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Abstract

We discuss B-type tensor product branes in mirrors of two-parameter
Calabi–Yau hypersurfaces, using the language of matrix factorizations.
We determine the open string moduli of the branes at the Gepner point.
By turning on both bulk and boundary moduli we then deform the brane
away from the Gepner point. Using the deformation theory of matrix
factorizations we compute Massey products. These contain the informa-
tion about higher order deformations and obstructions. The obstructions
are encoded in the F-term equations, which we obtain from the Massey
product algorithm. We show that the F-terms can be integrated to an
effective superpotential. Our results provide an ingredient to open/closed
mirror symmetry for these hypersurfaces.
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1 Introduction

Recently, there has been tremendous progress in the understanding of open
string mirror symmetry for compact Calabi–Yau manifolds. In [1, 2]
techniques have been introduced to compute open string disk instantons
on the quintic through mirror symmetry. The papers [3, 4] discussed the
calculation of higher genus open string BPS invariants by making use of



MASSEY PRODUCTS AND F-TERMS 229

an extension of the holomorphic anomaly equation. Walcher’s approach to
computing open BPS invariants has been shown to work well also for one-
parameter hypersurfaces other than the quintic, as was demonstrated in
[5, 6].

A special feature of the open string mirror symmetry calculations of [1, 2]
is that the quantities which are computed do not show explicit dependence of
the open string moduli. In particular, this entails that one does not have to
find a mirror map for open moduli in order to calculate open string instanton
numbers using mirror symmetry. In [3] it has been argued that this situation
is quite generic for the following reasons. Continuous open moduli may be
quite rare at general points in the bulk moduli space. At special points with
high symmetries, like the Gepner point, brane moduli are however very
likely to be found. In Calabi–Yau three-folds such boundary deformations
are generically obstructed. This is due to the fact that one can map, via
Serre duality, the open string states corresponding to boundary deformations
to open string states which encode the obstructions to these deformations.
The closed string moduli enter the game by the observation that certain
bulk deformations may be identified with obstructions to deformations on
the boundary. Obstructions to deformations are encoded in the effective
superpotential Weff , or, more precisely, in its critical locus. This is nothing
but the set of solutions of F-term equations which determines the locus where
supersymmetry is preserved. The upshot of the argument of [3] is that the
moduli appearing in Weff are those which are obstructed, i.e., those which
can take only discrete values, in particular in terms of bulk moduli. The
generating function of open string disk instanton numbers is the domain wall
tension, which is the difference between effective superpotentials, evaluated
at solutions of F-term equations corresponding to two brane vacua. In all
the known examples this quantity does not depend on continuous brane
moduli. The brane moduli independence of the domain wall tension does not
imply that there are no open moduli present. They definitely appear in the
effective superpotential and in the F-term equations which contain essential
information about supersymmetric vacua. It is therefore interesting to have
techniques to compute Weff and F-terms which have the full dependence
on brane and bulk parameters. An important first step in this direction
has been made in [7], where Weff has been calculated for one-parameter
models by applying N = 1 special geometry of [8, 9] to compact Calabi–Yau
manifolds. Remarkably, this approach also provides flat coordinates and a
mirror map for open moduli.

So far, all the examples for open string mirror symmetry on compact
Calabi–Yau three-folds has only been done for hypersurfaces with a sin-
gle bulk modulus. In this paper we will discuss one building block of the
open mirror symmetry program in two-parameter Calabi–Yau hypersurfaces.
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Going to more complicated examples with more bulk moduli is interesting
for several reasons. One-parameter hypersurfaces, and in particular the
quintic, exhibit a large amount of symmetry which simplify the calculation
a lot. However, in such special models the full mathematical structure of the
problem may remain partially hidden. Even if one does not encounter new
conceptual features in models with several parameters it is to be expected
that new technical tools are needed to handle the increased complexity of
the calculations. In closed string mirror symmetry this new ingredient was
toric geometry. The techniques developed in [10–13] proved to be the correct
language to systematically address closed string mirror symmetry problems.

It is to be expected that toric geometry will also play a prominent role
in open string mirror symmetry. In open string models, however, there is
at least one other problem that has to be overcome before one can set the
machinery of toric geometry to work which is needed to derive (inhomoge-
neous) Picard–Fuchs equations and compute the mirror map. The first step
in the program is a suitable choice of D-brane. In this article we will dis-
cuss tensor product branes in two-parameter hypersurfaces and their open
string moduli. We would like to answer the question which D-branes have
moduli and whether deformations with these open moduli are obstructed.
This gives us important information about the existence of brane vacua and
possible domain walls separating these.

The context in which we approach this question will be B-type topological
Landau–Ginzburg models. We consider two-parameter hypersurfaces which
admit a Landau–Ginzburg description. We focus on those models that are
tensor products of minimal models of type A. D-branes in these models
can be described in terms of matrix factorizations of the Landau–Ginzburg
potential. At the Gepner point certain matrix factorizations can be identi-
fied with boundary states in conformal field theory. We will focus on tensor
product branes which correspond to Recknagel–Schomerus boundary states.
At the Gepner point we compute open string moduli of a given brane. Due
to the enhanced symmetry at the Gepner point one expects to have more
control over D-branes than at other points in moduli space. By deform-
ing the brane away from the Gepner point with both bulk and boundary
moduli one gets constraints on the deformation parameters for the brane
to remain a valid supersymmetric boundary condition. The constraints
encode the obstructions to the deformations of a brane away from the
Gepner point. These are precisely the F-terms which determine the brane
vacua. For matrix factorizations there exists a an algorithm to compute
deformed matrix factorizations and F-terms [14, 15]. In [16] this method
has been applied to N = 2 minimal models and extended to include bulk
deformations.
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In this article we apply the deformation theory algorithm to tensor prod-
uct branes in mirrors of two-parameter Calabi–Yau hypersurfaces. A similar
discussion has already been done in [17]. The advantage of this approach
is that it avoids several difficulties. Since we are directly computing the
F-terms which encode the physical information about the brane vacua we
do not necessarily have to do the calculation in flat coordinates and there-
fore can postpone the problem of finding those. Furthermore, it is known
that the effective superpotential in topological string calculations is only
defined up to (possibly non-linear) reparametrizations due to the underly-
ing A∞-structure. Its critical locus, i.e., the F-terms, should however not
depend on the choice of parametrization. This freedom is visible in the
deformation theory algorithm but since the information encoded in the F-
terms should be invariant we can make a particular choice without losing
information.

The advantages of this approach are actually also its biggest drawbacks:
The information about flat coordinates in moduli space and the mirror map,
which is essential for mirror symmetry calculations, has to be found with
different methods. Therefore, it is not possible to extract disk instanton
numbers from our results without further input. This will be discussed
elsewhere.

Another inconvenience is that the calculation is technically challenging
and rather cumbersome. This also has to do with the reparametrization
freedom mentioned above. At every order in deformation theory one has to
make certain choices. Although they do not influence the result there may
be certain choices which simplify the calculations tremendously. Unfortu-
nately, no criterion is known to pin down particularly simple parametriza-
tion. Another general problem of this approach is that in the presence of
unobstructed moduli the algorithm never terminates, so that the deforma-
tion theory problem cannot be solved completely.

Despite these difficulties we can decide for most of the examples we con-
sider which moduli are obstructed and compute the full F-terms by a brute
force calculation.

This article is organized as follows: In Section 2 we review the relevant
details about matrix factorizations which are necessary for the discussion. In
particular we describe the deformation theory algorithm. Furthermore, we
discuss which branes are not captured by our discussion. We go on to sum-
marize the results of our calculations and discuss certain common properties
of our examples. We also comment about interesting new features we have
encountered. The subsequent five sections are the technical part of the paper
where we discuss brane moduli and obstruction for representative examples
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of branes for each of the five two-parameter Calabi–Yau hypersurfaces. Sec-
tion 8 is devoted to concluding remarks. In the appendix we collect some
tables which contain information about the moduli of tensor product branes
in two-parameter Calabi–Yau hypersurfaces.

2 Matrix factorizations, deformation theory and F-terms

We discuss brane moduli of Recknagel–Schomerus branes on the mirror
of two-parameter hypersurfaces in weighted CP

4, using the language of
matrix factorizations. At the Gepner point the Landau Ginzburg theory
is an orbifold of a tensor product of minimal models of type Adi−2 with
superpotential:

W = xd1
1 + xd2

2 + xd3
3 + xd4

4 + xd5
5 /ΓGP × Zd, (2.1)

where d = lcm(di). Since we are interested in the mirror, we have also
taken into account the action of the Greene–Plesser orbifold group ΓGP.
We will focus on the five models that have Hodge number h2,1 = 2. The
characteristic data of these models can be found for instance in [11]. We
will give more details in the sections devoted to the specific models. We will
consider the following type of matrix factorizations Q2 = W · 1:

Q =
5∑

i=1

xki
i ηi + xdi−ki

i η̄i. (2.2)

The ηi, η̄i are boundary fermions satisfying the Clifford algebra relations

{ηi, η̄j} = δij , {ηi, ηj} = 0. (2.3)

The matrix factorization (2.2) is a tensor product of minimal model matrix
factorizations, which can be identified with CFT boundary states:

Q(k) = xkη + xd−kη̄ =
(

0 xk

xd−k 0

)
⇐⇒ |L, S〉 = |k − 1, 0〉. (2.4)

The matrix factorization (2.2) can then be identified with a Gepner model
boundary state with label L = |k1 − 1, k2 − 1, k3 − 1, k4 − 1, k5 − 1〉. We
will use this convenient notation to label our matrix factorizations, even
if it has been deformed away from the Gepner point.1

1Since we only consider marginal deformations of a single brane and no tachyon con-
densation processes, these labels are also accurate for the deformed branes.
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Given a matrix factorization Q we can define a matrix R of U(1) R-charges
via the condition that Q has charge 1. Given a U(1) action xi → λωixi, R
is chosen such that

RQ(λωixi)R−1 = λQ(xi). (2.5)

If we have an orbifold action g : xi → e2πigi/dxi, where d is the degree of
the Landau–Ginzburg potential, the orbifold action can be extended to the
boundary. A matrix factorization is orbifold invariant if we can find a matrix
γ such that

γQ(e2πigi/dxi)γ−1 = Q(xi). (2.6)

2.1 Brane moduli

In the context of matrix factorizations physical open string states are deter-
mined by the cohomology of Q. Q acts on the open string states via a
commutator or an anticommutator. In this way the cohomology elements
come with a natural Z2-grading.

Brane moduli Ψi ∈ Hodd(Q) correspond to Z2-odd, boundary preserv-
ing open string states with R-charge 1. They may be used to deform the
matrix factorization (2.2) away from the Gepner point. Open string states of
(2.2) are tensor products of minimal model open string states. The Z2-odd,
“fermionic,” open string states of a type A minimal model look as follows:

ψ
(k)
l =

(
0 xl

−xd−2k+l 0

)
, l = 0, . . . , k − 1 (2.7)

The R-charges of these fermions are qψl
= d−2k+2l

d . Note that for our choice
for k, we have l ≤ d − 2k + l, which means that the exponent of the lower
left entry of the matrix is always greater or equal to the exponent of the
upper right entry.

The bosonic open string states have a simpler structure:

φ
(k)
l =

(
xl 0
0 xl

)
, l = 0, . . . , k − 1. (2.8)

The R-charges are qφl
= 2l

d .
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The R-charge r of a general open string state Ψ is computed as follows:

RΨ(λωixi)R−1 = λrΨ(xi), (2.9)

where R was defined in (2.5). An open string state is orbifold invariant if

γΨ(e2πigi/dxi)γ−1 = Ψ(xi). (2.10)

Since the open string states of A-type minimal models are uniquely deter-
mined by their R-charge r and their Z2–grading a, we can label open string
states of (2.2) by2 ra1

1 ⊗ ra2
2 ⊗ ra3

3 ⊗ ra4
4 ⊗ ra5

5 .

2.2 Obstructions

Obstructions Φi ∈ Heven(Q) to deformations of branes are encoded in
Z2-even, charge 2 boundary preserving operators. It is important to note
that these open string states have the correct R-charge and degree to be
deformations of the Landau–Ginzburg superpotential. Obviously only a
subset of these open string states, namely those proportional to the unit
matrix, can also be interpreted as bulk deformations. It is these bound-
ary preserving open string states that are directly responsible for the link
between bulk and boundary deformations and therefore for the fact that
boundary deformations can be obstructed by bulk deformations.

The deformation theory for Calabi–Yau manifolds in three complex
dimensions is special because only then the open string states describing
obstructions are Serre dual to the deformations, i.e., the brane moduli.

Heven(Q) ∼= (Hodd(Q))∗. (2.11)

This isomorphism between deformations and obstructions is the reason why
brane deformations are “in general” obstructed.

It is important to know what is the corresponding obstruction to each
deformation. This is done by computing the Serre pairings 〈ΨiΦj〉, where we
denote the boundary deformations by Ψi and the obstructions by Φi. These

2All the tensor products are graded. See [17, 18] for details about the explicit construc-
tion of tensor product matrix factorizations.
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amplitudes are easily computed by the Kapustin–Li residue formula [19]

〈ΨiΦj〉 =
1

(2πi)5

∮
d5x

STr
(
(∂Q)∧5 ΨiΦj

)

∂1W · · · ∂5W
. (2.12)

Only for Serre dual pairs this integral is non-zero.

2.3 Deformations and higher-products

We now give a description of the deformation theory algorithm which we
use to calculate the F-terms. Our discussion of the algorithm follows [20].
For mathematical background we refer to the papers [14, 15].

We start with describing the original algorithm which only includes
deformations with brane moduli. Consider a matrix factorization Q with
Q2 = W · 1 and calculate the open string spectrum:

Ψi ∈ Hodd(Q), Φi ∈ Heven, dim Heven(Q) = dimHodd = N (2.13)

We now want to calculate the most general non-linear deformation of this
matrix factorization, taking into account only deformations with Z2-odd
states. We make the following ansatz:

Qdef = Q +
∑

�m∈B̄

α�mu�m. (2.14)

Here, �m is a multi index: u�m = um1
1 um2

2 . . . umN
N and we define |�m| =

∑N
i=1

mi. B̄ describes the allowed set of vectors �m. u1, . . . , uN are deformation
parameters associated to Ψ1, . . . ,Ψn and α�m are matrices to be determined
recursively in |�m|. At the order |�m| = 1 (linear deformations) they are
defined to be the odd cohomology elements:

α(1,0,...,0) = Ψ1, α(0,1,...,0) = Ψ2 . . . α(0,...,0,1) = ΨN . (2.15)

Now we impose the matrix factorization condition on Qdef :

Q2
def

!= W · 1 +
N∑

j=1

f̂j(u)Φj (2.16)

∼ Q2 +
∑

�m

[Q, α�m]u�m +
∑

�m1+�m2=�m

α�m1 · α�m2︸ ︷︷ ︸
y(�m)

u�m. (2.17)
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Note that imposing Q2
def = W · 1 does not work and we must employ the

more general condition in (2.16). Obviously, the matrix factorization con-
dition only holds if we demand that f̂i(u) = 0. The relations f̂i(u) span
the same ideal as the vanishing relations fi(u) of the power series ring of
deformations C[[u]]/(fi(u)). At the same time these relations determine the
critical locus of the effective superpotential.

In the second line of the above equation we naively inserted the ansatz
(2.14). y(�m) is called “matric Massey product” [14, 15]. Equation (2.17) is
actually only correct up to order |�m| = 2. At higher orders the definition
of the Massey products gets modified due to the presence of the fi(u), as
we will show below. The “method of computing formal moduli” of [14, 15]
provides an algorithm to calculate the fi(u) and the α�m explicitly at all
orders in �m.

Let us first look at the lowest orders, where (2.17) is correct. At linear
order |�m| = 1 in the deformation parameters, the second term in (2.17) is
zero, since the α�m are the fermionic cohomology elements and the second
term becomes the physical state condition. The first Massey product y(�m)
appears at order |�m| = 2. We can calculate this product explicitly, since all
the α�m at order |�m| = 1 are known. y(�m) can take the following values:

• y(�m) /∈ Heven(Q). In this case we can find an αm with |�m| = 2 such
that

[Q, α�m] ≡ −β�m = y(�m). (2.18)

Thus, the second and the third terms in (2.17) cancel at order |�m| = 2
and we produced new α�m’s and thus can calculate Massey products at
higher order.

• y(�m) ∈ Heven(Q), i.e., y(�m) = c Φk, where c is some number. Clearly,
this cannot be canceled by a term [Q, α�m] since the Φi are by defi-
nition not Q-exact. Thus, we have encountered an obstruction. The
obstructions are encoded in the polynomial fk(u) associated to Φk in
the following way:

fk = cu�m. (2.19)

We can now continue this algorithm to higher orders in |�m|. There, however,
some subtleties arise due to the presence of the fi(u). They impose relations
among the u�m, which have to be incorporated into the algorithm. One has to
introduce various bases for allowed vectors �m. Furthermore, the definition
of the higher order Massey products has to be modified as compared to the
naive definition of (2.17). The deformation theory construction of [14, 15]
yields the following results:
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For a vector �n ∈ B′
i+1, i > 0 (B′

i+1 to be defined momentarily) the Massey
product y(�n) is given by

y(�n) =
∑

|�m|≤i+1

∑

�m1+�m2=�m

�mi∈B̄i

β′
�m,�nα�m1α�m2 . (2.20)

The coefficients β′
�m,�n can be determined from the unique relation

u�n =
∑

�m∈B̄′
i+1

β′
�n,�mu�m +

N∑

j=1

β′
�n,jf

i
j (2.21)

for each �n ∈ N
N with |�n| ≤ i + 1. If the Massey product is y(�n) = c Φk then

we get a contribution to the kth polynomial fk(u):

f i+1
k = f i

k +
∑

�n∈B′
i+1

c u�n, (2.22)

where the superscript gives the order in u.

The α�m are defined as follows. For each vector �m in a basis Bi+1 we can
find a matrix α�m such that3:

[Q, α�m] = −β�m = −
(i+1)−2∑

l=0

∑

�n∈B′
2+l

β�n,�my(�n), (2.23)

where the coefficients β�n,�m are given by the unique relation

u�n =
∑

�m∈B̄i+1

β�n,�mu�m. (2.24)

The various bases B, B̄, B′, B̄′ are defined recursively. One starts by set-
ting B̄1 = {�n ∈ N

N | |�n| ≤ 1} and B1 = {�n ∈ N
N | |�n| = 1}. For i ≥ 1, B′

i+1
is then defined as a basis for mi+1/(mi+2 + mi+1 ∩ m(f i

1, . . . , f
i
N )), where

m = (u1, . . . , uN ) defines the maximal ideal. In most cases, the elements
{u�n}�n∈B′

i+1
can be chosen such that u�n = uk · u�m for some �m ∈ B̄i and

uk ∈ {u1, . . . , uN}. One defines B̄′
i+1 = B̄i ∪ B′

i+1. Finally, Bi+1 is a basis
for (mi+1 + (f i

1, . . . , f
i
N ))/(mi+2 + (f i+1

1 , . . . , f i+1
N )) such that Bi+1 ⊆ B′

i+1.
We set B̄i+1 = B̄i ∪ Bi+1.

