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R-matrices in rime
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Abstract

We replace the ice Ansatz on matrix solutions of the Yang—Baxter
equation by a weaker condition which we call rime. Rime solutions
include the standard Drinfeld—Jimbo R-matrix. Solutions of the Yang-
Baxter equation within the rime Ansatz which are maximally different
from the standard one we call strict rime. A strict rime non-unitary
solution is parameterized by a projective vector 5 We show that in
the finite dimension this solution transforms to the Cremmer—Gervais
R-matrix by a change of basis with a matrix containing symmetric func-
tions in the components of ¢. A strict unitary solution (the rime Ansatz
is well adapted for taking a unitary limit) in the finite dimension is shown
to be equivalent to a quantization of a classical “boundary” r-matrix of
Gerstenhaber and Giaquinto. We analyze the structure of the elementary
rime blocks and find, as a by-product, that all non-standard R-matrices
of GL(1|1)-type can be uniformly described in a rime form. We dis-
cuss then connections of the classical rime solutions with the Bézout
operators. The Bézout operators satisfy the (non-)homogeneous associa-
tive classical Yang-Baxter equation which is related to the Rota-Baxter
operators. We calculate the Rota—Baxter operators corresponding to the
Bézout operators. We classify the rime Poisson brackets: they form a
three-dimensional pencil. A normal form of each individual member of
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the pencil depends on the discriminant of a certain quadratic polyno-
mial. We also classify orderable quadratic rime associative algebras. For
the standard Drinfeld-Jimbo solution, there is a choice of the multipa-
rameters, for which it can be non-trivially rimed. However, not every
Belavin—Drinfeld triple admits a choice of the multiparameters for which
it can be rimed. We give a minimal example.
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1 From ice to rime

A well-known class of solutions R € End (V ® V),V is a vector space, of the

Yang-Baxter equation YB(R) = 0, where

N

YB(R) = (R®1)(1®R)(R®1) - (1® R)(R®1)(1® R), (1.1)
is characterized by the so-called ice condition (see lectures [21] for details),

which says that ]%;jl can be different from zero only if the set of the upper
and the set of the lower indices coincide,

RI#0 = {i,j}={k1}. (1.2)

We introduce the “rime” Ansatz, relaxing the ice condition: the entry RZJZ
can be different from zero if the set of the lower indices is a subset of the
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set of the upper indices,
R #0 = {kI}c{ij} (1.3)

Matrices for which it holds will be referred to as “rime” matrices. Figura-
tively, in the rime, in contrast to the ice, situation, putting an apple and a
banana in a fridge, there is a non-zero amplitude to find next morning two
apples instead (but never an apple and an orange).

The Yang—Baxter equation for a matrix Ris equivalent to the equality of
two different reorderings of xlyl 2F | using xiyl = R;glykxl, riyd = szlzka:l and
yiz) = szlzkyl, to the form z°y®z°®. One of advantages of the rime Ansatz
is that only indices i,j and k appear in the latter expression. Another
advantage is that for fixed values of i and j, the elements * and y® with
these values of indices form a subsystem.

A rime R-matrix has the following structure:
Ry, = aij018] + Bij010] + 7ij00; +7.;016]  (no summation).  (1.4)

To avoid redundancy, fix 8; = 0, 7 = 0 = v/;. We denote by «; the diagonal
elements Rfj, a; = ay;. Throughout the text we shall assume that the matrix
R is invertible which, in particular, implies that «; % 0 for all 4.

The order of growth of the number of unknowns in the Yang—Baxter
system for a rime matrix is n%, where n = dim V.

Arbitrary permutations and rescalings of coordinates preserve the rime
condition.

The ice and rime matrices are made of 4 x 4 elementary building blocks,
respectively,

a; O 0 0 oq 0 0 0
A 0 B2 a2 0 e M2 Pz a2 M
Rlce — and erme — 12

0 a Par O Yoy @21 Par Y21

0 0 0 oo 0 0 0 (e %}

(1.5)

In Appendix B we analyze the structure of the 4 x 4 rime blocks.

We call a rime matrix strict if o;;7y;; # 0V ¢ and j, ¢ # j. Note that strict
rime matrices are necessarily not ice.
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Proposition 1.1. Let R be a rime matriz (1.4). Then R is a solution of
the Yang—Baxter equation if it is of the form

Ry = (1= B;:)018] + Bij0p0] + 7ij0n0; — 7;idho] (1.6)

where B;; and v;; satisfy the system

BiiBii = Vjivij» (L.7)

Bij + Bji = Bjk + B =: B, (1.8)

BiiBir = (Bjk — Bji) Bk = (Bij — Brj) Bik» (1.9)
YijYVik = (Bji — Bjr)vik = (Brj — Bij)Vik- (1.10)

Proof. The Yang—Baxter system of equations YB(R)Z];Z =0 for a rime
matrix is given in Appendix A. The subset (A.3)-(A.5) together with its
image under the involution (A.2) reads

i (Vig + i) = 0 = uvig (i + ij) (1.11)

i (BijBji + vigviz) = 0 = aij(Bij Bji — vigvji), (1.12)
ijvij(uj + Bji — i) = 0 = aujvij(ouj + Bji — ), (1.13)
aijvij(aji + Bij — i) = 0 = aijyij(egi + Bij — a). (1.14)

These equations are implied by (and, in the strict rime situation, are equiv-
alent to) the following system

%{j = i, ij+ B85 =i, aji+ Bij = i, (1.15)
Bi;iBii = YjiYij- (1.16)

~

One checks that other equations Y B (R)Zjb’z = 0, for which two indices among
{i,7,k} are different, follow from (1.15) and (1.16). The last two equations
from (1.15) imply a; = o for all i and j. As an overall rescaling of a solution
of the Yang—-Baxter equation by a constant is again a solution of the Yang—

Baxter equation, we can, without loss of generality, set it to one,

a; =1. (1.17)

Equations (1.15) and (1.17) yield the form (1.6) of the matrix R and equa-
tion (1.7).
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Using (1.15), we rewrite the subset (A.12)—(A.14) together with its image
under the involution (A.2) in the form

(Bij + Bji — Bik — Bri)vijvie = 0, (1.18)

ij(BijBjk + BirBji — BirBik) = 0 = aji(BjiBrj + Bribij — Bribrs), (1.19)
i (vigvie + Yk (Bix — Bji)) = 0 = agi(vjivks + ei(Brj — Bij)).  (1.20)
These equations are implied by (and, in the strict rime situation, are equiva-
lent to) equations (1.8), (1.9) and (1.10), respectively. One checks that other

equations Y B (R)Zjb]z = 0 with three different indices {i, j, k} follow from the
system (1.7)—(1.10). The proof is finished. O

Lemma 1.1. The rime Yang—Baxter solution R (1.6) is of Hecke type,
RP=BR+(1-p1®1. (1.21)

Moreover, when 3 # 2, R is of GL-type: it has two eigenvalues 1 and 5 — 1

n(n;l) and n(n2_l), respectively. When 8 = 2 the matriz

with multiplicities
R has a non-trivial Jordanian structure.

Proof. In view of the block structure of rime matrices it is enough to check
the Hecke relation (1.21) for one elementary (4 x 4) block which follows from
(1.7) and (1.8). When 3 # 2 the multiplicities m; and mg_; are solutions
of the system

n(n —1)

5 B(=TrR). (1.22)

my +mpg_1 = n%,  mi+ (B—1)mg_1 =n—+

When 3 = 2 the matrix R has only one eigenvalue 1 but R # 1 ® 1 due to
(1.7) and (1.8). g

Unitary solutions, R2=1®1 are singled out by the value of the para-
meter § = 0.

Lemma 1.2. A strict rime Yang-Baxter solution R (1.6) can be brought to
a rime Matrix

R = (1— B3;)016] + Bij0n0] — Bij0k0; + B;:050], (1.23)

that is, to a solution (1.6) with ~;; = —fi;, by a change of basis.
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Proof. The strict rime condition a;;7v;; # 0 implies (;;3;; # 0 in view of
(1.7). Thus for a strict rime R-matrix all 3;; and ~;; are non-vanishing.
The ratio of equations (1.9) and (1.10) is well-defined and it follows from
equations (1.7) and (1.8) that

YigVik _ (Bji = Bik)vik Yk VijVii

— = =1 1.2
Bi;Bjk (Bji — Bjk)Bik Bir”  BijBji ’ (1.24)

or

&ij&in = &k, &ii&ji = 1, (1.25)

where §;; = —ZZ Equation (1.25) is solved by &;; = g—; with d; #0, i =1,
...,n, hence B’s and +’s are related by

d;
Yij = _Eﬁij- (1.26)
J
A change of basis with a matrix D,
R+ (D®D)R (D '@ D™, (1.27)
where D;» = djéé, transforms R to the form (1.23). O

Under the strict rime condition, the Yang—Baxter system of equations
(see Appendix A) reduces to equations (1.8) and (1.9). However, the matrix
(1.23), where the parameters (3;; are subject to equations (1.8) and (1.9),
is a solution of the Yang—Baxter equation without a strict rime
assumption.

Remark. Right and left even quantum spaces are defined by, respectively,
szkxl = 'y, xjxiRz = 112p; (1.28)
right and left odd quantum spaces are defined by, respectively,

RUEe = (8- 161, &R = (5 - 1)&&. (1.29)
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Assume that 3 # 2. The left even space is classical! as well as the right
odd space

[.CUZ‘,IL']‘] =0, [{iagj]-f— =0, (130)

where [,] and [,], stand for the commutator and the anti-commutator. The
relations for the right even space are

[z, 2] + (ﬂzjxl + ﬂji:pj)(:ci —27) = 0; (1.31)
the relations for the left odd space read

(2= P& +&ip+ (1= B)p&i =0, (1.32)
(& &l — Bij&i&j — Bji€i& =0, i # 4, (1.33)

where p =3, ¢&;.

2 Rime Yang—Baxter solutions

In this section we solve equations (1.8) and (1.9) thus obtaining explicitly
rime Yang—Baxter solutions.

2.1 Non-unitary rime R-matrices

Proposition 2.1. The non-unitary strict rime Yang—Baxter solutions (1.23)
with a parameter = B;; + Bij # 0 are parameterized by a point ¢ € PC"
in a projective space, ¢ = (¢1: P : ... ¢n), such that ¢p; # 0 for all i and
¢i # ¢j for all i and j, i # j. These solutions are given by

_ B¢
i — @5

Bij (2.1)

'Let R be a rime R-matrix (not necessarily strict). When [ # 2, the following statement
holds. If (i) the left even space is classical (which implies that vi; = —7;i, o + 855 = 1
and a; =1 in our normalization) and (ii) the R-matrix is Hecke (which implies that
Bi; + Bji = B), then the system of equations from Appendix A again reduces to (1.7),
(1.9) and (1.10) as in the strict rime situation.
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Proof. Taking the ratio of the following pairs of equations from (1.9)
BiiBik = (Bik — Bji)Biks  BriBji = (Bji — Bik) B (2.2)
we find that quantities n;; = —f;;/6;; verify equations
NijMik = Niks  MigMji = 1, (2.3)

whose solutions are 7;; = ¢;/¢; for some constants ¢; #0,i=1,...,n.

Substituting the relation (3;; = —((Zjﬂij into 8= B + Bji, we obtain
i

Bij — ﬁﬁij = /3 which establishes (2.1). O

B9,
bi — ¢j

rime solutions; it is related to the parameterization (2.1) by ¢; — (¢;) L.

Remark. There is a different parameterization, §;; = , of strict

A direct check shows that the condition ¢; # 0 is not necessary: the
formula (2.1) with ¢; # ¢; for all ¢ and j, i # j, gives a rime solution of the
Yang-Baxter equation. However when one of ¢; is 0, the matrix (1.23) is no
more strict.

2.2 Unitary rime R-matrices

For a unitary strict rime Yang—Baxter solution (1.23), R? = 1, we have

B =0, s0 Bij = —Bji-

Proposition 2.2. The unitary strict rime Yang—Baxter solutions (1.23) are
parameterized by a vector (1, ..., [tn) such that p; # pj,

1

. 2.4
Hi — ( )

Bij =

Proof. Since f3;; = —j; we can rewrite 3;;0; = (Bjx — Bji)Bik as BijBjk =
(Bij + Bjk)Bik or

1 1 1

@:E"F@ (2.5)
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These equations are solved by

1
— = i — 2.6
By Hi — Mg (2.6)
which is equivalent to (2.4). O

Remark. The unitary R-matrices of Proposition 2.2 can be obtained as a
limit 8 — 0 of the non-unitary R-matrices of Proposition 2.1. Indeed, for
the following expansion of the parameters ¢; in the “small” parameter (3,

¢i = 1+ Bui + o(B), (2.7)

the expression (2.1) has a limit (2.4),

_BA+Bui+oB) so0 L, 1
& Bui— Buj +o(B) Pi i —

2.3 Properties

1. Denote the R-matrix (1.23) with f3;; as in (2.1) by R(¢). Let Rgy =
PR12P, where P is the permutation operator. Then the following holds:

-,

Ro(¢) =F '@ F 'Ri5(¢ ) FQF, (2.9)

where F' = diag(¢1, ¢2,...,¢pn) and (5‘1 is a vector with components @_1-

Denote the R-matrix (1.23) with ;; as in (2.4) by R(ji). Then the
following holds:

Ry (i) = Ra(—ji). (2.10)

2. The R-matrix (1.23) is skew invertible in the sense that there exists an
operator Vg, which satisfies (see, e.g., [21])

Tra(R12(¥R)23) = Pis. (2.11)

The matrices of the left and right quantum traces (that is, the left
and right traces of the skew inverse Wpg), (Qgr)1 = Tra((Vg)12) and
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(Qr)2 = Tr1((UR)12) are given by the formulas

@)l =—8 [[ 0=8u), k#4, and (Qr)}=][00-8u); (212)

I 1%k !
@Qr)s =B [[(1-8y), k+#4, and (Qr)i =[-8y (2.13)
Lk !

