category At. For example, to check that T is quasi-
abelian we use the fact that the embedding of T into A is stable under
quotients, while the embedding of T into At is stable under subobjects.

Lemma 3.2. Let A be an abelian category equipped with a torsion pair
(T ,F). Suppose Z is a stability function on A such that for any nonzero
T ∈ T and F ∈ F one has φ(T ) > φ(F ) (where as before we set φ(F ) :=
φ(Z(F ))). Let Z|T and Z|F be the stability functions on the exact categories
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T and F induced by Z. Then every Z|T -semistable object of T (resp., Z|F -
semistable object of F) is Z-semistable as an object of A.

Proof. We consider only the case of a Z|T -semistable object T ∈ T (the
second case is similar). Suppose T is not Z-semistable as an object of A.
Then there exists a subobject A ⊂ T such that φ(A) > φ(T ). Consider the
canonical exact sequence

0 → T (A) → A → F (A) → 0 (3.1)

with T (A) ∈ T , F (A) ∈ F . By the assumption either φ(T (A)) > φ(F (A))
or one of the objects T (A), F (A) is zero. Note that T (A) 	= 0, since oth-
erwise A would be an object of F , so the inequality φ(A) > φ(T ) would
be impossible. It follows that φ(T (A)) ≥ φ(A) > φ(T ). Thus, we found a
destabilizing subobject T (A) ⊂ T (the quotient is automatically in T since
T is always closed under quotients). �
Proposition 3.3. Keep the assumptions of Lemma 3.2. Assume that both
(T , Z|T ) and (F , Z|F ) satisfy chain conditions (1) and (2) from Proposi-
tion 3.1. Then Z has the HN property on A.

Proof. Suppose we have a pair of Z|T -semistable objects E, F ∈ T such that
φ(E) > φ(F ). Then by Lemma 3.2, E and F are still semistable viewed as
objects of the abelian category A with the stability function Z. Hence,
Hom(E, F ) = 0. Therefore, by Proposition 3.1, the HN property holds for
(T , Z|T ). The same argument works for (F , Z|F ). Now given an object
E ∈ A we can sew together the HN-filtrations of the objects T (A) and F (A)
from the canonical exact sequence (3.1). It remains to apply Lemma 3.2
again to see that we get a HN-filtration of E in this way. �

The following lemma is a more precise version of Proposition 5.0.1 of [1].

Lemma 3.4. (a) Let Z be a stability function on an abelian category A.
Assume that 0 is an isolated point of �Z(A) ⊂ R≥0, and that the category
A0 = {A ∈ A | �Z(A) = 0} is Noetherian. Then Z satisfies the HN property
on A if and only if A is Noetherian.

(b) Let σ = (Z, P ) be a stability condition on D with Noetherian heart P (0, 1].
Assume that 0 is an isolated point of �Z(P (0, 1)) ⊂ R≥0. Then the category
P (0, 1) is of finite length. Also, σ is reasonable if and only if 0 is an isolated
point of Z(P (1)) ⊂ R≤0.

Proof. (a) Assume first that A is Noetherian. Then condition (2) of Propo-
sition 3.1 is automatic. To check condition (1) we observe that if E → F is
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a destabilizing inclusion in A then �Z(E) < �Z(F ). Indeed, we have either
�Z(F/E) > 0 or 
Z(F/E) < 0. But in the latter case the phase of Z(E)
would be smaller than that of Z(F ). Thus, if we have a chain

· · · ⊂ Ej+1 ⊂ Ej ⊂ · · · ⊂ E2 ⊂ E1 (3.2)

of destabilizing inclusions in A then the sequence (�Z(Ej)) is strictly
decreasing. But this implies that �Z(Ej/Ej+1) tends to 0 which is a con-
tradiction. Conversely, assume Z satisfies the HN property. To check that
A is Noetherian we have to check that every sequences of quotients in A

E1 � E2 � E3 � · · · (3.3)

stabilizes. Note that in this situation the sequence (�Z(Ei)) is decreasing,
so it has to stabilize. Without loss of generality, we can assume that the
sequence (�Z(Ei)) is constant. Then the kernel Ki of E1 → Ei belongs to
A0. Since Z satisfies the HN property, there exists a maximal subobject
F ⊂ E1 such that F ∈ A0. Then the kernels Ki form an increasing chain
of subobjects in F . Since A0 is Noetherian, this sequence stabilizes, so the
original sequence (Ei) also stabilizes.

(b) To see that P (0, 1) is of finite length we observe that any increas-
ing chain of admissible inclusions in P (0, 1) stabilizes since A = P (0, 1] is
Noetherian. Also, if we have a chain (3.2) of admissible proper inclusions in
P (0, 1) then the sequence �Z(Ej) is strictly decreasing, which is impossible.
Under our assumptions |Z(E)| is bounded below by some positive constant,
where E runs through nonzero semistable objects in P (0, 1). Thus, σ is
reasonable if and only if

inf
E∈P (1)\0

|Z(E)| > 0.
�

Proposition 3.5. Let (D1,D2) be a semiorthogonal decomposition of a tri-
angulated category D, and let σ1 = (Z1, H1) and σ2 = (Z2, H2) be a pair of
locally finite stability conditions on D1 and D2, respectively. Assume that
Hom≤0

D (H1, H2) = 0, and let H be the heart in D glued from H1 and H2. As
before, consider the stability function Z = Z1λ1 + Z2ρ2 on H. Assume in
addition that one of the following two conditions hold:

(a) 0 is an isolated point of �Zi(Hi) ⊂ R≥0 for i = 1, 2;
(b) Hom≤1

D (H1, P2(0, 1)) = 0.

Then Z has the HN property on H. Furthermore, in case (a) the category
P (0, 1) for the glued stability condition σ = (Z, P ) is of finite length. In case
(b) the stability condition σ is locally finite.
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Proof. First, assume that (a) holds. Then it is easy to see that 0 is an
isolated point of �Z(H) ⊂ R≥0. Also, by Lemma 3.4(a), both categories
H1 and H2 are Noetherian (the condition on A0 in this lemma follows from
the assumption that σi’s are locally finite). Using the exact functors λ1 :
H → H1 and ρ2 : H → H2 we easily deduce that H is Noetherian. Now the
assertion follows by applying Lemma 3.4(a) again.

(b) In this case for every t ∈ (0, 1] let us define the subcategory P (t) ⊂ H
by

P (t) := {E ∈ H | λ1(E) ∈ P1(t), ρ2(E) ∈ P2(t)}.

Note that each object of P (t) is an extension of an object in P1(t) by an
object in P2(t). It is enough for every E ∈ H to construct the HN-filtration
with respect to this slicing. We start with the canonical extension

0 → E2 → E → E1 → 0,

where E2 = ρ2(E) ∈ H2 and E1 = λ1(E) ∈ H1. Consider also the canonical
exact sequences

0 → Ai → Ei → Bi → 0

with Ai ∈ Pi(1) and Bi ∈ Pi(0, 1) for i = 1, 2. Since Hom1(E1, B2) = 0 by
assumption, we get a splitting E → B2 which gives rise to an exact sequence

0 → A2 → E → B2 ⊕ E1 → 0.

Let E(1) ⊂ E be the preimage of A1 ⊂ E1 ⊂ B2 ⊕ E1. Then E(1) is an
extension of A1 by A2, so E(1) ∈ P (1). Also, E/E(1) � B1 ⊕ B2, so we
get the required filtration by using the HN-filtrations on B1 and B2. The
obtained glued stability has the property that λ1(P (a, b)) ⊂ P1(a, b) and
ρ2(P (a, b)) ⊂ P2(a, b). This easily implies that it is locally finite. �

Remark. We do not know how to check local finiteness of the glued stability
condition in Proposition 3.5(a) without imposing additional assumptions.

If we work with reasonable stability conditions, we can prove the exis-
tence of the glued stability conditions under a slightly stronger orthogonality
assumption.

Theorem 3.6. Let (D1,D2) be a semiorthogonal decomposition of a trian-
gulated category D. Suppose (σ1, σ2) is a pair of reasonable stability condi-
tions on D1 and D2, respectively, with the slicings Pi and central charges Zi
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(i = 1, 2), and let a be a real number in (0, 1). Assume the following two
conditions hold:

(1) Hom≤0
D (P1(0, 1], P2(0, 1]) = 0;

(2) Hom≤0
D (P1(a, a + 1], P2(a, a + 1]) = 0;

Then there exists a stability σ glued from σ1 and σ2. Furthermore, σ is
reasonable.

Proof of Theorem 3.6. Let H ⊂ D be the heart glued from P1(0, 1] and
P2(0, 1] and let (D≤0,D≥0) denote the corresponding t-structure. Using
the second condition we can construct a t-structure on D with the heart

Ha = [P1(a, a + 1], P2(a, a + 1]].

One immediately checks that H ⊂ [Ha, Ha[−1]] and Ha ⊂ [H[1], H] =
D[−1,0]. Now for every E ∈ H consider the canonical triangle

A → E → B → A[1]

with A ∈ Ha and B ∈ Ha[−1]. We claim that A and B belong to H. Indeed,
we have A ∈ Ha ⊂ D≤0. On the other hand, A is an extension of E by
B[−1] ∈ Ha[−2], so A ∈ D≥0. Hence, A ∈ H. Similarly, B ∈ Ha[−1] ⊂ D≥0,
and also B ∈ D≤0 as an extension of A[1] ∈ Ha[1] by E. Therefore, if we set

P (0, a] = {E ∈ D | λ1(E) ∈ P1(0, a], ρ2(E) ∈ P2(0, a]},

P (a, 1] = {E ∈ D | λ1(E) ∈ P1(a, 1], ρ2(E) ∈ P2(a, 1]}, (3.4)

then (P (a, 1], P (0, a]) is a torsion pair in H. Next, let Z be the glued
central charge given by (2.5). Then we have φ(Z(E)) ≤ a for E ∈ P (0, a],
while φ(Z(E)) > a for E ∈ P (a, 1]. Also, since σ1 and σ2 are reasonable,
by Lemma 1.1(3), the categories P1(0, a] and P2(0, a] (resp., P1(a, 1] and
P2(a, 1]) are of finite length. This implies that both P (0, a] and P (a, 1] are
also of finite length. Therefore, we can apply Proposition 3.3 to the torsion
pair (P (a, 1], P (0, a]) in H to derive that the HN property holds for (Z, H).
Hence, we have the corresponding stability condition σ on D. It follows from
the definition of P (0, a] and P (a, 1] that 0 is an isolated point of Z(P (0, a])
and of Z(P (a, 1]). This immediately implies that σ is reasonable. �

Remark. It may not be easy in general to determine for a particular pair
of stabilities σ1, σ2 with Hom≤0

D (P1(> 0), P2(≤ 1) = 0 whether there exists
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a ∈ (0, 1) such that

Hom≤0
D (P1(> a), P2(≤ a + 1)) = 0.