3Since many of the β�m appear several times in a given example, we will suppress the
�m-labels of the β�m in the following sections.
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With these definitions it is now possible to calculate the critical locus
fi(u) of the effective superpotential along with the deformed matrix factor-
ization Qdef . The algorithm, which we will refer to as the “Massey product
algorithm,” looks as follows [14]:

• Choose a matrix factorization Q and calculate the open string spec-
trum, where Ψj ∈ Hodd(Q) and Φj ∈ Heven(Q), where j = 1, . . . , N .

• Set α�ej
= Ψj , where �ej are the canonical basis vectors of R

N . Further-
more associate a deformation parameter uk to every Ψk.

• For each i ≥ 0 perform the following steps:
– Calculate the bases B′

i+1 and B̄′
i+1.

– Determine the coefficients β′
�m,�n from relations (2.21).

– Calculate the Massey products y(�n) defined in (2.20).
– Determine f i+1

j using (2.22).
– Choose bases Bi+1 and B̄i+1.
– Calculate the coefficients β�m,�n from relations (2.24).
– Choose suitable α�m according to (2.23).

• If the algorithm terminates at a given order, integrate (homogeneous
linear combinations of) the fi in order to obtain Weff .

• Calculate the deformed matrix factorization

Qdef = Q +
∑

�m∈B

α�mu�m, B =
⋃

i

Bi. (2.25)

Let us supplement a few comments. The choice of α�m is ambiguous. Tak-
ing different α�m also results in different fi. The effective superpotentials
obtained from these different choices are related via field redefinitions of the
ui, where field redefinition means in this case that every uk can be replaced
by a power series in terms of the ui. This freedom reflects the reparametriza-
tion freedom one has in the underlying A∞-structure.

For matrix factorizations in Landau–Ginzburg orbifolds we cannot expect
that the algorithm terminates due to the presence of marginal deformations
which may or may not be obstructed at higher orders. For Calabi–Yau three-
folds the algorithm may terminate since obstructions are expected to be
present. However, this is not guaranteed. Some moduli may still be exactly
marginal, i.e., unobstructed to all orders in deformation theory. In that case
one may at least argue that the F-terms do not get new contributions from
a given order on. Then integration to an effective superpotential is still
possible.

Furthermore, note that some of the fi(u) may remain zero throughout
the calculation. The power series ring of deformations is then defined as
C[[u1, . . . , uN ]]/(f1, . . . , fr), where r ≤ N .
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2.3.1 Bulk deformations

So far, we have only discussed deformations of a brane with open moduli.
One can however also deform the brane with bulk parameters. In the B-
model setup this corresponds to complex structure deformations. The task
is to include bulk deformations of the Landau–Ginzburg superpotential at
the Gepner point into the deformation theory algorithm. This has already
been done for minimal model examples in [16].4 For our two-parameter
models we would like to deform the superpotential W (xi) into

W (xi, ϕ1, ϕ2) = W (xi) + ϕ1φ1 + ϕ2φ2, (2.26)

where ϕ1, ϕ2 are the two bulk moduli and φ1, φ2 are elements of the bulk
chiral ring.

How to proceed crucially depends on the properties of φ1, φ2. If the bulk
deformation is also an element of the boundary chiral ring, i.e., if the bulk
deformation multiplied with the unit matrix is a charge 2 bosonic open string
state (this is precisely an obstruction!), the associated bulk modulus enters
the F-term related to this open string state. This adds linear terms in the
bulk moduli to the F-terms. If it is possible to integrate these terms to
an effective superpotential these contributions give terms −uϕ, where u is a
boundary modulus. This encodes the values of the bulk-boundary two-point
disk amplitudes.

If, however, the bulk deformation is Q-exact, the Massey product algo-
rithm implies that this must be related to a deformation. This deformation,
call it α(1,0,...,0), is a linear deformation of the matrix factorization where
the deformation parameter is the bulk modulus. This deformation has the
property that {Q, α(1,0,...,0)} = φ1, where φ is the Q-exact bulk deformation.
So, to first order, we have

Qdef = Q + ϕα(1,0,...,0) + · · · . (2.27)

Squaring this, we get

Q2
def = W (xi) + ϕφ + · · · . (2.28)

which is nothing but the bulk deformed Landau–Ginzburg potential W (xi, ϕ)
plus higher order terms.

4In this case the bulk deformations were added to boundary deformed matrix factor-
izations. This was possible because for minimal models the deformation theory algorithm
always terminates after a finite number of steps. In our case, the algorithm may not
terminate. This forces us to look at bulk and boundary deformations at the same time.
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To summarize, depending on whether the bulk deformation is also an open
string state or not we either have to modify the F-terms or introduce bulk
deformations of the matrix factorizations. From then on, we can formally
apply the Massey product algorithm as discussed above. We simply extend
the vectors �m to include also the bulk deformations. We have chosen the
convention that we add the new entries at the beginning of the vector.

Note that this discussion is not a rigorous mathematical derivation of
the algorithm like it was given in [14, 15] for the original setup. It rather
relies on the observation that the structure does not change by adding bulk
deformations. As we will demonstrate in the following sections, the extended
algorithm works well.

2.4 How to check the results

Given such a complex algorithm to compute deformations, it is already
a strong indication of consistency if one has obtained a deformed matrix
factorization which squares to the (deformed) Landau–Ginzburg superpo-
tential modulo F-terms, and the obstructions are constraints which can be
integrated to give an effective superpotential Weff . Still, it is desirable to
have an independent consistency check for the results. This is provided by
the interpretation of Weff as the generating function of disk amplitudes.
Differentiation of this effective superpotential should give back the F-terms.
The disk amplitudes entering Weff which do not contain integrated insertions
of bulk- or boundary operators can be computed by the residue formula of
Kapustin and Li [19]. Two kinds of amplitudes can be calculated. The first
is the bulk-boundary two-point function:

〈φiΨj〉 =
1

(2πi)5

∮
d5x

φiSTr
(
(∂Q)∧5 Ψj

)

∂1W · · · ∂5W
. (2.29)

Furthermore, we can calculate the disk amplitude with three boundary inser-
tions:

〈ΨiΨjΨk〉 =
1

(2πi)5

∮
d5x

STr
(
(∂Q)∧5 ΨiΨjΨk

)

∂1W · · · ∂5W
. (2.30)

Comparing to the F-terms/Weff obtained from the Massey product calcula-
tion, this gives a non-trivial check for the lowest orders in the deformation
parameters. Having computed the correlators there are a few steps to be
done in order to obtain the effective superpotential. We will now briefly
describe these steps, following [21].
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A disk amplitude with an arbitrary number of bulk and boundary5 inser-
tions is defined as follows:

Ba0...am;i1...in := (−1)ã1+...+ãm−1

〈
Ψa0Ψa1P

∫
Ψ(1)

a2
. . .

∫
Ψ(1)

am−1
Ψam

∫
φ

(2)
i1

. . .

∫
φ

(2)
in

〉

= −
〈

φi1Ψa0P

∫
Ψ(1)

a1
. . .

∫
Ψ(1)

am

∫
φ

(2)
i2

. . .

∫
φ

(2)
in

〉
, (2.31)

where
∫

φ
(2)
i ≡

∫
φ

(1,1)
i =

∫

D2

[G, [Ḡ, φi]]dz dz̄ (2.32)

are the bulk descendants, with D2 the disk and G the twisted fermionic
current, and

∫
Ψ(1)

a =
∫ τr

τl

[G, Ψa]dτ (2.33)

are the boundary descendants. The integral runs, from a suitably chosen
position τl to the left of the operator to a position τr to its right, along
the boundary of the disk. The boundary integrals in (2.31) have to be path
ordered, and P denotes the path ordering operator. We have also introduced
a suspended grade ã of the boundary fields Ψa:

ã := |Ψa| + 1, (2.34)

where |Ψa| is the Z2-degree of the boundary field. Since the amplitudes are
completely symmetric with respect to the bulk insertions we can introduce
generating functions for the bulk perturbations that satisfy the following
property:

Ba0...am;i1...in = ∂i1 . . . ∂inFa0...am(ϕ)|ϕ=0, where ∂ik =
∂

∂ϕik

. (2.35)

To calculate Weff , we associate parameters sa = (ua, va) to every open string
insertion. The commuting ua are the parameters of the fermionic open
string states, the va are anticommuting and go with the bosons. The effec-
tive superpotential is then the sum of the symmetrized amplitudes with

5In contrast to the rest of the paper Ψ can be Z2-even or Z2-odd here.
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parameters sa:

Weff(s; ϕ) =
∑

m≥1

1
m

sam . . . sa1Aa1...am(ϕ), (2.36)

where

Aa0...am := (m − 1)!F(a0,...,am) :=
1
m

∑

σ∈Sm

η(σ; a0, . . . , am)Faσ(0)...aσ(m) ,

(2.37)

σ is a permutation and η is the sign one obtains from permuting the vari-
ables sa.

To summarize, using the Kapustin–Li formula we can compute the lowest
contributions to the effective superpotential and therefore get an indepen-
dent, non-trivial check for deformation theory calculation.

2.5 Branes that are not discussed in the examples

In the following sections, we will discuss in detail the deformations of matrix
factorizations corresponding to Recknagel–Schomerus boundary states. We
will start at the Gepner point and deform a single brane with bulk- and
boundary moduli. If the deformation theory algorithm terminates after
a finite number of steps we will end up with a matrix factorization of the
bulk-deformed Landau–Ginzburg superpotential. We will now mention some
other constructions which will not be discussed in the remainder of the paper.

2.5.1 Short orbit branes

In [5] the branes corresponding to Recknagel–Schomerus boundary states
with maximal L-label have been identified to be mirror to the Lagrangians
defined by the real hypersurface equations. For hypersurfaces with even
degree these maximal branes are reducible, i.e., they can be decomposed
into “short orbit branes” [22, 23]. In the matrix factorization language this
means that one can define projectors P± and a pair of matrix factorizations:

Q± = P±QP±. (2.38)

In [5] these branes have been shown to exhibit BPS domain walls, and
instanton numbers have been computed. Since the domain wall separates
two brane vacua, this should be visible in the solutions of the F-term equa-
tions. So it is a natural question to ask whether this can be seen in a
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deformation theory calculation. There we immediately run into a problem.
The Massey product algorithm works very well for deformations of a single
matrix factorization. For the short orbit branes, however, it is suggestive
that one has to consider Q+ and Q− together since the pair already exists
at the Gepner point. A generalization of the deformation theory algorithm
to systems with multiple matrix factorizations has not been worked out and
does not seem to be straightforward. Let us, however, report a suggestive
observation. For one-parameter models one can define precisely one, and
for two-parameter models at least one, set of fermionic charge 1 boundary
changing operators {Ψ+−, Ψ−+} from Q+ to Q− and back such that the
symmetric product

Ψ+− · Ψ−+ + Ψ−+ · Ψ+− (2.39)

gives a bulk deformation. It is tempting to conclude that the two brane
vacua separated by a domain wall come from an F-term which is produced
by deforming the combined Q+, Q−-system with the boundary changing
open string states.

2.5.2 “Incomplete” deformations

In all the examples, we will discuss in the following sections, we will always
deform the matrix factorization with all allowed open and closed string defor-
mations, in order to get the full F-terms. It is an interesting question to ask
what happens if we only turn on some of the (brane and bulk) moduli. We
will now focus on an interesting special case which occurs quite frequently
and has also played a role in [6]. Consider a matrix factorization Q of a
Landau–Ginzburg superpotential at the Gepner point. Assume that there
is an open string state Ψ with the property:

Ψ2 = φ · 1, (2.40)

where φ is a bulk deformation. We can thus define a deformed matrix
factorization,

Qlin
def = Q + uΨ, (2.41)

which has the following factorization property:

(Qlin
def)

2 = W + u2φ. (2.42)
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Obviously, this is a matrix factorization of the bulk deformed Landau–
Ginzburg superpotential W + ϕφ if and only if the following constraint
is satisfied:

u2 − ϕ = 0. (2.43)

Here, ϕ is the bulk modulus. This immediately leads to a pair of matrix
factorizations of the deformed Landau–Ginzburg potential:

Q± = Q ± √
ϕΨ. (2.44)

In [6] domain wall tensions have been computed for such branes. Note,
however, that constraint (2.43) is (part of) an F-term if and only if the bulk
deformation φ is also a physical open string state. If not, one would have
to introduce a bulk deformation of the brane for φ, and usually one finds
that in this case the brane modulus is unobstructed and the F-terms are
zero. On the other hand, (2.44) is a well-defined matrix factorization of the
deformed Landau–Ginzburg potential which does not seem to care whether
the bulk deformation is Q-exact or not. It comes from a deformation with
a boundary modulus and by the “fake” F-term (2.43) the deformed matrix
factorization naturally comes as a pair Q±. Thus, one has a very natural
setup for BPS domain walls and in [6] a non-zero domain wall tension has
been computed for a such brane where the bulk deformation was indeed
Q-exact. It is an obvious question to ask whether such domain walls related
to partial deformations of a brane are qualitatively different to those which
can be related to F-terms.

One could integrate (2.43) to a cubic effective superpotential. However, if
this equation is not associated to an obstruction the result does not match
with the correlators one can compute with the Kapustin–Li formula. This
implies that, in order to get the correct effective superpotential, one has to
take into account the combined bulk-boundary deformation of the brane.
Nevertheless, equation (2.43) seems to define two distinguished points in
moduli space.

In our discussion of two-parameter hypersurfaces we will not highlight this
type of linearly deformed matrix factorization. It exists whenever an open
string state squares to one of the bulk deformations. As can be deduced
from the examples, this happens quite often.

2.5.3 Permutation branes

It is well-known that the Recknagel–Schomerus boundary states do not
always generate the full lattice of RR-charges. The branes which do the
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job are the (generalized) permutation branes [24]. They also have a conve-
nient description in terms of matrix factorizations [25, 26, 27, 28]. It would be
interesting to discuss moduli and deformation theory of these branes. Since
these matrix factorizations have a more complicated polynomial structure,
calculations of open string states are technically more challenging, in par-
ticular if one intends to deal with large classes of examples and therefore
has to rely on efficient computer code. We will postpone the discussion of
permutation branes to future work.

2.6 Summary of the results

In the following five sections we will discuss in great detail deformations and
F-terms of tensor product branes on the mirrors of two-parameter hyper-
surfaces in weighted CP

4. Since this is quite technical we summarize the
relevant steps here:

• For every model, go through the list of tensor product matrix fac-
torizations corresponding to Recknagel–Schomerus boundary states at
the Gepner point and compute the brane moduli.

• Classify the branes according to the number and structure6 of the
brane moduli.

• For each class, pick a specific tensor product brane (we choose the
one with maximal L-label inside the respective class) and compute
the higher order deformations of F-terms using the Massey product
algorithm.

• Integrate the F-terms to the effective superpotential.
• Check the consistency of the results by computing two- and three-point

functions using the Kapustin–Li residue formula.

2.6.1 Common features

Our main tool of calculation will be the Massey product algorithm. This is a
quite complicated procedure and we have decided to display the calculations
in great detail in order to expose its strengths and drawbacks. Depending
on whether moduli are obstructed or not the calculation will proceed in
different ways. There are two extreme cases of what can happen.

• The algorithm terminates after a finite number of steps. This can hap-
pen for obstructed and unobstructed moduli. In order to get higher

6By structure we mean their decomposition in terms of minimal model open string
states (2.7), (2.8).
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order deformations there must be Massey products that yield some-
thing Q-exact. If all higher products are zero or obstructed from
some order on, the algorithm will terminate at some point because the
products are no longer defined. If we have, for example, deformations
α�m up to |�m| = 3 there are no more higher products to compute at
order |�m| = 7 because there simply are no α’s left we could multiply.
For unobstructed moduli this typically happens when many higher
products are zero. If the moduli are obstructed then this happens
because contributions to the F-terms do not give new deformations
and remove certain elements in the basis B′ which encode the infor-
mation about the allowed Massey products.

• The brane modulus is unobstructed and the algorithm never termi-
nates. This happens whenever recurring patterns appear in the algo-
rithm. By recurring patterns we mean that Massey products keep
producing the same Q-exact expressions which lead to the same defor-
mations at ever higher orders. A nice example for this case is the
brane L = (5, 2, 2, 1, 0) on the mirror of the degree 12 hypersurface in
P(12234). This example is discussed in section 5.3.1.

Note that it hardly ever happens that these extreme cases appear in an iso-
lated fashion for branes with several open moduli. Usually, the deformation
theory problem will be a combination thereof. In particular, it is noto-
riously difficult to identify recurring structures and to decide whether the
algorithm terminates or not. This is why, in some complicated cases, we only
managed to make precise statements up to a certain order in deformation
theory.

2.6.2 Issues and new aspects

We now comment on some interesting issues which arise in the deformation
theory calculations.

For some branes we observe a new phenomenon which has not been
encountered in minimal model examples. In our examples, the branes
L = (6, 2, 2, 2, 0) (see Section 6.3.1) and L = (4, 2, 2, 2, 0) (see Section 6.3.2)
on the mirror of the hypersurface P(12227)[14] and the brane
L = (8, 8, 8, 0, 0) (see Section 7.3.1) on the mirror of P(12227)[14] have
obstructed moduli but the deformed matrix factorization does not square to
(2.16), but rather to

Q2
def = W +

N∑

i=1

f̄i(ui, ϕi)Φi + f̃i(ui, ϕi)λi. (2.45)
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There are two issues. Firstly, the prefactors f̄i(ui, ϕi) of the Φi which
determine the F-terms may not be easily separated. Given an open string
state Φk it may happen that the moduli dependent prefactors of the matrix
entries may differ up to the F-terms of the other Φi. In principle, this is not
inconsistent but the factorization fiΦi only works up to F-terms. The second
new issue concerns the third summand on the right-hand side of (2.45). The
λi are not in the Q-cohomology (i.e., they are neither Q-closed nor Q-exact!).
However, the moduli-dependent prefactors of the λi are (combinations of)
the F-terms associated to the obstructions. Therefore, also these additional
terms are not inconsistent and do not contain extra information, at least in
all examples where we have found them. Note that this phenomenon is not
related to the extension of the algorithm to bulk moduli since it also occurs
when these are turned off.