The matrices Qr and Qg satisfy QrQr = (1 — §)" 1.

For (2.1), one has Spec Qr =Spec Qr={(1 — 3)%,a=0,...,n —1}. The
eigenvector w,(¢) of the matrix Qp with the eigenvalue (1 — B)"~172 coin-
cides with the eigenvector of the matrix Qg with the eigenvalue (1 — 3)®.

One has (wq () = €4(¢), where eg (¢) is the ith elementary symmetric func-
tion of (¢1, ¢2,. .., ¢n) with ¢; omitted.

For (2.4), the Jordanian form of the matrix Qpg, as well as of Qnr, is non-
trivial: it is a single block. In the basis {wi(i)},i=0,1,2,...,n — 1, where

(wi(ji))? = €] (ji), one has

Qrui) =S (” -1- ) ws (). (2.14)

3. For an R-matrix R, the group of invertible matrices Y satisfying
R1oY1Ys = V1YaRy9 (2.15)

form the invariance group Gpg of R. The matrices Qr and Qg belong to
the invariance group as well as the matrices proportional to the identity
matrix. One can write down formulas for the group G for a rime R-matrix
(1.23) uniformly in terms of f;; as in (2.12) and (2.13) but the properties
are different in the non-unitary and unitary cases and we describe them
separately.

—,

3a. The invariance group G, R() for the R-matrix R(¢) is 2-parametric. It
consists of matrices Y (u, v), u,v # 0, where

uv]—Hu¢J_v¢l and

Li#j
Y (u, )} = Fys—y 11 i i (2.16)

L4,
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One has

The composition law is the component-wise multiplication of the parameters

{u,v},
Y(ul,vl)Y(uQ,UQ) = Y(UlUQ,UlUQ). (2.18)

The point u =v =1 corresponds to the identity matrix, Y (1,1) = 1; the
determinant of Y (u,v) is (uv)™"~D/2; 4 = v corresponds to global rescal-
ings; the connected component of unity of the subgroup SG R() consisting
of matrices with determinant 1 is uv = 1; the generator n of the connected
component of unity of the subgroup SG R(@) is traceless and reads

772. = , @ 7& J and n = — + . 2.19
T — ¢ ! 2 ”%:J ¢j — ¢ (219

3b. For the R-matrix R(ﬁ), the group SGgy;;), consisting of matrices with

determinant 1 is 1-parametric as well. It is formed by matrices Y0 (a),
where

Y<°>(a,);ﬁ:H<1+ . ) and

1j —

YOu)i= —2— T (1+ a ) i # . (2.20)

Hj — i

The expression (2.20) can be obtained by taking a limit of (2.16), similarly to
(2.8) and letting additionally u = 1 + a8/2 + o() and v =1 — af3/2 + o(3).

One has
Qruy = YV(=1), Qg =Y. (2.21)
The composition law is Y0 (a1)Y ) (ag) = YO (a1 + as).

The point a = 0 in (2.20) corresponds to the identity matrix, Y(©)(0) = 1;
the generator n(© of the invariance group SG R(q) 18

0= e i#d and @)=

(2.22)
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3 Rime and Cremmer—Gervais R-matrices

The Cremmer—Gervais R-matrix arises in the exchange relations of the chiral
vertex operators in the non-linearly W-extended Virasoro algebra [6]. The
Cremmer—Gervais solution [6] of the Yang-Baxter equation in its general
two-parametric form reads (see, e.g., [17]; we use a rescaled matrix with
eigenvalues 1 and —q~?)

(RCGJJ)Z = q729”pi7j5f5i 1 —q 2 Z p’L 858514—] s

5:1<s<g

—(1—q%) > pepet (3.1)

s:j<s<t
where 6;; is the step function (6;; = 1 when ¢ > j and 6;; = 0 when i < j).

The parameter value p = ¢%" specifies the SL(n) Cremmer—Gervais
R-matrix (its diagonal twist being the GL(n) solution (3.1)). The Cremmer—
Gervais solution is a non-diagonal twist of the standard Drinfeld—Jimbo
solution [9,18].

Let Rog = ch,l, that is, the solution (3.1) with p = 1. The matrix
D(p)j = &p"! (3.2)

with arbitrary p satisfies (Rog)12D(p)1D(p)2 = D(p)1D(p)2(Rcc)12. It was
observed in [10] that if Ri3D1Ds = Dy DyRy5 for some R-matrix R and
operator D then D1R12D1_ Lis again an R-matrix (this operation was also
used in [15] to partially change the statistics of ghosts in the super-symmetric
situation). The two-parametric matrix RCGJ, (3.1) can be obtained from the
Cremmer—Cervais matrix Rog by this operation as well,

(Reap)iz = D(p)1(Roc)12D(p)7 L (3.3)

Let R be the non-unitary rime matrix from Proposition 2.1 with ¢; # ¢;.

Proposition 3.1. The matriz R transforms into the Cremmer—Gervais
solution Rog

R=(X®X)Rea(X '@ X (3.4)

by a change of basis with the invertible matriz

X]k :ejfl(qsla---vggk?"'agbn) = 6?_1 (35)
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whose inverse s

. —1)i-1gnd
(x-hi = (36)
[Trri(i — &%)

Here the hat over ¢; means that this entry is omitted in the expression and e;
are the elementary symmetric polynomials e;(x1,...,TN) =D .
TgTsy -..Ts,. The projective parameters (¢1: ¢2 :...: ¢p) are removed by

the transformation X and the only essential parameter B in R is related to
the parameter q in Rcg by

¢ i=1-4 (3.7)

Proof. Due to the Lagrange interpolation formula, the matrix, inverse to the
Vandermonde matrix

; i _ (—1)77tek_,
Ve =0p 7 s (V= ———— I (3.8)
R ’ H (6 — 1)
Ltk

The matrix X (3.5) has the form X = DV~!d, where D" = 5" [Tizn
(¢ — @) and d; = (—1)j_15§ are diagonal n x n matrices. Thus, its inverse
is X1 =d~ 'V D!, which establishes (3.6).

We now prove the matrix identity (3.4) in the form
R(X®X)= (X ®X)Rcg. (3.9)
The substitution of the explicit form of the rime matrix R (1.23) with

Bij = Bbi/ (¢ — ¢;) and Reg (3.1) reduces (3.9) to a set of relations between
the symmetrical polynomials ez_l

ZRabek 161 1 *Zea 1% 1(RCG) (3.10)
a,b

There are two subcases: (i) ¢ = j and (ii) 7 # j.

(i) The left-hand side of equation (3.10) with ¢ = j is just 6’?@716?71 due
to the rime condition. Equation (3.10) is satisfied because of the sym-
metry relation (Rog)® = 0860 + 0862 — (Rog )b
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2

(ii) For i # j equation (3.10), where ¢~* = 1 — 3, reduces, after some alge-

braic manipulations, to

1 7 K A ~
o=, Bk~ Gt (el — i)
v J
= Z (€§+572€?€_s — e{+s_2e}'cfs), 1<id, 5,k 1 <n.
s:s>max(1,k—142)
(3.11)

In fact, the sum in the right-hand side goes till s = min(k,n + 1 — 1) since

ei =0 when r > n — 1; moreover, we can start the summation from s =1
because when 1 < k — [ + 2 the sum for 1 < s < k — [ 4 1 is anti-symmetric
under s «— k — [ + 2 — s and thus vanishes.

) To prove (3:}1) we write e, = e,% + qﬁiei_l; therefore ei = eij + ¢jeij_1 and

el = el + ¢ie? | and equation (3.11) becomes

_<¢2 - (Zsj)e;cj—le;]—Q = (ff’z - ¢]) Z(eﬁ—s—Qeg—s—l - 6215—367];7—8)’ (312)
s>1

The sum in the rightflang side telescopes to the value of (—ef{F 5—3‘9?— ;) at
s =1, that is, to (—e;’_;e;’ ;). The proof is complete. O

-,

It should be noted that the matrix X = X (¢) does not depend on ¢q. The
change of the basis with the matrix X (¢/)X (¢)~! transforms the R-matrix

A >

R(¢) to R(¢'). We have

[1(¢ — ¢

- . 1 .

(X(@)X(@) ;= 5— '
% =% J] (65—
j lgj !

(3.13)

The structure of the matr}ces X aLndAX_T1 shows that when the dimengio_p
is infinite, the R-matrices Rcg,1 and R(¢) (as well as the R-matrices R(¢)

and R(d;’ ) for different ¢ and ¢’) are in general not equivalent.

The right even quantum plane for the Cremmer—Gervais matrix RCGJ is
defined by the following equations:

Yy = Pyy + (- DTy T Ly Ty, i<y (3.14)



454 OLEG OGIEVETSKY AND TODOR POPOV

If i+ 1< j—1, one uses the formula (3.14) recursively to get the ordering
relations.

The change of basis with the matrix X,
. n ] .
b= Ze?,lyj, (3.15)
j=1

transformes the quantum plane (3.14) into the rime quantum plane (1.31)
exhibiting coordinate two-dimensional subplanes. The change of basis (3.15)
can be written in terms of a “generating function”: let

G = Zej (P15 s )y (3.16)
Then
;0G
xt = 90, (3.17)

Remark. The standard Drinfeld-Jimbo R-matrix admits, for a certain
choice of multi-parameters, a different rime form. The relations u'v? =
(R.)jvFul for this choice are

uv? = vut + (1 — g !, i<y, (3.18)
il = q_2vjui, 1> 7.

The left even space for this R-matrix is classical.

The change of variables with the matrix X]’ =1-10y,
Ub=ut +u?+ ... +uf, Vi=ol 402+ 40 (3.19)
transforms the relations (3.18) into
UVI=VIU + (1 — ¢ HVIU! — (1 - ¢ VUL, i<, (3.20)
UVI = ¢ 2VIU + (1 — ¢ HVIU?, 0>

The matrix X, defined by equation (3.5), degenerates if ¢; = ¢; for some
1 and j. Interestingly, the R-matrix X ®@ X Re X '@ X! admits limits
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limg,_ (2)—0 limg,_ (=0 - - .lim%(n)_)g for an arbitrary permutation o € .S, and
the result is always rime. In particular,

X®@XRX'oX 1= lim lim ... lim X®XRX 'oX ' (321)

P2—0 ¢p3—0 ¢n—0

4 Classical rime r-matrices

The classical limit of an R-matrix is a classical r-matriz, a solution of the
classical Yang-Baxter (cYB) equation

[r12, 713) + [r12, 723] + [113, 23] = 0. (4.1)

We are going to show that the classical limits of the rime R-matrices
from Section 2 are equivalent to the Cremmer—Gervais r-matrices in the
non-skew-symmetric case and to the “boundary” r-matrix of Gerstenhaber
and Giaquinto [14] (see also [4]; this r-matrix is attributed to A. G. Elashvili
there) in the skew-symmetric case. Similar equivalences appeared in the
study of the gauge transformations of the dynamical r-matrices in the
Calogero-Moser model [12,13].2

In the sequel we use the following conventions. An R-matrix acts in a
space V ® V. A basis of V is {e;} (labeled by a lower index); an operator A
in V has matrix coefficients Ag , Ale;) = Ag ej, so for a vector @ = v'e; one has
(Av)" = ALv7; the matrix units are e}, ej(ex) = djej, so the multiplication
lie;?; eq, are the sl(n) simple positive root elements, e,, = eé“;
P is the permutation operator, P(e; ® e;) = e; ® €;, s0 P(e§ ®ef) =el® e;?

rule is eé.ef =4

and (PB)Z? = BZ‘“ for an operator B in V ® V having matrix coeflicients

Blk]l, B(el & 6]’) = Blk]lEk X e€y.

4.1 Non-skew-symmetric case

Proposition 4.1. The non-unitary rime R-matriz (Proposition 2.1) is a
quantization of the non-skew-symmetric r-matrix

r= Z ¢‘<Z_5i ‘(e§-®eg—e§®eg+e§/\e§-), (4.2)
e j

2We thank Laszlé Fehér for drawing our attention to references [12,13].
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where TANYy:=xQy—yQw. The change of basis with the matriz

X/,jg =ep_1 (qﬁl,...,q;j,...,(bn) transforms r into the parameter-free cYB
solution rog

j—i
el iletl irel o
rog = Z Z(e}"'s @ el ST eits 1®e§. ) (4.3)
1,5:9<j s=1

Proof. The coefficients ;; (2.1) are linear in the deformation parameter
(6 =0 is the classical point). Hence

R=1®1+fr, (4.4)

where R = PR and r is given by (4.2).

The matrix Rog — 1 ® 1, where Rog = PRC(;, is linear with respect to
the parameter 3 =1 — ¢~ 2 as well,

Reg =1® 1+ freg (4.5)

thus the formula (3.4) implies 7 = (X ® X)rog(X '@ X~ 1).

We mentioned two ways of obtaining the numerical two-parametric
R-matrix (Rcg,p) from the R-matrix (Rcg,1): by a diagonal twist and by
the operation (3.3). There is one more way which consists of changing the

representation. We shall illustrate it on the example of the classical GL
r-matrix (4.3). A change of representation of the Lie algebra GL,

es = ei +cdil, (4.6)
where c is a constant, produces the following effect on the r-matrix (4.3):
rca—regte(n®1—-10n—(n—1)1®1), (4.7)

where n = dim V and

n(n+1 .
n= —(2)14'2]6;, trn = 0. (4.8)
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The classical version of the operation (3.3) is as follows. Let 7 be an
arbitrary generator of the invariance group of an r-matrix r,

[r,m +n2] = 0. (4.9)

Then the operator

T(ey =1+ c(m —n2), (4.10)

where c is a constant, is again a classical r-matrix (a solution of the cYBe).

The operator 7 in (4.8) is, up to a scale, the unique traceless generator of
the invariance group (see (3.2)) of the r-matrix (4.3). Thus, the representa-
tion change and the operation (4.10) give the same family of r-matrices (up
to an addition of a multiple of the identity operator, which does not violate
the cYBe).