However, in the following two cases this is automatic:

1. If there exists φ > 0 such that P2(0, φ] = {0} then any a ∈ (0, φ] works,
since in this case P2(≤ a + 1) = P2(≤ 1). For instance, this condition
is satisfied when P2(0, 1] is of finite length and has finite number of
simple objects.

2. If there exists φ < 1 such that P1(φ, 1] = {0} then any a ∈ (φ, 1] works,
since in this case P1(> −a) = P1(> 0). For example, this condition
holds when P1(0, 1] is of finite length with finite number of simple
objects and P1(1) = {0}.

4 Continuity of gluing

Let us recall the following basic result.

Lemma 4.1 (Lemma 6.4 of [4]). Suppose σ = (Z, P ) and τ = (Z, Q) are
stability conditions on D with the same central charge Z. Suppose also that
d(P, Q) < 1. Then σ = τ .

We start with the observation that the condition d(P, Q) < 1 in the above
lemma can be weakened and use this to give a nice criterion for determining
when two stability conditions are close (part (b) of the following proposi-
tion).

Proposition 4.2. Let σ1 = (Z1, P1) and σ2 = (Z2, P2) be stability condi-
tions on D.

(a) Assume that
(1) Z1 = Z2 and
(2) P1(0, 1] ⊂ P2(−1, 2].

then σ1 = σ2.
(b) Assume that σ1 is locally finite. There exists ε0 > 0 such that if for some

0 < ε < ε0 one has

(1) ||Z1 − Z2||σ1 < sin(πε) and
(2) P2(0, 1] ⊂ P1(−1 + ε, 2 − ε],

then σ2 ∈ Bε(σ1).
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Proof. (a) First, using properties of t-structures we can easily deduce that
P2(0, 1] ⊂ P1(−1, 2]. Now given E ∈ P1(0, 1], there is an exact triangle

F → E → G → F [1]

with F ∈ P2(1, 2] and G ∈ P2(−1, 1]. Observe that F ∈ P1(> 0) and G ∈
P1(≤ 2). Since F is an extension of E by G[−1], we derive that F ∈ P1(0, 1].
But the intersection P1(0, 1] ∩ P2(1, 2] is trivial (since Z1 = Z2), so F = 0.
This proves that E ∈ P2(−1, 1].

Next, consider an exact triangle

F → E → G → F [1]

with F ∈ P2(0, 1] and G ∈ P2(−1, 0]. Observe that F ∈ P1(> −1) and G ∈
P1(≤ 1]. Since G is an extension of F [1] by E, we get G ∈ P2(−1, 0] ∩
P1(0, 1] = {0}. Therefore, P1(0, 1] ⊂ P2(0, 1]. Since these are both hearts of
bounded t-structures, they have to be equal, so σ1 = σ2.

(b) Let σ = (Z2, P ) be the unique stability in Bε(σ1) lifting the central
charge Z2 — it exists by our assumption that ||Z2 − Z1||σ1 < sin(πε) (using
Theorem 7.1 of [4]). Then

P2(0, 1] ⊂ P1(−1 + ε, 2 − ε] ⊂ P (−1, 2].

By part (a), this implies that σ = σ2. �

Now we can show that the gluing construction of Theorem 3.6 is contin-
uous.

Theorem 4.3. Let (D1,D2) be a semiorthogonal decomposition in a tri-
angulated category D. For a real number a ∈ (0, 1) let S(a) ⊂ Stab(D1) ×
Stab(D2) denote the subset of (σ1, σ2) such that σ1 and σ2 are reasonable
stability conditions satisfying

(1) Hom≤0
D (P1(0, 1], P2(0, 1]) = 0,

(2) Hom≤0
D (P1(a, a + 1], P2(a, a + 1]) = 0.

Let gl : S(a) → Stab(D) be the map associating to (σ1, σ2) the corresponding
glued stability condition σ on D (see Theorem 3.6). Then the map gl is
continuous on S(a).

Proof. Let σi = (Zi, Pi), σ′
i = (Z ′

i, P
′
i ) be stabilities on Di for i = 1, 2, such

that (σ1, σ2) and (σ′
1, σ

′
2) are points of S(a), and let us denote by σ = (Z, P )
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and σ′ = (Z ′, P ′) the corresponding glued stability conditions. Assume that
σ′

i ∈ Bδ(σi) for i = 1, 2. Then for ε ≥ δ we have

P (0, 1] = [P1(0, 1], P2(0, 1]] ⊂ [P ′
1(−ε, 1 + ε], P ′

2(−ε, 1 + ε]]

⊂ P ′(−ε, 1 + ε].

Thus, we can deduce the required continuity from Proposition 4.2(b), once
we show that ||Z − Z ′||σ ≤ sin(πε) provided δ is small enough. Let φ ∈ (0, 1]
and E ∈ P (φ). We have to prove that

|Z(E) − Z ′(E)| ≤ |Z(E)| sin(πε).

Assume first that φ ∈ (a, 1]. Let h : C → R denote the scalar product with
the unit vector of phase a+1

2 . Then there exists a positive constant c (depend-
ing only on a) such that

h(z) ≤ |z| ≤ ch(z),

for all nonzero complex numbers z with phase θ, where a ≤ θ ≤ 1.

Let F1, . . . , Fn (resp., G1, . . . , Gm) be the HN-factors of λ1(E) (resp.,
ρ2(E)) with respect to σ1 (resp., σ2). Then we have

|Z(E) − Z ′(E)| ≤ |Z1(λ1E) − Z ′
1(λ1E)| + |Z2(ρ2E) − Z ′

2(ρ2E)|

≤
n∑

i=1

|Z1(Fi) − Z ′
1(Fi)| +

m∑

j=1

|Z2(Gj) − Z ′
2(Gj)|

≤ sin(πδ)

⎡

⎣
n∑

i=1

|Z1(Fi)| +
m∑

j=1

|Z2(Gj)|

⎤

⎦ .

Recall that by (3.4), we have λ1(E) ∈ P1(a, 1] and ρ2(E) ∈ P2(a, 1]. Hence,
all the numbers Z1(Fi) and Z2(Gj) have phases between a and 1, so we
derive

|Z(E) − Z ′(E)| ≤ c sin(πδ)[
n∑

i=1

h(Z1(Fi)) +
m∑

j=1

h(Z2(Gj))]

= c sin(πδ)h(Z(E)) ≤ c sin(πδ)|Z(E)|.

So δ must be chosen to satisfy the relation c sin(πδ) < sin(πε). A similar
argument covers the case of objects F ∈ P (0, a] and imposes a second con-
dition that c′ sin(πδ) < sin(πε) for some positive constant c′, depending only
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on a. Given δ satisfying both conditions, it follows that

||Z − Z ′||σ ≤ sin(πε). �

The following corollary describes an open subset of pairs of stabilities that
can be glued, obtained by imposing a stronger orthogonality assumption on
(σ1, σ2).

Corollary 4.4. Let U ⊂ Stab(D1) × Stab(D2) denote the set of pairs of
reasonable stabilities (σ1 = (Z1, P1) and σ2 = (Z2, P2)) such that for some
ε > 0 one has

Hom≤0
D (P1(−ε, 1], P2(0, 1 + ε)) = 0.

Then U is open and the gluing map gl : U → Stab(D) is continuous.

Proof. Note that our assumption on (σ1, σ2) is equivalent to

HomD(P1(−ε, +∞), P2(−∞, 1 + ε)) = 0.

For each ε > 0 let us denote by Tε the set of pairs (σ1, σ2) satisfying this
condition. Note that U = ∪ε>0Tε. Now to check that U is open suppose
we have (σ1, σ2) ∈ Tε. Given a pair (σ′

1 = (Z ′
1, P

′
1), σ

′
2 = (Z ′

2, P
′
2)), such that

σ′
i ∈ Bδ(σi), for i = 1, 2, where 0 < δ < ε, we have P ′

1(> −ε + δ) ⊂ P1(> −ε)
and P ′

2(< 1 + ε − δ) ⊂ P1(< 1 + ε). Hence, (σ′
1, σ

′
2) belongs to Tε−δ. It

remains to apply Theorem 4.3. �

On the other hand, in the situation when either D1 or D2 is generated by
an exceptional object, we have the following result that will be used later.

Corollary 4.5. Let (D1,D2) be a semiorthogonal decomposition in a trian-
gulated category D.

(i) Assume that D1 is generated by an exceptional object E1, and H2 ⊂ D2

is a heart of some bounded t-structure on D2, such that Hom≤−1
D (E1,

H2) = 0. Let S2 ⊂ Stab(D2) denote the set of reasonable stability con-
ditions σ2 = (Z, P ) with P (0, 1] = H2. On the other hand, let R1 ⊂
Stab(D1) denote the set of stability conditions such that the phase of
E1 is < 0. Then there is continuous gluing map R1 × S2 → Stab(D).

(ii) Similarly, assume that D2 is generated by an exceptional object E2,
and H1 ⊂ D1 is a heart of some bounded t-structure on D2, such that
Hom≤−1

D (H1, E2) = 0. Let S1 ⊂ Stab(D1) denote the set of reasonable
stability conditions with the heart H1, and let R2 ⊂ Stab(D2) denote
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the set of stability conditions such that the phase of E2 is > 1. Then
there is continuous gluing map S1 × R2 → Stab(D).

Proof. We will only consider (i) since the proof of (ii) is analogous. Let
R1(ε) ⊂ Stab(D1) denote the set of stability conditions such that the phase
of E1 is < −ε. It is enough to check that for every ε > 0 one has R1(ε) × S2 ⊂
S(1 − ε), where S(1 − ε) ⊂ Stab(D1) × Stab(D2) is the subset considered in
Theorem 4.3 for a = 1 − ε. Note that P1(0, 1] = [E1[n]], where n is deter-
mined by the condition that the phase of E1 is in the interval (−n, −n + 1].
Hence, n ≥ 1, so the condition Hom≤0(P1(0, 1], H2) = 0 is satisfied. Sim-
ilarly, P1(−ε, 1 − ε] = [E1[m]], where m ≥ 1. Hence, Hom≤0(P1(−ε, 1 − ε],
P2(≤ 1)) = 0 which implies the condition (2) of Theorem 4.3 for a =
1 − ε. �

5 Semiorthogonal decompositions associated with double
coverings

Let π : X → Y be a double covering of smooth projective varieties X and
Y , ramified along a smooth divisor R in Y . Then we have an action of Z2
on X such that the nontrivial element acts by the corresponding involution
τ : X → X. Let us denote by DZ2(X) the corresponding bounded derived
category of Z2-equivariant coherent sheaves on X. We denote by ζ the
nontrivial character of Z2. Note that τ -invariant stability conditions on
D(X) correspond to stability conditions on DZ2(X) that are invariant under
the autoequivalence F �→ F ⊗ ζ (see [12] or [15]). Below we will show how
to construct stability conditions on DZ2(X) starting from a pair of stability
conditions on D(Y ) and on D(R), satisfying certain assumptions.