A further interesting novel feature has occurred for the branes
L = (6, 2, 2, 2, 0) (see Section 6.3.1) and L = (4, 2, 2, 2, 0) (see Section 6.3.2)
on the mirror of P(12227)[14]. For these branes the F-terms can only be
integrated for a particular choice of higher order deformations α�m. This is
unexpected since different choices of α�m should not produce qualitatively
different results. In particular, the physical information in the F-terms
should not change. Note however, that the deformation theory only sees
the obstructions, which are the F-terms, but does not “know” that these
constraints are actually the critical locus of Weff . The existence of an effec-
tive superpotential does not enter into the algorithm or the mathematical
structure behind it. From that point of view it is actually quite remarkable
that the constraints one gets are really integrable and it may well be that
this property does not persist for arbitrary choices of deformations. Still, it
is a very interesting question to find out why some branes exhibit this prob-
lem while others do not. The fact that the problematic branes also have the
unusual factorization property (2.45) implies that the new phenomena are
not independent.

A big inconvenience of the Massey product algorithm is that the choice
of higher deformations α�m is not unique. No distinguished basis of defor-
mations is known. In our calculation we loosely stuck to the rule that the
deformation matrices should have as few entries as possible and that, if
possible, all monomial entries should be equal. It could be that a different
choice of deformations would exhibit recurring structures more clearly or
may even cause the algorithm to terminate earlier than with another choice.
However, in most cases there are usually only a few possible choices for a
new deformation which lead to the same results. The physical information
which is contained in the F-terms should of course not depend on the choice
of higher order deformations.
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3 The model P(11222)[8]/Z8 × (Z4)2

The Landau–Ginzburg superpotential (at the Gepner point) associated to
this degree 8 hypersurface is

W = x8
1 + x8

2 + x4
3 + x4

4 + x4
5, (3.1)

with a diagonal Z8 orbifold action. To get the mirror we impose the following
Z8 × (Z4)2 orbifold action:

g1: (1, 7, 0, 0, 0),

g2: (2, 0, 6, 0, 0), (3.2)

g3: (2, 0, 0, 6, 0),

where gj : xi → e2πigi
j/dxi.

For later convenience we also give the two bulk deformations:

φ1 = x4
1x

4
2,

φ2 = x1x2x3x4x5.
(3.3)

In table A.1 we list the branes and moduli of this model.

3.1 Discussion of moduli

Let us now discuss in more detail the moduli of the “maximal” brane with
label L = (3, 3, 1, 1, 1). As we can see from the tables, this brane has the
maximum number of moduli. Furthermore, we observe that, as we decrease
the entries of the L-label, the number of moduli changes but their structure
does not. For that reason, if we have discussed the moduli of this maximal
brane, we have discussed all the others as well. The only thing that can
change are the entries of the fermionic minimal model components of the
brane. Note that this change is mild in the sense that the Massey product
of an open string state with itself (not with others, however!) is always the
same for a modulus with a definite structure.

So let us discuss the structure of the boundary moduli for the (3, 3, 1, 1, 1)
brane. We denote the open string state labeled by 1

2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01
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with Ψ1. It looks as follows:

Ψ1 =
(

0 x2
1

−x2
1 0

)
⊗

(
0 x2

2
−x2

2 0

)
⊗

(
0 1

−1 0

)
⊗

(
0 1

−1 0

)
⊗

(
0 1

−1 0

)
.

(3.4)

This open modulus also appears on the other branes which have moduli.
The only difference for the other branes is that the first two matrices can
also have the form7

( 0 x
−x3 0

)
or

( 0 1
−x4 0

)
, depending on the values k1, k2

in the matrix factorization. The second open string state which has label
1
2
0 ⊗ 1

2
0 ⊗ 01 ⊗ 01 ⊗ 01 has a similar structure:

Ψ2 =
(
x2

1 0
0 x2

1

)
⊗

(
x2

2 0
0 x2

1

)
⊗

(
0 1

−1 0

)
⊗

(
0 1

−1 0

)
⊗

(
0 1

−1 0

)
. (3.5)

This open string state is the same for every brane with the label 1
2
0 ⊗ 1

2
0 ⊗

01 ⊗ 01 ⊗ 01.

3.2 Obstructions

Let us now give the explicit expressions for the charge 0, Z2-even open string
states which encode the obstructions to the deformations with (3.4) and
(3.5). Our first obstruction state Φ1 is nothing but the bulk deformation φ2:

Φ1 =
(

x1 0
0 x1

)
⊗

(
x2 0
0 x2

)
⊗

(
x3 0
0 x3

)
⊗

(
x4 0
0 x4

)
⊗

(
x5 0
0 x5

)
. (3.6)

It has the structure 1
4
0 ⊗ 1

4
0 ⊗ 1

2
0 ⊗ 1

2
0 ⊗ 1

2
0. This state is Serre dual to (3.4).

The obstruction which is Serre dual to (3.5) has the structure 1
4
1 ⊗ 1

4
1 ⊗

1
2
0 ⊗ 1

2
0 ⊗ 1

2
0:

Φ2 =
(

0 x1
−x1 0

)
⊗

(
0 x2

−x2 0

)
⊗

(
x3 0
0 x3

)
⊗

(
x4 0
0 x4

)
⊗

(
x5 0
0 x5

)
.

(3.7)

7Of course, the R-charges remain the same, as indicated in the label.
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3.3 Massey products and F-terms

In this section we compute Massey products and F-terms for the branes in
our model. We have to distinguish two cases. There are three branes which
have both moduli (3.4) and (3.5) and three which have only the modulus
(3.4). In order to capture the relevant information it will be enough to dis-
cuss only one example of each class. We choose the brane with the maximal
L-label for each case.

3.3.1 Two brane moduli

The maximal brane with two moduli has label L = (3, 3, 1, 1, 1). The brane
moduli are those given in (3.4) and (3.5). We observe that the bulk modulus
φ2 = x1x2x3x4x5 is always in the boundary cohomology and contributes to
the F -term associated with the obstruction (3.6). The bulk modulus φ1 =
x4

1x
4
2 is Q-exact and we have to take care of this by adding a deformation

α(1,0,0) such that {Q, α(1,0,0)} = φ1. One easily checks that8

α(1,0,0) = x4
2η̄1. (3.8)

Now we are ready to compute the Massey products to second order in defor-
mation theory. The following ones are non-zero:

y(1,0,1) = {α(1,0,0), Ψ1} = β1(x1, x2),

y(0,2,0) = Ψ1 · Ψ1 = −x4
1x

4
21,

y(0,1,1) = {Ψ1, Ψ2} = β2(x1, x2),

y(0,0,2) = Ψ2 · Ψ2 = x4
1x

4
21.

(3.9)

Here we wrote βi(xi) for non–diagonal Q-exact states, indicating their vari-
able dependence in parentheses. We note that all these Massey products
are Q-exact and have to be canceled by deformations at order 3. We do
not need to do this explicitly since all the exact states we get as well as the
higher deformations and brane moduli do not contain the variables x3, x4, x5,
whereas they appear in both obstructions. Therefore, at any order, no
Massey product can ever be proportional to an obstruction. Therefore we
only get deformations but no obstructions and thus no contribution to the
F-terms. The only F-term we have is

f1 : ϕ2 = 0, (3.10)

8This choice is not unique.
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where ϕ1 is the bulk modulus associated to φ2. This tells us that the bulk
deformation φ2 is not allowed in the presence of our brane. The F-terms
can be integrated to the following effective superpotential:

Weff = u1ϕ2. (3.11)

Furthermore, we conclude that the brane L = (3, 3, 1, 1, 1) has two unob-
structed boundary moduli.

The above structure arguments were enough to determine the full F-terms.
What we do not know from this reasoning is whether we need a finite or
an infinite number of deformations to obtain a matrix factorization of the
deformed Landau–Ginzburg superpotential. So, let us do some more steps
in deformation theory. At order two, we get four new deformations, two of
which are very simple:

α(0,2,0) = −α(0,0,2) = α(1,0,0),

α(1,1,0) = −x2
1x

2
2(η5 − η̄5)(η4 − η̄4)(η3 − η̄3)η̄2η2, (3.12)

α(0,1,1) = −2x4
2(η2 − η̄2)η̄1η1.

These deformations are not unique. For our particular choice, we get the
following Massey products at order 3:

y(1,2,0) = {α(1,0,0), α(0,2,0)} + {α(1,1,0), Ψ1} = 1
2β2(x1, x2),

y(1,1,1) = {α(1,1,0), Ψ2} + {α(1,0,0), α(0,1,1)} = β3(x1, x2),

y(0,3,0) = {α(0,2,0), Ψ1} = β2(x1, x2), (3.13)

y(0,2,1) = {α(0,2,0), Ψ2} + {α(0,1,1), Ψ1} = β4(x1, x2),

y(0,1,2) = {α(0,1,1), Ψ2} + {α(0,0,2), Ψ1} = −β1(x1, x2).

All the other possible Massey products at this order are 0. Three of the five
new deformations are easy to find:

α(1,2,0) = 1
2α(0,1,1),

α(0,3,0) = −α(0,1,2) = α(1,1,0),

α(1,1,1) = −2x4
2η̄1η2η̄2,

α(0,2,1) = −2x2
1x

2
2(η5 − η̄5)(η4 − η̄4)(η3 − η̄3)η2(η1 − η̄1).

(3.14)
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With this specific choice there are the following non-zero Massey products
at order 4:

y(2,2,0) = α(1,1,0)α(1,1,0) + {α(1,0,0), α(1,2,0)} = 1
2β3(x1, x2),

y(1,3,0) = {α(1,1,0), α(0,2,0)} + {α(1,2,0), Ψ1} + {α(1,0,0), α(0,3,0)} = 1
2β4,

y(0,4,0) = α(0,2,0) · α(0,2,0) + {α(0,3,0), Ψ1} = 1
2β2(x1, x2),

y(0,3,1) = {α(0,2,0), α(0,1,1)} + {α(0,3,0), Ψ2} + {α(0,2,1), Ψ1} = β5(x1, x2),

y(0,2,2) = {α(0,2,0), α(0,0,2)} + α(0,1,1) · α(0,1,1) + {α(0,2,1), Ψ2} + {α(0,1,2), Ψ1}
= β6(x1, x2),

y(0,1,3) = {α(0,1,1), α(0,0,2)} + {α(0,1,2), Ψ1} = −β3(x1, x2). (3.15)

Four of these six new deformations are identical to deformations at lower
order:

α(2,2,0) = −1
2α(0,1,3) = 1

2α(1,1,1),

α(1,3,0) = 1
2α(0,2,1),

α(0,4,0) = 1
2α(0,1,1), (3.16)

α(0,3,1) = −2x4
2η2η̄1η̄2,

α(0,2,2) = 3x4
2η2η̄1η1 + x4

2η̄2η̄1η1.

Before we give up, let us list the non-zero Massey products at order five in
deformation theory:

y(1,4,0) = {α(1,1,0), α(0,3,0)} + {α(0,2,0), α(1,2,0)} + {α(1,3,0), Ψ1}
+ {α(0,4,0), α(1,0,0)} = β7(x1, x2),

y(1,3,1) = {α(1,1,0), α(0,2,1)} + {α(0,2,0), α(1,1,1)} + {α(0,1,1), α(1,2,0)}
+ {α(1,3,0), Ψ2} + {α(0,3,1), α(1,0,0)} = β8(x1, x2),

y(0,5,0) = {α(0,2,0), α(0,3,0)} + {α(0,4,0), Ψ1} = 1
2β4(x1, x2),

y(0,4,1) = {α(0,2,0), α(0,2,1)} + {α(0,1,1), α(0,3,0)} + {α(0,3,1), Ψ1}
+ {α(0,4,0), Ψ2} = −2β1(x1, x2),

y(0,3,2) = {α(0,2,0), α(0,1,2)} + {α(0,1,1), α(0,2,1)} + {α(0,0,2), α(0,3,0)}
+ {α(0,2,2), Ψ1} + {α(0,3,1), Ψ2} = −3

2β4(x1, x2).

(3.17)

We note a recurring pattern: certain deformations (or linear combinations
thereof) are produced at every order. This suggests that the algorithm keeps
going on forever. This is however no proof since these expressions are not
produced in the same way at every order but rather come out of increasingly
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complicated combinations of deformations. Furthermore, it is not excluded
that there exists a choice of deformations for which the algorithm terminates
after a finite number of steps.

Correlators: We can test our results by computing three-point amplitudes
on the disk and bulk-to-boundary two-point functions, using the residue
formula of Kapustin and Li. For this brane, there is only one non-zero
correlator:

〈Ψ1φ2〉 = 1. (3.18)
This correlator is consistent with the single F-term and the effective super-
potential we have.

3.3.2 One brane modulus

Let us now discuss the tensor product brane L = (3, 1, 1, 1, 1), which has
only one brane modulus Ψ1 which has the same charge decomposition as
(3.4). Furthermore, we still have the boundary deformation which produces
the bulk deformation φ1, which is the same as in the example with two
brane moduli but will now be labeled as α(1,0). There are only two non-zero
Massey products at order 2:

y(1,1) = {α(1,0), Ψ1} = β1(x1, x2),

y(0,2) = Ψ1Ψ1 = −x4
1x

4
21 = β2(x1, x2).

(3.19)

Again, all possible deformations of Q only depend on x1, x2 and therefore
their higher products can never contribute to the obstructions. As in the
two-moduli case, the only F-term is ϕ2 = 0, which renders one bulk defor-
mation inconsistent. The effective superpotential is Weff = u1ϕ2. The single
boundary modulus of this brane is unobstructed. This example, or rather
the brane L = (1, 1, 1, 1, 1) has already been discussed in [17].

Let us furthermore calculate the deformations up to order five in order to
collect evidence that the deformation theory algorithm does not terminate.
At order two we have gained two more deformations, α(1,1) and α(0,2):

α(0,2) = α(1,0),

α(1,1) = −x2
1x

2
2(η5 − η̄5)(η4 − η̄4)(η3 − η̄3)η̄2η2.

(3.20)

At order three, the following Massey products are non-zero:

y(1,2) = {α(0,2), α(1,0)} + {α(1,1), Ψ1} = β3(x1, x2),

y(0,3) = {α(0,2), Ψ1} = β1(x1, x2).
(3.21)
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We make the following choice for the α’s:

α(0,3) = α(1,1),

α(1,2) = x4
2η1η2η̄1 + x6

2η1η̄1η̄2.
(3.22)

At order four the following Massey products are non-zero:

y(2,2) = {α(1,2), α(1,0)} + α(1,1)α(1,1) = β4(x1, x2),

y(1,3) = {α(1,1), α(0,2)} + {α(1,2), Ψ1} + {α(0,3), α(1,0)} = β5(x1, x2),

y(0,4) = α(0,2)α(0,2) + {α(0,3), Ψ1} = β3(x1, x2).
(3.23)

There are three new deformations:

α(0,4) = α(1,2),

α(1,3) = x2
1(η5 − η̄5)(η4 − η̄4)(η3 − η̄3)η2(η1 − η̄1),

α(2,2) = −x4
2η̄1η̄2η2.

(3.24)

With our particular choice of deformations, we find the following non-zero
Massey products at order five:

y(2,3) = {α(1,1), α(1,2)} + {α(2,2), Ψ1} + {α(1,3), α(1,0)} = −β1(x1, x2),

y(1,4) = {α(1,1), α(0,3)} + {α(0,2), α(1,2)} + {α(1,3), Ψ1}
+ {α(0,4), α(1,0)} = β4(x1, x2),

y(0,5) = {α(0,2), α(0,3)} + {α(0,4), Ψ1} = β5(x1, x2).
(3.25)

Just like in the two–moduli case, deformations from lower orders seem to
reappear at higher orders which suggests that the procedure never stops.

Correlators: The Kapustin–Li formula only yields one non-vanishing cor-
relator:

〈Ψ1φ2〉 = 1. (3.26)

This is again consistent with the F-term ϕ2 = 0 and Weff .

4 The model P(11226)[12]/Z12 × (Z6)2

Here we have the following superpotential:

W = x12
1 + x12

2 + x6
3 + x6

4 + x2
5 (4.1)
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with a diagonal Z12 orbifold action. There is a Z12 × (Z6)2 orbifold action
which has the following generators:

g1: (1, 11, 0, 0, 0),

g2: (2, 0, 10, 0, 0), (4.2)

g3: (2, 0, 0, 10, 0).

The two bulk moduli are:

φ1 = x6
1x

6
2,

φ2 = x1x2x3x4x5.
(4.3)

Via the equations of motion of x5 there is an alternative way to write the
modulus φ2. We can also choose φ2 = x2

1x
2
2x

2
3x

2
4.

We list the tensor product branes which have moduli in table A.2.

4.1 Discussion of Moduli

The branes in this model can have at most four moduli. We will give them
explicitly for the maximal branes labeled by L = (5, 5, 2, 2, 0). The modulus
with labels 1

6
1 ⊗ 1

6
1 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01 looks as follows:

Ψ1 =
(

0 x1
−x1 0

)
⊗

(
0 x2

−x2 0

)
⊗

(
x3 0
0 x3

)
⊗

(
x4 0
0 x4

)
⊗

(
0 1

−1 0

)
.

(4.4)
The modulus with labels 1

6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01 has the following form:

Ψ2 =
(

x1 0
0 x1

)
⊗

(
x2 0
0 x2

)
⊗

(
x3 0
0 x3

)
⊗

(
x4 0
0 x4

)
⊗

(
0 1

−1 0

)
. (4.5)

The third modulus with labels 1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01 looks like this:

Ψ3 =
(

0 x3
1

−x3
1 0

)
⊗

(
0 x3

2
−x3

2 0

)
⊗

(
0 1

−1 0

)
⊗

(
0 1

−1 0

)
⊗

(
0 1

−1 0

)
.

(4.6)
The fourth modulus with labels 1

2
0 ⊗ 1

2
0 ⊗ 01 ⊗ 01 ⊗ 01 is represented by the

following 32 × 32 matrix:

Ψ4 =
(

x3
1 0
0 x3

1

)
⊗

(
x3

2 0
0 x3

2

)
⊗

(
0 1

−1 0

)
⊗

(
0 1

−1 0

)
⊗

(
0 1

−1 0

)
(4.7)
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4.2 Obstructions

For the L = (5, 5, 2, 2, 0) brane there are four bosonic open string states
which are the obstructions to the deformations of (4.4) to (4.7).