4.2 BD triples

Each block in the strict rime classical r-matrix (4.2) looks even more
“rimed”,

0 0 0 0

By B By B

, 411
By B i B (4-11)
0 0 0 0

where z{j = Bi;/B = ¢i/(¢s — ¢j). The multiplication from the left by P
acts on each block as a permutation of the second and third lines, so the
rime r-matrix (4.11) enjoys the symmetry Pr = —r. We shall now discuss

this symmetry property in the context of Belavin—Drinfeld triples.

In [3] Belavin and Drinfeld gave, for a simple Lie algebra g, a description
of non-unitary (non-skew-symmetric) cYB solutions r € g® g, satisfying
r12 + 191 = t, where t € g ® g is the g-invariant element. The non-unitary
solutions are put into correspondence with combinatorial objects called
Belavin—Drinfeld triples (BD-triples for short). The BD triple (IIy,II3,7)
for a simple Lie algebra g consists of the following data: II;,Ily are sub-
sets of the set of simple positive roots II of the algebra g and 7 is an
invertible mapping: II; — IIs such that (r(p),7(p’)) = (p,p’) for any
p,p € 11 and 7%(p) # p for any p € II; and any natural k for which 7%(p)
is defined.
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The r-matrix for a triple (IIy, I3, 7) has the form

r=ro+ Y ea®eat P  e_aleg, (4.12)
aceA 4 a,BeEAL:a<f

where < is a partial order on the set of positive roots Ay defined by the rule:
a < (3 for a, 3 € A if there exists a natural k such that 7%(a) = 3. The
part 7o belongs to h ® b, where h is the Cartan subalgebra of g; ¢ contains
continuous “multiparameters”, which satisfy

(T(e) ®id+id® a)(rg) =0  for all @ € II;. (4.13)

We are dealing with matrix solutions r of the cYB equation,
r € gl(n) ® gl(n), so r12 + r21 can be a linear combination of P and 1 ® 1.

Let IT = {aq,...,an—1} be the set of the positive simple roots for the Lie
algebra sl(n).

There are two Cremmer—Gervais BD triples, T, and ¥_. For the
Cremmer—Gervais BD triple T4, I} = {a1,a2,...,an_2}, IIo = {ag, as, . . .,
ap—1} and 7(;) = aj1. The data (I11, Iy, 7) is encoded in the graph

e o e - .- e o—e (4.14)

The triple ¥_ can be obtained from the triple ¥, either by setting
I} =1y, I, =1I; and 7/ = 7~! or by applying the outer automorphism
of the underlying A,_; Dynkin diagram; the graph corresponding to the
triple ¥_ is

e o 00— -..—0—o® (4.15)

VAV awayd

The r-matrix (4.3) corresponds to the triple (4.14) for a certain choice of the
multiparameters. Here is the r-matrix 7’ corresponding to the triple (4.15)

J—1
r_ i J J i
Toca = Z Z(ejfsﬂ Q€irs 1~ €511 ® €irs—1) (4.16)
i,jii<j s=1

for a certain choice of the multiparameters, for which it satisfies 7' P = —7’.
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For the r-matrices (4.3) and (4.16), one has r13 + 191 = P—1® 1. The
Cartan part of the r-matrices (4.3) and (4.16) are

ro = — Z e%@e;, ro = — Z e;:@eﬁ. (4.17)

1,7:1<j 1,5:4<J

The following lemma shows that a classical r-matrix r for a triple ¥ can
have a symmetry with respect to the multiplication by P from one side if
and only if all segments (connected components) of II; are mapped by 7
according to either (4.14) or (4.15).

Lemma 4.1. A non-skew-symmetric classical r-matriz with a
Belavin—Drinfeld data (I13,1l3,7) can satisfy Pr = —r (respectively,
rP = —r) for a certain choice of the multiparameters if and only if
T(i) = ay1 (respectively, T(o;) = ai—1) for all i € I1;.

Proof. Assume that 7(a;,) = a4k for some natural k, £ > 1. Then r con-
tains the term eziz A em+l with the coefficient 1. Such r-matrix can-
not satisfy rP = —r for if P = —r then r contains the term ezi}ﬁl A
et with the coefficient (—1) but the coefficient in e_q Aeg is 1 in the

formula (4.12).

If Pr = —r then r should contain also the term €'+, | Aem*. It then
follows that
(i) the Lie subalgebra generated by II; contains e%*k, therefore the inter-
val [, Qg1 - - -y Qmik—1] 18 contained in IIy;
(ii) the Lie subalgebra generated by Il» contains ezii 41, therefore the
interval [Qm41, @m42, - - -, Qmtk] 1S contained in Ilo;
(iii) the image of the interval [, i1, - -+, Qunik—1] under 7 is the interval
[Qma1; Omg2s - - Qi)
This implies that the interval [cun41,Qmiy2,. .., Qmig—1] I8 T-invariant

(since T(aum) = am+k), which contradicts to the nilpotency of 7 unless this
interval is empty, that is, k = 1.

Similarly, 7P = —r is possible only if 7(a;) = a;—1 for all i € TI;.

It is left to show that when 7(a;) = ;41 (respectively, 7(a;) = a;—1) for
all ¢ € II; the multiparameters can indeed be adjusted to fulfill Pr = —r
(respectively, 7P = —r). We leave it as an exercise for the reader to check
that with the assignment (4.17) for r (respectively, for ') the compatibility
condition (4.13) is verified. The proof is finished. O
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Remark. Two extreme BD triples can be rimed, the empty (Drinfeld—
Jimbo) one and the “maximal” Cremmer—Gervais one. However, not every
triple can be rimed: already the triple

o oo (4.18)
e —0 — o
provides a counterexample. = We outline a computer-aided proof in

Appendix C.

4.3 Skew-symmetric case

A skew-symmetric classical r-matrix r € g A g is canonically associated with
a quasi-Frobenius Lie subalgebra (f,w) of g (see, e.g., [24]). A Lie algebra
f which admits a non-degenerate 2-cocycle w is called quasi-Frobenius; it is
Frobenius if w is a coboundary, i.e., w(X,Y) = A([X,Y]) for some A € f*.

We describe now the skew-symmetric r-matrix arising in the classical limit
of the unitary rime R-matrix from Proposition 2.2.

Proposition 4.2. The unitary rime R-matriz (Proposition 2.2) is a quan-
tization of the skew-symmetric r-matrix

=3

2K 1<]

(€5 — h) A (el =€) € gl(n) A gl(n). (4.19)
—Hy

This skew-symmetric classical r-matriz corresponds to a Frobenius Lie alge-
bra (go(n),dA\,) spanned by the generators Z]i- = eé- - ei, 1%, with
the Frobenius structure determined by the coboundary of the 1-cochain
An = =2 iz MiZj, where {23}, 1 j, is the basis in gj(n), dual to the
basis {Z}} in go(n), z;(Zlk) = 5;5;-“.

Proof. An artificial introduction of a small parameter ¢ by a rescaling
;i — ¢ 1 in the formula for the R-matrix Rin Proposition 2.2 gives

R=1®1+cr, (4.20)

where r is given by (4.19).
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The n(n — 1) matrices Z; = eé. — e;:, 1 # 7, form an associative subalgebra
of the matrix algebra,

ZzF = (6] - o) (2F - Z) (4.21)

(we set Z! =0 for all i); with respect to the commutators these matrices
form a Lie subalgebra gg(n) of the Lie algebra gl(n), go(n) C gl(n):

2,2\ = 7] -z}, (2],2})=Z] - 2,

ZLIN =27~ ZL, it jEkAi (422
[ja k] k k> 27&]75 #17

all other brackets vanish. The skew-symmetric solution (4.19) of the cYB
equation,

ANV
i = I

-3

1,J:1<]

(4.23)

is non-degenerate on the carrier subalgebra go(n). The carrier subalge-
bra go(n) is necessarily quasi-Frobenius, having a 2-cocycle w given by the
inverse of the r-matrix, that is,

w(Za,Zp) =rap, where TABTBC = 5@, r= Z?”ABZA ANZp. (4.24)
AB

We have
(7, ZF) = (s — 1)), (4.25)

It is easy to check that the 2-cycle w is a coboundary,

W(Z52F) = MllZ5 ZE])s A== D wizj € gy(n), (4.26)
,J:0£]
thus the subalgebra go(n) is Frobenius. O
The “Frobenius” r-matrix (4.19) (and its quantization) was considered in
the work [2].

Proposition 4.3. The skew-symmetric rime classical r-matriz (4.19),
r= ZK]‘(W — ,uj)_lZ;‘- NZ], where p= (p1,p2,..., ) is an arbitrary
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vector such that p; # pj; belongs to the orbit of the parameter-free classi-
cal r-matriz

j—i
b= Z Z e§+k A ej-_kﬂ. (4.27)

i,j1i<g k=1
More precisely,

r= Aqu & AdXM (b), (4.28)

where the element X, € GL(n) is defined by (Xu)izek_l (11, -,
s pin)

Proof. The equality r = Adx, ® Adx,(b) is equivalent to a set of relations
for the elementary symmetric functions e;,

(Xp@X)b=r(X,®X,) < Z ef«—leiq = Z 7“2%62-165’_1,
7,8 a,b
(4.29)

where

j—i i—j
by =Y oy Mg N " ik and
k=1 k=1

g {(53512 + 048] — 60) — Gadh) /(i — 1), i # 5,
ab o . .
0, 7= ]

Both operators bZ} and r;]l; are symmetric in the lower indices and anti-
symmetric in the upper indices, that is,

Pb=-b, bP=0band Pr=—-r, rP=r. (4.30)

Equations (4.29) have the following form

- Z(ehsfzeé—sq - €i+372efz—5—1) = ‘(63—1 - 62—1)(6271 - 6{,,1).
s>1

(4.31)

3This matrix is the same X as in Proposition 3.1 but depending on variables fi;.
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Due to (3.11), the left-hand side of (4.31) equals

1
L

(iCa—z = Hj€h_s)(eh 1 = €)_y)- (4.32)

The right-hand side of (4.31) equals (4.32) as well because ei_l =e€q_1 —
Hicq_o- O

As in the non-skew-symmetric case, in the infinite dimension the operators
b and r are in general not equivalent.

The sl(n) cYB solution. Let I =", ¢! be the central element of
gl(n). The generators Z]l = Zji- + 17 € sl(n) satisfy the same relations (4.22)
as Z; thus they form a subalgebra go(n) of the Lie algebra sl(n) which is
isomorphic to go(n), go(n) =~ go(n). This isomorphism gives rise to another
solution 7 € sl(n) A sl(n) of the cYB equation,

F Zi N2 [(n) Asl(n) (4.33)
T = —— € sl(n sin). .
. [1i — f;

We have the following lemma about the carrier Lie algebra of 7 (the Lie
subalgebra of s[(n) spanned by the generators Z]’)

Lemma 4.2. The subalgebra go(n) C sl(n) of dimension dim go(n) = n(n —
1) is isomorphic to the maximal parabolic subalgebra p of sl(n) obtained by
deleting the first negative root.

Proof. The vector v = Y1 | e; is an eigenvector for all elements Z;,
Ziw) = Yo foralliandj, i#j 4.34)
ju_nv or all ¢ and j, i # j. (4.

In a basis in which the first vector is v, the linear span of the generators
7% is
J

0 = *
. ) (4.35)
0 = *

with the traceless condition. The comparison of dimensions finishes the
proof. O
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Gerstenhaber and Giaquinto [14] found a classical r-matrix bog which
they called “boundary” because it lies in the closure of the solution space
of the YB equation. The cYB solution bcg corresponds to a Frobenius
subalgebra (p, ), where p is the parabolic subalgebra of sl(n) as above and
the 2-cocycle 2 is a coboundary,

n

Q=0Mcar Moo = D _(€h1)" €p™. (4.36)
=1

The r-matrix beg is a twist of b (see [8]).

Since the carriers of 7 and bcg are isomorphic, the r-matrices are equiv-
alent. We shall now prove that the same matrix X, transforms bcg into 7.

Proposition 4.4. The boundary classical r-matriz beg € sl(n) Asl(n),

. j—i
_ I i j+1 i+k j—k+1
beg = E ‘ (1- E) eiNe; + | E | E e " Ae] , (4.37)
2,] 4,J:4<j k=1

transforms into the c¢YB solution 7 € sl(n) A sl(n),

_ ; : B ;
T = | E m, where Zj=e; —e; + - E e, (4.38)
1,7:4<] —

by a change of basis with the matriz X, € GL(n),

r = AdX# & Aqu (bc(;). (4.39)

Proof. Due to Proposition 4.3 we have r = Adx, ® Adx,(b). The cYB
solution bcg is the sum of b and other terms, bog = b+ Z (1 — f)e A

;H. Therefore it is enough to show that 7 —r = Adx, ® AdXH (bcag — b).

One has

1 ZI
For==IA Y —i bcg—b—I/\Z )l (4.40)
ity TR

Thus we have to show that

X Z( ) J“_% > 'Zg Xy, (4.41)

ity H1 T
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which amounts to the following identities for the elementary symmetric
functions:

=1\ : 1€ —c
<1 - n) €2 =" P (4.42)

g HETH

Rep}acing, in the right-hand Aside, ei_l by e?_ 1+ uiezj_ 95 ei_l by ezj_ 1+
pjey o and noticing that Y, e’ = (n — c)ec, ¢ =1,2,...,n (for the elemen-
tary symmetric functions in n variables) finishes the proof. U

The passage to the sl(n) solution is another instance of the representation
change. The general representation change (4.6) produces the following
effect on the numerical r-matrix (4.27):

bisb—en@ a1, (4.43)
where 17(9) is the generator of the invariance group of the r-matrix (4.27),
N =>"(n—j)e. (4.44)

The representation change and the operation (4.10) produce the same
1-parametric family (4.43) of skew-symmetric r-matrices. The choice ¢ =
—1/n corresponds to the r-matrix bog.