Let us denote by i : R → X (resp., j : R → Y ) the closed embedding of
the ramification divisor into X (resp., Y ). For every sheaf F on R we
equip i∗F with the trivial Z2-equivariant structure. This gives a functor
i∗ : D(R) → DZ2(X). On the other hand, for a coherent sheaf F on Y we
have a natural Z2-equivariant structure on π∗F , so we obtain a functor
π∗ : D(Y ) → DZ2(X).

Theorem 5.1. The functors i∗ : D(R) → DZ2(X) and π∗ : D(Y ) → DZ2(X)
are fully faithful. We have two canonical semiorthogonal decompositions of
DZ2(X):

DZ2(X) = 〈π∗D(Y ), i∗D(R)〉 = 〈ζ ⊗ i∗D(R), π∗D(Y )〉.
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Proof. The case where X and Y are curves was considered in Theorem 1.2
of [14], and the proof in the general case is very similar. The fact that π∗

is fully faithful follows immediately from the equality (π∗OX)Z2 = OY and
the projection formula. Similarly, to prove that i∗ is fully faithful it suffices
to check (Li∗i∗F )Z2 = F . We have a canonical exact triangle

F ⊗ N∨[1] → Li∗i∗F → F → · · ·

compatible with Z2-action, where N∨ = OX(−R)|R is the conormal bundle.
It remains to observe that Z2 acts on N∨ by multiplication with −1.

Now let F ∈ D(Y ) and G ∈ D(R) be some objects. Then we have

HomZ2(π
∗(F ), ζ ⊗ i∗(G)) � HomZ2(Lj∗F, ζ ⊗ G) = 0

which gives one of the required orthogonality conditions. On the other hand,
by Serre duality, denoting d = dimX, we get

HomZ2(i∗(G), π∗(F ))∗ � HomZ2(π
∗(F ), ωX ⊗ i∗(G)[d])

� HomZ2(Lj∗F, i∗ωX ⊗ G[d]).

Note that Z2 acts nontrivially on i∗ωX � ωY ⊗ N∨, so the above Hom-space
vanishes.

Finally, we have to check that for every F ∈ DZ2(X) such that HomZ2(i∗
D(R), F ) = 0 or HomZ2(F, ζ ⊗ i∗D(R)) = 0, lies in the essential image of
π∗ : D(Y ) → DZ2(X). Note that by Serre duality, these two orthogonality
conditions are equivalent. Assume that HomZ2(F, ζ ⊗ i∗D(R)) = 0. Then
Z2 acts trivially on i∗F . Now the assertion follows from the main theorem
of [17]. �

We can use the above theorem as a setup for gluing stability conditions.
The situation seems to be especially nice when either D(R) or D(Y ) admits
an exceptional collection (see the remark at the end of the previous section).
The former possibility occurs when X and Y are curves and will be consid-
ered below. The latter possibility happens if, say, Y is a projective space.
In particular, we derive the following result.

Proposition 5.2. Let π : X → P
n be a smooth double covering ramified

along a smooth hypersurface j : R ↪→ P
n. Assume we are given a reasonable

stability σR = (ZR, PR) on D(R), an Ext-exceptional collection (E0, . . . , En)
on P

n, and a set of vectors v0, . . . , vn in the upper half-plane such that j∗Ei ∈
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PR(> 1) for i = 0, . . . , n. Then there exists a reasonable stability σ = (Z, P )
on DZ2(X) with

P (0, 1] = [i∗PR(0, 1], π∗E0, . . . , π
∗En],

Z(E) = v0x0(Rπ∗(E(R))Z2) + · · · + vnxn(Rπ∗(E(R))Z2)

− ZR((i∗E ⊗ N)Z2),

where x0, . . . , xn : K0(Pn) → Z are the coordinates dual to the basis ([Ei]).

Proof. This stability is obtained by gluing with respect to the semiorthogo-
nal decomposition

DZ2(X) = 〈π∗D(Y ), i∗D(R)〉. (5.1)

It exists by Theorem 3.6, where a < 1 should be taken bigger than all of
the phases of the vectors vi (see the remark after Theorem 3.6). To get the
formula for the central charge we note that for E ∈ DZ2(X) one has

ρ2(E) = i!(E)Z2 � (i∗E ⊗ N)Z2 [−1],

λ1(E) = Rπ∗(E(R))Z2 .
�

For example, if X → P
3 is a double covering ramified along a smooth sur-

face S ⊂ P
3 then we can consider stabilities on S constructed in [2]. Choos-

ing an appropriate Ext-exceptional collection on P
3 and using the above

result we get examples of stabilities on DZ2(X).

6 Double coverings of curves

In this section we will consider the case when X and Y are curves. In this
case the ramification divisor R consists of points p1, . . . , pn, and the cate-
gory D(R) is generated by the orthogonal exceptional objects Op1 , . . . ,Opn .
Recall that the category D(X) has a standard stability condition σst with
Zst = − deg +i rk and Pst(0, 1] = Coh(X). There is an induced stability con-
dition on DZ2(X) with the heart CohZ2(X) that we still denote by σst (see
[12]).

Lemma 6.1. Let E be an endosimple object of the category DZ2(X) (i.e.,
Hom(E, E) = k). Then for some n ∈ Z the object E[n] is one of the follow-
ing types:

(1) a vector bundle;
(2) the sheaf Oπ−1(y) for y ∈ Y ;
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(3) the sheaf ζ ⊗ O2pi for some i ∈ {1, . . . , n};
(4) the sheaf Opi for some i;
(5) the sheaf ζ ⊗ Opi for some i.

Proof. The category CohZ2(X) has cohomological dimension 1, so every
indecomposable object in DZ2(X) has only one nonzero cohomology. Thus,
we can assume that E is a Z2-equivariant coherent sheaf. Furthermore, since
the torsion part of such a sheaf splits as a direct summand, it is enough to
consider the case when E is an indecomposable torsion sheaf. Then the sup-
port of E is either π−1(y), where y ∈ Y \ R, or {pi} for some i ∈ {1, . . . , n}.
In the former case E � π∗E′, where E′ is an endosimple sheaf on Y sup-
ported at y, so E′ � Oy. In the latter case there exists m such that E � Ompi

or E � ζ ⊗ Ompi . It remains to observe that for m ≥ 3 the sheaf Ompi is
not endosimple, since we can construct its nonscalar endomorphism as the
composition of natural maps

Ompi → O(m−2)pi
→ Ompi . �

We are going to construct explicitly some stability conditions on DZ2(X).
For this we will use a slight variation of the semiorthogonal decompositions
considered in Theorem 5.1. Namely, for every partition of {1, . . . , n} into
two disjoint subset I and J we have

DZ2(X) = 〈〈ζ ⊗ Opj | j ∈ J〉, π∗D(Y ), 〈Opi | i ∈ I〉〉. (6.1)

For a subset I ⊂ {1, . . . , n} let us denote by D(I) ⊂ DZ2(X) the full tri-
angulated subcategory generated by π∗D(Y ) and Opi with i ∈ I.

Lemma 6.2. For I ⊂ {1, . . . , n} set Coh(I) := CohZ2(X) ∩ D(I). Then
Coh(I) is the heart of a t-structure on D(I). The natural exact functor
Coh(I) → CohZ2(X) gives an equivalence of Coh(I) with the full subcategory
of CohZ2(X) consisting of all successive extensions of sheaves in π∗ Coh(Y )
and equivariant sheaves supported on {pi | i ∈ I}. The category Coh(I) is
Noetherian.

Proof. Note that an object E ∈ DZ2(X) belongs to D(I) if and only if
Hom∗(Opi , E) = 0 for each i 	∈ I. Since the category CohZ2(X) has coho-
mological dimension 1, we have E � ⊕H iE[−i], where H iE ∈ CohZ2(X).
Therefore, E ∈ D(I) if and only if H iE ∈ D(I) for every i. This immediately
implies that the standard t-structure restricts to a t-structure on D(I) with
Coh(I) as the heart. We have an exact embedding Coh(I) → CohZ2(X),
so Coh(I) is Noetherian. Let F ∈ Coh(I). Then the torsion part (resp.,
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torsion-free part) of F is also in Coh(I). Assume first that F is an indecom-
posable torsion sheaf with the support at pi for i 	∈ I. Then the condition
Hom∗(Opi , E) = 0 easily implies that E � O2npi . On the other hand, if F is
a vector bundle then we have Hom(F , ζ ⊗ Opi) = 0 for i 	∈ I, which implies
that the fiber of F at pi has trivial Z2-action for i 	∈ I. Therefore, making
appropriate elementary transformations at pi for i ∈ I we can represent F
as an extension of a sheaf supported at {pi | i ∈ I} by the pull-back of a
vector bundle from Y (cf. proof of Theorem 1.8 of [14]). �

Given a partition of {1, . . . , n} into three disjoint subsets I0, I+ and I−

we obtain from (6.1) a semiorthogonal decomposition

DZ2(X) = 〈〈ζ ⊗ Opi | i ∈ I−〉,D(I0), 〈Opi , i ∈ I+〉〉. (6.2)

Proposition 6.3. Fix a partition {1, . . . , n} = I0 � I+ � I− and a collection
of positive integers (ni) for i 	∈ I0.