The obstruction Serre dual to (4.4) has structure 2
3
0 ⊗ 2

3
0 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00:

Φ1 =
(

x4
1 0
0 x4

1

)
⊗

(
x4

2 0
0 x4

2

)
⊗

(
0 x3

−x3 0

)
⊗

(
0 x4

−x4 0

)
⊗

(
1 0
0 1

)
.

(4.8)

The obstruction Serre dual to (4.5) has structure 2
3
1 ⊗ 2

3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00:

Φ2 =
(

0 x4
1

−x4
1 0

)
⊗

(
0 x4

2

−x4
2 0

)
⊗

(
0 x3

−x3 0

)
⊗

(
0 x4

−x4 0

)
⊗

(
1 0
0 1

)
.

(4.9)

The obstruction corresponding to (4.6) has structure 1
3
0 ⊗ 1

3
0 ⊗ 2

3
0 ⊗

2
3
0 ⊗ 00:

Φ3 =
(

x2
1 0
0 x2

1

)
⊗

(
x2

2 0
0 x2

2

)
⊗

(
x2

3 0
0 x2

3

)
⊗

(
x2

4 0
0 x2

4

)
⊗

(
1 0
0 1

)
. (4.10)

This is the bulk deformation x2
1x

2
2x

2
3x

2
4. Finally we have a charge 2 boson

1
3
1 ⊗ 1

3
1 ⊗ 2

3
0 ⊗ 2

3
0 ⊗ 00 which is Serre dual to (4.7):

Φ4 =
(

0 x2
1

−x2
1 0

)
⊗

(
0 x2

2

−x2
2 0

)
⊗

(
x2

3 0
0 x2

3

)
⊗

(
x2

4 0
0 x2

4

)
⊗

(
1 0
0 1

)
.

(4.11)

4.3 Massey products and F-terms

Now we discuss deformations and obstructions of the branes on this hyper-
surface. There are five classes of branes.

4.3.1 Four brane moduli

The brane with maximal L-label (5, 5, 2, 2, 0) has four moduli which are
given explicitly in (4.4) to (4.7). Furthermore, all tensor product branes with
labels L1, L2 ≥ 4 and L3, L4 = 2 have four moduli. The bulk deformation
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φ1 = x6
1x

6
2 is Q-exact for every brane, whereas the other bulk modulus, writ-

ten as φ2 = x2
1x

2
2x

2
3x

2
4, coincides with the boundary modulus (4.10). In order

to take care of the Q-exact bulk deformation we define

α(1,0,0,0,0) = x6
2η̄1. (4.12)

There are several non-vanishing Massey products at order 2:

y(1,1,0,0,0) = {α(1,0,0,0,0), Ψ1} = β1(x1, x2, x3, x4),

y(1,0,0,1,0) = {α(1,0,0,0,0), Ψ3} = β2(x1, x2),

y(0,2,0,0,0) = Ψ1 · Ψ1 = x2
1x

2
2x

2
3x

2
4 1 = Φ3,

y(0,1,1,0,0) = {Ψ1, Ψ2} = −2Φ4,

y(0,1,0,1,0) = {Ψ1, Ψ3} = 2Φ1,

y(0,1,0,0,1) = {Ψ1, Ψ4} = 2Φ2,

y(0,0,2,0,0) = Ψ2 · Ψ2 = −x2
1x

2
2x

2
3x

2
4 1 = −Φ3,

y(0,0,1,1,0) = {Ψ2, Ψ3} = −2Φ2,

y(0,0,1,0,1) = {Ψ2, Ψ4} = 2Φ1,

y(0,0,0,2,0) = −x6
1x

6
21 = β3(x1, x2),

y(0,0,0,1,1) = β4(x1, x2),

y(0,0,0,0,2) = x6
1x

6
21 = −β3(x1, x2).

(4.13)

All the Massey products that are Q-exact states lead to second-order defor-
mations of the matrix factorization:

α(0,0,0,2,0) = −α(0,0,0,0,2) = α(1,0,0,0,0),

α(1,1,0,0,0) = x1x2x3x4(η5 − η̄5)η̄2η2,

α(1,0,0,1,0) = x3
1x

3
2(η5 − η̄5)(η4 − η̄4)(η3 − η̄3)η̄2η2,

α(0,0,0,1,1) = −2x6
2(η2 − η̄2)η̄1η1. (4.14)

Since this model is quite tricky, let us list the F-terms at order two:

f
(2)
1 : u1u3 + u2u4 = 0,

f
(2)
2 : u1u4 − u2u3 = 0,

f
(2)
3 : u2

1 − u2
2 − ϕ2 = 0,

f
(2)
4 : u1u2 = 0.

(4.15)
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The choice of basis B′
3 for the Massey products at order three is slightly

problematic since the equations above are not quite independent when they
are extended to order three. If we, for instance, multiply the first equation
with u3 and the second equation with u4 we find the following:

u2u3u4 = −u1u
2
3

u2u3u4 = u1u
2
4

}
⇒ u1u

2
4 = −u1u

2
3. (4.16)

Such relations reduce the dimension of the basis and are easily overlooked.
It is helpful to use the computer algebra program Singular [29] to compute
a basis of monomials of order three in a quotient ring defined by the ideal
defined by (4.15) multiplied by {u1, u2, u3, u4}.

At order 3 there are five non-zero Massey products which do not get
corrected by the obstructions at order two:

y(1,0,0,2,0) = {α(1,0,0,1,0), Ψ3} + {α(0,0,0,2,0), α(1,0,0,0,0)} = 1
2β4(x1, x2),

y(1,0,0,1,1) = {α(1,0,0,1,0), Ψ4} + {α(0,0,0,1,1), α(1,0,0,0,0)} = β5(x1, x2),

y(0,0,0,3,0) = {α(0,0,0,2,0), Ψ3} = β2(x1, x2),

y(0,0,0,2,1) = {α(0,0,0,2,0), Ψ4} + {α(0,0,0,1,1), Ψ3} = β6(x1, x2),

y(0,0,0,1,2) = {α(0,0,0,1,1), Ψ4} + {α(0,0,0,0,2), Ψ3} = −β2(x1, x1).
(4.17)

Furthermore, there are the following products which get contributions from
the obstructions:

y(0,0,1,0,2) = {α(0,0,0,0,2), Ψ2} − {α(0,0,0,1,1), Ψ1} = β7(x1, x2, x3, x4),

y(0,0,1,1,1) = {α(0,0,0,1,1), Ψ2} − {α(0,0,0,2,0), Ψ1} + {α(0,0,0,0,2), Ψ1}
= 1

2β1(x1, x2, x3, x4),

y(1,0,1,0,1) = −{α(1,1,0,0,0), Ψ3} − {α(1,0,0,1,0), Ψ1} = 2Φ2,

y(1,0,2,0,0) = {α(1,1,0,0,0), Ψ1} = −Φ4.

(4.18)

Four of the six new deformations coincide with deformations at lower order:

α(0,0,0,3,0) = −α(0,0,0,1,2) = −α(1,0,0,1,0),

α(1,0,0,2,0) = 1
2α(0,0,0,1,1),

α(0,0,1,1,1) = −2α(1,1,0,0,0),

α(1,0,0,1,1) = −2x6
2η̄1((1 + η2η̄2) − 2η1),

α(0,0,0,2,1) = −2x3
1x

3
2(η5 − η̄5)(η4 − η̄4)(η3 − η̄3)η2(η1 − η̄1),

α(0,0,1,0,2) = −2x1x2x3x4(η5 − η̄5)η2(η1 − η̄1).
(4.19)
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At order four, the following Massey products contribute:

y(2,0,0,2,0) = {α(1,0,0,2,0), α(1,0,0,0,0)} + α(1,0,0,1,0)α(1,0,0,1,0) = 1
2β5(x1, x2),

y(1,0,0,3,0) = {α(1,0,0,1,0), α(0,0,0,2,0)} + {α(1,0,0,2,0), Ψ3}
+ {α(0,0,0,3,0), α(1,0,0,0,0)} = 1

2β6(x1, x2),

y(0,0,0,4,0) = {α(0,0,0,3,0), Ψ3} + α(0,0,0,2,0)α(0,0,0,2,0) = 1
2β4(x1, x2),

y(0,0,0,3,1) = {α(0,0,0,2,0), α(0,0,0,1,1)} + {α(0,0,0,3,0), Ψ4}
+ {α(0,0,0,2,1), Ψ3} = β8(x1, x2),

y(0,0,0,2,2) = {α(0,0,0,2,0), α(0,0,0,0,2)} + α(0,0,0,1,1)α(0,0,0,1,1) + {α(0,0,0,2,1), Ψ4},

+ {α(0,0,0,1,2), Ψ3} = β9(x1, x2),

y(0,0,0,1,3) = {α(0,0,0,1,1), α(0,0,0,0,2)} + {α(0,0,0,1,2), Ψ4} = −β5(x1, x2).
(4.20)

There are further non-zero products which involve the relations:

y(1,0,1,0,2) = {α(0,0,1,0,2), α(1,0,0,0,0)} − {α(0,0,0,0,2), Ψ2}
+ {α(1,1,0,0,0), α(0,0,0,1,1)} + {α(1,0,0,1,1), Ψ1} = 9β1(x1, x2, x3, x4),

y(1,0,1,1,1) = {α(0,0,1,1,1), α(1,0,0,0,0)} − {α(1,1,0,0,0), α(0,0,0,2,0)}
− {α(1,0,0,2,0), Ψ1} − {α(0,0,0,1,1), Ψ1} = 1

2β7(x1, x2, x3, x4),

y(0,0,1,0,3) = − {α(0,0,0,2,1), Ψ2} + {α(0,0,1,0,2), Ψ4} − {α(0,0,1,1,1), Ψ3}
− {α(0,0,0,1,2), Ψ1} + {α(0,0,0,3,0), Ψ1} = −4Φ2,

y(0,0,1,1,2) = {α(0,0,0,1,2), Ψ2} − {α(0,0,0,3,0), Ψ2} + {α(0,0,1,0,2), Ψ3}
+ {α(0,0,1,1,1), Ψ} − {α(0,0,0,2,1), Ψ1} = 4Φ1.

(4.21)

Due to increasing complexity, we do not continue with the iteration and
note the following F-terms at order four:

f
(4)
1 : u1u3 + u2u4 + 4u2u3u

2
4 = 0,

f
(4)
2 : u1u4 − u2u3 − 4u2u

3
4 + 2ϕ1u2u4 = 0,

f
(4)
3 : u2

1 − u2
2 − ϕ2 = 0,

f
(4)
4 : −2u1u2 − ϕ1u

2
2 = 0.

(4.22)

We can make some statements about the higher order deformations. We
note that some exact states from lower orders reappear at higher orders.
This suggests that the algorithm does not terminate. Furthermore, we note
that in particular exact states which contain the variables {x1, x2, x3, x4}
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are among these recurring deformations which implies that obstructions may
occur at very high orders. Therefore, the chances to get the full F-terms
from deformation theory are not very good.

Correlators: The two- and threepoint correlators are consistent with the
F-terms at order two.

〈Ψ1Ψ1Ψ3〉 = −1,

〈Ψ2Ψ2Ψ3〉 = 1,

〈Ψ1Ψ2Ψ4〉 = 〈Ψ1Ψ4Ψ2〉 = −1,

〈Ψ1φ2〉 = −1.

(4.23)

4.3.2 Three brane moduli

Tensor product branes with 3 ≤ L1 ≤ 5, L2 = 3 and L3, L4 = 2 have three
brane moduli. For concreteness, we will discuss the brane L = (5, 3, 2, 2, 0).
The modulus with the same charge distribution as (4.4) is no longer present.
That is why the remaining three moduli will be called Ψ2, Ψ3, Ψ4 here. The
bulk modulus φ1 is Q-exact, and the associated boundary deformation is

α(1,0,0,0) = x6
2η̄1. (4.24)

The non-zero Massey products at order two are the following:

y(1,0,1,0) = {α(1,0,0,0), Ψ3} = β1(x1, x2),

y(0,2,0,0) = Ψ2Ψ2 = −x2
1x

2
2x

2
3x

2
41 = −Φ3,

y(0,1,1,0) = {Ψ2, Ψ3} = −2Φ2,

y(0,1,0,1) = {Ψ2, Ψ4} = β2(x1, x2, x3, x4),

y(0,0,2,0) = Ψ3Ψ3 = −x6
1x

6
21 = β3(x1, x2),

y(0,0,1,1) = {Ψ3, Ψ4} = β4(x1, x2),

y(0,0,0,2) = Ψ4Ψ4 = x6
1x

6
21 = −β3(x1, x2).

(4.25)

There are five new deformations:

α(0,0,2,0) = −α(0,0,0,2) = α(1,0,0,0),

α(1,0,1,0) = −x3
1x

3
2(η5 − η̄5)(η4 − η̄4)(η3 − η̄3)η2η̄2,

α(0,1,0,1) = 2x4
1x3x4(η4 − η̄4)(η3 − η̄3)η̄2,

α(0,0,1,1) = 2x4
2η1η2η̄1 + 2x8

2η1η̄1η̄2.

(4.26)
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Given our particular choice of deformations, there are five non-zero Massey
products:

y(1,0,2,0) = {α(1,0,1,0), Ψ3} + {α(0,0,2,0), α(1,0,0,0)} = −1
2β4(x1, x2),

y(1,0,1,1) = {α(1,0,1,0), Ψ4} + {α(0,0,1,1), α(1,0,0,0)} = β5(x1, x2),

y(0,0,3,0) = {α(0,0,2,0), Ψ3} = β1(x1, x2),

y(0,0,2,1) = {α(0,0,2,0), Ψ4} + {α(0,0,1,1), Ψ3} = β6(x1, x2),

y(0,0,1,2) = {α(0,0,0,2), Ψ3} + {α(0,0,1,1), Ψ4} = −β1(x1, x2).

(4.27)

At this order we get five new deformations and no contribution to the
F-terms. Three of the deformations we have encountered previously:

α(0,0,3,0) = −α(0,0,1,2) = α(1,0,1,0),

α(1,0,1,2) = −1
2α(0,0,1,1),

α(1,0,1,1) = 2x6
2η̄1η2η̄2,

α(0,0,2,1) = 2x3
1x

5
2(η5 − η̄5)(η4 − η̄4)(η3 − η̄3)η̄2(η1 − η̄1).

(4.28)

At order four, there are seven new deformations:

y(2,0,2,0) = α(1,0,1,0)α(1,0,1,0) + {α(1,0,2,0), α(1,0,0,0)} = −1
2β5(x1, x2),

y(1,0,3,0) = {α(1,0,1,0), α(0,0,2,0)} + {α(1,0,2,0), Ψ3} + {α(0,0,3,0), α(1,0,0,0)}
= −1

2β6(x1, x2),

y(1,0,2,1) = {α(1,0,1,0), α(0,0,1,1)} + {α(1,0,2,0), Ψ4} + {α(1,0,1,1), Ψ3},

+ {α(0,0,2,1), α(1,0,0,0)} = 2β1(x1, x2),

y(0,0,4,0) = α(0,0,2,0)α(0,0,2,0) + {α(0,0,3,0), Ψ3} = −1
2β4(x1, x2),

y(0,0,3,1) = {α(0,0,1,1), α(0,0,2,0)} + {α(0,0,3,0), Ψ4} + {α(0,0,2,1), Ψ3}
= β7(x1, x2),

y(0,0,2,2) = {α(0,0,2,0), α(0,0,0,2)} + α(0,0,1,1)α(0,0,1,1) + {α(0,0,2,1), Ψ4},

+ {α(0,0,1,2), Ψ3} = β8(x1, x2),

y(0,0,1,3) = {α(0,0,1,1), α(0,0,0,2)} + {α(0,0,1,2), Ψ4} = −β5(x1, x2).
(4.29)

Having seven deformations at order seven four huge combinatorics at order
five. Since recurring deformations are already visible at this order there is
not much hope that the algorithm will terminate at order five. Therefore we
will content ourselves with arguing that there are no further obstructions
at order five. Massey products at order five are either products of order
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four deformations with the brane moduli or products of order two and order
three deformations. Since the order four deformations only contain x1, x2
an obstruction can only be produced by multiplication with Ψ2 but such
products are not allowed due to the obstructions. From the other possible
combination, only products containing α(0,1,0,1) may lead to an obstruction.
However, also these products are forbidden due to the F-terms at lower
order.

Thus, (up to order five) we have found the following F-terms:

f
(5)
2 : u2u3 = 0,

f
(5)
3 : −u2

2iϕ2 = 0,

f
(5)
4 : 0.

(4.30)

There are two solutions to these equations:

u2 = 0, ϕ2 = 0,

u3 = 0, u2 = ±i
√

ϕ2.
(4.31)

The first solution tells us that, if u2 = 0, the remaining boundary deforma-
tion is unobstructed and the bulk deformation x2

1x
2
2x

2
3x

2
4 is not allowed. The

second solution shows the existence of a BPS domain wall.

The F-terms can be integrated to the following effective superpotential:

Weff = u2
2u3 + ϕ2u3. (4.32)

Correlators: For the given brane there are two non-zero correlators which
can be computed with the residue formula:

〈Ψ2Ψ2Ψ3〉 = −1,

〈Ψ3φ2〉 = 1.
(4.33)

This is consistent with the F-terms and Weff .

4.3.3 Two brane moduli — Case A

The first two-moduli case we discuss is a brane where the moduli (4.4) and
(4.5) are present. This happens for 4 ≤ L1, L2 ≤ 5 if at least one of L3 and
L4 is 1. The maximal possible label for such a brane is L = (5, 5, 2, 1, 0).
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In this case both bulk deformations are Q-exact. The associated first order
deformations of the matrix factorization are:

α(1,0,0,0) = x6
2η̄1,

α(0,1,0,0) = x2
1x

2
2x

2
3η̄4.

(4.34)

There are four non-vanishing Massey products at order 2:

y(1,0,1,0) = {α(1,0,0,0), Ψ1} = β1(x1, x2, x3.x4),

y(0,0,2,0) = Ψ1 · Ψ1 = x2
1x

2
2x

2
3x

2
41 = β2(x1, x2, x3, x4),

y(0,0,1,1) = {Ψ1, Ψ2} = β3(x1, x2, x3, x4),

y(0,0,0,2) = Ψ2 · Ψ2 = −x2
1x

2
2x

2
3x

2
4 = −β2(x1, x2, x3, x4).