5 Bézout operators

The Bézout operator [5] is the following endomorphism 69 of the space P
of polynomials of two variables x and y:

6O f(z,y) = f(ac,y; : g(y,x) or b0 = o i y(I - P), (5.1)

where I is the identity operator and P is a permutation, Pf(z,y) = f(y, ).
For any natural n, the subspace P, of polynomials of degree less than n
in 2 and less than n in y is invariant with respect to the operator b(©).
The matrix of the restriction of b(®) onto 9,,, written in the basis {z%y®} of
powers (in the decreasing order) coincides with the operator (4.27).
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The non-skew-symmetric matrix (4.3) is the matrix of the operator

T
r—=y

b=

(I-P) (5.2)

in this basis. The rime bases are formed by the non-normalized Lag-

range polynomials {1i(2)L;(y)}, li(t) = [1ssi(t — @s), at points {6}, i = 1,
2,...,n.

We shall call the operators b(®) and b Bézout r-matrices. The Bézout
r-matrices were rediscovered in several different contexts related to the
Yang-Baxter equation (except the fact that they are the Cremmer—Gervais
r-matrices, they appear, for instance, in [7] and [19]).

The standard r-matrix (), for the choice of the multi-parameters for
which it can be non-trivially rimed (see the Remark at the end of Section 3),
has the following form in terms of polynomials

r) s atyd s 03 — §)aty? — 0( — i)aly' (5.3)

The subspaces 9B, are invariant with respect to (%),

The properties of the Bézout r-matrices b(®) and b (and of the opera-
tor r(s)) become more transparent when they are viewed as operators on
polynomials. In particular,

62 =0, p@Op=—bO0 pp® =p® O 4p) =0  (54)
b2=b, bP=—b, b+by=1—P,
(O =) P o 0 0O 1P (56)

The description of the invariance groups of the operators b(®) and b is
especially transparent when these operators are viewed as operators on the
spaces of polynomials. Let 0, and 0, be the derivatives in x and y. We

have (0, + 0y) (ﬁ) =0 which implies that 9, is the generator of the

invariance group of b(®); the group is formed by translations. Similarly,

y
ance group of b; the group is formed by dilatations. The operation (4.10)

implies that the operators

(x0y + yOy) (ﬁ) = 0 which implies that z0, is the generator of the invari-

6@ +¢(8, —,), b+ c(xd, —yd,) (5.7)

are solutions of the cYBe (the quantum version is easy as well) for an arbi-
trary constant c.
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5.1 Non-homogeneous associative classical
Yang—Baxter equation

The operators b, b and r(®) satisfy an equation stronger than the cYBe.
For an endomorphism r of V ® V', define

o I
T OT i=T12713 + T13723 — T'23T12, T O T i=T13712 + 723713 — r12723. (5.8)

The equation ror =0 (as well as r o’ r = 0) is called associative classical
Yang-Baxter equation (acYBe) [1,20].

We introduce a mnon-homogeneous associative classical Yang—Bazter
equation (nhacYBe):

ror=crs, (5.9)

where ¢ is a constant.

Let F be the space of polynomials in one variable. For the space F ® F of
polynomials in two variables, we denote by x (respectively, y) the generator
of the first (respectively, second) copy of F. For F @ F ® F, the generators
are denoted by x, y and z.

Lemma 5.1. 1. Let M be an operator on the space F @ F. Assume that

M(xf) = f+yM(f), (5.10)
M(yf) = —f +aM(f) (5.11)

for an arbitrary f € F @ F. Then*

MoM(zF)=zMoM(F), MoM(yF)=axMoM(F),
MoM(zF)=yMoM(F) (5.12)

for an arbitrary F €e F @ F @ F.

2. The operator M = b wverifies (5.10) and (5.11).

3. Moreover, the unique solution of equations (5.10) and (5.11) (for
the operator M on the space F & F ) together with the “initial” condi-
tion M(1) =0 is M = b,

Proof. A direct calculation. O

‘Equation MoM (zF) = z MoM(F) follows from (5.10) alone.
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Proposition 5.1. 1. The Bézout operator 6% satisfies the acYBe.

2. The Bézout operator b and the operator r'®) satisfy the nhacYBe with
c=1.

Proof. A direct calculation for 6(?). Another way is to notice that the rela-
tions (5.12) for M = b(©® reduce the verification of b(® o b(O)(F) =0 for a
monomial FF € F ® F ® F to the case F' = 1, which is trivial.

For the Bézout operator b = zb(®) (z here is the operator of multiplication
by x), we have, for an arbitrary F' € F @ F ® F,
bob (F) = by (abyy (F)) + xbly (ybly () — ybyy (b} ()
0 0),.(0 0),.(0 0),.(0
= o (0F) + 668 + a8 (F) Qe ()

= 26\ (F) + 2y6© 0 6O (F) = by3(F). (5.13)

We used equation (5.10) for b(® in the second equality.

For the operator 7(*), the identity
(i —k)O(i—37)+0(i—k)O(G—k)—00i—35)0—k) =00G0—k) (514)

for the step function 6 is helpful. O

In each of cases (5.4-5.6), the operator r satisfies a quadratic equation
r2 = uyr 4 ual, the relation r + 91 = aP + $I with some constants o and
[ and the nhacYBe with some constant c. Several general comments about
relations between the constants appearing in these equations are in order

here.

1. Assume that an r-matrix (a solution of the cYBe) satisfies 7 o r = cry3.
Then r o' r = ¢rig. Taking the combinations (r or — cry3) — Pas(r o
r— CT13)P23 and (7“ or — CT13) — P12(7“ o T — CT13)P12, we find

r13(ST)23 — (ST)23ri2 = c(rig — r12),  (S7r)12r13 — 123(ST)12 = ¢(r13 — 123),
(5.15)

where (S7)12 := 112 + ro1. If (S7)12 = aP1o + I with some constants
a and f, as in (5.4)—(5.6), then it follows from (5.15) that (8 — ¢)
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(7“13 — 7’12) = 0 thus
c=p. (5.16)

This explains the value of the constant ¢ in Lemma 5.1.
2. For an endomorphism r of V ® V, assume that ror = Grig and
(Sr)12 = aPi2 + BI. Then

Po3(ror — Brig)Pas = ri3ria + r12r32 — r32113 — Bri2
= 113712 + r12(aPs + BI — r23) — (P23 + BI — 123)7r13 (5.17)

— Brig =ro r— frs.

Thus, if (S7)12 = aP12 + I then r o r = Bri3 implies r o' r = Bry3.
3. Assume that r o r = cri3 for an endomorphism r of V' ® V. Then for
¥ =r+al +bP, a and b are constants, we have

ToT = (C + 2@)?13 + bPlg(ST)Qg - a(a + C)I - bCP13 + b2P23P12. (5.18)
If, in addition, (S7T)12 = aP12 + 31, then

ror

(C + 2&)?:13 — a(c + a)I + b(ﬁ - C)P13 + b(Oé + b)PQgPlQ. (5.19)

This shows that the equation r or = c¢i1r13 + col + c3Pi3 + c4 Pa3 Pio,
c1, c2, c3 and cq are constants, reduces to r or = ¢17r13 + ¢3 P13 by a
shift r — r 4+ al + bP.

If ror = Bri3 and (ST’)lz = aPio + 81 then

rTor = (ﬁ + 2&)1:13 — a(ﬁ + a)I + b(O& + b)P23P12. (520)
The combination P»3Pjo does not appear for b=0 or b = —a. The
choice b = —a corresponds, modulo a shift of » by a multiple of I, to
7 +— 791, so we consider only b = 0. Then, with the choice a = —3 we

find that the operator 7 = r — (I satisfies the nhacYBe (and (S7)12 =
aPjg — BI). For the choice a = —f3/2 we find that the operator 7 =
r— g] satisfies

62
Z, (Sf)lg = OéPlz. (521)

TorT =
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In particular, the operator

~ T4y x
b= I — P 5.22
2wy Ty (5:22)

~ 1
satisfies (5.21) with 3 =1 and a = —1. Also, b% = 1[.

4. Assume that 2 = ur + v and ris + 791 = a Py + 31 for an endomor-
phism r of V ® V. Squaring the relation ri5 — 81 = aPj3 — r9; and
using the same relation again, we obtain

(u—B)(2r12 — BI — aPr2) = 0. (5.23)
Thus, if r is not a linear combination of I and P then
u=0. (5.24)

5. Assume that r o r = ¢ri3 and P = —r for an endomorphism r of V ®
V. The nhacYBe has the following equivalent form:

[r13,m23] = (r12 — cl)r13Pos. (5.25)
Indeed,
713723 — 723713 = (—713723 + r23712) P23 = (112 — cl)r13Pas. (5.26)
Here in the first equality we used r93P23 = —r93 and moved Po3 to the

right; in the second equality we used the nhacYBe r o r = crys.

5.2 Linear quantization

Consider an algebra with three generators r19, 713 and r93 and relations

T13723 = T23T12 — r12713 + Bris,
T13712 = T12723 — T23713 + Or1s, (5.27)

2 2 2
1o = Bri2 +v,7173 = Briz + v, r33 = Braz +v.

Choose an order, say, ri3 > 723 > r12. Consider (5.27) as ordering relations.
The overlaps in (5.27) lead to exactly one more relation:

723712723 = T12723712. (5.28)
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Thus the algebra in question is 12-dimensional (it follows from (5.27) and
(5.28) that a general element of the algebra is a product AB of an element
A of the Hecke algebra generated by ris and ry3 and a polynomial B, of
degree less than 2, in r3).

We conclude that the nhacYBe together with the quadratic equation for
r imply the YBe. Note that the other form of the YBe also follows:

23713712 — 712713723 = (12723 — r13712 + Br13)r12
— 112(723712 — 12713 + B713)723
= —r13(Bri2 +v) + Brizris + (Briz + v)ri3
— PBrigriz = 0. (5.29)

Here in the first equality both nhacYBe for r were used; the quadratic
relation for r» was used in the second equality.

5. a combination

Therefore, the quantization of such r-matrix is “linear”
R=1+ \r, (5.30)

where ) is an arbitrary constant, satisfies the YBe RioR13R03 = Raos3R13R10.

5.3 Algebraic meaning

We shall clarify the algebraic meaning of the non-homogeneous associative
classical Yang—Baxter equation in the general context of associative algebras.

Let A be an algebra. Let r € A ® . The operation
dO A —A2A, FOWw) = (wol)r—r(low) (5.31)

(the algebra 2 does not need to be unital, (u ® 1)(a ® b) stands for ua ® b
and (a ®b)(u ® 1) for au ® b) is coassociative if and only if [1]

u@l®l)(rdr)=>Fdr(lelou) Vuec (5.32)

In particular, 50 is coassociative if (ro'r)=0.

°Tt was noted in [8] that the operator b(® satisfies both forms of the YBe, squares to
zero and that its quantization has the simple form (5.30).
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_ Assume now that the algebra 2 is unital. Define the operations ¢ and
0:A—-AR A,

d(u)=@weal)r—rleu) —cuxl), (5.33)
d(u):=we)r—rlou)+c(1®u), (5.34)

where ¢ is a constant.

Proposition 5.2. The coassociativity of each of the operations § and 6 is
equivalent to

(u@1®1)(ror—criz)=@dr—cr3)(1®1ou) Vue (535)
Proof. A straightforward calculation. O

In particular, the operations § and § are coassociative if r o' r = cry3.

The map (5.31) has the following property:
5O (uv) = (u @ )6V () + 6O (u) (1 ® v); (5.36)

that is, 69 is a derivation with respect to the standard structure of 2 @ A
as a bi-module over A, uU := (u® 1)U and Uu :=U(1 ® u) for u € A and
UcAx.

For the operations ¢ and 6, the analogue of the property (5.36) reads

d(uv) = (u®1)0(v) + 6(u)(1 @ v) + c(u®v), (5.37)
S(uv) = (u®1)0(v) + 6(u)(1 ®v) — c(u @ v). (5.38)

5.4 Rota—Baxter operators

Let A be an algebra. An operator t: A — A is called Rota—Baxter operator
of weight o if
t(A)e(B) + at(AB) =t (v(A)B + Ac(B)) (5.39)

for arbitrary A, B € A (a is a constant). We refer to [22] for further infor-
mation about the Rota—Baxter operators.

The Rota—Baxter operators of weight zero are closely related to the acYBe
[23]. It turns out that the Rota-Baxter operators of non-zero weight are
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related to the nhacYBe. We shall discuss this relation and calculate the
Rota—Baxter operators corresponding to the Bézout operators.

It is surprising that the Bézout operators, which rather have the sense of
derivatives, become, being interpreted as operators on matrix algebras, the
Rota—Baxter operators which are designed to axiomatize the properties of
indefinite integrations and summations.

1. For an endomorphism r of V ® V, define two endomorphisms, t and t’,
of the matrix algebra Mat(V'):

t(A)l = TI'Q(TlQAQ), t/(A)Q = TI‘1(7’12A1), Ac Mat(V), (540)
where Tr; is the trace in the copy number ¢ of the space V.

Assume that r satisfies the nhacYBe (5.9). Multiplying (5.9) by A2Bs,
A, B € Mat(V), and taking traces in the spaces 2 and 3, we find

t(A)e(B) + ¢ (t'(A)B ) - (At(B) ) = ¢ Te(A)e(B). (5.41)
Assume, in addition, that r19 + r91 = aP1o + 8I. Then
t(A) +t'(A) = ad + Tr(A) 1. (5.42)

If ¢ = then expressing t/(A) by (5.42) and substituting into (5.41), we
find that the term with Tr(A) drops out and t is the Rota—Baxter operator
of weight a on the algebra of matrices. Similarly, v/ is the Rota-Baxter
operator of weight a as well.

2. We shall calculate the Rota—Baxter operators corresponding to the Bézout
operators in the polynomial basis.

The action of the operator b(®) on monomials z*y' reads
— (2 yk 4 2R gy <
b (z*y') = ¢ 0, k=t (543
ahlyl 4 k=21 4 g gkl k>1.