(a) Let Z : N (DZ2(X)) → C be a homomorphism, such that

(1) �Z(OX) > 0, and Z(Oπ−1(y)) ∈ R<0 for any point y ∈ Y ;
(2) Z(Opi [−ni]) ∈ h′ for i ∈ I+, and Z(ζ ⊗ Opi [ni]) ∈ h′ for i ∈ I−;
(3) Z(Opi) ∈ R<0 and Z(ζ ⊗ Opi) ∈ R<0 for i ∈ I0,

where h′ ⊂ C denotes the union of the upper half-plane with R<0. Then there
exists a reasonable stability condition σ with the central charge Z and the
heart

H(I+, I−;n) = [[ζ ⊗ Opi [ni] | i ∈ I−], Coh(I0), [Opi [−ni], i ∈ I+]], (6.3)

which is glued with respect to the semiorthogonal decomposition (6.2). All
the objects Oπ−1(y) for y ∈ Y are σ-semistable (of phase 1). The objects
Oπ−1(y) for y ∈ Y \ {pi | i ∈ I0}, as well as Opi for i ∈ I0 ∪ I+ and ζ ⊗ Opi

for i ∈ I0 ∪ I−, are σ-stable.

(b) Assume in addition that ni = 1 for all i 	∈ I0. Then all the objects Opi

and ζ ⊗ Opi for i ∈ {1, . . . , n} are σ-stable.

Proof. (a) Using the orthogonalities

Hom≤0(Coh(I0),Opi [−ni]) = Hom≤0(ζ ⊗ Opj [nj ], Coh(I0))

= Hom≤0(ζ ⊗ Opj [nj ],Opi [−ni]) = 0

for i ∈ I+, j ∈ I−, we get the glued heart H = H(I+, I−;n) given by (6.3).
Note that the restriction of Z to N (π∗D(Y )) is determined by Z(OX) and by
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Z(Oπ−1(y)) for a point y ∈ Y . Thus, �Z(π∗F ) = c rk(F ) for some positive
constant c. Since Coh(I0) is generated by extensions from π∗ Coh(Y ) and
Opi and ζ ⊗ Opi for i ∈ I0, we deduce that Z is a stability function on H.
It is also easy to see that 0 is an isolated point of �Z(H). Since H is glued
from Noetherian hearts, it is also Noetherian, so Lemma 3.4(a) implies that
the HN property is satisfied for Z. Thus, we have a stability condition
σ = (Z, P ) with P (0, 1] = H. By Proposition 2.2(2), it is glued from the
induced stability on D(I0) and the exceptional objects ζ ⊗ Opi [ni], i ∈ I−

and Opi [−ni], i ∈ I+. The fact that σ is reasonable follows from Lemma
3.4(b). Note that P (1) ⊂ H consists of successive extensions of sheaves of
the form Oπ−1(y), y ∈ Y , and of Opi and ζ ⊗ Opi for i ∈ I0. The simple
objects in P (1) are the sheaves Oπ−1(y), y ∈ Y \ {pi | i ∈ I0}, and Opi and
ζ ⊗ Opi for i ∈ I0, so all these objects are σ-stable. On the other hand,
Proposition 2.2(iii) implies that the above exceptional objects in the heart
corresponding to i ∈ I+ ∪ I−, are σ-stable.

(b) Let us denote

C+ := [Opi | i ∈ I+] ⊂ CohZ2(X),

C− := [ζ ⊗ Opi | i ∈ I−] ⊂ CohZ2(X).

From the definition of H one can easily deduce that for every object C ∈ H
one has

H−1C ∈ C−; H1C ∈ C+; H0C � H0(F−1 → F0 → F1),

where F0 ∈ Coh(I0), F−1 ∈ C−, F1 ∈ C+.

The last condition easily implies that Hom(C+, H0C) = Hom(H0C, C−) = 0.

Now let us fix i ∈ I+ and consider the object E = ζ ⊗ Opi . Note that
ζ ⊗ Opi belongs to H, as an extension of O2pi by Opi [−1]. Suppose we have
a short exact sequence

0 → A → E → B → 0

in H with nonzero A and B. Since H2A = H−2B = 0, we derive that H1B =
H−1A = 0 and there is an exact sequence

0 → H−1B → H0A → E → H0B → H1A → 0 (6.4)

in CohZ2(X). Note that since E is a simple object of CohZ2(X) we have one
of the following two cases: (i) H0B → H1A is an isomorphism; (ii) H−1B →
H0A is an isomorphism. In the first case we obtain that H0B ∈ C+ which
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implies that H0B = 0. Hence, in this case B ∈ C−[1], so Hom(E, B) = 0
which is a contradiction. Now let us consider case (ii). We have H0A ∈ C−,
hence H0A = 0. It follows that A = H1A[−1], and B = H0B is an extension
of H1A by E. Since Hom(H1A, B) = 0, this extension cannot split on any
direct summands of H1A, which implies that A � Opi [−1] and B � O2pi .
Since Z(Opi [−1]) has smaller phase then Z(E), this shows that ζ ⊗ Opi is
stable. Similarly one proves that all the objects Opi for i ∈ I− are stable. �

In the case when all ni’s are equal to 1, we denote the heart H(I+, I−,n)
considered in the above proposition simply by H(I+, I−).

We have the following partial characterization of stability conditions con-
structed above.

Lemma 6.4. Let σ = (Z, P ) be a stability condition such that Oπ−1(y) ∈
P (1) for all y ∈ Y \ R.

(a) Assume that O2pi ∈ P (1) for all i, and for every i one of the following
three conditions holds:

(1) both Opi and ζ ⊗ Opi are σ-semistable of phase 1;
(2) Opi is σ-semistable of phase > 1;
(3) ζ ⊗ Opi is σ-semistable of phase ≤ 0.

Assume in addition that for every line bundle L on Y one has π∗L ∈ P (0, 1].
Then σ coincides with one of the stability conditions constructed in Proposi-
tion 6.3. The latter condition is uniquely determined by Z and by the phases
of Opi and ζ ⊗ Opi for i ∈ {1, . . . , n}.

(b) Now assume that σ is locally finite, and for all i ∈ {1, . . . , n} one has
Opi ∈ P [1, 2) and ζ ⊗ Opi ∈ P (0, 1]. Assume in addition that either all
objects Oπ−1(y) for y ∈ Y \ R are stable, or �Z(V ) > 0 for every
Z2-equivariant vector bundle V . Then σ coincides with one of stability con-
ditions constructed in Proposition 6.3 with I− = ∅,

I+ = {i | �Z(Opi) < 0},

and all ni’s equal to 1.

Proof. (a) Let I0, I+ and I− be the subsets of i such that conditions
(1)–(3) hold, respectively. Note that since we have nonzero maps Opi →
ζ ⊗ Opi [1], conditions (2) and (3) (and therefore, the subsets I0, I+ and
I−) are mutually disjoint. For each i ∈ I+ (resp., i ∈ I−) there is a unique
ni > 0 such that φ(Opi) − ni ∈ (0, 1] (resp., φ(Opi) + ni ∈ (0, 1]). Then Z
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satisfies the conditions of Proposition 6.3, so it remains to check that H =
H(I+, I−;n) ⊂ P (0, 1]. Note that by definition, we have Oπ−1(y) ∈ P (0, 1]
for all y ∈ Y ; Opi , ζ ⊗ Opi ∈ P (1) for i ∈ I0; Opi [−ni] ∈ P (0, 1] for i ∈ I+

and ζ ⊗ Opi [ni] ∈ P (0, 1] for i ∈ I−. It remains to show that π∗V ∈ P (0, 1]
for every vector bundle V on Y . But such a vector bundle can be pre-
sented as an extension of line bundles, so this follows from our
assumption.

(b) It is enough the check that P (0, 1] ⊂ H = H(I+, ∅) (where I0 is the
complement to I+). First, we observe that in this case all equivariant vector
bundles are in H, as extensions of direct sums of sheaves of the form ζ ⊗ Opi

by a sheaf in π∗ Coh(Y ). Let E be a σ-stable object in P (0, 1). Note that
E is endosimple. Let us consider possibilities for E listed in Lemma 6.1.
Since Z(Oπ−1(y)) = Z(ζ ⊗ O2pi) ∈ R<0 and E ∈ P (0, 1), we obtain that for
some m ∈ Z, E[m] is either a vector bundle, or isomorphic to Opi [−1], or
to ζ ⊗ Opi . In the last two cases our assumptions on σ imply that m = 0,
so E ∈ H. If E[m] is a vector bundle then using the condition E ∈ P (0, 1)
we get

Hom≤−1(E, Oπ−1(y)) = Hom≤0(Oπ−1(y), E) = 0. (6.5)

This implies that m = 0, so E ∈ H. Next, let E be a σ-stable object in
P (1). We can assume that E is not isomorphic to Oπ−1(y) for y ∈ Y \ R
since these objects are in H. Assume that E[m] is a vector bundle. Note
that this case cannot occur if �Z(V ) > 0 for all equivariant vector bundles,
so we can assume that the objects Oπ−1(y) for y ∈ Y \ R are stable. Then
the vanishing (6.5) still holds, so we deduce again that m = 0. The case
when E[m] is either Opi , or ζ ⊗ Opi (where i ∈ I0) is also clear. Note that
for i ∈ I0 we have Opi , ζ ⊗ Opi ∈ P (1). Hence, for such i the objects O2pi

and ζ ⊗ O2pi are not σ-stable. Now assume that E[m] � O2pi , where i ∈ I+.
Since O2pi ∈ P (0, 2) as an extension of Opi by ζ ⊗ Opi , this implies that m =
0, so E ∈ H. Finally, we observe that for i ∈ I+ the object ζ ⊗ O2pi is not
semistable since it is an extension of ζ ⊗ Opi by Opi , where φmin(ζ ⊗ Opi) < 1
and φmax(Opi) > 1. �

Note that the classes [OX ], [Oπ−1(y)], and [Opi ], i ∈ {1, . . . , n}, form a
basis in N (DZ2(X)). Thus, we can define a norm on the vector space
Hom(N (DZ2(X)), C) by setting

||Z|| = max(|Z(OX)|, max
E

|Z(E)|),
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where E runs over all endosimple torsion sheaves in CohZ2(X) (see Lemma
6.1). It is also convenient to set for Z ∈ Hom(N (DZ2(X)), C)

vZ := Z(Oπ−1(y)) ∈ C.

Let us define an open subset U ⊂ Hom(N (DZ2(X)), C) as the set of central
charges Z satisfying the following assumptions:

(1) for every Z2-equivariant line bundle L on X one has det(Z(L), vZ) > 0;
(2) for every i = 1, . . . , n one has Z(Opi) 	∈ R≤0 · vZ , Z(ζ ⊗ Opi) 	∈ R≤0 ·

vZ .

Note that in the first condition it is enough to consider representatives in the
cosets for the subgroup π∗ Pic(Y ) ⊂ PicZ2(X), so there is only finite number
of inequalities to check (hence, U is open). Also, this condition implies that
det(Z(V ), vZ) > 0 for every equivariant vector bundle V on X, since they
can be obtained from line bundles by successive extensions.

