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Abstract

We explore the zero-temperature behavior of an assembly of bosons
interacting through a zero-range, attractive potential. Because the two-
body interaction admits a bound state, the many-body model is best
described by a Hamiltonian that includes the coupling between atomic
and molecular components. Due to the positive scattering length, the
low-density collection is expected to remain stable against collapse despite
the attraction between particles. Although a variational many-body anal-
ysis indicates a collapsing solution with only a molecular component to
its condensate at low density, the expected atomic condensate solution
can be obtained if the chemical potential is allowed to be complex valued.
In addition to revealing two discrete eigenfrequencies associated with the
molecular case, an expansion in small oscillations quantifies the imaginary
part of the chemical potential as proportional to a coherent decay rate of
the atomic condensate into a continuum of collective phonon excitations
about the collapsing lower state.
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1 Introduction

This paper is intended to provide a complete quantum mechanical descrip-
tion of the instability inherent in zero-temperature atom–molecule Bose sys-
tems with attractive interparticle interactions, but with positive scattering
length. At low density it is well-known that the pressure in these systems
is proportional to aρ2, where a is the s-wave scattering length and ρ is the
number density. This suggests that despite being innately attractive, the
ensemble can remain stable against collapse if there is a nonnegative scat-
tering length [1]. Nevertheless, we find a ground state that tends toward
collapse, with the expected, positive-pressure case realized only at the cost
of including an inherent quantum instability [2–4]. Elucidation of this result
is provided by a series of derivations presented in the following sections.

Because many-body interactions are built up from the pairwise sum of
those between individual particles, Section 2 begins with a review of the
low-energy two-body scattering. After relating the scattering length to the
interaction strength, it is shown that a separable interaction not only cap-
tures the low-energy physics, but yields analytically tractable results. In
addition, we include coupling to a molecular Feshbach state, thus enabling
a tuning of the effective scattering length through a resonance. Solving the
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two-body problem provides a convenient context to model the many-body
atom–molecule system, which is the subject of Section 3. As discussed in
Section 4, a Gaussian variational procedure is used to find the lowest energy
states of the system. Upon deriving general variational expressions for these
states, the static, uniform case is considered in Section 5 where it is found
that a collapsing two-piece ground state persists even in the case of a positive
scattering length.

At positive scattering lengths, the expected solution can be obtained by
allowing the chemical potential to assume complex values, where the imagi-
nary part quantifies the decay of the condensate. Section 6 demonstrates this
result for the special case of a uniform system whereas Section 7 proves the
persistence of this feature even when the uniformity constraint is removed.
In the final section, we expand in small oscillations, obtaining a pair of dis-
crete excitation frequencies corresponding to the collapsing solution. Addi-
tionally, the expected energy per particle resides within a continuum of exci-
tations above the collapsing ground state. Energy conservation indicates
that the decay represents a transition into the continuum, thus revealing
that the expected solution evolves into states that tend toward collapse as
well. This analysis completes the result as it reveals the imaginary part
of the chemical potential to be associated with a decay rate into collective
modes of the collapsing lower state.

2 Two-body scattering

Because microscopic models of many-particle assemblies are built from all
pairwise interactions between the constituents, a reasonable place to begin is
by considering the interaction just between two particles. After identifying
the s-wave scattering length as the relevant low-energy scattering parameter,
this quantity is then related to the interaction strength. In doing so, we
recognize relationships that any model potential must satisfy in order to
accurately describe the interparticle interaction. From this analysis, we
find that the separable potential is simple enough to be of calculational
advantage, yet nonetheless retains sufficient flexibility to depict low-energy
scattering.

With the separable interaction, the scattering description is extended to
include the possibility of molecular binding, a crucial element in the loss
mechanisms at work in atomic condensates [5, 6]. Due to the presence of
the hyperfine-induced molecular state, there exists a Feshbach resonance
that occurs when the effective scattering length becomes unbounded upon
tuning an externally applied magnetic field. In completing the analysis,
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an effective range equation is derived for this coupled system. From these
two-body results, a many-body Hamiltonian may be postulated in which
subsequent investigation reveals the properties of the collective.