The action of the operator b on monomials z*y' reads
b(z*y) = < 0, k=1, (5.44)
:L‘kyl + ,Ik_lyH_l et ﬂ?l+1yk_1, k>
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Shortly,
k—1-1 I—k—1
b(o)(xkyl) 29(/{2—[) Z xl-&-syk—s—l Z xk-i—s l—s— l’ (5'45>
s=0 s=
k-l l k
b(zFy) =0k — 1))  altsyF—s — aktsyl=s, (5.46)
s=1 S=1

We list several useful matrix forms of the operators b(9) and b in the basis
formed by monomials, e, ® ej := x%?; for the operator b():

= Z 0(j —a)o(j — b)éiﬂ,ﬂeg N 62

,5,a,b
= > (0( — a)0(j — b) — 0(i — b)O(i — a))6,", €l @ €}
,5,a,b
j=i '
= Z Z €l a1 M€y (5.47)
1,ju<j a=l1

and for the operator b:

b= Z 0(j+1—a)f(a— 1)521%(6& ®el—e ® ei)

i7j7a/7b
= > (0 +1-a)f(a—i)—0(i+1—a)f(a— ;)5 el @ e}
i7j7a/7b
= Z Z (eg—&—a ® 6;-_(1 - B?H—zz ® ez—a)
i,jii<j  a=1
=Y ( e§+a/\e§_a+e§®e§—e;®e§>7 (5.48)
i,j:i<] a=1

where t Ay =Ry —y® .

The Rota-Baxter operator ty) corresponding to 6 reads

oo (A =00 — i)Y AT — 03+ 1—j) ) AL (5.49)

s>0 s>0

In the right-hand side of (5.49), the summations are over those s > 0 for
which the corresponding matrix element in the sum makes sense; that is,
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the range of s in the first sum is s =0,1,...,7 — 1 and, in the second sum,
s=0,1,...n—1—1;

The Rota—Baxter operator v, corresponding to b reads (with the same
convention about the summation ranges)

(A =00 +1—0)) AT —0i—j)> AL (5.50)

s>0 s>0

Its weight is —1.

For the operator (%), given by equation (5.3), the corresponding
Rota-Baxter operator t(*) is

e (A)} = A5 i (5.51)

s5:5<1

Its weight is —1.

We shall give also the Rota—Baxter operator for the Bézout r-matrix b
in the rime basis, that is, for the r-matrix (4.2); it has weight 1 (since
r12 + 191 = P — I for r in (4.2)). The Rota—Baxter operator has the form

t(A)l = & (5.52)
D (Al -4y, i=].
si57i ¢1 - ¢s

5.5 x-multiplication

1. Let v:.A— A be a Rota—Baxter operator of weight « (see equation
(5.39)) on an algebra A. It is known that the operation

AxB:=t(A)B+ At(B) —aAB, A/,Bc A, (5.53)

defines an associative product on the space A. This product is closely related
to the coproducts (5.33) and (5.34) by duality. We shall illustrate it in the
context of the matrix algebras.
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Define an operation * by
(6(u), B® A) = (u, A¥B), (5.54)

where 8 is given by (5.34). We have then

<5(U), B & A> = TI'12 (uerlAQ — ’I“UQBlAQ + CUQBlAQ)
= TI‘1 <U1 TI‘Q(TAQ)Bl) — TI‘1 <U1A1 TI‘Q(BQTQl))
+ Try (cu1 Tr(B)Al)

- Tr(u [t(A)B — AY'(B) + cA Tr(B)]), (5.55)
thus
A#B =t(A)B — AY(B) + cATi(B). (5.56)

In equation (5.55), z; stands for the copy of an element z in the space
number i in A® A; the operators v and v/ are given by (5.40); to obtain
the second and the third terms in the second line of (5.55) we renumbered
1 < 2 and then moved r cyclically under the trace in the second term.

Assume, as before, that r15 + r91 = aPi2 + 81 and ¢ = 3. Then, express-
ing t/(A4) by (5.42), we find that the term with Tr(B) drops out and it follows
that

AiB = Ax B. (5.57)

2. We shall describe the s-multiplication in the simplest example of the
Rota-Baxter operators (5.49) and (5.50) corresponding to the Bézout oper-
ators for the the polynomials of degree less than 2 (that is, for 2 x 2 matrices

1.1
a; a o
1 A
A= =alel).
CL2 2 ]
1 a2

For the operator b(®) = e? A e}, we have

to) (A) = <‘§% ‘§> (5.58)
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and the x-multiplication reads

Ax° A= Atb(o) (A) + 0 (A)A =

_ . . —alat —alal+ al(al
29
101

477

This algebra is isomorphic to the algebra of 3 x 3 matrices of the form

ko ok X
0 0 x|,
0 00
with the identification
010 -1 0 0
ej— 10 0 1], ed—=10 0 0],
0 00 0 0 0
0 0 1 0 00
e2— 10 0 0], e2—[0 0 1
0 00 0 00
For the operator b = 3 ® e} — e ® e?, we have
0 0
()= (% 1)
and the x-multiplication reads
1=1 11 1(~1
~ ~ ~ ~ aja; ajaz + asla
A A= Ary(d) tro()A 4 ad = (10 AR
ajay ajay + aa(a;

(5.60)
(5.61)

~2

s ) . (5.62)

as)

This algebra is isomorphic to the algebra of 3 x 3 matrices of the form

O O ¥
[enEE SR
O O *
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with the identification

1 0 0 0 01
ej— |0 1 0], e 10 0 0],
000 0 00
(5.63)
010 0 0O
e2— 100 0], ea—[01 0
000 0 0O
6 Rime Poisson brackets
The Poisson brackets having the form
{2, 27} = fz-j(:ri,xj), i,j=1,2,...,n, (6.1)

with some functions f;; of two variables, we shall call rime. In this section
we study quadratic rime Poisson brackets,

{2, 27} = a;;(2")? — aji(x?)* 4+ 2v2'2?, 0,5 =1,2,...,n. (6.2)

We show that there is a three-dimensional pencil of such Poisson brackets
and then find the invariance group and the normal form of each individual
member of the pencil.

6.1 Rime pencil

In this subsection we establish that the quadratic rime Poisson brackets form
a three-dimensional Poisson pencil.

The left-hand side of (6.2) contains a matrix a;; with zeros on the diagonal,
a;; = 0, and an anti-symmetric matrix v;;, v;; = —vj;. The Jacobi identity
constraints these matrices to satisfy

aijajr + aip(Vij +vji) =0, i #jF k£ (6.3)

We shall describe a general solution of equation (6.3) in the strict situation,
that is, when all a;; and v;; are different from zero for i # j.

The left-hand side of v + v, = —asja;i/ai, is anti-symmetric with
respect to (i,k), that is Y;; Y, Tr; =1 for Ti; = —aj;/aj, which readily
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implies the existence of a vector ¢; such that T;; = ®?/ ¢?. Therefore,

aik = Gicikdy, (6.4)
where the matrix ¢;; is anti-symmetric, ¢;; = —c¢j;. Next, 2uvp; = — (145 +

Vi) + (Vjk + Vki) + (Vi + v45); using (6.3) to express each bracket in the
right-hand side, we find

v = o [ SUSk | GO GGk ) (6.5)
2\ ¢k Cij Cki

The right-hand side of equation (6.5) does not depend on j which imposes
further restrictions on the matrix ¢;; when n > 3. Writing the sum
Vij + Vjk + Vi + vy in two ways, as (v + vjk) + (Vi + 1) and as (v, +
vi) + (v + v45), and using (6.3) to express each bracket in terms of the
matrix ¢, we obtain

CijCjk — CilClk _ CjkCkl — CjiCil (6.6)
Cik Cjl
Replacing j by m in (6.5) gives the condition on the matrix c:
CijCki 4 CjkCki _ CijCik _ CimChki 4 CmkChi _ CimCmk (6.7)
Cjk Cij Cki Cmk Cim Cki
. . . . . CijCik CimC
Using equation (6.6) to rewrite the combination —~2% — ™ ™k we find

Cki Cki

(CjkChm — CjiCim)Vijkm = 0, where

1 1 1
Wijkm = ( + + ) : (6.8)

CjkCim CijCkm CkiCim

The quantity W;jx, is totally anti-symmetric with respect to its indices.
Therefore, if W;j;1y, # 0 then the combinations (¢;xCrm — ¢jicim) vanish for
all permutations of indices. This is however impossible: the system of three
linear equations

CijCik — CimCmk = 0,
CikClm — CijCjim = 0, (6.9)
CimCmj — CikCrj = 0

for unknowns {¢;, Ckm, cm;} has, by definition, a non-zero solution but the
determinant of the system is different from zero. Thus the Pfaffian U,z
vanishes for each quadruple {3, j,k,m}; in other words, the coefficients of
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the matrix 1/c¢;; satisfy the Pliicker relations; therefore the form 1/¢;; is
decomposable, c; = sitj — sjti, for some vectors § and ¢. For each i, at
least one of s; or t; is different from zero. Making, if necessary, a change
of basis in the two-dimensional plane spanned by § and ¢, we can therefore
always assume that all components of, say, the vector § are different from

zero, s; # 0 V i. We represent the bivector 1/¢;; in the form (ui_1 =s; and
Vi = —ti/s;)
1 -1, —1
= (W - ). (6.10)
Cij
Substituting (6.10) into (6.5) we obtain
1 u2 2 1 [(u?—u? w2 —u?
PSR LSl SR S S (6.11)
29 — 2\i—; Yk -

Replacing 5 by m in the right-hand side and equating the resulting expres-
sions, we find that the independency of the right-hand side on j implies:

u?
Bk = =0, (s — ) i — )
+ u?
(Y5 — i) (W5 — n) (Y5 — Ym)
+ i
(o — i) (Y — V) (Y — Yim)
+ , ~0 (6.12)

(wm - %)(1% T¢J>(wm - 1/%)

for every quadruple {3, j, k,m}.

The quantity Ejjr, is totally symmetric. Selecting three values of the
index, say, 1, 2 and 3, we can form the quadruple {i,1,2,3} for each i.
Solving F;123 = 0, we obtain the following expression for uf

(Vi — My)(py — Ms3)
(Mz — My) (M2 — M)

(Vi — M2)(p; — M3)
(My — Ma)(My — Ms)

(Vi — My)(pi — Mo)
(M3 — My)(Ms — Ma)

2

+ Az

+ As (6.13)

for some constants Aj, As, As, M1, Ms and Ms. The right-hand side is the
value, at the point 1;, of a quadratic polynomial which equals to A, at the
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points M,, a =1,2,3. Since Ay, As, A3, M1, My and M3 are arbitrary, we
can simply write

u? = ayp? 4 bip; + c. (6.14)

With the expressions (6.14) for u?, the equalities (6.12) are identically sat-
isfied which shows that (6.14) is the general solution.

Upon rescaling 2 — ¢;u;z* with ¢; from (6.4), the Poisson brackets (6.2)
simplify. The following statement is established (for n =2 or 3, (6.14)
does not impose a restriction on the anti-symmetric matrix ¢;; with all
off-diagonal entries different from zero).

Proposition 6.1. Up to a rescaling of variables, the general strict quadratic
rime Poisson brackets have the form

(2f 27} = o(¥5)(x")? + o(1) (x7)?
’ i — ;

+ <(¢z‘ —¥j)a— oY) + e(¥y) Q(%)) z'ad,

Y — 1;
(6.15)

where 1; is an arbitrary vector with pairwise distinct components and
o(t) = at? + bt + ¢ is an arbitrary quadratic polynomial®.

Thus the strict quadratic rime Poisson brackets form the three-
dimensional pencil (parameterized by the polynomial p).

The Poisson brackets (6.15) can be rewritten in the following forms:

o 1 A N
oty = o (etwi)e! — owie! ) (@' = a?)
+a(i — Pj)z'a!, (6.16)
( ; j} au?j + bui;vi; + cv?j vfj (uw> (6.17)
T I = = — .
’ i — Vi — ; ¢ vij )’

where u;; = ¢sz‘ —azd and v = b — 2l

Remark 6.1. For o(t) = bt (respectively, o(t) = ¢) these Poisson brack-
ets appear in the classical limit of the commutation relations (1.31) in the
non-unitary (respectively, unitary) case (with the parameterization
B = — A
Y Vi — P;

in the non-unitary case).

5To have non-vanishing coefficients in the formula (6.15) one has to impose certain
inequalities for the components of the vector v and the coefficients of the polynomial p;
however, the formula (6.15) defines Poisson brackets without these inequalities.
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Remark 6.2. The strict rime linear Poisson brackets

{:Ui,xj}:aij:ci—ajixj, a;; #0 foralli,j=1,2,...,n: i#]
(6.18)

(or strict rime Lie algebras) are less interesting. The Jacobi identity is
aiparj = a;ja,  forall i # j # k # i (6.19)

Rescale variables 22, z3,..., 2" to have a;; = 1, i = 2,...,n. Then the con-
dition (6.19) with one of 4, j, k equal 1 implies a;; = a;; and a;; = a;1/a;j1,
1,7 = 2,...,n; it follows that %21 = a?l, 1,7 =2,...,n. For n > 3, the con-
dition (6.19) with ¢,j,k > 1 forces a;1 = aj1, i,j =2,...,n. Denote by v

this common value, a;; =v, 4,5 =2,...,n. ‘Af“cer a rescaling bt — vat
we find a unique strict rime Lie algebra, [z',27] =" — 27 for all i and
k, which is almost trivial: [z¢, 2% — 2!] = —(2F — 2!) for all 4,k and [ and

[2¢ — 27, 2% — 2!] = 0 for all 4,4, k, I.

For n = 3, there is one more possibility: ag; = —ag;. After a rescaling
' — ag 2!, the solution reads

2!, 2% =2t — 2% 2l 2% =2t 42, 2328 = —2? + 23 (6.20)

This Lie algebra is isomorphic to sl(2); the isomorphism is given, for exam-
ple, by h s ot — 2% e 2t + 23 and f +— 22 — (2! + 23)/4 (here h, e and f
are the standard generators of s((2), [h, e] = 2e, [h, f] = —2f and [e, f] = h).