Lemma 6.5. (1) Let Z : N (DZ2(X)) → C be a homomorphism such that
�Z(OX) > 0, Z(Oπ−1(y)) ∈ R<0, and for every i = 1, . . . , n one has Z(Opi)
	= 0 and �Z(Opi) ≤ 0. Then there exists a constant r > 0 such that for every
Z ′ ∈ Hom(N (DZ2(X)), C) and every endosimple object E ∈ DZ2(X) one has

|Z ′(E)| ≤ r · ||Z ′|| · |Z(E)|.

(2) The above conclusion also holds for Z ∈ U .

Proof. (1) Our conditions on Z imply that Z(E) 	= 0 for every endosimple
torsion Z2-equivariant coherent sheaf E. Therefore, we can set

r1 = max
E

(|Z(E)|−1),

where E runs over all endosimple torsion sheaves. If E is such a sheaf then
|Z ′(E)| ≤ ||Z ′||, so the required inequality holds for E provided r ≥ r1. Now
assume that E is a Z2-equivariant vector bundle on X. Then there exists
an exact sequence of the form

0 → π∗E′ → E → ⊕iζ ⊗ Omi
pi

→ 0,

where 0 ≤ mi ≤ rk(E). Then

|Z ′(E)| ≤ |Z ′(π∗E′)| + n rk(E) · ||Z ′||.

Note that

[π∗E′] = rk(E)[OX ] + deg(E′)[Oπ−1(y)] (6.6)
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in N (DZ2(X)). Thus, we obtain

|Z ′(E)| ≤ ||Z ′|| · [(n + 1) rk(E) + deg(E′)]. (6.7)

On the other hand, from the above exact sequence we get

�Z(E) = �Z(π∗E′) +
∑

i

mi · �Z(ζ ⊗ Opi).

Since �Z(ζ ⊗ Opi) ≥ 0 and �Z(π∗E′) = �Z(OX) · rk(E), we deduce that

rk(E) ≤ |Z(E)|
�Z(OX)

.

Also, from (6.6) we get

| deg(E′)Z(Oπ−1(y))| ≤ |Z(π∗E′)| + rk(E)|Z(OX)|
≤ |Z(E)| + (n + 1) rk(E) · ||Z||.

Using our estimate for rk(E) we get that

deg(E′) ≤ |Z(Oπ−1(y))|−1 · [1 + (n + 1)
||Z||

�Z(OX)
] · |Z(E)|.

Therefore, from (6.7) we obtain

|Z ′(E)| ≤ r2||Z ′|| · |Z(E)|,

where

r2 =
n + 1

�Z(OX)
+ |Z(Oπ−1(y))|−1 · [1 + (n + 1)

||Z||
�Z(OX)

].

It remains to set r = max(r1, r2).

(2) The subset U ⊂ Hom(N (DZ2(X)), C) is stable under composition with
rotations of C and with automorphisms of N (DZ2(X)) given by tensor-
ing with an equivariant line bundle L. Also, the norms || · || and Z ′ �→
||Z ′ ◦ (⊗L)|| on the finite-dimensional vector space Hom(N (DZ2(X)), C)
are equivalent, while composing with a rotation of C does not change the
norms. Therefore, we can modify Z using these operations before check-
ing the required inequalities. Rotating Z we can assume that vZ ∈ R<0.
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Next, let I ⊂ {1, . . . , n} be the set of i such that �Z(Opi) > 0. Taking
L = O(

∑
i∈I pi) we will have

L ⊗ Opi �
{

ζ ⊗ Opi , i ∈ I,

Opi , i 	∈ I.

Therefore composing Z with tensoring by L we get the situation considered
in (1). �

Recall that for every point σ ∈ StabN (D) a neighborhood of σ in
StabN (D) is homeomorphic to a neighborhood of the corresponding central
charge in the linear subspace WN

σ ⊂ Hom(N (D), C). A stability condition
σ is called full if WN

σ = Hom(N (D), C). The above Lemma implies that
every stability condition with the central charge in the set U is full.

Theorem 6.6. Let U ⊂ StabN (DZ2(X)) denote the set of locally finite sta-
bility conditions σ = (Z, P ) such that

(1) Oπ−1(y) is stable of phase φσ for every y ∈ Y \ R;
(2) Opi , ζ ⊗ Opi are semistable with the phases in (φσ − 1, φσ + 1) for all

i = 1, . . . , n.

Then every point in U is obtained from one of the stability conditions
described in Proposition 6.3 with I− = ∅ and all ni = 1 by the action of
an element of R × PicZ2(X), where R acts on StabN (DZ2(X)) by rotations
(shifts of phases). The subset U is open in StabN (DZ2(X)). The natural
map U → U is a universal covering of U , and U = U/Z, where 1 ∈ Z acts
on the stability space by shifting phases by 2. Furthermore, U is contractible.

Proof. Step 1. If σ = (Z, P ) ∈ U then σ is obtained from one of the stabil-
ity conditions described in Proposition 6.3 with I− = ∅ and all ni = 1 by
the action of an element of R × PicZ2(X). Indeed, by rotating σ we can
assume that φσ = 1. Now using tensoring with an appropriate equivariant
line bundle we can assume that �Z(Opi) ≤ 0 for all i. It remains to apply
Lemma 6.4(b).

Note that this step implies that for σ = (Z, P ) ∈ U one has Z ∈ U .

Step 2. Let U ′ be the preimage of U in StabN (DZ2(X)). Then the projection
U ′ → U is a covering map. This is checked exactly as in Proposition 8.3 of
[5] using Lemma 6.5(b).

Step 3. U is open in StabN (DZ2(X)). Let σ0 = (Z0, P0) ∈ U . We have to
prove that any stability σ = (Z, P ), sufficiently close to σ0, is still in U .



GLUING STABILITY CONDITIONS 593

Using rotations it is enough to consider the case when Z(Oπ−1(y)) ∈ R<0.
By Step 1 we can assume that σ0 is a stability arising in Proposition 6.3
with I− = ∅ and all ni’s equal to 1. For a Z2-equivariant line bundle L
and a stability condition σ′ = (Z ′, P ′) we denote by σ′ ⊗ L the stability
condition with central charge E �→ Z ′(E ⊗ L−1) and the heart P ′(0, 1] ⊗ L.
It is enough to check that σ = σ′ ⊗ L, where σ′ is one of stability con-
ditions from Proposition 6.3 (with I− = ∅ and ni = 1). Let us set L =
OX(

∑
i∈I(+) pi), where I(+) = {i | �Z(Opi) > 0}. We claim that the cen-

tral charge Z ′(E) := Z(E ⊗ L) satisfies the assumptions of Proposition 6.3
with I+ = {i | �Z(Opi) 	= 0}, I− = ∅ and all ni = 1. Indeed, first, note that
Z ′(Oπ−1(y)) = Z(Oπ−1(y)) ∈ R<0, and Z ′(OX) = Z(L) is in the upper-half
plane, provided σ is close enough to σ0. Next, using the fact that

Opi ⊗ L �
{

Opi , i 	∈ I(+),
ζ ⊗ Opi , i ∈ I(+),

one checks the remaining assumptions. Therefore, by Proposition 6.3, there
exists a stability condition σ′ with the central charge Z ′ and the heart
H(I+, ∅). Now we claim that σ = σ′ ⊗ L. Since the corresponding cen-
tral charges are the same, by Proposition 4.2(a), it remains to check that
H(I+, ∅) ⊗ L ⊂ P (−1, 2]. It is easy to see that

H(I+, ∅) ⊗ L =

[
OX

(
∑

i∈I(+)

pi

)
⊗ π∗ Coh(Y ),

[ζ ⊗ Opi | i 	∈ I(+)], [Opi | i 	∈ I(−)],

[ζ ⊗ Opi [−1] | i ∈ I(+)], [Opi [−1] | i ∈ I(−)]

]
, (6.8)

where I(−) = {i | �Z(Opi) < 0}. Hence,

H(I+, ∅) ⊗ L ⊂ T0 := [P0(0, 1], [Opi ,Opi [−1], ζ ⊗ Opi [−1] | i = 1, . . . , n]].

Furthermore, we have Opi ∈ P0[1, 2) and ζ ⊗ Opi ∈ P0(0, 1]. Hence, we have
T0 ⊂ P0(−1 + ε, 2 − ε) for some ε > 0 depending only on σ0. Thus, for
d(P, P0) < ε we obtain

H(I+, ∅) ⊗ L ⊂ P0(−1 + ε, 2 − ε) ⊂ P (−1, 2]

as required.

Step 4. U is closed in U ′. More precisely, we claim that U coincides with the
set of σ ∈ U ′ such that Oπ−1(y) is semistable of phase φσ for every y ∈ Y \ R,
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and for every i ∈ {1, . . . , n} the objects Opi and ζ ⊗ Opi are semistable with
the phases in [φσ − 1, φσ + 1] (recall that the set of stability conditions such
that a given object E is semistable is closed). Indeed, given such σ = (Z, P ),
by rotating it and using tensoring with an equivariant line bundle we can
assume that φσ = 1, and �Z(Opi) ≤ 0 for all i. Note that the condition
Z ∈ U implies that the phase of Opi (resp., ζ ⊗ Opi) is in [1, 2) (resp., in
(0, 1]) for every i, and �Z(V ) > 0 for every Z2-equivariant vector bundle V .
Hence, by Lemma 6.4(b), σ is obtained by the construction of Proposition
6.3, which implies that Oπ−1(y) is stable for every y ∈ Y \ R. It remains to
note that for σ ∈ U ′ the phases of Z(Opi) and of Z(ζ ⊗ Opi) never equal
φσ ± 1.

Combining Steps 2–4 we obtain that U → U is a covering map.

Step 5. Assume σ1, σ2 ∈ U have the same central charge Z. Then σ2 is
obtained from σ1 by a shift of phase in 2Z. Indeed, applying such a shift we
can assume that φσ1 = φσ2 . Furthermore, applying a rotation and tensoring
with a line bundle, we reduce to the situation φσ1 = 1 and �Z(Opi) ≤ 0 for
all i. By Lemma 6.4(b), in this case the hearts of σ1 and σ2 are the same.