(4.35)

The order two deformations are:

α(0,0,0,2) = −α(0,0,2,0) = α(1,0,0,0),

α(1,0,1,0) = x1x2x3x4(η5 − η̄5)η2η̄2,

α(0,0,1,1) = 2x2
1x

2
2x

2
3η̄4(η2 − η̄2)(η1 − η̄1).

(4.36)

At order three, only two Massey products are non-zero:

y(1,0,2,0) = {α(1,0,1,0), Ψ1} + {α(0,0,2,0), α(1,0,0,0)} = −1
2β3(x1, x2, x3, x4),

y(1,0,1,1) = {α(1,0,1,0), Ψ2} + {α(0,0,1,1), α(1,0,0,0)} = β4(x1, x2, x2, x4).
(4.37)

The new deformations are:

α(1,0,2,0) = −1
2α(0,0,1,1),

α(1,0,1,1) = −2x2
1x

2
2x

3
3η̄4η2η̄2.

(4.38)

With this choice of deformations there is only one non-zero Massey product
at order four:

y(2,0,2,0) = α(1,0,1,0)α(1,0,1,0) + {α(1,0,2,0), α(1,0,0,0)} = −1
2β4(x1, x2, x3, x4).

(4.39)

We have encountered this deformation before:

α(2,0,2,0) = −1
2α(1,0,2,0). (4.40)

Since there is only a small number of deformations, it is easy to go to higher
order. In fact it is no problem to compute the Massey products up to order
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eight. It turns out that all these higher products are zero. Since the last
deformations has been found at order four, there are no more products to
define at order nine. Therefore the algorithm terminates at order eight. The
complete deformed matrix factorization is

Qdef = Q + ϕ1α(1,0,0,0) + ϕ2α(0,1,0,0) + u1Ψ1 + u2Ψ2

+ ϕ1u1α(1,0,1,0) + u2
1α(0,0,2,0) + u1u2α(0,0,1,1) + u2

2α(0,0,0,2)

+ ϕ1u
2
1α(1,0,2,0) + ϕ1u1u2α(1,0,1,1) + ϕ2

1u
2
1α(2,0,2,0). (4.41)

Upon squaring Qdef all the brane moduli dependence miraculously cancels
and we are left with the bulk deformed Landau–Ginzburg superpotential.
All the F-terms are zero.

Correlators: All of the correlators with unintegrated insertions are zero.
This is consistent with the Massey product calculation.

4.3.4 Two brane moduli — Case B

There is a second class of branes which have two moduli. They have
2 ≤ L1 ≤ 5 and L2 = L3 = L4 = 2. We discuss the brane L = (5, 2, 2, 2, 0).
The two moduli are (4.5) and (4.6). Only the bulk deformation x6

1x
6
2 is

Q-exact, and we define

α(1,0,0) = x6
2η̄1. (4.42)

The non-zero Massey products are:

y(1,0,1) = {α(1,0,0), Ψ3} = β1(x1, x2),

y(0,2,0) = Ψ2 · Ψ2 = −x2
1x

2
2x

2
3x

2
41 = −Φ3,

y(0,1,1) = {Ψ2, Ψ3} = −2Φ2,

y(0,0,2) = −x6
1x

6
21 = β2(x1, x2).

(4.43)

There are two deformations:

α(0,0,2) = α(1,0,0),

α(1,0,1) = x3
1x

3
2(η5 − η̄5)(η4 − η̄4)(η3 − η̄3)η2η̄2.

(4.44)

At order three there are two non-vanishing Massey products:

y(1,0,2) = {α(1,0,1), Ψ3} + {α(0,0,2), α(1,0,0)} = β3(x1, x2),

y(0,0,3) = {α(0,0,2), Ψ3} = β1(x1, x2).
(4.45)
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For the deformations we find

α(0,0,3) = α(1,0,1),

α(1,0,2) = −x6
1(η1 − η̄1)η2η̄2.

(4.46)

Going to order four, the following products are non-zero:

y(1,0,3) = {α(1,0,1), α(0,0,2)} + {α(1,0,2), Ψ3} + {α(0,0,3), α(1,0,0)} = β4(x1, x2),

y(0,0,4) = {α(0,0,3), Ψ3} = β3(x1, x2). (4.47)

The corresponding deformations are:

α(0,0,4) = α(0,2,1),

α(1,0,3) = (η5 − η̄5)(η4 − η̄4)(η3 − η̄3)η1(−x3
1η2 + x3

1x
6
2η̄2). (4.48)

At order five, three Massey products lead to new deformations:

y(0,0,5) = {α(0,0,2), α(0,0,3)} + {α(0,0,4), Ψ3} = β4(x1, x2),

y(1,0,4) = {α(1,0,2), α(0,0,2)} + {α(1,0,1), α(0,0,3)} + {α(1,0,3), Ψ3}
+ {α(0,0,4), α(1,0,0)} = x6

1x
6
21 = −β2(x1, x2),

y(2,0,3) = {α(1,0,1), α(1,0,2)} + {α(1,0,3), α(1,0,0)} = −β1(x1, x2).

(4.49)

We notice recurring patterns of deformations at every order. This sug-
gests that the deformation theory algorithm does not terminate. Although
we cannot prove this rigorously, we observe that there will be no further
F-terms. The only way to get an obstruction at higher order would be to
compute a Massey product of a deformation with Ψ2 (which is the only one
that contains the variable x4) but all these products are forbidden due to
the deformations.

Therefore, the F-terms are:

f2: u2u3 = 0,

f3: u2
2 + ϕ2 = 0.

(4.50)

The two non-trivial solutions are:

u2 = 0, ϕ2 = 0,

u3 = 0, u2 = ±i
√

ϕ2.
(4.51)
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The F-terms are easily integrated:

Weff = u2
2u3 + u3ϕ2. (4.52)

Note that this is the same effective superpotential as we had in the three-
moduli example.

Correlators: All the correlators we can get from the residue formula turn
out to be consistent with Weff :

〈Ψ2Ψ2Ψ3〉 = −1,

〈ψ3φ2〉 = 1.
(4.53)

4.3.5 One brane modulus

Finally, all remaining branes with Li ≥ 1 have one modulus (4.5). Both bulk
deformations are Q-exact. The maximal brane with this property has label
L = (5, 3, 2, 1, 0). The first-order bulk deformations are:

α(1,0,0) = x6
2η̄1,

α(0,1,0) = x2
1x

2
2x

2
3η̄4.

(4.54)

The only non-zero Massey product is

y(0,0,2) = Ψ2Ψ2 = −x2
1x

2
2x

2
3x

2
41. (4.55)

To cancel this exact term we define α(0,0,2) = −α(0,1,0). Since this anticom-
mutes with everybody, the algorithm breaks at order three. There are no
F-terms and the full deformation is

Qdef = Q + ϕ1α(1,0,0) + ϕ2α(0,1,0) + u2Ψ2 + u2
2α(0,0,2). (4.56)

It is easy to check that this squares to the bulk-deformed Landau–Ginzburg
superpotential.

We conclude that this brane has an unobstructed boundary modulus.

Correlators: All the correlators we can compute are zero. This is consis-
tent with the fact that the boundary modulus of this brane is unobstructed.
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5 The model P(12234)[12]/(Z6)2

The Landau–Ginzburg superpotential associated to this degree 12 hypersur-
face is

W = x12
1 + x6

2 + x6
3 + x4

4 + x3
5 (5.1)

with a diagonal Z12 orbifold action. We impose the following (Z6)2 orbifold
action:

g1: (2, 10, 0, 0, 0),

g2: (2, 0, 10, 0, 0).
(5.2)

The two bulk deformations are:

φ1 = x6
1x

2
4,

φ2 = x1x2x3x4x5.
(5.3)

This model has only few branes which have moduli. We list them in
table A.3.

5.1 Discussion of moduli

We give the explicit expressions for the brane moduli of the tensor product
brane with the highest L-label L = (5, 2, 2, 1, 0). The charge 1 fermion with
R-charges 1

2
1 ⊗ 01 ⊗ 01 ⊗ 1

2
0 ⊗ 00 is

Ψ1 =
(

0 x3
1

−x3
1 0

)
⊗

(
0 1

−1 0

)
⊗

(
0 1

−1 0

)
⊗

(
x4 0
0 x4

)
⊗

(
1 0
0 1

)
. (5.4)

The second modulus with structure 1
2
0 ⊗ 01 ⊗ 01 ⊗ 1

2
1 ⊗ 00 is

Ψ2 =
(

x3
1 0
0 x3

1

)
⊗

(
0 1

−1 0

)
⊗

(
0 1

−1 0

)
⊗

(
0 x4

−x4 0

)
⊗

(
1 0
0 1

)
. (5.5)

5.2 Obstructions

The open string states describing the obstructions to the above deformations
look as follows. The obstruction which is Serre dual to (5.4) has charges
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1
3
0 ⊗ 2

3
0 ⊗ 2

3
0 ⊗ 01 ⊗ 1

3
1:

Φ1 =
(

x2
1 0
0 x2

1

)
⊗

(
x2

2 0
0 x2

2

)
⊗

(
x2

3 0
0 x2

3

)
⊗

(
0 1

−1 0

)
⊗

(
0 1

−x5 0

)
. (5.6)

The Serre dual of (5.5) is

Φ2 =
(

0 x2
1

−x2
1 0

)
⊗

(
x2

2 0
0 x2

2

)
⊗

(
x2

3 0
0 x2

3

)
⊗

(
1 0
0 1

)
⊗

(
0 1

−x5 0

)
. (5.7)

This has structure 1
3
1 ⊗ 2

3
0 ⊗ 2

3
0 ⊗ 00 ⊗ 1

3
1.

5.3 Massey products and F-terms

In this model we have to distinguish between branes with two moduli and
one modulus. We present examples in the following subsections. One special
feature of this model is that both bulk deformations are always Q-exact
for all tensor product branes. For our particular examples we can choose
the following first-order deformations of the matrix factorization to produce
these:

α(1,0,0,(0)) = x2
4η̄1,

α(0,1,0,(0)) = x1x2x3x4η̄5.
(5.8)

The index vector of the α’s has three or four entries, depending on whether
we have one or two brane moduli.

5.3.1 Two moduli

The maximal brane with two moduli has labels L = (5, 2, 2, 1, 0). The mar-
ginal open string states are (5.4) and (5.5). At order two in deformation
theory there are the following non-zero Massey products:

y(1,0,1,0) = {α(1,0,0,0), Ψ1} = β1(x1, x4),

y(0,0,2,0) = Ψ1Ψ1 = x6
1x

2
41 = β2(x1, x4),

y(0,0,0,2) = Ψ2Ψ2 = x6
1x

2
41 = β2(x1, x4).

(5.9)

All these products are Q-exact and only contain the variables x1, x4. In
order to cancel these terms we have to find higher order deformations of the
matrix factorization, and these will also only contain x1, x4. Also, the open
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string states only contain only these two variables. Obstructions (5.6) and
(5.7), however, contain the variables x2, x3, x5. These can never be obtained
by computing Massey products at any order.

Thus, we conclude that for this class of branes, both boundary deforma-
tions are unobstructed. There are no F-terms.

This could be the end of the story, but what is also interesting is to find
out whether there are any signs that the deformation theory algorithm ter-
minates at a finite order. Therefore, we go on and compute the deformations
up to order five. The deformations at order two can be chosen as follows:

α(0,0,0,2) = α(0,0,2,0) = −α(1,0,0,0),

α(1,0,1,0) = x3
1x4η4(η3 − η̄3)(η2 − η̄2).

(5.10)

At order three, there are three non-zero Massey products:

y(0,0,3,0) = {α(0,0,2,0), Ψ1} = −β1(x1, x4),

y(0,0,1,2) = {α(0,0,0,2), Ψ1} = −β1(x1, x4),

y(1,0,1,1) = {α(1,0,1,0), Ψ2} = x6
1x

2
41 = β2(x1, x4).

(5.11)

The deformations are easily computed:

α(0,0,3,0) = α(0,0,1,2) = −α(1,0,1,0),

α(1,0,1,0) = −α(1,0,0,0).
(5.12)

At order four, there are again three Massey products which lead to new
deformations:

y(1,0,2,1) = {α(1,0,1,1), Ψ1} = −β1(x1, x4),

y(0,0,3,1) = {α(0,0,3,0), Ψ2} = x6
1x

2
41 = β2(x1, x4),

y(0,0,1,3) = {α(0,0,1,2), Ψ2} = −x6
1x

2
41 = −β2(x1, x4).

(5.13)

The new deformations are:

α(1,0,2,1) = −α(1,0,1,0),

α(0,0,1,3) = −α(0,0,3,1) = α(1,0,0,0).
(5.14)
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At order five we find the following:

y(1,0,2,2) = {α(1,0,1,0), α(0,0,1,2)} + {α(1,0,2,1), Ψ2} = x6
1x

2
41 = β2(x1, x4),

y(0,0,4,1) = {α(0,0,3,1), Ψ1} = −β1(x1, x4),

y(0,0,2,3) = {α(0,0,1,3), Ψ1} = β1(x1, x4).
(5.15)

This is a particularly nice and simple example of a recurring pattern where it
is obvious that the deformation theory algorithm does not terminate. There
are only two kinds of higher order deformations which anticommute among
each other. Thus, the only contribution to higher Massey products can come
products with first order deformations. We find:

{α(1,0,0,0), Ψ1} = β1(x1, x4) ⇒ α(1,0,1,0) −→ {α(1,0,1,0), Ψ2}
= β2(x1, x4) ⇒ α(1,0,0,0). (5.16)

This structure repeats in a two–periodic way and stops the algorithm from
terminating.

Correlators: In agreement with the deformation theory, all the correlators
which can be computed by the Kapustin–Li formula are 0.

5.3.2 One modulus — Case A

As an example for a brane with one modulus we discuss the brane with
labels L = (5, 2, 2, 0, 0). For the class of branes represented by this model,
only the open string state (5.5) is left over. There is only one non-zero
Massey product at order 2:

y(0,0,2) = Ψ2Ψ2 = x6
1x

2
41 = β1(x1, x4). (5.17)

This can be canceled by deforming the brane with −α(1,0,0) at second order
in deformation theory. There are no further Massey products at higher
order. The deformed Q-operator is

Qdef = Q + ϕ1α(1,0,0) + ϕ2α(0,1,0) + u2Ψ2 − u2
2α(1,0,0). (5.18)

This deformed matrix factorization squares precisely to the deformed
Landau–Ginzburg superpotential. There are no F-terms, so the boundary
deformation is unobstructed.

Correlators: As expected, all the correlators that can be computed by the
Kapustin–Li formula are 0.



MASSEY PRODUCTS AND F-TERMS 271

5.3.3 One modulus — Case B

The final class of branes in this model is represented by the brane with label
L = (2, 2, 2, 1, 0). It has one modulus (5.4). There are two non-zero Massey
products at order 2:

y(1,0,1) = {α(1,0,0), Ψ1} = β1(x1, x4),

y(0,0,2) = Ψ1 · Ψ1 = x6
1x

2
41 = β2(x1, x4).

(5.19)

By the same argument as in the two-moduli case, the obstruction can never
be reached by Massey products at any order in deformation theory. There-
fore, the brane modulus is unobstructed.

Let us proceed to higher orders in deformation theory in order to find
out whether the number of deformations is finite or infinite. There are two
deformations at order two:

α(0,0,2) = −α(1,0,0),

α(1,0,1) = x3
1x4η4(η3 − η̄3)(η2 − η̄2).

(5.20)

At order three, there is only one non-zero Massey product:

y(0,0,3) = {α(0,0,2), Ψ1} = −β1(x1, x4). (5.21)

The corresponding deformation has already been computed: α(0,0,3) =
−α(1,0,1). Going to higher orders in deformation theory, we find that all
further Massey products are zero. Having no more deformations at our dis-
position, the algorithm terminates at order seven. The deformed matrix
factorization is

Qdef = Q + ϕ1α(1,0,0) + ϕ2α(0,1,0) + u1Ψ1

+ ϕ1u1α(1,0,1) + u2
2α(0,0,2) + u2

3α(0,0,3).
(5.22)

This squares to the bulk deformed Landau–Ginzburg superpotential.

Correlators: All the correlators which can be computed by the Kapustin–
Li formula are 0, which confirms that the modulus is unobstructed.
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6 The model P(12227)[14]/(Z7)2

The Landau–Ginzburg superpotential associated to this degree 14 hypersur-
face is

W = x14
1 + x7

2 + x7
3 + x7

4 + x2
5 (6.1)

with a diagonal Z14 orbifold action. We impose the following (Z7)2 orbifold
action:

g1: (2, 12, 0, 0, 0),

g2: (2, 0, 12, 0, 0).
(6.2)

The two bulk deformations are:

φ1 = x7
1x5,

φ2 = x1x2x3x4x5.
(6.3)

In this model we can again write φ2 = x2
1x

2
2x

2
3x

2
4 via the equations of motion

of x5. Furthermore, we can also rewrite φ1 = x8
1x2x3x4. We list the tensor

product branes with moduli in table A.4.

6.1 Discussion of moduli

The maximal brane L = (6, 2, 2, 2, 0) has four moduli. The open string state
with label 1

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01 looks as follows:

Ψ1 =
(

x1 0
0 x1

)
⊗

(
x2 0
0 x2

)
⊗

(
x3 0
0 x3

)
⊗

(
x4 0
0 x4

)
⊗

(
0 1

−1 0

)
. (6.4)

The open string state 1
7
1 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 00 has the following explicit form:

Ψ2 =
(

0 x1

−x1 0

)
⊗

(
x2 0
0 x2

)
⊗

(
x3 0
0 x3

)
⊗

(
x4 0
0 x4

)
⊗

(
1 0
0 1

)
. (6.5)

The open string state Ψ3 has the structure 4
7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 01:

Ψ3 =
(

0 x4
1

−x4
1 0

)
⊗

(
0 1

−x2 0

)
⊗

(
0 1

−x3 0

)
⊗

(
0 1

−x4 0

)
⊗

(
0 1

−1 0

)
.

(6.6)
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Finally, we have a state with label 4
7
0 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 00:

Ψ4 =
(

x4
1 0
0 x4

1

)
⊗

(
0 1

−x2 0

)
⊗

(
0 1

−x3 0

)
⊗

(
0 1

−x4 0

)
⊗

(
1 0
0 1

)
. (6.7)

6.2 Obstructions

The obstruction associated with (6.4) has structure 5
7
1 ⊗ 3

7
1 ⊗ 3

7
1 ⊗ 3

7
1 ⊗ 00:

Φ1 =
(

0 x5
1

−x5
1 0

)
⊗

(
0 x2

−x2
2 0

)
⊗

(
0 x3

−x2
3 0

)
⊗

(
0 x4

−x2
4 0

)
⊗

(
1 0
0 1

)
.