6.2 Invariance

In this subsection we analyze the invariance group of each individual member
of the Poisson pencil from Proposition 6.1. We find that the Poisson brackets
(6.15), with arbitrary (non-vanishing) p, admit a non-trivial 1-parametric
invariance group.

The transformation law of Poisson brackets {xi,mj } = fi(x) under an
infinitesimal change of variables, ' =z’ + ep'(x), € = 0, is {2*,27} =
fU(%) + €5p f9, where 6,4 = {¢!, 27} + {2t 07} + p*OLfY. For a linear
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infinitesimal transformation, ¢'(x) = A;'»acj, we have
Ouf = Al{a* 27} + Ai{xi, a*y — AR {2t 7). (6.21)
Specializing to the Poisson brackets (6.15), we find
0. = Uji — Uy (6.22)

with
Ui == Z AZ + Al apija — 0i & e’
v 1% “ 1/’1’]'

+3 A <5 )2 + ﬁ(azi)? + <'¢sia - ‘QSJ'QQ a::c5> (6.23)

§:87£1 s

where v;; = 1; —1; and o5 = o(vs).

The Poisson brackets (6.15) remain rime under the infinitesimal linear
transformation with the matrix A if the coefficients in (2°%)?, z°2% and 2°27,
s #1,j, in (6.22) vanish which gives the following system:

(x°)%, s#i,j= Al jl — A ng =0, (6.24)
si sj
vz, s#ij= 241 4 Al (wsja _%ite st Qi) —0. (6.25)
ij Vij Psi

Equation (6.24) implies that Aic = vo1/Uik, | # k, with arbitrary constants
vg. For a quadratic polynomial g, this solves equation (6.25) as well. The
coefficient in z’x® vanishes due to the anti-symmetry.

The Poisson brackets (6.15) are invariant under the infinitesimal linear
transformation with the matrix A if, in addition to (6.24) and (6.25), the
coefficients in (2%)%, (%)% and z'z7 in (6.22) vanish which gives:

rird = ,QjA;" +0i4] =0, (6.26)
. Y . i + 07 s
() = AL+ A (W - £ ﬁ) YA =0 (627)
ij v 51870 st

Equation (6.26) implies that v are equal, v = v. The matrix A is defined
up to a multiplicative factor, so we can set v to 1. Since the Poisson brackets
(6.15) are quadratic, a global rescaling leaves them invariant, so we can add
to A a matrix, proportional to the identity matrix and make A traceless.
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The traceless condition, together with equation (6.27) determines the diago-

) —1 1 ;
nal entries, A} = a(n — 1)1; + nTb + o Z ——. The coefficient in (27)2

S:87#£1
vanishes due to the anti-symmetry. We summarize the obtained results.

Proposition 6.2. (i) The infinitesimal linear transformation with the
matriz A leaves the Poisson brackets (6.15) rime if and only if

AL = TROL (6.28)

(T

with arbitrary constants vy,.
(ii) Up to a global rescaling of coordinates, the invariance group of the
Poisson brackets (6.15) is 1-parametric, with a generator A,

i Qi . . ;, n—1 1
Y S:8#£1 st
(6.29)

where o} is the value of the derivative of the polynomial o at the
point ;.

Since the Poisson brackets transformed with the matrix (6.28) are still
rime, it follows from Proposition 6.1 that they can be written, after an
appropriate rescalings of coordinates, in the form (6.15). In other words,
the variation &, can be compensated by a variation of ¢’s and p and a
diagonal transformation of the coordinates. We have

5, f = 5 4 6@ (6.30)

where

c0:(zt — 27)2 ; .
s = M(w —vj) +a (Vj@j(l“ )2~ ViQi($])2> (6.31)
ij
and
(2 — e (d)2
5(2) _ (Az _ Ag)gj(l' ) :Q’L(-'L' ) : Al szz Z VSQ%_ (632)
wi] S:8F£1 wm

Choose Ag to set fli to 0; this is a diagonal transformation of the coordinates.
Then 6@ vanishes and the variation of ¥ is reduced to 6(1).
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On the other hand, under a variation of ©'s, 1; — 1; + d1;, the Poisson
brackets (6.15) transform in the following way:

b = S (00w — 0j0v) + a ((@0)200; - (')2505)  (6.33)
and we conclude that with the choice
0h; = eoiv; (6.34)

the variation 6(!) is compensated by the variation dy. The coeflicients of the
polynomial p stay the same. In the next subsection we will study relations
between the variation of v¢’s and the polynomial p.

Remark. With &; as in (6.29), define three operators:

(B = oo i and (B = ¢ (6.35)
ij
(BO);'. — $ i#j and (B°)! = _<" ; 1 + w@), (6.36)
ij
. 2 .
(B =YL, it ad (B = (- Do+ B8 (63D
ij

The operators B+, B and B~ generate an action of the Lie algebra sl(2),
(B, B7]=-B~, [B"BY|=B", [B",B7]=-2B° (6.38)

(to obtain the usual commutation relations for the generators of si(2),
change the sign of B).

This is the usual projective action of sl(2) on polynomials f(t) of degree
less than n,

n—1
2 1®), (6.39)

B™: f(t) = f'(t), B% f(t) = tf'(t) -
B f(t) w () = (n— 1)t f(1),
written in the basis of the non-normalized Lagrange polynomials, I;(t) =

H (t —1s), at points {¢;}, i =1,2,...,n. Indeed, in the basis {l;(¢)}, a
$:8F#£1
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leynomial f(t)? deg(f) S n — 1, takes the form f = Z fll“ Where
fi=1;(¥:) "' f(;). We have

=3 I ¢=v. so w0 = [T dw=tto) oo, ki
a:a#i b:b#a,i b:b#k,i ki
(6.40)
Also,
HO=LOY ;= s G = —hiE (641
S:8F#£1 s
1

Therefore, I}(t) = —&l;(t) + Z I (t), which is exactly (6.35). For func-

kikti Vri
tions on the set of points {¢;}, the operator of multiplication by ¢ acts as a
diagonal matrix Diag(vn, 12, ..., 1) and (6.36)—(6.37) follow.

Define an involution @ on the space of matrices,’
w(Y); =Y}, i#jand w(Y);=-Y', Y € Maty. (6.43)
Let
B(o)=aB* + 0B’ + B, Blo) | = olt)f (1) ~ "5 o (1)£(1).
(6.44)

In the basis {l;(t)} for B, the generator (6.29) of the invariance group is
A(o) = @(B(0)). (6.45)

Note that the operators w(B~), w(B’) and w(B*) do not form a Lie
algebra.

"The involution w is the difference of two complementary projectors. The involution
w satisfies

(Y1)w(Y2)) + V1Y,
wYiw(Y2)) + w(Y1)Ye

w(w
w

@w(Y1)w(V2) + w(V1Y2) = {

for arbitrary Yi,Y> € Mat,. All other linear dependencies between Y1Y2, w(Y1)Y2,
Yiw(Y2), w(Y1)@(Yz2), w(Y1Ya), @w(w(Y1)Y2), @w(Yiw(Y2)) and w(w(Y1)w(Y2)) are con-
sequences of the three identities (6.42).
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6.3 Normal form

In this subsection we derive a normal form of each individual member of the
Poisson pencil from Proposition 6.1. It depends only on the discriminant
of the polynomial . When the discriminant of p is different from zero,
the Poisson brackets (6.15) are equivalent to the Poisson brackets defined
by the r-matrix (4.3). When the polynomial ¢ is different from zero but
its discriminant is zero, the Poisson brackets (6.15) are equivalent to the
Poisson brackets defined by the r-matrix (4.27).

Under a variation of the polynomial o, o(t) — (a + da)t? + (b + db)t +
(c + dc), we have for the Poisson brackets (6.17):

ug;0a + uvij0b + vidc

J
e . (6.46)

Sof =

The variation of ¢ can be compensated by a variation (6.33) of ¢’s if the
coefficients in (27)?, z'z7 and (2)? in the combination (&, + 8,)f* vanish,
which gives the following system:

; 0 — 0;0%i 2 i0b
($3)2=>—Q v 29] v +a5¢i+¢16a+w6 +6C=0, (6.47)
wij Yij
a;ia;j = _Q(Qi(;wj ; gjézpi) _ 21/%1%‘(5& + (1/11 + 1/1])(51) + 2dc —0. (648)
i Vi
A combination 2 x (6.47) 4 (6.48) gives
2a01; + 2¢;0a + 6b = 0. (6.49)
Substituting the expression (6.49) for d1’s into (6.47) gives
6D(0) =0 where D(g) = b* — 4ac. (6.50)

The coefficient in (2%)? in (6, + d,) f¥ vanishes due to the anti-symmetry.

Therefore, a necessary condition for a variation of ¢ to be compensated
by a variation of ¢’s is that the discriminant D(p) does not vary. We shall
now see that the discriminant is the unique invariant.

Explicitly, under a shift v; — v¥; +(, we have wu;; — wu;; + Cv;; and
v;; — v (in the notation (6.17)), which produces the following effect on the
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coefficients of the polynomial p:
a—a, b—b+2Ca, c—c+Cb+Cla. (6.51)
A dilatation 1; — A, produces the following effect on the coefficients of o:

a—Xa, b—b c— A lte (6.52)

The inversion 1; wj_l accompanied by a change of variables &' = (I Ly
produces the following effect on the coefficients of o:

a— —c, b —b c— —a. (6.53)

The set of operators (6.51) and (6.52) generates the action of the affine
group on the space of the polynomials 9. The affine group, together with
the inversion (6.53) generates an action® of so(3) (the spin 1 representation
of sl(2)) on the space of the polynomials ¢ and the classification reduces to
that of orbits. The orbits (in the complex situation) of non-zero polynomials
are of two types: “massive”, D(p) # 0, or “light-like”, D(p) = 0. Particular
representatives of both types appear in the Poisson brackets, corresponding
to the rime r-matrices (see Remark 1 after Proposition 6.1) and thus to
the r-matrices studied in Subsections 4.1 and 4.3. We obtain the following
statement.

Proposition 6.3. Let o(t) be a non-zero quadratic polynomial.

If the discriminant of o is different from zero, D(g) # 0, then there exists
a change of the parameters ¥ in the Poisson brackets (6.15) which sets o(t)
to bt, o(t) — bt; these are the Poisson brackets corresponding to the r-matrix
roa (Subsection 4.1).

If the discriminant of o is zero, D(p) =0, then there exists a change
of the parameters 1° in the Poisson brackets (6.15) which sets o(t) to c,
o(t) = c; these are the Poisson brackets corresponding to the r-matriz bog
(Subsection 4.3).

The generator A(p) of the invariance group can be easily described in both
cases, D(p) # 0 and D(p) = 0, in the parameter-free basis (that is, for the
r-matrices rcg and bog; in the rime basis the generators are given by (2.19)
and (2.22), respectively). For D(p) # 0 (respectively, D(p) = 0), it coincides
with the matrix of the operator By (respectively, B_), as in the remark in

8Let e; be the generator of the 1-parametric group (6.51) and h the generator of the
1-parametric group (6.52). Denote by Z the inversion (6.53). The remaining generator
e_ is I€+I.



R-MATRICES IN RIME 489

Subsection 6.2, in the basis {t'} of powers of the variable t. This implies
somewhat unexpectedly that for an arbitrary polynomial o(¢) the matrices
A(o) and w(A(p)) are related by a similarity transformation. Note that
in the basis {t'} of powers, the operators aBT + bB° 4+ ¢B~ and w(aB* +
bB® 4 c¢B™) are also related by a similarity transformation for arbitrary a, b
and ¢ but here it is obvious: w(aB* + bB° 4+ ¢B~) = aB* — bB" + cB~, so
the operator w(aB* + bB° 4+ ¢B~) belongs to sl(2) and moreover lies on
the same (complex) orbit as aBT + bB° 4 ¢B~ with respect to the adjoint
action.

7 Orderable quadratic rime associative algebras

Consider an associative algebra A defined by quadratic relations giving a
lexicographical order. This means that z7z* for j < k is a linear combination
of terms z%z® with a > b and either a > j or a = j and b > k.

We shall say that such algebra A is rime if {a, b} C {j, k}. In other words,

the relations in the algebra are

P = fjkxk:cj + gjk:ckxk, Jj<k. (7.1)

We shall classify the strict rime algebras A (that is, the algebras for which
all coefficients f;; and g;; are different from zero for i < j).

The only possible overlaps for the set of relations (7.1) are of the form
lr®)xt =l (x®x <k<l. e ordered form o e expression
(29 22! I(zkal), j<k<l Th dered f f th pressi
(2 2F)2t is

(@/aM)al = fifufm a2 + fifugn o'ala? + fgp alat 2
+ (fragirgn + fa(firgi + gingn)) o'a' 2"
111

+ (Firgigr + 9ikgm + Fage(Firgi + gikgr)) o'z, (7.2)

The ordered form of the expression z/(z¥2!) is

al(aFal) = finfafa @'aa + Fgn d'ala? + fufugp a2
+ frugi o2t + (grgi + Fugrgi) ='a'al. (7.3)
Equating coefficients, we find

el Fifjgu = fj%gkl, (7.4)

a'aba®: fRgik = fufigik, (7.5)
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a'ata: fugingn + fa(fikgn + gikgr) = fagi, (7.6)

alalals fingngn + ginghs + Fagu(firgi + 9ikgn) = grgi + figmgi-
(7.7)

In the strict situation, equations (7.4) and (7.5) simplify, respectively, to

fik = fu for j <k and j <lI, (7.8)
fu=fu forj<land k<l (7.9)

Equations (7.8) and (7.9) imply that fj;’s are all equal,
fik =: [ (7.10)

The substitution of (7.10) into (7.6) gives (in the strict situation)

(f + 1)(gjkgkl +ga(f - 1)) —0 forj<k<l (7.11)

Equation (7.7) follows from (7.10) and (7.11).
We have thus two cases:

(i) —1 and no extra conditions on g;’s;

f pu—
(ii) f# —1 and
9ik9kl = (1 — f) gji fOI’j <k< l; (712)

1 — f # 0 since g;i # 0 and gi; # 0.