Step 6. It remains to show that U is contractible. We have a free action
of R on U by the shift of phase, so it is enough to consider the section of
this action consisting of σ ∈ U with φσ = 1. In other words, we have to
consider the subset of U consisting of Z with vZ = Z(Oπ−1(y)) ∈ R<0. A
homomorphism Z in this subset is determined by the following contractible
data:

(1) vZ ∈ R<0;
(2) for every i ∈ {1, . . . , n}, Z(Opi) ∈ C \ (R≥0 ∪ (vZ + R≤0));
(3) Z(OX) in some half-plane of the form �z > c. �

Remark. In the next section we will study more closely the case g(Y ) ≥ 1.
We will show that in this case the objects Oπ−1(y) for y ∈ Y \ R are auto-
matically stable with respect to any stability on DZ2(X), and will describe
the entire space StabN (DZ2(X)).

We conclude this section with one observation in the case where Y = P
1.

Proposition 6.7. Consider a stability σ = (Z, P ) ∈ U , where U is as in
Theorem 6.6. Assume that for every i = 1, . . . , n the vectors Z(Opi) and
Z(O2pi) are linearly independent over R. Then some rotation of σ is glued
from an exceptional collection.

Proof. By Theorem 6.6, it is enough to check the same statement for a stabil-
ity σ arising from the construction of Proposition 6.6 with I+ = {1, . . . , n},



GLUING STABILITY CONDITIONS 595

I− = I0 = ∅ and ni = 1. We claim that in this situation for any sufficiently
small a > 0 the rotated stability R−aσ = (Za, Pa) is glued from an excep-
tional collection. Indeed, if a is small enough then we still have �Za(Opi) < 0
for all i = 1, . . . , n. There is a unique N ∈ Z such that �Za(π∗O(N)) < 0
and �Za(π∗O(N + 1)) > 0. Consider the following full Ext-exceptional col-
lection on DZ2(X):

(π∗O(N)[1], π∗O(N + 1),Op1 [−1], . . . ,Opn [−1]). (6.9)

There exists a glued stability condition with the heart generated by this
exceptional collection and with the central charge Za. To see that Raσ
coincides with this stability condition, by Proposition 4.2(a), it is enough
to check that all the objects of our exceptional collection lie in Pa(−1, 2] =
P (−1 − a, 2 − a]. Recall that

P (0, 1] = [π∗ Coh(P1), [ζ ⊗ Opi ,Opi [−1] | i = 1, . . . , n]]

Thus, all the objects of collection (6.9), except for π∗O(N)[1], lie in P (0, 1] ⊂
P (−1 − a, 2 − a]. Note that by our assumptions, the phases of Opi [−1] are
in (0, 1). Also, it is easy to see that π∗O(m) ∈ P (0, 1) for every m ∈ Z. The
exact sequence

0 → π∗O(m − 1) → π∗O(m) → Oπ−1(y) → 0

in P (0, 1] shows that φmax(π∗O(m − 1)) ≤ φmax(π∗O(m)).

Now let us consider the exact sequence

0 → F → π∗O(N) → G → 0

in P (0, 1], where F is the maximal σ-destabilizing subobject in π∗O(N).
The corresponding long exact cohomology sequence in CohZ2(X) takes form

0 → H0F → π∗O(N) → H0G → H1F → 0,

so either H0F = 0 or H0F is a line bundle. In the former case we have
F = H1F [−1] ∈ [Opi [−1] | i = 1, . . . , n]. In the latter case we have H0F �
π∗O(m)(−

∑
j∈J pj) for some m ∈ Z and J ⊂ {1, . . . , n}. Hence, in the

derived category H0F can be viewed as an extension of π∗O(m) by ⊕j∈J

Opj [−1]. Therefore, the phase of F is bounded above by the maximum of
the phases of Z(Opi [−1]), i = 1, . . . , n and of Z(π∗O(m)). Note that we
have a nonzero map from π∗O(m)(−

∑n
i=1 2pi) � π∗O(m − n) to π∗O(N),

so m ≤ N + n. By making a small enough we can assume that N ≤ 0, so in
this case we deduce that π∗O(N) ∈ P (0, φ), where φ < 1 is the maximum
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of the phases of Z(Opi [−1]), i = 1, . . . , n and of Z(π∗O(n)). If in addi-
tion a < 1 − φ then we get π∗O(N)[1] ∈ P (1, 2 − a] ⊂ P (−1 − a, 2 − a] as
required. �

7 Classification of stability conditions in the case Y �� P
1

First, let us formulate an abstract version of Lemma 7.2 of [9]. We say
that an object E of an abelian (or triangulated category) is rigid if Hom1

(E, E) = 0.

Proposition 7.1. Let A be an abelian category of homological dimension 1,
and let

Y → E
f→ X → Y [1]

be an exact triangle in Db(A) with E ∈ A, such that Hom≤0(Y, X) = 0.
Then X = X0 ⊕ X1[1], where X0, X1 ∈ A. Let f0 : E → X0 be the map
induced by f . Then

(1) coker(f0) and X1 are rigid;
(2) Hom∗(coker(f0), X0) = Hom∗(coker(f0), X1) = 0;
(3) Hom0(ker(f0), X0) = 0, and the map ker(f0) → X1[1] induces an iso-

morphism

Hom0(X1, X1) � Hom1(ker(f0), X1).

Proof. The first part of the proof of Lemma 7.2 in [9] gives the statement
that X = X0 ⊕ X1[1], and

Hom≤0(H0(Y ) ⊕ coker(f0)[−1], X0 ⊕ X1[1]) = 0,

which implies (2). Since X0 surjects onto coker(f0), the natural map

Hom1(coker(f0), X0) → Hom1(coker(f0), coker(f0))

is surjective, so we deduce that coker(f0) is rigid. Next, we have an exact
sequence

0 → X1 → H0(Y ) → ker(f0) → 0

in A. Thus, the natural map

Hom1(H0(Y ), X1) → Hom1(X1, X1)
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is surjective, and we obtain that X1 is rigid. Using the same exact sequence
we get (3). �
Lemma 7.2. Assume g(Y ) ≥ 1. Then every rigid object in CohZ2(X) is of
the form

⊕

i∈I

O⊕mi
pi

⊕
⊕

j∈J

ζ ⊗ O⊕nj
pj ,

where I ∩ J = ∅.

Proof. The fact that g(Y ) ≥ 1 implies that ωY is generated by global sec-
tions. Hence, the base locus of the space of Z2-invariant global sections of
ωX is contained in R ⊂ X. Therefore, for F ∈ CohZ2(X) such that F is not
supported on R we have

Hom1(F, F )∗ � Hom(F, F ⊗ ωX) 	= 0,

so F cannot be rigid. Thus, any indecomposable rigid object should be
supported at one of the ramification points. It is easy to check that the Z2-
sheaf Ompi (resp., ζ ⊗ Ompi) is rigid only for m = 1. The assertion follows
easily from this. �

Let us denote by Dpi ⊂ DZ2(X) the triangulated subcategory generated
by equivariant sheaves supported on pi.

Lemma 7.3. Assume g(Y ) ≥ 1, and let σ = (Z, P ) be a locally finite sta-
bility condition on DZ2(X). Then

(1) the object Oπ−1(y) is σ-stable for every y ∈ Y \ R;
(2) σ restricts to a stability condition on Dpi;
(3) for any exact triangle A → OX → B → A[1] in DZ2(X) with

Hom≤0(A, B) = 0 and nonzero A and B, there exists I ⊂ {1, . . . , n}
such that either A = OX(−

∑
i∈I mipi) and B = ⊕i∈IOmipi, where all

mis are odd, or A = ⊕i∈Iζ ⊗ Opi [−1] and B = OX(
∑

i∈I pi);
(4) there exists a σ-semistable equivariant line bundle.

Proof. (1) Consider the triangle

Y → Oπ−1(y)
f→ X → Y [1]

with Y ∈ P (−∞, t), X ∈ P [t, +∞), and assume that X 	= 0. Then by Propo-
sition 7.1, we have X = X0 ⊕ X1[1], where X0 and X1 are equivariant coher-
ent sheaves, and X1 is rigid. By Lemma 7.2, X1 is supported at R. Hence,
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Hom(X1, X1) = Hom1(ker(f0), X1) = 0 (the isomorphism comes from
Proposition 7.1(3)), which implies that X1 = 0. On the other hand, since
X0 	= 0, the condition Hom(coker(f0), X0) = 0 (see Proposition 7.1(2))
implies that the map f0 : Oπ−1(y) → X0 is nonzero, so it is an embedding.
But coker(f0) is also rigid (see Proposition 7.1(1)), so it is supported at R.
Therefore, the extension

0 → Oπ−1(y) → X0 → coker(f0) → 0

splits. Since Hom(coker(f0), X0) = 0, this implies that f0 is an isomorphism.
This proves that Oπ−1(y) is in P (t) for some t ∈ R. A similar application of
Proposition 7.1 shows that Oπ−1(y) belongs to a subcategory [A], where A
is a simple object of P (t). Since it has a primitive class in the Grothendieck
group, it follows that Oπ−1(y) is σ-stable.

(2) Consider the triangle Y → E
f→ X → Y [1] with Y ∈ P (−∞, t), X ∈

P [t, +∞), where E is a sheaf supported at pi, and assume that X 	= 0.
Applying Proposition 7.1 and Lemma 7.2 again we see that coker(f0) is sup-
ported at R, so we can write coker(f0) = C ⊕ C ′, where C is supported at pi

and C ′ is supported at R − pi. Since im(f0) is supported at pi, the extension

0 → im(f0) → X0 → coker(f0) → 0

splits over C ′. Since Hom(coker(f0), X0) = 0, it follows that C ′ = 0, so X0
is supported at pi. Similarly, we have X1 = A ⊕ A′, where A is supported
at p0 and A′ is supported at R − pi. To prove that A′ = 0 we use the fact
that the map ker(f0) → X1 factors through A, so Hom0(A′, A′) maps to zero
under the induced map Hom0(X1, X1) → Hom1(ker(f0), X1). But the latter
map is an isomorphism by Proposition 7.1(3), so we deduce that A′ = 0.
Hence, X is supported at pi, and so Y is also supported at pi.

(3) By Proposition 7.1, we have B = B0 ⊕ B1[1], where B0 and B1 are equi-
variant sheaves. The fact that B1 is rigid (hence, torsion) implies that
Hom1(OX , B1) = 0. Together with Proposition 7.1(3) this easily leads to
B1 = 0. Let f : OX → B = B0 be the map in our exact triangle. Assume
first that f is injective. Then B is an extension of a rigid object coker(f)
by OX , such that Hom∗(coker(f), B) = 0. By Lemma 7.2, we have

coker(f) �
⊕

i∈I

Pi ⊕
⊕

j∈J

Qj ,
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where Pi = O⊕mi
pi

, Qj = ζ ⊗ O⊕nj
pj . Since Hom1(Pi,OX) = 0, the extension

0 → OX → B → coker(f) → 0

splits over Pi, which implies that Pi = 0 (since Hom(coker(f), B) = 0). Next,
the map Hom(coker(f), coker(f)) → Hom1(coker(f),OX) induced by the
above extension is an isomorphism. Hence, for every j the induced map
Hom(Pj , Pj) → Hom1(Pj ,OX) is an isomorphism. The source of this map
has dimension n2

j , while the target has dimension nj , so we get that nj = 1.
This gives the required form of A and B in this case.