2.1 The scattering length

In the center of mass, two-body scattering processes are equivalent to
reduced masses, m/2, impinging on a force center that is identical to the
interparticle interaction. Within the influence of this potential, V , the
reduced mass obeys the full time independent Schrödinger equation,

H|ψ〉 = E|ψ〉, (2.1)

where the Hamiltonian is a sum of a free kinetic term plus the potential,
H = H0 + V . Long before collision, the incoming particles lie far outside
the potential’s range, thus allowing the incident flux to be represented as
plane waves obeying the free Schrödinger equation,

H0|k〉 = E|k〉. (2.2)

It is convenient to relate the plane waves to the full scattering state, |ψ〉, by
introducing the T operator,

V |ψ〉 = T (Ek)|k〉. (2.3)

From this definition, the solution to the full Schrödinger equation (2.1) may
be written as

|ψ〉 = |k〉 + G0(2k2 + iε)T (2k2)|k〉, (2.4)

where the free-particle Green’s function1 has the coordinate space represen-
tation

〈x|G0(2k2 + iε)|x′〉 =
∫
k′

eik′·(x−x′)

2k2 + iε − 2k′2

= − 1
8π

eik|x−x′|

|x − x′| . (2.5)

In this expression, the integral is evaluated with complex contour integration
in the standard way.2

1To connect with the many-body analysis, all energies are on the scale of �
2/2m,

where m is the actual particle mass, not the reduced mass. Hence, the energy eigenvalue
is denoted as 2k2.

2We use the notation
∫
k = (2π)−3 ∫

d3k.
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Obtaining the asymptotic behavior for large |x| requires the usual expan-
sion |x − x′| = x(1 − x · x′/x2 + · · · ), where the leading term is kept in the
denominator, but the first two terms are retained in the exponential in
(2.5). Substitution of this expanded Green’s function into (2.4) leads to the
asymptotic scattering wave function,

ψk(x) −→
x→∞

eik·x − 1
8π

〈kx̂|T (2k2)|k〉eikx

x
. (2.6)

Comparing this with the usual form ψk(x) → eik·x − A(θ, ϕ)eikx/x, it is seen
that, up to an overall constant, the matrix element is simply the scattering
amplitude:

A(θ, ϕ) =
1
8π

〈kx̂|T (2k2)|k〉, (2.7)

where the polar angles are those between x̂ and k.

Since we will ultimately be concerned with zero-temperature bosonic sys-
tems, it is useful to examine the low-energy form of the scattering amplitude.
Figure 1 shows the radial wave function, which at “zero energy” has a linear
form where the s-wave scattering length is the axial intercept:

u0,k(x) → x − a. (2.8)

Comparing u0,k/x with the asymptotic form of the wave function, the scat-
tering length is identified as the zero energy T matrix element,

8πa = 〈k|T (2k2)|k′〉
∣∣
k=k′=0. (2.9)

2.2 Separable potential

A two-body model interaction is sought that is not only consistent with
the low-energy scattering physics summarized in figure 1, but that leads
to analytically tractable results as well. In particular, it is required that
there exist the possibility for either positive or negative scattering lengths
in the case of attractive interactions. To address these considerations, we
use a separable potential which depends on the strength, λ, and the form
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factor, f(k):3

〈k|V |k′〉 = λf(k)f(k′). (2.10)
Multiplication of (2.4) by V , then applying definition (2.3) results in the
Lippmann–Schwinger equation, T = V + V G0T , from which it is possi-
ble to relate the strength with the scattering length. Using the momen-
tum space representation of the Green’s function, 〈k′′|G0(2k2 + iε)|k′′′〉 =
δ(k′′ − k′′′)/(2k2 + iε − 2k′′2), obtains the T matrix as

〈k|T (2k2)|k′〉 =
f(k)λf(k′)

1 + λ

∫
k′′

f(k′′)2

2k′′2 − 2k2 − iε

. (2.11)

Equation (2.9) then relates the scattering length to the strength by

1
8πabg

=
1
λ

+
1
b
, (2.12)

in which b is identified as the range through 1/b =
∫
k f(k)2/2k2. Here, the

scattering length carries a subscript to distinguish the background value
from the case where a Feshbach state is included.