In the case (ii), make an appropriate rescaling of generators, ' — d;z’ to
achieve

Gijv1=1—f foralli=1,...,n— 1. (7.13)
It then follows from equation (7.12) that
gij=1—f foralli<j. (7.14)

We summarize the obtained results.

Proposition 7.1. Up to a rescaling of variables, the general orderable
quadratic strict rime algebra has relations
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(i) either of the form

k k, .k

ik = —akad +gjpxta”,  § <k, (7.15)

with no conditions on the coefficients gjy;
(ii) or of the form

wab = fakad + (1= fakzk, j<k, (7.16)
with arbitrary f (it is strict when f #0,1).

By construction, the algebras of types (i) and (ii) possess a basis formed
by ordered monomials and thus have the Poincaré series of the algebra of
commuting variables.

The algebra with defining relations (7.16) is the quantum space for the
R-matrix (3.20). The relations (7.16) can be written in the form

(27 — aF)ak = fab(ad —2®), <k (7.17)
this is a quantization of the Poisson brackets

{27, 2k} = 2F(ad —2F), j<k. (7.18)

It would be interesting to know if the algebra with the defining relations
(7.15) admits an R-matrix description.

Acknowledgments

It is our pleasure to thank L&aszlé Fehér, Alexei Isaev and Milen Yakimov
for enlightening discussions. The work was partially supported by the ANR
project GIMP No ANR-05-BLAN-0029-01. The second author (T. Popov)
was also partially supported by the Program “Bourses d’échanges scien-
tifiques pour les pays de I'Est européen” and by the Bulgarian National
Council for Scientific Research project PH-1406.



492 OLEG OGIEVETSKY AND TODOR POPOV

Appendix A. Equations

Here we give the list of the equations Y B (R);Jblz = 0 for the rime matrix
Ry = aij06] + Bij0p6] + 110101 + 70767, (A1)
with a convention a; = ay; and By = Vi = %"i =0.

The rime Ansatz implies that Y B (R);Jb’z can be different from zero only
if the set of lower indices is contained in the set of upper indices. Therefore,
the equations split into two lists: the first one with two different indices
among {1, j, k} and the second one with three different indices.

The full set of equations YB(R)ZJZ)]Z = 0 is invariant under the involution ¢,

L < Qg Qg < Qs Bij < /Bj’ia Yij < ’y;-i, (AQ)

for if R is a solution of the YBe then Rgl = PRP is a solution of the YBe
as well. We shall write only the necessary part of the equations, the rest
can be obtained by the involution ¢.

The equations Y B (R);Jblz = 0 with two different indices are:

aijyij (vji +vig) = 0,
@i (BijBji +vijviy) = 0 = i (Bij Bji — Vigji)s
ajYij (e + Bji — o) = 0 = aujvij (i + Bij — ),
Bij(0f — aijoi — cifBis) + (o — Bij)viiy = 0,
(@i = o)y + aigyij(vig + V) = 0,
@i Bij Vi + (B + vigvig)vig = 0,
(qvij — agi = Big + Bji) vV = 0 = (g — aji — Bij + Bji) Bij Bjis
iV (e — aig) + Bjivij (i — Bji) + %ij (BiiBji + v3iv5:) = 0,
(o — cviai + Bji) + BiiBji — Yigvii) i
= (o — ailai; + Big) + BiBji — YVigVji) Vi (A.11)

o
© 0 N o v W

A~~~ N /N /N /N
—_ — — — — O —

—~
>
—_
o

The equations with three different indices {4, j, k} are:
(cij — awi = Bij + Bra)vij i = 0, (A.12)
i (Bij Bjk + BieBji — BirBik) = 0, (A.13)
i (Vigvik + Vi (Bix — Bji)) = i (Vige; + vie(Brj — Bij)) =0, (A.14)
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(aijagi — ajrag)Bix + BijBin(Bi; — Bjx) = 0, (A.15)
(i + Bir — Bji) Bjivir + vieviivis + qie(virVji + Bixvs) = 0, (A.16)
(i + aij — iy — Brj)VigYik — Vi ki + Vi (Qik Ve — Vi k) =0, (A1)
(i = Brj) Bigvi + (BikBrj + vigvig ) Yik + @irBigvis — (Bij — Bir)vij Vg = 0,
(A.18)
i (Yigvie + ik (e — i) = agi(Vigvie + vir (e — i)
= i (Vij g + vinlow; — aig)) = 0. (A.19)

Appendix B. Blocks

We analyze here the structure of 4 x 4 blocks of an invertible and skew-
invertible rime R-matrix corresponding to two-dimensional coordinate
planes.

We denote the matrix elements as in (1.5).

The skew-invertibility of a rime R-matrix imposes restrictions on its
entries: in the line R, only two entries can be non-zero, R;]Z and R;]j;
. . kg . A N
in the line R;] only two entries can be non-zero, Rjji and R;]. Therefore,

ag=0 = 7;7; #0 and 7, =0 = ay #0. (B.1)

Dealing with a single block, this becomes especially clear: to skew invert
a 4 x 4 block is the same as to invert the matrix

a; 0 M2 B2
0 0 12 ’712

, B.2
Yo @1 0 0 (B2)
Bo1 21 0 an

whose determinant is
(12612 — T12712) (21821 — Y21751) — Q12012021 - (B.3)

B.1 Solutions

Here we classify solutions which are neither ice nor strict rime. For an ice
R-matrix, a1z # 0 and az; # 0. For a rime R-matrix, o;; might vanish and
we consider the cases according to the number of «;;’s which can be zero.
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1. Both a2 and ai; do not vanish, ajsas; # 0.
If 4127721 # 0 then by (A.3), v{575; # 0. This is strict rime.

If both 12 = 0 and 721 = 0 then equation (A.5) implies (ay; + Bij — ;)
;i = 0; equation (A.7) implies (q; — @ + a;;)7;; = 0 and equation (A.8)
implies (3;;7}; = 0. Combining these, we find v/, = 0, this is ice.

It is left to analyze the situation when only one of «’s is different from
zero, say 12 7 0 and 21 = 0. We have the following chain of implications:

(A.3) = 4], =0, (B.4)
B2 = ag — anq,
A5 B.5
( ):>{521=042—0612, (55
(A4) = (012 — alg)(ag — 0421) =0, (B.G)
(A.6) = (a1 — a)( — ag1) (1 + ag1) =0, (B.7)
. a; — a2)(ag — ai2)(ag + aiz) =0, .
_ e
(AT)&(A11) = § (@1~ a2zt ai)ne +awyy =0, (B.8)
ap — a2 + 0421)721 + a21712 = 0.

Equations (A.8), (A.9) and (A.10) are satisfied. By the second line in (B.8),
Vo1 # 0.

Now the system of inequalities and equations is invariant under R« Rgl,
so up to this transformation we can solve eq. (B.6) by setting ag = as.
Then, by (B.8), 74, = —m2aa/ai1, (’s are expressed in terms of a’s by
(B.5) and the remaining system for a’s reduces to a single equation
(an — ag)(a1 + a12) = 0. We obtain two solutions:

la. as = aq; a1, ae and 719 are arbitrary non-zero numbers; we rescale
the R-matrix to set aya;s = 1 and denote ¢ = oy, 7 = 719:

a0 0 0 g 0 0 0
A Y12 0 Q12 0 v 0 ¢t 0

@) —n2 a1 ar—aiz 0 v ¢ ¢—¢ " 0 (B.9)
0 0 0 00 0 g

The R-matrix (B.9) is semi-simple if (and only if) ¢ + q ! # 0 and it is then
an R-matrix of GL(2)-type, Spec(R ) =1{q,9,9,—q~'}. This solution is a
specialization of (1.15)—(1.16).
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1b. a2 = —a; a1, az and 712 are arbitrary non-zero numbers; we rescale
the R-matrix to set ajas = —1 and denote ¢ = a1, v = 712/¢:
a1 0 0 0 q 0 0 0
R Y12 0 —a1 O0)_| qy 0 —q 0
@)™ | —yj9a2/01 a2 ajtaz 0 ey —¢t gq-q¢t' 0
0 0 0 as 0 0 0 —q!
(B.10)

The R-matrix (B.10) is semi-simple if (and only if) ¢+ ¢! # 0 and it is
then an R-matrix of GL(1|1)-type, Spec(R) = {¢,q,—q¢~ ', —¢~'}.

2. Assume that a1 = 0.

By the invertibility, (12021 # 0; by the skew-invertibility, v127}5 # 0;
now equations (A.3) and (A.4) imply Bi2021 = 12721, Vo = —721 and
751 = —712. Equation (A5) implies g = (1, ﬂlg = 1 — (21 and ﬂgl = 1.

The rest is satisfied and we obtain a solution, in which a1, (12 and 12
are arbitrary non-zero numbers; we rescale the R-matrix to set 1812 = —1
and denote ¢ = ay, ¥ = 712t

a 0 0 0 q 0O 0 0
I it B12 0 —a1B12/72 | -t 0 1/y '
@7 2 a1 = B2 1 afiz/rie -y q+qt g —1/y
0 0 0 a1 0 0 0 q
(B.11)

The R-matrix (B.11) is semi-simple if (and only if) ¢+ ¢! # 0 and it is
then an R-matrix of GL(2)-type, Spec(R) = {q,q,q, —¢~*}. This solution is
a specialization of (1.15)—(1.16).

3. Finally, assume that a2 = ag; = 0.

By the invertibility, 512021 # 0; by the skew-invertibility, y127}57217%; 7# 0;
now equation (A.7) implies as = aq, equation (A.9) implies [91 = B12;
equation (A.8) implies y127]s = Y2175 = —@1f12; equation (A.11) implies
that y127721 can take three values: a2, 3%, or (—a1f2).

The rest is satisfied and we obtain a solution, in which a1, (12 and 12
are arbitrary non-zero numbers; we rescale the R-matrix to set a1 312 = —1
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and denote ¢ = a1, ¥ = Y12:

o 0 0 0
A _ Yi2 Bz 0 —afia/v2
(qw;7) —a1612’ylg/w 0 b2 u)/"}/lg
0 0 0 aq
g 0 0 0
—1
Y —q 0 1/v
_ a , B.12
Yw 0 =gt w/y (12
0 0 0 q

where w = ¢?,1,¢"2. The R-matrix (B.12) is semi-simple if (and only if)
¢+ q ' #0 and it is then an R-matrix of GL(1|1)-type, Spec(R) = {q,q,

—q 1 —q 7t}

It follows from the analysis above that if 7;; # 0 in an invertible and
skew-invertible rime R-matrix then 7}, # 0.

In each of the cases (B.9)-(B.12), the parameter v # 0 can be set to an
arbitrary (non-zero) value by a diagonal change of basis. The R-matrices
(B.9)—(B.12) are skew-invertible.

B.2 GL(2) and GL(1|1) R-matrices

1. In dimension 2, except the standard R-matrices of GL-type,

g 0 0 0 qg 0 0 0
peL@ _ |00 p 0 oL _ |00 P 0
(a,p) 0 p ! q—qt 0} (a:p) 0 pt g—qt 0o |’
0 0 0 q 0 0 0 —q~ !

there are two non-standard one-parametric families of non-unitary
R-matrices of the type GL(1|1): the eight-vertex one,

q—qt+2 0 0 q—q*
A 1 0 —q ' q+qt 0
I q—q q+gq
RI _ = B.14
@ 2 0 g+qt q—q! 0 ’ (B.14)
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and the matrix R!D for which the matrix R = PR can be given an upper-
triangular form,

g O 01 qg+q!

ST 0 0 £q— 0

Blo=1o c oaut 0 | (B.15)
0 0 0 —q!

where ¢ = £1.

The R-matrices (B.13), (B.14) and (B.15) are semi-simple if (and only if)
g+q " #0.

Up to the transformations R <+ Ry and R < R (the transposition), basis
changes and rescalings R~ cR (where ¢ is a constant), the complete list
of semi-simple invertible and skew-invertible R-matrices includes (see [16]
for a description of all solutions of the Yang—Baxter equation in two dimen-

sions and [11] for the classification of GL(2)-type R-matrices), in addition
()

to (B.13)—(B.15), the one-parametric family of Jordanian solutions R(hI: ha)?

U by —hy hiho

) [0 0 1 —he

Biny=1o 1 0 hy (B.16)
00 0 1

(the Jordanian R-matrix is of GL(2)-type; it is unitary; the essential para-
meter is the projective vector (hy : ha)), as well as the permutation-like

solution RE(I;?) 0 and one more solution RE;)),

100 0 000 a

oo ao|l .o [o100

Repo=10 5 0 ol Bw=|o0o 01 0 (B.17)
000 ¢ @ 000

The R-matrix R(f) is Hecke when ab = 1 and ¢ = £1 and it is then stan-

(a,b,c)
dard (and unitary). The R-matrix Rga)) is Hecke when a? = 1; it is then
unitary and related to the standard R-matrix by a change of basis with the
matrix ( . %)
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Without the demand of semi-simplicity, the full list of invertible and skew-
invertible R-matrices contains two more solutions,

L hy hy hs 1 0 0 1
NG . 0O O 1 hl A _ 0 0 -1 0
R(hlihZX/E) 10 1 0 hel’ = 0 -1 0 O (B.18)
0 0 0 1 0 0 0 1
. NG . —
The essential parameter for the R—m?:u)rlx R(h1: haiv/h) 18 the projective vec-
tor (hy : ha:+v/h3). The R-matrix R(hlzhgzx/ﬁ) is semi-simple if and only if

hy = —hy and hg = —h?; it then belongs to the family (B.16) of Jordanian
R-matrices.

2. For the R-matrices from the list above, the transformations R« RQ]_,
R+ R' and R < R™! partly overlap or reduce to parameter or basis
changes. We shall write formulas for the Hecke R-matrices only.