(6.8)

The Serre dual boson to (6.5) with label 5
7
0 ⊗ 3

7
1 ⊗ 3

7
1 ⊗ 3

7
1 ⊗ 01 explicitly

looks as follows:

Φ2 =
(

x5
1 0
0 x5

1

)
⊗

(
0 x2

−x2
2 0

)
⊗

(
0 x3

−x2
3 0

)
⊗

(
0 x4

−x2
4 0

)
⊗

(
0 1

−1 0

)
.

(6.9)

The obstruction corresponding to (6.6) has structure 2
7
0 ⊗ 4

7
0 ⊗ 4

7
0 ⊗ 4

7
0 ⊗ 00:

Φ3 =
(

x2
1 0
0 x2

1

)
⊗

(
x2

2 0
0 x2

2

)
⊗

(
x2

3 0
0 x2

3

)
⊗

(
x2

4 0
0 x2

4

)
⊗

(
1 0
0 1

)
. (6.10)

This is proportional to the bulk deformation x2
1x

2
2x

2
3x

2
4.

Finally, we have the boson 2
7
1 ⊗ 4

7
0 ⊗ 4

7
0 ⊗ 4

7
0 ⊗ 01 which is associated

with (6.7):

Φ4 =
(

0 x2
1

−x2
1 0

)
⊗

(
x2

2 0
0 x2

2

)
⊗

(
x2

3 0
0 x2

3

)
⊗

(
x2

4 0
0 x2

4

)
⊗

(
0 1

−1 0

)
.

(6.11)

6.3 Massey products and F-terms

6.3.1 Four moduli

We start by discussing the brane with labels L = (6, 2, 2, 2, 0). This brane
has four moduli, which are listed in (6.4) to (6.7). The bulk deformation
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φ1 = x8
1x2x3x3 is Q-exact. It can be produced in the matrix factorization

by the following deformation:

α(1,0,0,0,0) = x1x2x3x4η̄1. (6.12)

The first set of non-zero Massey products is:

y(1,0,1,0,0) = {α(1,0,0,0,0), Ψ2} = −x2
1x

2
2x

2
3x

2
41 = −Φ3,

y(1,0,0,1,0) = {α(1,0,0,0,0), Ψ3} = −Φ2,

y(0,2,0,0,0) = Ψ1Ψ1 = −x2
1x

2
2x

2
3x

2
41 = −Φ3,

y(0,1,0,1,0) = {Ψ1, Ψ3} = −2Φ1,

y(0,0,2,0,0) = Ψ2Ψ2 = −Φ3,

y(0,0,1,1,0) = {Ψ2, Ψ3} = −2Φ2,

y(0,0,0,2,0) = Ψ3Ψ3 = −x8
1x2x3x41 = β1(x1, x2, x3, x4),

y(0,0,0,1,1) = {Ψ3, Ψ4} = β2(x1, x2, x3, x4),

y(0,0,0,0,2) = Ψ4Ψ4 = x8
1x2x3x41 = −β1(x1, x2, x3, x4).

(6.13)

We get three new deformations and, for reasons explained below, we choose
the most general parametrization:

α(0,0,0,1,1) = x1x2x3x4(η5 − η̄5)((2 − k1)1 − 2η1η̄1),

α(0,0,0,0,2) = x1x2x3x4((−1 + k2)η1 − k2η̄1),

α(0,0,0,2,0) = x1x2x3x4((1 − k3)η1 + k3η̄1),
(6.14)

for arbitrary {k1, k2, k3}.

At order 3, there are six non-zero Massey products two of which get extra
contributions due to the obstructions:

y(0,0,1,0,2) = {α(0,0,0,0,2), Ψ2} = (2k2 − 1)Φ3,

y(0,0,0,3,0) = {α(0,0,0,2,0), Ψ3} = (1 − 2k3)Φ2,

y(0,0,0,2,1) = {α(0,0,0,2,0), Ψ4} + {α(0,0,0,1,1), Ψ3} = −2(k1 − 1)Φ1,

y(0,0,0,1,2) = {α(0,0,0,1,1), Ψ4} + {α(0,0,0,0,2), Ψ3} = (2k2 − 1)Φ2,

y(1,0,0,0,2) = {α(0,0,0,0,2), α(1,0,0,0,0)} = (k2 − 1)Φ3,

y(1,0,0,2,0) = {α(0,0,0,2,0), α(1,0,0,0,0)} − 1
2{α(0,0,0,2,0), Ψ2} = 1

2Φ3,

y(1,0,0,1,1) = {α(0,0,0,1,1), α(1,0,0,0,0)} − 1
2{α(0,0,0,1,1), Ψ2} = Φ4.

(6.15)
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Finally, there are five more products at order four:

y(0,0,0,0,4) = α(0,0,0,0,2)α(0,0,0,0,2) = k2(k2 − 1)Φ3,

y(0,0,0,4,0) = α(0,0,0,2,0)α(0,0,0,2,0) +
1 − 2k3

2
{α(0,0,0,2,0), Ψ2}

=
1 − 2k3 + 2k2

3
2

Φ3,

y(0,0,0,3,1) = {α(0,0,0,2,0), α(0,0,0,1,1)} − (k1 − 1){α(0,0,0,2,0), Ψ1}

+
1 − 2k3

2
{α(0,0,0,1,1), Ψ2} = Φ4,

y(0,0,0,1,3) = {α(0,0,0,1,1), α(0,0,0,0,2)} +
2k2 − 1

2
{α(0,0,0,1,1), Ψ2} = −Φ4,

y(0,0,0,2,2) = α(0,0,0,1,1)α(0,0,0,1,1) + {α(0,0,0,0,2), α(0,0,0,2,0)}

− (k1 − 1){α(0,0,0,1,1), Ψ1} +
2k2 − 1

2
{α(0,0,0,2,0), Ψ2}

= −1 + 4k1 − 2k2
1

2
Φ3.

(6.16)

With that, all higher order directions are obstructed and the algorithm
terminates. Collecting the contributions to the F-terms, we find:

f1: −2u1u3 − 2(k1 − 1)u2
3u4 = 0,

f2: −ϕ1u3 − 2u2u3 + (1 − 2k3)u3
3 + (2k2 − 1)u3u

2
4 = 0,

f3: −ϕ2 − ϕ1u2 − u2
1 − u2

2 + (k2 − 1)ϕ1u
2
4 + (2k2 − 1)u2u

2
4 + 1

2ϕ1u
2
3

+
1 − 2k3 + 2k2

3
2

u4
3 − 1 + 4k1 − 2k2

1
2

u2
3u

2
4 − k2(k2 − 1)u4

4 = 0,

f4: ϕ1u3u4 + u3
3u4 − u3u

3
4 = 0. (6.17)

Surprisingly, we find that these equations are only integrable to an effective
superpotential if we choose a particular parametrization of the deformations,
namely:

k1 = 1, k2 = k3 = 1
2 . (6.18)

With that, we get the following Weff :

Weff = −ϕ2u3 − u2
1u3 − ϕ1u2u3 − u2

2u3 + 1
6ϕ1u

3
3 + 1

20u5
3

− 1
2ϕ1u3u

2
4 − 1

2u3
3u

2
4 + 1

4u3u
4
4.

(6.19)



276 JOHANNA KNAPP AND EMANUEL SCHEIDEGGER

The deformed matrix factorization is

Qdef = Q + ϕ1α(1,0,0,0,0) + u1Ψ1 + u2Ψ2 + u3Ψ3 + u4Ψ4

+ u3u4α(0,0,0,1,1) + u2
3α(0,0,0,2,0) + u2

4α(0,0,0,0,2).
(6.20)

Squaring this and inserting the particular values for the ki, one does not
find precisely the F-terms listed above but rather:

f̄1: −2u1u3 = 0,

f̄2: −ϕ1u3 − 2u2u3 = 0,

f̄3: −ϕ2 − ϕ1u2 − u2
1 − u2

2 ± 2u1u3u4 + 1
2ϕ1u

2
3 − 1

2ϕ1u
2
4

− 3
2u2

3u
2
4 + 1

4u4
3 + 1

4u4
4 = 0,

f̄4: 2u2u3u4 − u3
3u4 + u3u

3
4 = 0 or

2ϕ1u3u4 + 2u2u3u4 + u3
3u4 − u3u

3
4 = 0

(6.21)

This is one of the examples where there are different, yet consistent, con-
straints in front of the entries of the obstructions Φi. This phenomenon
may be related to the observation that not every allowed choice of higher
deformations leads to integrable F-terms.

Correlators: Computing disk amplitudes with the Kapustin–Li residue
formula, we find the following non-zero ones:

〈Ψ1Ψ1Ψ3〉 = −1,

〈Ψ2Ψ2Ψ3〉 = −1,

〈Ψ1Ψ2Ψ4〉 = −〈Ψ1Ψ4Ψ2〉 = 1,

〈Ψ3φ2〉 = 1.

(6.22)

Since the contributions of the correlators 〈Ψ1Ψ2Ψ4〉 and 〈Ψ1Ψ4Ψ2〉 to the
effective superpotential cancel, this result is in agreement with the F-terms.

6.3.2 Three moduli

There is just one tensor product brane which has three open moduli. It has
label L = (4, 2, 2, 2, 0). The moduli have the same charges as (6.4), (6.6)
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and (6.7). For this brane, the bulk deformation φ1 is Q-exact. We define

α(1,0,0,0) = x5
1x2x3x4η̄1. (6.23)

At order two in deformation theory the following Massey products are
non-zero:

y(1,0,1,0) = {α(1,0,0,0), Ψ3} = β1(x1, x2, x3, x4),

y(0,2,0,0) = Ψ1 · Ψ1 = −x2
1x

2
2x

2
3x

2
41 = −Φ3,

y(0,1,1,0) = {Ψ1, Ψ3} = −2Φ1,

y(0,0,2,0) = Ψ3 · Ψ3 = −x8
1x2x3x41 = β2(x1, x2, x3, x4),

y(0,0,1,1) = {Ψ3, Ψ4} = β3(x1, x2, x3, x4),

y(0,0,0,2) = Ψ4 · Ψ4 = x8
1x2x3x41 = −β2(x1, x2, x3, x4).

(6.24)

The four exact Massey products lead to new deformations for which we will
again choose the most general possible deformation:

α(0,0,2,0) = −α(0,0,0,2) = α(1,0,0,0),

α(1,0,1,0) = x2x3x4(η5 − η̄5)[−η2η3η4η̄1 − x4η2η3η̄1η̄4 + x3η2η4η̄1η̄3

− x3η3η4η̄1η̄2 − x3x4η2η̄1η̄3η̄4 + x2x4η3η̄1η̄2η̄4 − x2x3η4η̄1η̄2η̄3

− x2x3x4η̄1η̄2η̄3η̄4],

α(0,0,1,1) = x1x2x3x4(η5 − η̄5)((2 − k1)1 − 2η1η̄1). (6.25)

At order 3, there are four non-zero Massey products:

y(1,0,2,0) = {α(1,0,1,0), Ψ3} = −x2
1x

2
2x

2
3x

2
41 = −Φ3,

y(0,0,3,0) = {α(0,0,2,0), Ψ3} = β1(x1, x2, x3, x4),

y(0,0,2,1) = {α(0,0,1,1), Ψ3} = −2(k1 − 1)Φ1,

y(0,0,1,2) = {α(0,0,1,1), Ψ4} + {α(0,0,0,2), Ψ3} = −β1(x1, x2, x3, x4).

(6.26)

Computing the third-order deformations α(0,0,3,0) and α(0,0,1,2) is simple,
since they coincide with a second-order deformation:

α(0,0,3,0) = −α(0,0,1,2) = α(1,0,1,0). (6.27)

At order 4 there are two non-zero Massey products:

y(0,0,4,0) = α(0,0,2,0)α(0,0,2,0) + {α(0,0,3,0), Ψ3} = −x2
1x

2
2x

2
3x

2
41 = −Φ3,

y(0,0,2,2) = α(0,0,1,1)α(0,0,1,1) + {α(0,0,0,2), α(0,0,2,0)} + {α(0,0,1,2), Ψ3}
− {α(0,0,1,1), Ψ1} = (k1 − 1)2Φ3. (6.28)
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We do not get additional deformations and one can show that all higher
order Massey products are 0. Collecting the Massey products which give
obstructions, we find the following F-terms:

f1: −2u1u3 − 2(k1 − 1)u2
3u4 = 0,

f3: −ϕ2 − u2
1 − ϕ1u

2
3 − u4

3 + (k1 − 1)2u2
3u

2
4 = 0,

f4: 0.

(6.29)

Like in the four-moduli case these equations integrate to an effective super-
potential only if k1 = 1. In that case we get

Weff = −ϕ2u3 − u2
1u3 − 1

3ϕ1u
3
3 − 1

5u5
3. (6.30)

The deformed matrix factorization is

Qdef = Q + ϕ1α(1,0,0,0) + u1Ψ1 + u3Ψ3 + u4Ψ4 + u2
3α(0,0,2,0) + u2

4α(0,0,0,2)

+ ϕ1u3α(1,0,1,0) + u3u4α(0,0,1,1) + u3
3α(0,0,3,0) + u3u

2
4α(0,0,1,2). (6.31)

This squares to the deformed Landau–Ginzburg superpotential modulo
F-terms. Furthermore, there is an additional new feature. There are fur-
ther terms in Q2

def which are proportional to a matrix which is not in the
Q-cohomology. Normally, this indicates that one has made a mistake in the
deformation theory calculation. One finds however that this term comes
with a prefactor u1u3 which is nothing but the F-term associated to Φ1.
Therefore, this additional contribution is ugly but consistent.

The F-terms one gets from Q2
def with k1 = 1 are:

f̄1: −2u1u3 = 0,

f̄3: −ϕ2 − u2
1 − ϕ1u

2
3 − u4

3 ± 2u1u3u4 = 0,

f̄4: 0.

(6.32)

Here, again, the monomial entries in Φ3 come with different but consistent
constraints.

Correlators: All the two- and three-point correlators have values compat-
ible with the F-terms:

〈Ψ1Ψ1Ψ3〉 = −1,

〈Ψ3φ2〉 = 1.
(6.33)
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6.3.3 Two moduli — Case A

One class of tensor product branes with two moduli has open string states
(6.4) and (6.5). We will discuss the example L = (6, 2, 2, 1, 0). For this
brane, and for all the others in this class, both bulk deformations are
Q-exact. These are produced by the following first-order deformations of
the matrix factorization:

α(1,0,0,0) = x1x2x3x4η̄1,

α(0,1,0,0) = x2
1x

2
2x

2
3η̄4.

(6.34)

There are two non-zero Massey products at order 2:

y(1,0,0,1) = {α(1,0,0,0), Ψ2} = −x2
1x

2
2x

2
3x

2
41 = β1(x1, x2, x3, x4),

y(0,0,2,0) = Ψ1Ψ1 = −x2
1x

2
2x

2
3x

2
41 = β1(x1, x2, x3, x4),

y(0,0,0,2) = Ψ2Ψ2 = −x2
1x

2
2x

2
3x

2
41 = β1(x1, x2, x3, x4).

(6.35)

Both of these expression are Q-exact and we find α(1,0,0,1) = α(0,0,2,0) =
α(0,0,0,2) = α(0,1,0,0). Since α(0,1,0,0) anticommutes with everybody else, there
are no higher order Massey products, and we are done. All the F-terms are
0, and the moduli are unobstructed. The deformed matrix factorization is

Qdef = Q + ϕ1α(1,0,0,0) + ϕ2α(0,1,0,0) + u1Ψ1 + u2Ψ2 + u2
2α(0,0,2,0)

+ ϕ1u2α(1,0,0,1) + u2
1α(0,0,2,0) + u2

2α(0,0,0,2). (6.36)

Correlators: All the correlators that can be easily computed are zero for
this brane. This is in agreement with the Massey products.

6.3.4 Two moduli — Case B

The second type of brane with two moduli is represented by the brane with
label L = (3, 2, 2, 2, 0). In this model, the bulk deformation φ1 = x8

1x2x3x4
is in the Q-cohomology. The other bulk deformation is obtained by the
following deformation of the matrix factorization:

α(1,0,0) = x4
1x2x3x4η̄1. (6.37)
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The brane moduli have the same charges as (6.4) and (6.6). The following
Massey products are non-zero at order two:

y(1,0,1) = {α(1,0,0), Ψ3} = β1(x1, x2, x3, x4),

y(0,2,0) = Ψ1 · Ψ1 = −x1
1x

2
2x

2
3x

2
41 = −Φ3,

y(0,1,1) = {Ψ1, Ψ3} = 2Φ1,

y(0,0,2) = Ψ3 · Ψ3 = −x8
1x2x3x41 = β2(x1, x2, x3, x4).

(6.38)

The exact terms lead to second-order deformations of the matrix factoriza-
tion, which we call α(1,0,1) and α(0,0,2):

α(0,0,2) = α(1,0,0),

α(1,0,1) = x1x2x3x4(η5 − η̄5)[−η2η3η4η̄1 − x4η2η3η̄1η̄4 + x3η2η4η̄1η̄3

− x3η3η4η̄1η̄2 − x3x4η2η̄1η̄3η̄4 + x2x4η3η̄1η̄2η̄4 − x2x3η4η̄1η̄2η̄3

− x2x3x4η̄1η̄2η̄3η̄4]. (6.39)

At order 3, we there are only two non-zero Massey products:

y(1,0,2) = {α(1,0,1), Ψ3} = −x2
1x

2
2x

2
3x

2
41 = −Φ3,

y(0,0,3) = {α(0,0,2), Ψ3} = β1(x1, x2, x3, x4).
(6.40)

We get another deformation of Q:

α(0,0,3) = α(1,0,1). (6.41)

At order 4, only one Massey product is allowed:

y(0,0,4) = α(0,0,2)α(0,0,2) + {α(0,0,3), Ψ3} = −Φ3. (6.42)

After this step, the algorithm terminates. There are two F-terms:

f1: 2u1u3 = 0,

f3:ϕ2 + u2
1 + ϕ1u

2
3 + u4

3 = 0.
(6.43)

There are two solutions to these equations. The one where u3 = 0 implies
the existence of a BPS domain wall, the other one is the solution of a quartic
equation. This could be a more general domain wall which separates four
vacua.
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Finally, we also give the deformed matrix factorization:

Qdef = Q + ϕ1α(1,0,0) + u1Ψ1 + u3Ψ3 + ϕ1u3α(1,0,1) + u2
3α(0,0,2) + u4

3α(0,0,3).
(6.44)

Up to the F-terms and exact pieces, this squares to the bulk deformed
Landau–Ginzburg superpotential. As in the three-parameter case, Q2

def also
contains terms which are not in the Q-cohomology but all these terms come
multiplies with u1u3 which is the F-term associates to Φ1.