Next, assume that ker(f) 	= 0. Then ker(f) is isomorphic to OX

(−
∑

i mipi), and im(f) � ⊕iOmipi . The condition Hom(ker(f), B) = 0
implies that Hom(ker(f), im(f)) = 0. Hence, all nonzero mi’s are odd. Let
I denote the set of i for which mi 	= 0. The extension

0 → im(f) → B → coker(f) → 0

still has the property that Hom∗(coker(f), B) = 0. This implies that coker
(f) is supported at {pi | i ∈ I}. Hence, B is also supported at this set.
The condition Hom(ker(f), B) = 0 implies that all indecomposable direct
summands of B are of the form Onpi , where i ∈ I and n is odd (and there is at
least one such factor for every i ∈ I). Now the condition Hom∗(coker(f), B)
= 0 together with the rigidity of coker(f) (using Lemma 7.2) implies that
coker(f) = 0.

(4) It follows easily from (3) that one of the HN-factors of OX is a line
bundle. �
Lemma 7.4. Assume g(Y ) ≥ 1, and let σ = (Z, P ) be a locally finite stabil-
ity condition on DZ2(X) such that O2pi is semistable for every i = 1, . . . , n,
and all Oπ−1(y) for y ∈ Y \ R are stable of phase 1. Then

(1) O2pi ∈ P (1) for every i;
(2) for every line bundle M on Y one has π∗M ∈ P (0, 1).

Proof. (1) By Lemma 7.3(4), we know that there exists a σ-semistable equi-
variant line bundle L. Since for y ∈ Y \ R we have nonzero morphisms
L → Oπ−1(y) and Oπ−1(y) → L[1], it follows that L ∈ P (t) for some t ∈ [0, 1].
Now we have nonzero maps L → O2pi and O2pi → L[1] which implies that
the phase of O2pi is in the interval [t, t + 1]. But Z(O2pi) has phase 1, so
the phase of O2pi is equal to 1.

(2) Tensoring σ with M−1 we immediately reduce to the case M = OY .
First, arguing as in part (1), we observe that for any equivariant line bundle
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L one cannot have L ∈ P [1, +∞) or L ∈ P (−∞, 0]. Indeed, in the former
(resp., latter) case L has nonzero maps only to (resp., from) a finite number
of nonisomorphic stable objects of phase 1 (resp., 0). Let us consider the
canonical exact triangle

A → OX → B → A[1]

with A ∈ P [1, +∞) and B ∈ P (−∞, 1). By Lemma 7.3(3) and the above
observation, we obtain that A = ⊕i∈Iζ ⊗ Opi [−1] for some I ⊂ {1, . . . , n}.
But this implies that for i ∈ I one has ζ ⊗ Opi ∈ P [2, +∞), which contra-
dicts to the existence of a nonzero morphism from ζ ⊗ Opi to O2pi ∈ P (1).
Therefore, OX ∈ P (−∞, 1). Now consider the exact triangle

C → OX → D → C[1]

with C ∈ P (0, 1) and D ∈ P (−∞, 0]. Using Lemma 7.3(3) we obtain that
D = ⊕i∈IOmipi , where all mi’s are odd. But we have a nonzero map O2pi →
Opi ↪→ Omipi , which is a contradiction since O2pi ∈ P (1). Hence, D = 0 and
OX ∈ P (0, 1). �

Let us set Si = Stab(Dpi). This is a two-dimensional complex manifold
that we are going to describe explicitly below. Note that these spaces for
different points pi are canonically isomorphic, so we will sometimes skip the
index i below.

Proposition 7.5. (a) Let U+ ⊂ S (resp., U− ⊂ S) denote the subset of σ
such that Opi (resp., ζ ⊗ Opi) is σ-stable. Let also W+ ⊂ S (resp., W− ⊂ S)
denote the subset of stabilities with respect to which O2pi (resp., ζ ⊗ O2pi)
is semistable. Then U+ and U− are open, W+ and W− are closed, and

S = U+ ∪ U− = W+ ∪ W−.

The subset W+ ∩ W− is contained in U+ ∩ U− and consists of σ such that
Opi and ζ ⊗ Opi are stable of the same phase. The subset U+ ∩ U− ∩ W+ is
characterized in U+ ∩ W+ by the condition φ(Opi) < φ(O2pi) + 1. Similarly,
the subset U+ ∩ U− ∩ W− is characterized in U+ ∩ W− by the inequality
φ(Opi) > φ(ζ ⊗ O2pi) − 1.

(b) There is a holomorphic submersion fi : Si → C such that exp(πfi) is
equal to Z(O2pi), and �(fi) is equal to the phase of O2pi on W+ and to the

phase of ζ ⊗ O2pi on W−. The action of the subgroup R × R
∗
>0 ⊂ ˜GL+

2 (R)
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of rotations and rescalings induces an isomorphism of complex manifolds

C × Σ →̃ Si,

such that fi corresponds to the projection to the first factor, where Σ =
f−1

i (0) is a (noncompact) Riemann surface.

(c) There is a well-defined branch of 1
π log Z(Opi) (resp., 1

π log Z(ζ ⊗ Opi))
on U+ (resp., U−) that defines an isomorphism Σ ∩ U+ � C \ R≥0 (resp.,
Σ ∩ U− � C \ R≥0). Under both these isomorphisms Σ ∩ U+ ∩ U− is
mapped to the subset of C \ R≥0 consisting of z with |�z| < 1.

(d) The Riemann surface Σ is simply connected and of parabolic type. More
precisely, there exists an isomorphism Σ � C under which the function
Z(Opi) on Σ corresponds to the function

z �→ 1
2

+
1√
π

∫ z

0
e−t2dt.

Proof. (a) Recall that by Lemma 6.1, the only endosimple objects in Dpi

are Opi , ζ ⊗ Opi , O2pi and ζ ⊗ O2pi . Given a stability condition σ = (Z, P ),
each subcategory P (t) is generated by stable (hence, endosimple) objects.
In particular, stable objects generate Dpi . This implies that we should have
at least two stable objects, and that one of the objects Opi and ζ ⊗ Opi

is always stable (since the objects O2pi and ζ ⊗ O2pi do not generate Dpi).
Thus, we have S = U+ ∪ U−.

Next, let us check that either O2pi or ζ ⊗ O2pi is always semistable, i.e.,
S = W+ ∪ W−. If either Opi or ζ ⊗ Opi is not stable then one of the objects
O2pi and ζ ⊗ O2pi has to be stable (since there should be at least two stable
objects). Now assume that both Opi and ζ ⊗ Opi are stable. If φ(Opi) =
φ(ζ ⊗ Opi) then O2pi and ζ ⊗ O2pi are both semistable of the same phase.
If φ(Opi) > φ(ζ ⊗ Opi) then O2pi is stable and ζ ⊗ O2pi is unstable (=not
semistable). Similarly, if φ(Opi) < φ(ζ ⊗ Opi) then ζ ⊗ O2pi is stable and
O2pi is unstable. This proves that S = W+ ∪ W−. Note in addition that
O2pi and ζ ⊗ O2pi cannot be both stable since we have nonzero maps O2pi →
ζ ⊗ O2pi and ζ ⊗ O2pi → O2pi .

Let us classify stabilities such that Opi is stable. The following three cases
(not mutually exclusive) can occur: (i) O2pi is stable, (ii) ζ ⊗ O2pi is stable,
and (iii) ζ ⊗ Opi is stable.

In case (i) we have φ(Opi) > φ(O2pi) (since there is a nonzero map O2pi →
Opi). The exact triangle

Opi [−1] → ζ ⊗ Opi → O2pi → Opi
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shows that if φ(Opi) ≥ φ(O2pi) + 1 then ζ ⊗ Opi is not stable. On the other
hand, if φ(Opi) < φ(O2pi) + 1 then one can easily check that ζ ⊗ Opi is
stable. A stability condition in this case is uniquely determined by the
phases and central charges of Opi and O2pi that can be arbitrary such that
φ(Opi) > φ(O2pi).

In case (ii) we have φ(Opi) < φ(ζ ⊗ O2pi) (because of the nonzero map
Opi → ζ ⊗ O2pi). The exact triangle

ζ ⊗ O2pi → ζ ⊗ Opi → Opi [1] → · · ·

shows that if φ(Opi) ≤ φ(ζ ⊗ O2pi) − 1 then ζ ⊗ Opi is not stable. One can
also check that for φ(Opi) > φ(ζ ⊗ O2pi) − 1, the object ζ ⊗ Opi is stable.
A stability condition in case (ii) is uniquely determined by the phases and
central charges of Opi and ζ ⊗ O2pi subject to the condition φ(Opi) < φ(ζ ⊗
O2pi).

In case (iii) we have

|φ(Opi) − φ(ζ ⊗ Opi)| < 1 (7.1)

(because of nonzero maps Opi → ζ ⊗ Opi [1] and ζ ⊗ Opi → Opi [1]). One can
easily check that if φ(Opi) > φ(ζ ⊗ Opi) (resp., φ(Opi) < φ(ζ ⊗ Opi)) then
O2pi is stable and ζ ⊗ O2pi is unstable (resp., ζ ⊗ O2pi is stable and O2pi is
unstable). On the other hand, if φ(Opi) = φ(ζ ⊗ Opi) then both O2pi and
ζ ⊗ O2pi are semistable of the same phase. A stability condition in case (iii)
is uniquely determined by the phases and central charges of Opi and ζ ⊗ Opi

subject to (7.1).

The above classification (complemented by a similar classification in the
case where ζ ⊗ Opi is stable) implies the required characterizations of W+ ∩
W−, U+ ∩ U− ∩ W+ and U+ ∩ U− ∩ W−.