~GL(2)

For the standard R-matrix R( R(q 0

a.p) ‘=

kG ( (B.19)
R(qp) = (R(g-1,p-1))21,
where ™ = ([1)(1))
For the standard R-matrix R(q,p) = Rg%)l‘l)y
Réq,p) - R(q,pﬂ)v (R(q,p))ﬂ = (m@M)R_g1p(r @771,
ReL) = (Rig1pm1)a1. (B.20)

For the non-standard GL(1]|1) R-matrix R(q) = ]A%(Iq),

~

qu) = R, (R(Q))Ql = R(q)’ R(T;; =(D® D)R(qfl)(D ®D)', (B.21)

where D = ((1)\/(1—1)
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For the non-standard GL(1|1) R-matrix R(q’e) = ]%(155)7

Rl = (T ® ﬁ)(é(_qu_s))zl(ﬁ_l & 77_1), R(_(I?E) = (R(qflje))Ql, (B.22)

where T = (\/0_71(1))

For the Jordanian R-matrix R(hlzhz) = Rgﬁrfu)’

Ry oy = (T @) Ry (@77 1),

(R(h12h2))21 = R(,hl:,;m), (B.23)
-1 o
R(hllhg) = R(h13h2)‘

B.3 Riming

We shall now identify the rime R-matrices (B.9)—(B.12).
1. GL(2)

The R-matrices (B.9) and (B.11) are related by a change of basis (the num-
ber in brackets refers to the corresponding equation),

~(B.9) B ~(B.11) (qa —1/y
R(qw) TRT=TT R(qw) , T = (’y 0 ) (B.24)

In turn, the R-matrix (B.9) is related to the standard R-matrix R((;Lq(f)l) by

a change of basis,

-1
~(B.9) _ AGL(2) _(g—q 0
RPV TeT=TeT B, T= < ., 7) (B.25)
In the unitary situation (that is, ¢ — ¢~ =0), the R-matrix Rgf)) belongs

to the family of Jordanian R-matrices.

Note that for the R-matrices (B.9) and (B.11), the left even quantum
spaces are classical.
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2. GL(1]1)

The R-matrix (B.10) is related to the R-matrix (B.12) with the choice w =
5%27

p(B.10) (B.12) (1 ¢
R( I TRT=TT R( Lg2:1); T = <O ’yq)' (B.26)
We have
A(B.12) . 1 T 9 q— 1
R(q, 1) TRT=TT R(q), T= (7 _77_), where T g
(B.27)
(B.12) _ AIT . 1 1
R(q7q2;7) TRQT =TT R(q’1)7 T = <’Yq_1 ’Yq_l) y <B28>
RB) o _ o (RI1.) T — 1 1 (B.29)
(0:a727) (g,1)/21> g —vq) .

In the unitary situation (that is, for ¢ = £1) only equation (B.27) changes;
but now different choices for w coincide.

3. Since the standard R-matrices are rime as well, we conclude that in
dimension 2, all non-unitary Hecke R-matrices fit into the rime Ansatz.

When h; =0, the Jordanian R-matrix REo)h ) is rime as well. However,

when h; # 0, the Jordanian R-matrix Rgh) hy) CANNOY be rimed. Indeed,

assume that by # 0 and let A = (T'® T)R(J)

(h1shs )(T ® T)~! with some invert-
ible matrix 7T". Then

(Det(T))? Ajp = hy (T1)* (Det(T) — ho T{ T7),

(Det(T))* Ayj = —hy (T1)* (Det(T) + ho T TY),
(B.30)
(Det(T))* A3 = hy (T})? (Det(T) — ho TITT),

(Det(T))? A = —h1 (I7)* (Det(T) + ho T1T7).

For an invertible T, the non-rime entries (B.30) of A cannot vanish simul-
taneously.

4. We remark also that all non-standard R-matrices of GL(1|1)-type are
uniformly described by the formula (B.12). The right quantum spaces for



R-MATRICES IN RIME 501

2)

. »(B.1
the R-matrix R(q’ww)

, with v =1, read

-1 2 2
(R—ql®19 2*2' =0 (@+a Jay ="+ (B.31)
(¢+ ¢ Nay = wla? + wy’;

(R+g¢ 1e1) ok =0: (B.32)

Using the diamond lemma, it is straightforward to verify that the Poincaré
series of the quantum space (B.31) is of GL(1|1)-type if and only if w = ¢~2,

1 or ¢°.

Appendix C. Rimeless triple

We sketch here a proof that the triple (4.18) cannot be rimed. Relations
xhyl = szlykxl, where R is the R-matrix for the triple (4.18) with arbitrary
multiparameters, read

ayt =yt i=1,2,3,4 (C.1)
and
1,2 _P 21 21 1 49 1 2y, 2 1
vy ="y, vy =—yar+(1-q¢ )y,
q q
r S
xly?; — 72y3x17 Cﬂ2y3 _ y3x2, (C 2)
pq
I1y4:ﬂ a4t T03,2 x2y4——2y4x2,
q q q
1
Byl = = gl 1 (1 — ¢ b, alyl = = ylat (1 — ¢ 2)ytal g2l
r par q
ey = T2 (1P ety = - et (1 - gDyt
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The parameter q enters the characteristic equation for R, R?= (1-— q_Q)I% +
¢ 21 ®1; p,r and s are the multiparameters. The only needed restriction

is ¢% # 1.

Denote by <l(1), l(2)> a two-dimensional plane spanned by 1D and (@), We
say that two linear forms [(1) and [ (in four variables) form a rime pair if,
for the ordering relations (C.1) and (C.2)—(C.3), each product 1(® ()1 (y),
a=1,2, §=1,2, is a linear combination of I (y)I(V(z), 1M (y)I?)(z),
1 ()1 (x) and 1P (y)IP) (). If, in addition, 1(*)(2)I(¥) (y) is proportional
to 1() ())1( (z) for @ = 1 and 2, we say that [(V) and {®) form a rime basis
in the plane (1)), We call a plane rime if it admits a rime basis.

Fork Lemma. Assume that 1) (z) = 2 4+ aga? + aza® and (Y (z) = boa® +
bsx® + x* form a rime pair for some ag, as, by and by. Then either asby # 0
and as = bg =0 or asbs # 0 and az = by = 0.

If azby # 0 then

1 1
r=s=1, 1) =2' 4wz and 1Y (z) =2* + — —z?
q—q " w
w#0 is arbitrary. (C4)
If asbs # 0 then
1 ) 1 2 (4) 4 s 14
p=—, r=s, I'(z)=z +wz® and I'"(z)=2"+ — —°,
q q—q - w
w # 0 s arbitrary. (C.5)

Moreover, if r = s =1 and p # ¢~ then the rime plane <l(1), l(4)> admits
a unique, up to rescalings, rime basis {1V, 1Y if p=¢~' and r=s#1
then the rime plane <l(1), 1(4)> admits a unique, up to rescalings, rime basis
{l(l), 1(4)}; ifp=q " andr = s =1 then any two independent linear combi-
nations of IV and 1Y) form a rime basis in the plane (1) 14,

Proof. A straightforward calculation. O

Assume that a rime basis {#'} for the triple (4.18) exists, &* = A;-a;j, the

matrix A; is invertible. Rename the rime variables &’ in such a way that

1 7l
1A4

44 g4 | 18 mon-zero and Al A} # 0; normalize the variables ! and
174

the minor
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#* to have Al = A} = 1. The plane (#',3%) is, by definition, rime, with a
rime basis {71, 74}.

Suppose that r =s=1and p# ¢ ' orp=¢ ' and r = s # 1. Then, by
Fork Lemma, the rime basis in the plane (#!,#%) is, up to proportionality,
unique, so we know the variables #! and #*. The variables ! and 2 form a
rime plane. Therefore, if the variable #2 contains 2* with a non-zero coeffi-
cient then, by Fork Lemma, %2 must be proportional to #*, contradicting to
the linear independence of the variables #? and #*. Similarly, the variable
22 cannot contain z! with a non-zero coefficient (the plane (%2, *) is rime).
Thus, 2 is a linear combination of z? and z3. Same for #3: it is a linear
combination of z2 and 23. One of the variables, #2 or 3, say, #2, contains
22 with a non-zero coefficient. Writing rime equations for the plane (Z!, 72)
in the case r = s = 1 and p # ¢! (for the plane (%2, %) in the case p = ¢+
and r = s # 1) quickly leads to a contradiction.

Therefore, if the relations (C.1) and (C.2)—(C.3) can be rimed then
p=¢ ' and r = s = 1. It follows from Fork Lemma that

t= (q— q71)0263$1 + 62332 + 03x3 + 2

z
for some ¢z and c3. The planes (% &%), a = 1,2, 3, are rime. Subtracting
from the variables &% the variable #* with appropriate coefficients, we find
three linearly independent combinations

I(z) = diz" + dox® + dsa®, (C.6)

each forming a rime pair with #*. We must have: I(x)l(y) is a linear com-
bination of I(y)l(z), I(y)z?*, §*(x) and §*z*. It follows, after a straight-
forward calculation, that dods = 0. Moreover, dy = d3 = 0 is excluded by
Fork Lemma. In the case dy # 0 and d3 = 0 (respectively, ds # 0 and dy =
0), the rime condition implies that di = (¢ — ¢~ 1)cads (respectively, di =
(¢ — g Y)esdz). Thus, only two linearly independent combinations (C.6)
can form a rime pair with #%, the final contradiction.

References

[1] M. Aguiar, Infinitesimal Hopf algebras, Contemp. Math. 267 (2000),
1-30.

[2] G. E. Arutyunov and S. A. Frolov, Quantum dynamical R-matrices
and quantum Frobenius group, Comm. Math. Phys. 191 (1998), 15-29,
ArXiv:q-alg/9610009.



504
3]
[4]
[5]

[14]

[15]

OLEG OGIEVETSKY AND TODOR POPOV

A. A. Belavin and V. G. Drinfeld, Triangle equations and simple Lie
algebras, Sov. Sci. Rev. C4 (1984), 93-166.

A. A. Belavin and V. G. Drinfeld, Solutions of the classical Yang—Baxter
equation for simple Lie algebras, Funct. Anal. Appl. 16 (1982), 159-180.

E. Bézout, Recherches sur le degré des équations résultantes de
l’évanouissement des inconnnues, et sur les moyens qu’il con-
vient d’employer pour trouver ces équations, Histoire de I’Académie
Royale des Sciences, Année MDCCLXIV, Avec les Mémoires de
Mathématique & de Physique, pour la méme Année, Tirés des Reg-
istres de cette Académie, Paris, 1767, 288-338.

E. Cremmer and J.-L. Gervais, The quantum group structure associated
with non-linearly extended Virasoro algebras, Comm. Math. Phys. 134
(1990), 619-632.

M. Demazure, Une nouvelle formule des caractéres, Bull. Sci. Math. (2)
98(3) (1974), 163-172.

R. Endelman and T. Hodges, Generalized Jordanian R-matriz of
Cremmer—Gervais type, Lett. Math. Phys. 52 (2000), 225-237, ArXiv:
math.QA/0003066.

P. Etingof, T. Schedler and O. Schiffmann, Fazplicit quantiza-
tion of dynamical r-matrices for finite dimensional semisimple Lie
algebras, J. Amer. Math. Soc. 13(3) (2000), 595-609, ArXiv:
math.QA/9912009.

H. Ewen and O. Ogievetsky, Classification of the GL(3) quantum matriz
groups, ArXiv:q-alg/9412009.

H. Ewen, O. Ogievetsky and J. Wess, Quantum matrices in two dimen-
sions, Lett. Math. Phys. 22 (1991), 297-305.

L. Fehér and B. G. Pusztai, On the classical R-matriz of the degener-
ate Calogero—Moser models, Czech. J. Phys. 50 (2000), 5964, ArXiv:
math-ph/9912021.

L. Fehér and B. G. Pusztai, The non-dynamical r-matrices of the degen-
erate Calogero—Moser models, J. Phys. A33 (2000), 7739-7759, ArXiv:
math-ph/0005021.

M. Gerstenhaber and A. Giaquinto, Boundary solutions of the classical
Yang—Baxter equation, Lett. Math. Phys. 40 (1997), 337-353, ArXiv:
q-alg/9609014.

V. Gorbounov, A. Isaev and O. Ogievetsky, BRST Operator for quan-
tum Lie algebras: relation to bar complex, Teoret. Mat. Fiz., 139(1)
(2004), 29-44, translation in: Theoret. Math. Phys. 139(1) (2004),
473-485.



R-MATRICES IN RIME 505

[16] J. Hietarinta, Solving the two-dimensional constant quantum
Yang—Bazter equation, J. Math. Phys. 34(5) (1993), 1725-1756.

[17] T. Hodges, The Cremmer—Gervais solution of the Yang—Baxter equa-
tion, Proc. Amer. Math. Soc. 127(6) (1999), 1819-1826, ArXiv:
q-alg/9712036.

[18] A. Isaev and O. Ogievetsky, On quantization of r-matrices for Belavin—
Drinfeld triples, Phys. Atomic Nuclei 64(12) (2001), 2126-2130,
ArXiv:math.QA/0010190.

[19] G. Lusztig, Equivariant K -theory and representations of Hecke algebras,
Proc. Amer. Math. Soc. 94(2) (1985), 337-342.

[20] A. Mudrov, Associative triples and Yang—Bazter equation, Israel J.
Math. 139 (2004), 11-28, ArXiv:math.QA/0003050.

[21] O. Ogievetsky, Uses of quantum spaces, in “Quantum Symmetries
in Theoretical Physics and Mathematics”, edited by R. Coquereaux,
A. Garcia and R. Trinchero, Contemp. Math. 294, Amer. Math. Soc.,
Providence, RI 2002, 161-232.

[22] G. C. Rota, Bazter operators, an introduction, in Gian—Carlo rota on
combinatorics, Contemp. Math, Birkhauser Boston, Boston, MA 1995,
504-512.

[23] M. A. Semenov-Tyan-Shanskii, What is a classical r-matriz, Funkt-
sional. Analiz i Prilozhen. 17(4) (1983), 17-33.

[24] A. Stolin, On the rational solutions of the classical Yang—Baxter equa-
tion, Ph. D. Thesis, Stockholm, 1991.