The F-terms can be integrated to give the following effective
superpotential:

Weff = u2
1u3 + ϕ2u3 + 1

3ϕ1u
3
3 + 1

5u5
3. (6.45)

This result is the same as the one found in the three–moduli case.

Correlators: There are two non-zero correlators which can be computed
using the residue formula:

〈Ψ1Ψ1Ψ3〉 = −1,

〈Ψ3φ2〉 = 1.
(6.46)

This is in agreement with the deformation theory calculation.

6.3.5 One modulus

The brane with the largest L-labels which has one modulus is the one with
L = (4, 2, 2, 1, 0). The brane modulus is given by (6.4). In the present
case both bulk deformations are Q-exact. They are tied to the following
deformations of the brane:

α(1,0,0) = x3
1x2x3x4η̄1,

α(0,1,0) = x2
1x

2
2x

2
3η̄4.

(6.47)

At order 2 in deformation theory, there is only one non-vanishing Massey
product:

y(0,0,2) = Ψ1Ψ1 = −x2
1x

2
2x

2
3x

2
41. (6.48)

This is Q-exact and the corresponding second-order deformation is
α(0,0,2) = α(0,1,0). There are no more higher products which are non-zero.
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The deformed matrix factorization is

Qdef = Q + ϕ1α(1,0,0) + ϕ2α(0,1,0) + u1Ψ1 + u2
1α(0,0,2). (6.49)

This squares to the deformed Landau–Ginzburg superpotential. All the
F-terms are zero. Therefore, the deformation of this brane is unobstructed.

Correlators: In agreement with the Massey products all the two- and
three-point correlators vanish.

7 The model P(11169)[18]/(Z18)2

The degree 18 hypersurface has the following Landau–Ginzburg
superpotential:

W = x18
1 + x18

2 + x18
3 + x3

4 + x2
5 (7.1)

with a diagonal Z18 orbifold action. There is the following (Z18)2 orbifold
action:

g1: (1, 17, 0, 0, 0),

g2: (1, 0, 17, 0, 0).
(7.2)

The two bulk moduli are:

φ1 = x6
1x

6
2x

6
3,

φ2 = x1x2x3x4x5.

Again φ2 can be replaced by φ2 = x2
1x

2
2x

2
3x

2
4. In the tables in the appendix

we list the branes that have open moduli at the Gepner point.

7.1 Discussion of moduli

Now we discuss the moduli of the brane L = (8, 8, 8, 0, 0). The modulus with
label 1

3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00 looks as follows:

Ψ1 =
(

0 x3
1

−x3
1 0

)
⊗

(
0 x3

2

−x3
2 0

)
⊗

(
0 x3

3

−x3
3 0

)
⊗

(
1 0
0 1

)
⊗

(
1 0
0 1

)
.

(7.3)
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The modulus 1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01 is expressed by the following matrix:

Ψ2 =
(

x3
1 0
0 x3

1

)
⊗

(
x3

2 0
0 x3

2

)
⊗

(
x3

3 0
0 x3

3

)
⊗

(
1 0
0 1

)
⊗

(
0 1

−1 0

)
. (7.4)

The modulus with label 2
9
1 ⊗ 2

9
1 ⊗ 2

9
1 ⊗ 1

3
1 ⊗ 01 looks like this:

Ψ3 =
(

0 x2
1

−x2
1 0

)
⊗

(
0 x2

2

−x2
2 0

)
⊗

(
0 x2

3

−x2
3 0

)
⊗

(
0 1

−x4 0

)
⊗

(
0 1

−1 0

)
.

(7.5)
The last open modulus is has charges 2

9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00:

Ψ4 =
(

x2
1 0
0 x2

1

)
⊗

(
x2

2 0
0 x2

2

)
⊗

(
x2

3 0
0 x2

3

)
⊗

(
0 1

−x4 0

)
⊗

(
1 0
0 1

)
. (7.6)

7.2 Obstructions

Let us now discuss the Serre dual obstructions to deformations (7.3) to (7.6).
The obstruction corresponding to (7.3) has charges 5

9
0 ⊗ 5

9
0 ⊗ 5

9
0 ⊗ 1

3
1 ⊗ 01:

Φ1 =
(

x5
1 0
0 x5

1

)
⊗

(
x5

2 0
0 x5

2

)
⊗

(
x5

3 0
0 x5

3

)
⊗

(
0 1

−x4 0

)
⊗

(
0 1

−1 0

)
. (7.7)

The Serre dual of (7.4) is 5
9
1 ⊗ 5

9
1 ⊗ 5

9
1 ⊗ 1

3
1 ⊗ 00

Φ2 =
(

0 x5
1

−x5
1 0

)
⊗

(
0 x5

2

−x5
2 0

)
⊗

(
0 x5

3

−x5
3 0

)
⊗

(
0 1

−x4 0

)
⊗

(
1 0
0 1

)
.

(7.8)
The obstruction corresponding to (7.5) has charges 2

3
0 ⊗ 2

3
0 ⊗ 2

3
0 ⊗ 00 ⊗ 00

and is the bulk deformation x6
1x

6
2x

6
3:

Φ3 =
(

x6
1 0
0 x6

1

)
⊗

(
x6

2 0
0 x6

2

)
⊗

(
x6

3 0
0 x6

3

)
⊗

(
1 0
0 1

)
⊗

(
1 0
0 1

)
. (7.9)

Finally, the Serre dual of (7.6) is 2
3
1 ⊗ 2

3
1 ⊗ 2

3
1 ⊗ 00 ⊗ 01:

Φ4 =
(

0 x6
1

−x6
1 0

)
⊗

(
0 x6

2

−x6
2 0

)
⊗

(
0 x6

3

−x6
3 0

)
⊗

(
1 0
0 1

)
⊗

(
0 1

−1 0

)
.

(7.10)
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7.3 Massey products and F-terms

Finally, we discuss higher products and F-terms for this model. It turns out
that the calculation for the three-moduli case is quite involved. We contend
ourselves to compute deformation theory only up to order 5.

7.3.1 Four moduli

Our representative example will be the brane L = (8, 8, 8, 0, 0). The moduli
were given explicitly in (7.3) to (7.6). For the four-moduli brane, only
the bulk deformations φ2 = x2

1x
2
2x

2
3x

2
4 is Q-exact. The associated boundary

deformation is

α(1,0,0,0,0) = x2
1x

2
2x

2
3x4η̄4. (7.11)

Below, we list the non-zero Massey products at order 2:

y(1,0,0,1,0) = {α(1,0,0,0,0), Ψ3} = β1(x1, x2, x3, x4),

y(1,0,0,0,1) = {α(1,0,0,0,0), Ψ4} = x4
1x

4
2x

4
3x41 = β2(x1, x2, x3, x4),

y(0,2,0,0,0) = Ψ1Ψ1 = Φ3,

y(0,1,0,1,0) = {Ψ1, Ψ3} = 2Φ1,

y(0,0,2,0,0) = Ψ2Ψ2 = −x6
1x

6
2x

6
31 = −Φ3,

y(0,0,1,1,0) = {Ψ2, Ψ3} = −2Φ2,

y(0,0,0,2,0) = Ψ3Ψ3 = −x4
1x

4
2x

4
3x41 = −β2(x1, x2, x3, x4),

y(0,0,0,1,1) = {Ψ3, Ψ4} = −2β1(x1, x2, x3, x4),

y(0,0,0,0,2) = Ψ4Ψ4 = −β2(x1, x2, x3, x4).

(7.12)

From the Q-exact products we get several new α’s:

−α(1,0,0,0,1) = α(0,0,0,2,0) = α(0,0,0,0,2) = x4
1x

4
2x

4
3η̄4,

α(1,0,0,1,0) = −1
2α(0,0,0,1,1) = x4

1x
4
2x

4
3(η5 − η̄5)η̄4(η3 − η̄3)(η2 − η̄2)(η1 − η̄1).

(7.13)

At order three, all Massey products are proportional to bosonic open string
states:

y(1,0,0,2,0) = {α(1,0,0,1,0), Ψ3} + {α(0,0,0,2,0), α(1,0,0,0,0)} = −Φ3,

y(1,0,0,1,1) = {α(1,0,0,1,0), Ψ4} + {α(1,0,0,0,1), Ψ3} + {α(0,0,0,1,1), α(1,0,0,0,0)}
= 2Φ4,

y(1,0,0,0,2) = {α(1,0,0,0,1), Ψ4} + {α(1,0,0,0,0), α(0,0,0,0,2)} = −Φ3,
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y(0,0,0,3,0) = {α(0,0,0,2,0), Ψ3} = −Φ4,

y(0,0,0,2,1) = {α(0,0,0,2,0), Ψ4} + {α(0,0,0,1,1), Ψ3} = 3Φ3,

y(0,0,0,1,2) = {α(0,0,0,1,1), Ψ4} + {α(0,0,0,0,2), Ψ3} = −3Φ4,

y(0,0,0,0,3) = {α(0,0,0,0,2), Ψ4} = Φ3.
(7.14)

Since we get no new deformations at order three the Massey products at
order four must be products of the deformations of order 2. One can show
that these all anticommute, which is why the algorithm terminates at order
four. Furthermore, the additional terms that arise through the F-terms at
lower order all give zero.

Collecting all the products which yield obstructions, we obtain the fol-
lowing F-terms:

f1: 2u1u3 = 0,

f2: −2u2u3 = 0,

f3: −ϕ1 + u2
1 − u2

2 − ϕ2u
2
3 − ϕ2u

2
4 + 3u2

3u4 + u3
4 = 0,

f4: 2ϕ2u3u4 − u3
3 − 3u3u

2
4 = 0.

(7.15)

This can be integrated to the following effective superpotential:

Weff = u2
1u3 − u2

2u3 − ϕ1u3 − 1
3ϕ2u

3
3 − ϕ2u3u

2
4 + u3

3u4 + u3u
3
4. (7.16)

The deformed matrix factorization looks as follows:
Qdef = Q + ϕ2α(1,0,0,0,0) + u1Ψ1 + u2Ψ2 + u3Ψ3 + u4Ψ4

+ ϕ2u3α(1,0,0,1,0) + ϕ2u4α(1,0,0,0,1) + u3u4α(0,0,0,1,1)

+ u2
3α(0,0,0,2,0) + u2

4α(0,0,0,0,2).

(7.17)

Up to the F-terms and exact expressions, this squares to the deformed
Landau–Ginzburg superpotential. As encountered in the 12,227-model there
are additional terms in Q2

def which are not in the cohomology of the matrix
factorization. This is not inconsistent because these terms are proportional
to the F-terms associated to Φ1 and Φ2.

Correlators: The following correlators are non-zero:

〈Ψ1Ψ1Ψ3〉 = 1,

〈Ψ2Ψ2Ψ3〉 = −1,

〈Ψ1Ψ2Ψ4〉 = −〈Ψ1Ψ4Ψ2〉 = −1,

〈Ψ3φ1〉 = 1.

(7.18)

This is in agreement with the deformation theory results.
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7.3.2 Three Moduli

Let us now discuss a brane that has three moduli. We choose the brane
with label L = (8, 8, 5, 0, 0). The moduli have the same charge decomposi-
tion as (7.3), (7.4) and (7.6). Both bulk deformations are Q-exact. The
corresponding linear deformations of the matrix factorization are:

α(1,0,0,0,0) = x6
1x

6
2η̄3,

α(0,1,0,0,0) = x2
1x

2
2x

2
3x4η̄4.

(7.19)

In the following, we list the non-zero Massey products at order 2:

y(1,0,1,0,0) = {α(1,0,0,0,0), Ψ1} = β1(x1, x2),

y(0,1,0,0,1) = {α(0,1,0,0,0), Ψ4} = x4
1x

4
2x

4
3x41 = β2(x1, x2, x3, x4),

y(0,0,2,0,0) = Ψ1 · Ψ1 = x6
1x

6
2x

6
31 = β3(x1, x2, x3),

y(0,0,0,2,0) = Ψ2 · Ψ2 = −x6
1x

6
2x

6
31 = −β3(x1, x2, x3),

y(0,0,0,0,2) = −x4
1x

4
2x

4
3x41 = −β2(x1, x2, x3, x4).

(7.20)

All these Massey products give contributions to the deformations of the
matrix factorizations. These are:

α(0,0,0,0,2) = −α(0,1,0,0,1) = x4
1x

4
2x

4
3η̄4,

α(0,0,0,2,0) = −α(0,0,2,0,0) = α(1,0,0,0,0),

α(1,0,1,0,0) = x9
2(η2 − η̄2)η1η̄1.

(7.21)

At order 3, we again have five non-zero Massey products:

y(1,0,2,0,0) = {α(1,0,1,0,0), Ψ1} + {α(1,0,0,0,0), α(0,0,2,0,0)} = β4(x1, x2, x3),

y(0,1,0,0,2) = {α(1,0,0,0,1), Ψ4} = −x6
1x

6
2x

6
31 = −β3(x1, x2, x3),

y(0,0,3,0,0) = {α(0,0,2,0,0), Ψ1} = β5(x1, x2),

y(0,0,1,2,0) = {α(0,0,0,2,0), Ψ1} = −β5(x1, x2),

y(0,0,0,0,3) = {α(0,0,0,0,2), Ψ4} = x6
1x

6
2x

6
31 = β3(x1, x2, x3).

(7.22)

The new deformations are:

α(0,1,0,0,2) = −α(0,0,0,0,3) = −α(1,0,0,0,0),

α(0,0,1,2,0) = −α(0,0,3,0,0) = α(1,0,1,0,0),

α(1,0,2,0,0) = x3
1x

3
2η2η3(η1 − η̄1) − x3

1x
3
2x

6
3η2η̄3(η1 − η̄1)

(7.23)
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and two more which are more complicated. There are no obstructions and
we have to go to order four in deformation theory:

y(2,0,2,0,0) = α(1,0,1,0,0) α(1,0,1,0,0) + {α(1,0,2,0,0), α(1,0,0,0,0)} = β6(x1, x2),

y(1,0,3,0,0) = {α(1,0,1,0,0), α(0,0,2,0,0)} + {α(1,0,2,0,0), Ψ1}
+ {α(0,0,3,0,0), α(1,0,0,0,0)} = β3(x1, x2, x3),

y(0,0,4,0,0) = α(0,0,2,0,0) α(0,0,2,0,0) + {α(0,0,3,0,0), Ψ1} = −β1(x1, x2, x3),

y(0,0,2,2,0) = {α(0,0,2,0,0), α(0,0,0,2,0)} + {α(0,0,1,2,0), Ψ1} = β1(x1, x2, x3),

y(0,0,1,0,3) = {α(0,0,0,0,3), Ψ1} = β2(x1, x2).
(7.24)

We get six new exact states:

α(0,0,1,0,3) = −α(0,1,1,0,3) = α(0,0,3,0,0),

α(0,0,2,2,0) = −α(0,0,4,0,0) = α(1,0,2,0,0),

α(1,0,3,0,0) = −α(1,0,0,0,0),

α(2,0,2,0,0) = x9
2η2η1η̄1.

(7.25)

At order five there are six non-zero Massey products:

y(2,0,3,0,0) = {α(1,0,1,0,0), α(1,0,2,0,0)} + {α(1,0,3,0,0), α(1,0,0,0,0)}
+ {α(2,0,2,0,0), Ψ2} = β4(x1, x2, x3),

y(1,0,4,0,0) = {α(1,0,1,0,0), α(0,0,3,0,0)} + {α(0,0,2,0,0), α(1,0,2,0,0)}
+ {α(0,0,4,0,0), α(1,0,0,0,0)} + {α(1,0,3,0,0), Ψ1} = β7(x1, x2),

y(1,0,2,2,0) = {α(1,0,1,0,0), α(0,0,1,2,0)} + {α(0,0,0,2,0), α(1,0,2,0,0)}
+ {α(0,0,2,2,0), α(1,0,0,0,0)} = β8(x1, x2),

y(0,1,2,0,2) = {α(0,0,2,0,0), α(0,1,0,0,2)} + {α(0,1,1,0,2), Ψ1} = β4(x1, x2, x3),

y(0,0,5,0,0) = {α(0,0,2,0,0), α(0,0,3,0,0)} + {α(0,0,4,0,0), Ψ1}
= −x6

1x
6
2x

6
31 = −β3(x1, x2, x3),

y(0,0,2,0,3) = {α(0,0,2,0,0), α(0,0,0,0,3)} + {α(0,0,1,0,3), Ψ1} = −β4(x1, x2, x3).
(7.26)

We observe recurring patterns and seem to get more and more deformations
at every order. This suggests that the deformation theory algorithm may
not terminate. Furthermore, we cannot exclude that obstructions appear
at higher order because structure arguments that imply that the Massey
products can never yield obstructions are not obvious.

We therefore conclude our discussion with the statement that up to order
five there are no obstructions to the deformations of this brane.
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Correlators: All the correlators that do not contain integrated insertions
are zero. This confirms the results above.

7.3.3 Two moduli

As an example for a brane with two moduli we discuss the brane with labels
L = (8, 8, 4, 0, 0). The moduli of this brane, and all the other branes with two
moduli, are (7.4) and (7.6). Furthermore, we have two first-order boundary
deformations since both bulk deformations are exact on the boundary:

α(1,0,0,0) = x6
1x

6
2x3η̄3,

α(0,1,0,0) = x2
1x

2
2x

2
3x4η̄4.

(7.27)

The non-zero Massey products at the boundary are:

y(0,1,0,1) = {α(0,1,0,0), Ψ4} = x4
1x

4
2x

4
3x41 = β1(x1, x2, x3, x4),

y(0,0,2,0) = Ψ2Ψ2 = −x6
1x

6
2x

6
31 = β2(x1, x2, x3),

y(0,0,0,2) = Ψ4Ψ4 = −x4
1x

4
2x

4
3x41 = −β1(x1, x2, x3, x4).

(7.28)

All these products are Q-exact and the corresponding second-order defor-
mations are the following simple expressions:

α(0,1,0,1) = −α(0,0,0,2) = −x4
1x

4
2x

4
3η̄4,

α(0,0,2,0) = α(1,0,0,0).
(7.29)

We continue with computing the higher products at order 3:

y(0,1,0,2) = {α(0,1,0,1), Ψ4} + {α(0,0,0,2), α(0,1,0,0)}
= −x6

1x
6
2x

6
31 = β2(x1, x2, x3),

y(0,0,0,3) = {α(0,0,0,2), Ψ4} = x6
1x

6
2x

6
31 = −β2(x1, x2, x3).