Note that the subsets W+ and W− are closed by general properties of
stability conditions. It remains to check that U+ and U− are open. We will
do this only for U+ (the other case will follow by applying the autoequiva-
lence ⊗ζ). Assume first that σ = (Z, P ) ∈ U+ ∩ U−. Then there exists an
interval (t, t + η) with 0 < η < 1 such that all the objects Opi , ζ ⊗ Opi , O2pi

and ζ ⊗ O2pi are in P (t, t + η). Hence, if σ′ = (Z ′, P ′) is sufficiently close
to σ then these four objects are still in P ′(t′, t′ + η′) for some 0 < η′ < 1. It
follows from the above classification that in this case σ′ ∈ U+ ∩ U−. Next,
assume that σ = (Z, P ) ∈ U+ is such that O2pi is stable and ζ ⊗ Opi is not
stable. Then we have ζ ⊗ Opi ∈ P [φ0, +∞), where φ0 = φ(O2pi), and also
ζ ⊗ O2pi is unstable. Hence, if σ′ = (Z, P ′) is sufficiently close to σ then
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ζ ⊗ Opi ∈ P ′(> φ0 − 1/3), O2pi ∈ P ′(φ0 − 1/3, φ0 + 1/3), and ζ ⊗ O2pi is σ′-
unstable. Suppose that Opi is not σ′-stable. Then ζ ⊗ Opi and O2pi have
to be stable. But the above inclusions show that the difference of phases of
ζ ⊗ Opi and O2pi is < 1. Therefore, Opi is also σ′-stable by the above classi-
fication. Finally, assume σ ∈ U+ is such that ζ ⊗ O2pi is stable and ζ ⊗ Opi

is not stable. Then setting φ0 = φ(ζ ⊗ O2pi) we get ζ ⊗ Opi ∈ P (−∞, φ0].
The same argument as in the previous case shows that this implies that Opi

is σ′-stable for σ′ close to σ.

(b) The fact that fi is well-defined and continuous follows from the fact
that the phases of O2pi and ζ ⊗ O2pi agree on W+ ∩ W−. Since exp(πfi)
is holomorphic by the definition of a complex structure on the stability
space, it follows that fi is holomorphic. Now let us consider the subgroup

R × R
∗
>0 ⊂ ˜GL+

2 (R) acting on the stability space, where (a, λ) ∈ R × R
∗
>0

acts by the phase rotation Ra combined with the rescaling of the central
charge by λ. Note that this action is compatible with the holomorphic
action of this group on the central charges, where we identify R × R

∗
>0 with

C via (a, λ) �→ log(λ)
π + ia. Under this identification we have

fi(z · σ) = fi(σ) + z.

This gives the required splitting C × Σ →̃ Si.

(c) The identifications of Σ ∩ U+, Σ ∩ U− and Σ ∩ U+ ∩ U− follow easily
from the proof of (a). Note that it is convenient to consider separately
three regions in Σ depending on whether σ ∈ W+ \ W−, σ ∈ W− \ W+, or
σ ∈ W+ ∩ W−. In the latter case we have φ(Opi) = φ(ζ ⊗ Opi). In the first
case if in addition σ ∈ U+ (resp., σ ∈ U−) then φ(Opi) > 0 (resp., φ(ζ ⊗
Opi) < 0), etc.

(d) As we have seen in (c), the function Z(Opi) restricts to exp(πz) on
Σ ∩ U+ � C \ R≥0, hence, it has a logarithmic ramification above 0 and
∞. On the other hand, since Z(Opi) = 1 − Z(ζ ⊗ Opi), we see that the
restriction of this function to Σ ∩ U− has a logarithmic ramification above
1 and ∞. Now we can easily identify Σ with the simply connected Riemann
surface that has four logarithmic ramification points, two over ∞, one over 0
and one over 1. Our result follows easily from the Nevanlinna’s classification
of such surfaces (see [13, section 45]). �
Corollary 7.6. The function δi : Si → R given by

δi(σ) =

{
det(Z(ζ ⊗ Opi), Z(O2pi)), ζ ⊗ O2pi is σ − semistable,
0, O2pi is σ − semistable

is continuous.
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Let us consider the submanifold Θ of S1 × · · · × Sn × C consisting of
(σ1, . . . , σn, z) such that f1(σ1) = · · · = fn(σn). Note that by Proposition
7.5(b), we have

Θ � C × Σn × C,

where the first factor corresponds to fi(σi).

Theorem 7.7. Assume that g(Y ) ≥ 1. Then the natural map

ρ : StabN (DZ2(X)) → S1 × · · · × Sn × C : σ �→ (σ|Dp1
, . . . , σ|Dpn

, Z(OX))

induces an isomorphism of StabN (DZ2(X)) with the open subset Θ0 ⊂ Θ
consisting of (σ1, . . . , σn, z) such that

det(z, exp(πf1(σ1))) +
n∑

i=1

δi(σi) > 0. (7.2)

The space StabN (DZ2(X)) is contractible.

Proof. Note that the map ρ is well defined by Lemma 7.3(2). It is continuous
and is compatible with the similar restriction map on the central charges

and with the ˜GL+
2 (R)-actions.

Step 1. Let us check that the image of ρ is contained in Θ0. The fact
that it is contained in Θ follows immediately from the definitions, so it
remains to check that (7.2) holds whenever σ1, . . . , σn are the restrictions
of some σ ∈ StabN (DZ2(X)) to Dp1 , . . . ,Dpn and z = �Z(OX). Recall that
by Proposition 7.5, for every i ∈ {1, . . . , n} either O2pi or ζ ⊗ O2pi is σ-
semistable. Thus, by Lemmas 7.3(1) and 7.4(1), rotating σ and tensoring
it with an appropriate line bundle, we can get a stability with respect to
which all objects Oπ−1(y) for y ∈ Y \ R are stable of phase 1, and all objects
O2pi are semistable of phase 1. Note that for such a stability inequality
(7.2) is satisfied, as δi(σi) = 0 for all i and the first term in (7.2) is equal to
c · �Z(OX) with c > 0 (recall that OX ∈ P (0, 1) by Lemma 7.4). It remains
to check that the left-hand side of (7.2) for ρ(σ) does not change upon

tensoring σ with an equivariant line bundle (the ˜GL+
2 (R)-invariance is clear).

It is enough to compare the left-hand sides of (7.2) for σ and σ′ = σ ⊗
O(−pi), assuming that all Oπ−1(y) for y ∈ Y \ R have phase 1 and O2pi is σ-
semistable. Indeed, the central charge for σ′, is given by Z ′(E) = Z(E(pi)),
so z = Z(OX) will get replaced by

Z ′(OX) = Z(O(pi)) = Z(OX) + Z(ζ ⊗ Opi),
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so the first term �Z(OX) in (7.2) gets replaced by its sum with �Z(ζ ⊗ Opi).
On the other hand, since ζ ⊗ O2pi is σ′-semistable, the term δi(σ|Dpi

) = 0
gets replaced by

δi(σ′|Dpi
) = �Z ′(ζ ⊗ Opi) = �Z(Opi) = −�Z(ζ ⊗ Opi).

Step 2. Up to a rotation and tensoring with a line bundle, every stability
condition σ ∈ StabN (DZ2(X)) is obtained from the construction of Propo-
sition 6.3. Indeed, applying a rotation and tensoring with a line bundle we
can assume that Oπ−1(y) for all y ∈ Y are σ-semistable of phase 1. Now we
have to check the remaining conditions of Lemma 6.4(a). By Lemma 7.4
we know that π∗L is in P (0, 1) for every L ∈ Pic(Y ). Next, by Proposition
7.5(a), for every i the restriction of σ to Di belongs either to W+ ∩ W−, or
to (W+ ∩ U+) \ W−, or to (W+ ∩ U−) \ U+. In the first case both Opi and
ζ ⊗ Opi are stable of phase 1. In the second case Opi is stable of phase > 1.
Finally, in the third case ζ ⊗ Opi is stable of phase ≤ 0 (this follows from
Proposition 7.5(a)).

Step 3. ρ gives a bijection from StabN (DZ2(X)) to Θ0. First, suppose we
have two stability conditions σ = (Z, P ) and σ′ = (Z ′, P ′) such that ρ(σ) =
ρ(σ′). Then Z = Z ′ and the induced stability condition on Dpi for σ and σ′

are the same. This implies that for every i, O2pi is σ-semistable if and only
if it is σ′-semistable (of the same phase). Therefore, rotating and tensoring
with a line bundle we can assume that Oπ−1(y) for all y are semistable of
phase 1 with respect to both σ and σ′. As we have seen in Step 2 this
implies that conditions of Lemma 6.4(a) are satisfied for σ and σ′, which
gives σ = σ′. On the other hand, given a point (σ1, . . . , σn, z) ∈ Θ0, using

the ˜GL+
2 (R)-action and operations on Θ0 corresponding to tensoring with a

line bundle on X, we can assume that �fi(σi) = 1 and O2pi is σi-semistable
for every i. We can define the central charge Z uniquely so that Z|Di = Zi

and Z(OX) = z. Note that inequality (7.2) in this case takes form �z > 0.
Now using Proposition 6.3 we can easily construct the stability condition σ
on DZ2(X) with the central charge Z and the given restrictions σi on Di.

Step 4. StabN (DZ2(X)) is connected. This follows from the continuity
of gluing and Step 2. More precisely, let us first show that all stabilities
constructed in Proposition 6.3 belong to the same connected component.
To this end we consider them as being glued from (ζ ⊗ Opi , i ∈ I−) and
D(I+ ∪ I0). Now using Corollary 4.5 we can find a path from our stability to
the one that has the phases of all ζ ⊗ Opi ’s for i ∈ I− in the interval (−1, 0),
and the phases of all Opi ’s for i ∈ I+ in the interval (1, 2) (in particular, we
will have ni = 1 for all i ∈ I− ∪ I+). By definition, such a stability belongs
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to the connected set U considered in Theorem 6.6. Thus, the set V of all
stabilities constructed in Proposition 6.3 is connected. Therefore, for every
equivariant line bundle L the set V ⊗ L is still connected. Since the standard
stability is contained in all of these sets, the statement follows from Step 2.

Step 5. It follows from Step 4 that every σ ∈ StabN (DZ2(X)) is full. There-
fore, the projection from StabN (DZ2(X)) to the space of numerical central
charges is a local homeomorphism. This implies that ρ : StabN (DZ2(X)) →
Θ0 is a local homeomorphism. Therefore, by Step 3, it is a homeomorphism.

Step 6. It remains to prove Θ0 is contractible. By Proposition 7.5, the space
Θ can be identified with the product C × Σn × C, where the first factor
corresponds to fi(σi). Let us consider the projection Θ0 → C × Σn obtained
by omitting the last component. Each fiber of this projection is a half-plane.
Since the target is contractible, it follows that Θ0 is also contractible. �
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