(7.30)

Again, we encounter no obstructions and the third-order deformations are
simply:

α(0,1,0,2) = −α(0,0,0,3) = α(1,0,0,0). (7.31)

Now we are done. Since α(1,0,0,0) commutes with all moduli and all second-
order deformations the are no non-vanishing Massey products at higher
order. All the F-terms remain zero and therefore both brane moduli are
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unobstructed by bulk deformations. The deformed matrix factorization
looks as follows:

Qdef = Q + ϕ1α(1,0,0,0) + ϕ2α(0,1,0,0) + u2Ψ2 + u4Ψ4 + u2
2α(0,0,2,0)

+ u2
4α(0,0,0,2) + ϕ2u

2
4α(0,1,0,2) + u3

4α(0,0,0,3). (7.32)

One can check easily that this squares to the deformed Landau–Ginzburg
superpotential.

Correlators: As expected from the deformation theory calculation, all the
correlators which are computable by the Kapustin–Li residue formula are
zero. This is in agreement with the result that both boundary moduli are
unobstructed.

7.3.4 One modulus

The one-modulus brane with the maximal L-label has L = (8, 8, 2, 0, 0). Its
only boundary deformation is (7.6). The two bulk deformations are Q-exact
and we introduce the following first-order deformations of the matrix fac-
torization:

α(1,0,0) = x6
1x

6
2x

3
3η̄3,

α(0,1,0) = x2
1x

2
2x

2
3x4η̄4.

(7.33)

Computing the first set of Massey products, we find that only two are
non-vanishing:

y(0,1,1) = {α(0,1,0), Ψ4} = x4
1x

4
2x

4
3x41 = β1(x1, x2, x3, x4),

y(0,0,2) = Ψ4 · Ψ4 = −x4
1x

4
2x

4
3x41 = −β1(x1, x2, x3, x4).

(7.34)

From this, we obtain two new deformation α(0,1,1) and α(0,0,2) which have a
particularly simple representation:

α(0,1,1) = −α(0,0,2) = −x4
1x

4
2x

4
3η̄4. (7.35)

At the next order, there are two non-zero Massey products:

y(0,1,2) = {α(0,1,1), Ψ4} + {α(0,0,2), α(0,1,0)} = −x6
1x

6
2x

6
31 = β2(x1, x2, x3),

y(0,0,3) = {α(0,0,2), Ψ4} = −x6
1x

6
2x

6
31 = −β2(x1, x2, x3). (7.36)
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We find that

α(0,1,2) = −α(0,0,3) = α(1,0,0). (7.37)

The algorithm terminates here. One can see this as follows. The α’s at
order three anticommute with the modulus and all the other deformations.
Therefore all higher Massey products are 0. Since we have not encountered
any obstructions, the only possible F-term remains 0. The deformed matrix
factorization looks as follows:

Qdef = Q + ϕ1α(1,0,0) + ϕ2α(0,1,0) + u4Ψ4

+ ϕ2u4α(0,1,1) + u2
4α(0,0,2) + ϕ2u

2
4α(0,1,2) + u3

4α(0,0,3) (7.38)

Correlators: The three-point disk amplitude and the bulk-boundary
two-point functions vanish which confirms that the brane modulus is
unobstructed.

8 Conclusions

In this paper we have discussed tensor product branes and their moduli
for the mirrors of two-parameter Calabi–Yau hypersurfaces. Making use of
the deformation theory of matrix factorizations we determined which of the
brane moduli are obstructed by computing F-terms. Let us now discuss
some open problems and further directions of research.

There have been some unexpected problems with the deformation theory
algorithm itself. In a few cases the F-terms could only be integrated to
an effective superpotential for a particular choice of deformations. Further-
more, some deformed matrix factorizations exhibited an unusual factoriza-
tion behavior. Despite the self-consistency of the results, these phenomena
might also indicate that the deformation theory algorithm has to be modi-
fied in some way. There may also be a deeper reason for these issues which
may be related to some special properties of the D-brane under considera-
tion. It would be very useful to have an independent method to determine
the structure of the brane moduli spaces in order to verify or falsify these
results.

Note also that the deformation theory algorithm is only partially useful to
probe the combined open/closed moduli space near the Gepner point. The
Massey product algorithm is best suited for situations where all boundary
moduli are obstructed. Although this should be the case generically for
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Calabi–Yau three-folds, it depends very much on the model whether this
really happens. Only if all moduli are obstructed it is guaranteed that the
algorithm really terminates. For unobstructed moduli it should be expected
that the algorithm never stops. It is actually quite remarkable that we have
found several examples where the algorithm terminates even though the
moduli are unobstructed.

As was demonstrated in great detail, the Massey product algorithm is
a rather tedious and technically challenging way to answer the questions
we posed. It may be necessary to find more elegant methods to find out
whether a brane has obstructed moduli or not. One immediately thinks of
some geometric input which could help. In most cases it is easy to relate a
matrix factorization to a boundary state in conformal field theory but the
geometric interpretation of these is often very involved. Of course, matrix
factorizations can be related to geometry via the techniques of [30] but sim-
ple matrix factorizations do usually not lead to simple geometric boundary
conditions.

A further possible line of investigation concerns the “fake F-terms” we
have found whenever an open modulus squares to a closed string deforma-
tion which is exact on the boundary. These conditions lead to a pair of
linearly deformed matrix factorizations at a special point in brane mod-
uli space but not to an effective superpotential. Nevertheless, a non-trivial
BPS domain wall tension has been found in [6] for such a configuration.
The effective superpotential only seems to come out correctly when one
considers the full non-linear bulk-and boundary deformations of a D-brane
and not just linear boundary deformations. These issues raise the ques-
tion under which conditions it makes sense to turn on just a subset of the
moduli.

We have seen that our Massey product algorithm yields an explicit descri-
ption of the deformation theory of B-type D-branes at the Gepner point.
From a different point of view, it describes the A∞-structure on the cat-
egory of matrix factorizations. By the open string version of the Calabi–
Yau/Landau–Ginzburg correspondence [30], we have an explicit map to the
category of coherent sheaves at large volume. However, no explicit descrip-
tion of the deformation theory of coherent sheaves, or equivalently, com-
plexes E of holomorphic vector bundles is known. While we have explicit
representatives of Hodd(Q) and Heven(Q), it is in general difficult to obtain
explicit representatives of H1(EndE) and H2(EndE), respectively. One
possible way has been presented in [31] where the Massey products have
been computed through the A∞-products, albeit in the simpler context of
non-compact Calabi–Yau three-folds. It would be very interesting to com-
pare these two approaches of computing Massey products. In particular,
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the open string Calabi–Yau/Landau–Ginzburg correspondence should be
extended to include the A∞-structure in both categories.

While we have focused on the region in the closed string moduli space
near the Gepner point, there are further methods of computing the effec-
tive superpotential near the large volume point or even everywhere in the
complex structure moduli space. For an example of the latter see [32]. For
the former, a new method has been proposed recently in [33]. Applying this
method to the branes we have discussed here could shed light on some of
the issues mentioned above such as the “fake” F-terms. More generally, the
discrimination between open and closed moduli at different points in the full
brane moduli space needs to be properly understood.

The main application of our results is in the context open string mirror
symmetry calculations. We can now take the deformed matrix factoriza-
tions and F-terms and relate them to geometric boundary conditions which
are necessary for deriving Picard–Fuchs equations can to compute domain
wall tensions and disk instanton numbers or effective superpotentials in
flat coordinates. As compared to the one-parameter models the combined
bulk/boundary moduli space for branes in two-parameter models has a much
richer structure and we expect to find interesting new phenomena. This will
be discussed elsewhere.
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Appendix A Moduli of tensor product branes in
two-parameter hypersurfaces

In this appendix we list all tensor product boundary states with moduli
for two-parameter hypersurfaces (see tables A.1 to A.5). Furthermore,
we give a decomposition of the moduli in terms of their minimal model
components.



MASSEY PRODUCTS AND F-TERMS 293

A.1 The model P(11222)[8]/Z8 × (Z4)2

Table A.1: Tensor product branes with moduli for P(11222)[8]/Z8 × (Z4)2

Boundary state Number of moduli Structure of moduli

(3,3,1,1,1) 2
1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

1
2
0 ⊗ 1

2
0 ⊗ 01 ⊗ 01 ⊗ 01

(3,2,1,1,1) 2
1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

1
2
0 ⊗ 1

2
0 ⊗ 01 ⊗ 01 ⊗ 01

(2,2,1,1,1) 2
1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

1
2
0 ⊗ 1

2
0 ⊗ 01 ⊗ 01 ⊗ 01

(3,1,1,1,1) 1 1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

(2,1,1,1,1) 1 1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

(1,1,1,1,1) 1 1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

A.2 The model P(11226)[12]/Z12 × (Z6)2

Table A.2: Tensor product branes with moduli for P(11226)[12]/Z12 × (Z6)2

Boundary state Number of moduli Structure of moduli

(5,5,2,2,0) 4

1
6
1 ⊗ 1

6
1 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

1
2
0 ⊗ 1

2
0 ⊗ 01 ⊗ 01 ⊗ 01

(5,4,2,2,0) 4

1
6
1 ⊗ 1

6
1 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

1
2
0 ⊗ 1

2
0 ⊗ 01 ⊗ 01 ⊗ 01

continued
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Table A.2: continued

Boundary state Number of moduli Structure of moduli

(4,4,2,2,0) 4

1
6
1 ⊗ 1

6
1 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

1
2
0 ⊗ 1

2
0 ⊗ 01 ⊗ 01 ⊗ 01

(5,3,2,2,0) 3

1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

1
2
0 ⊗ 1

2
0 ⊗ 01 ⊗ 01 ⊗ 01

(4,3,2,2,0) 3

1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

1
2
0 ⊗ 1

2
0 ⊗ 01 ⊗ 01 ⊗ 01

(3,3,2,2,0) 3

1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

1
2
0 ⊗ 1

2
0 ⊗ 01 ⊗ 01 ⊗ 01

(5,5,2,1,0) 2
1
6
1 ⊗ 1

6
1 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(5, 5, 1, 1, 0) 2
1
6
1 ⊗ 1

6
1 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(5, 4, 2, 1, 0) 2
1
6
1 ⊗ 1

6
1 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(5, 4, 1, 1, 0) 2
1
6
1 ⊗ 1

6
1 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(5, 2, 2, 2, 0) 2
1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

(4, 4, 2, 1, 0) 2
1
6
1 ⊗ 1

6
1 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(4, 4, 1, 1, 0) 2
1
6
1 ⊗ 1

6
1 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

continued
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Table A.2: continued

Boundary state Number of moduli Structure of moduli

(4, 2, 2, 2, 0) 2
1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

(3, 2, 2, 2, 0) 2
1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

(2, 2, 2, 2, 0) 2
1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

1
2
1 ⊗ 1

2
1 ⊗ 01 ⊗ 01 ⊗ 01

(5, 3, 2, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(5, 3, 1, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(5, 2, 2, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(5, 2, 1, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(5, 1, 2, 2, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(5, 1, 2, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(5, 1, 1, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(4, 3, 2, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(4, 3, 1, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(4, 2, 2, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(4, 2, 1, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(4, 1, 2, 2, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(4, 1, 2, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(4, 1, 1, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(3, 3, 2, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(3, 3, 1, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(3, 2, 2, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(3, 2, 1, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(3, 1, 2, 2, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

continued
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Table A.2: continued

Boundary state Number of moduli Structure of moduli

(3, 1, 2, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(3, 1, 1, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(2, 2, 2, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(2, 2, 1, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(2, 1, 2, 2, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(2, 1, 2, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(2, 1, 1, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(1, 1, 2, 2, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(1, 1, 2, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

(1, 1, 1, 1, 0) 1 1
6
0 ⊗ 1

6
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 01

A.3 The hypersurface in P(12234)[12]/(Z6)2

Table A.3: Tensor product branes with moduli for P(12234)[12]/(Z6)2

Boundary state Number of moduli Structure of moduli

(5,2,2,1,0) 2
1
2
1 ⊗ 01 ⊗ 01 ⊗ 1

2
0 ⊗ 00

1
2
0 ⊗ 01 ⊗ 01 ⊗ 1

2
1 ⊗ 00

(4,2,2,1,0) 2
1
2
1 ⊗ 01 ⊗ 01 ⊗ 1

2
0 ⊗ 00

1
2
0 ⊗ 01 ⊗ 01 ⊗ 1

2
1 ⊗ 00

(3,2,2,1,0) 2
1
2
1 ⊗ 01 ⊗ 01 ⊗ 1

2
0 ⊗ 00

1
2
0 ⊗ 01 ⊗ 01 ⊗ 1

2
1 ⊗ 00

(5,2,2,0,0) 1 1
2
0 ⊗ 01 ⊗ 01 ⊗ 1

2
1 ⊗ 00

(4,2,2,0,0) 1 1
2
0 ⊗ 01 ⊗ 01 ⊗ 1

2
1 ⊗ 00

(3,2,2,0,0) 1 1
2
0 ⊗ 01 ⊗ 01 ⊗ 1

2
1 ⊗ 00

(2,2,2,1,0) 1 1
2
1 ⊗ 01 ⊗ 01 ⊗ 1

2
0 ⊗ 00
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A.4 The model P(12227)[14]/(Z7)2

Table A.4: Tensor product branes with moduli for P(12227)[14]/(Z7)2

Boundary state Number of moduli Structure of moduli

(6,2,2,2,0) 4

1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

1
7
1 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 00

4
7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 01

4
7
0 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 00

(5,2,2,2,0) 4

1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

1
7
1 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 00

4
7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 01

4
7
0 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 00

(4,2,2,2,0) 3

1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

4
7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 01

4
7
0 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 00

(6,2,2,1,0) 2
1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

1
7
1 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 00

(6,2,1,1,0) 2
1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

1
7
1 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 00

(6,1,1,1,0) 2
1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

1
7
1 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 00

(5,2,2,1,0) 2
1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

1
7
1 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 00

(5,2,1,1,0) 2
1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

1
7
1 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 00

(5,1,1,1,0) 2
1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

1
7
1 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 00

continued
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Table A.4: continued

Boundary state Number of moduli Structure of moduli

(3,2,2,2,0) 2
1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

4
7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 01

(2,2,2,2,0) 2
1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

4
7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 1

7
1 ⊗ 01

(4,2,1,1,0) 1 1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

(4,1,1,1,0) 1 1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

(3,2,2,1,0) 1 1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

(3,2,1,1,0) 1 1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

(3,1,1,1,0) 1 1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

(2,2,2,1,0) 1 1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

(2,2,1,1,0) 1 1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

(2,1,1,1,0) 1 1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

(1,2,2,2,0) 1 1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

(1,2,2,1,0) 1 1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

(1,2,1,1,0) 1 1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

(1,1,1,1,0) 1 1
7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 2

7
0 ⊗ 01

A.5 The model P(11169)[18]/(Z18)2

Table A.5: Tensor product branes with moduli for P(11169)[18]/(Z18)2

Boundary state Number of moduli Structure of moduli

(8,8,8,0,0) 4

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
1 ⊗ 2

9
1 ⊗ 2

9
1 ⊗ 1

3
1 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

continued
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Table A.5: continued

Boundary state Number of moduli Structure of moduli

(8,8,7,0,0) 4

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
1 ⊗ 2

9
1 ⊗ 2

9
1 ⊗ 1

3
1 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,8,6,0,0) 4

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
1 ⊗ 2

9
1 ⊗ 2

9
1 ⊗ 1

3
1 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,7,7,0,0) 4

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
1 ⊗ 2

9
1 ⊗ 2

9
1 ⊗ 1

3
1 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,7,6,0,0) 4

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
1 ⊗ 2

9
1 ⊗ 2

9
1 ⊗ 1

3
1 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,6,6,0,0) 4

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
1 ⊗ 2

9
1 ⊗ 2

9
1 ⊗ 1

3
1 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,7,7,0,0) 4

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
1 ⊗ 2

9
1 ⊗ 2

9
1 ⊗ 1

3
1 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,7,6,0,0) 4

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
1 ⊗ 2

9
1 ⊗ 2

9
1 ⊗ 1

3
1 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

continued
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Table A.5: continued

Boundary state Number of moduli Structure of moduli

(7,6,6,0,0) 4

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
1 ⊗ 2

9
1 ⊗ 2

9
1 ⊗ 1

3
1 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,6,6,0,0) 4

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
1 ⊗ 2

9
1 ⊗ 2

9
1 ⊗ 1

3
1 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,8,5,0,0) 3

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,7,5,0,0) 3

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,6,5,0,0) 3

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,5,5,0,0) 3

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,7,5,0,0) 3

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,6,5,0,0) 3

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

continued
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Table A.5: continued

Boundary state Number of moduli Structure of moduli

(7,5,5,0,0) 3

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,6,5,0,0) 3

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,5,5,0,0) 3

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(5,5,5,0,0) 3

1
3
1 ⊗ 1

3
1 ⊗ 1

3
1 ⊗ 00 ⊗ 00

1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,8,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,8,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,7,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,7,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,6,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,6,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,5,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

continued
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Table A.5: continued

Boundary state Number of moduli Structure of moduli

(8,5,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,4,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,4,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,3,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,7,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,7,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,6,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,6,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,5,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,5,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,4,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,4,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,3,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

continued
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Table A.5: continued

Boundary state Number of moduli Structure of moduli

(6,6,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,6,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,5,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,5,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,4,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,4,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,3,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(5,5,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(5,5,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(5,4,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(5,4,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(5,3,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(4,4,4,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

continued



304 JOHANNA KNAPP AND EMANUEL SCHEIDEGGER

Table A.5: continued

Boundary state Number of moduli Structure of moduli

(4,4,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(4,3,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(3,3,3,0,0) 2
1
3
0 ⊗ 1

3
0 ⊗ 1

3
0 ⊗ 00 ⊗ 01

2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,7,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,6,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,5,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,4,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(8,3,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,7,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,6,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,5,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,4,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,3,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(7,2,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,6,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,5,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,4,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,3,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(6,2,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(5,5,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(5,4,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(5,3,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

continued
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Table A.5: continued

Boundary state Number of moduli Structure of moduli

(5,2,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(4,4,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(4,3,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(4,2,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(3,3,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(3,2,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00

(2,2,2,0,0) 1 2
9
0 ⊗ 2

9
0 ⊗ 2

9
0 ⊗ 1

3
1 ⊗ 00
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