Equation (2.12) is consistent with the intuitive results depicted in figure 1,
thus demonstrating that the separable form captures the low-energy scatter-
ing physics. According to (2.12), an attractive interaction (λ < 0) can yield
either positive or negative scattering lengths, which is qualitatively consis-
tent with figure 1(c) and (d). Alternatively, a repulsive interaction (λ > 0)
only gives rise to non-negative scattering lengths, which is as required.
Henceforth, we confine our attention to attractive interactions in which the
range is allowed to vanish for simplicity. In this limit, we take f(k) → 1,
with λ approaching zero from below in such a way that abg remains finite.

2.3 Coupled channels scattering

Up to this point, all that has been considered pertains to the case of a
single channel outcome in which two particles enter in a particular state or
channel, scatter, then reemerge in the same channel. Since there also exists
the possibility for bound states to arise, an analysis is undertaken in which
the energetically favored channel of the scattering state is coupled to the
energetically unfavorable molecular state. This coupled channels analysis

3The zero momentum form factor is arbitrary, since its value does not alter any of the
calculations. For simplicity, we therefore take f(0) = 1.
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Figure 1: At points outside the influence of the potential, V (x), this
schematic depicts the s-wave (
 = 0) radial wave function (solid line) and the
corresponding “zero energy” linear asymptote (dashed line). Part (a) shows
the free forms of both. For a repulsive potential, (b) indicates a negative
phase shift [compared with (a)], as the wave function is “repelled” by the
potential. The point where the zero energy line intersects the radial axis
is the scattering length, a, which must be non-negative for repulsion. Note
that as the range of V (x) shrinks to zero, so does the scattering length. For
an attractive potential, (c) shows that the intercept can land on the other
side of the axis, indicating a negative scattering length. As the well depth
increases, (d) shows that the wave function can get “pulled in” far enough
to give a positive value for a. Thus, for attractive potentials, the scattering
length may have either sign.

forms the basis of the description of the Feshbach resonance, a phenomenon
in which the effective scattering length becomes unbounded.

As shown in figure 2, the difference in electronic spin configuration gives
rise to a distinct potential for each of the scattered and bound states [7].
Furthermore, the schematic illustrates the molecular binding energy, E, as
the energy difference between the bound state and two free atoms, relative
to the molecular (closed channel) potential. Analogously, the detuning, ε, is
defined as the same, but relative to the scattering (open channel) potential.
Since both potentials arise due to a difference in spin states, the detuning,
and hence the binding energy, can be adjusted using the Zeeman interaction
in the presence of an applied magnetic field, B. Therefore, the detuning
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Figure 2: Schematic showing the potential of the closed channel (solid curve)
with that of the open channel (dash-dot curve). The binding energy E and
the detuning ε are shown relative to the free level of each case.

varies linearly with the field,

ε → ε + ΔgB, (2.13)

where Δg is the difference in the g factors between atoms and molecules.

To include the coupling between the two states, it is most convenient
to define projection operators P and Q onto the respective scattering and
bound Hilbert spaces, HS and HB [8]. For notational convenience, the
appropriate projections of the full wave function, |ψ〉, are given by

P |ψ〉 = |ψP 〉,
Q|ψ〉 = |ψQ〉.

(2.14)

Likewise, the various projections of the Hamiltonian are given by

PHP = HPP , QHQ = HQQ,

PHQ = HPQ, QHP = HQP .
(2.15)

Using the standard relationships, P = P †, Q = Q† and Q†Q + P †P = 1, the
projection of the Schrödinger equation, H|ψ〉 = E|ψ〉, onto the scattering
space gives

HPP |ψP 〉 + HPQ|ψQ〉 = E|ψP 〉. (2.16)

Similarly, the bound space counterpart is

HQQ|ψQ〉 + HQP |ψP 〉 = E|ψQ〉. (2.17)



38 GEORGE E. CRAGG AND ARTHUR K. KERMAN

Consider first the momentum space representation of the scattering space
projection of the Schrödinger equation (2.16). In this case, the Hamiltonian,
HPP , contains both kinetic and potential pieces, which in momentum space
are

〈k|HPP |ψP 〉 = 2k2ψ(k) +
∫
k′

〈k|V |k′〉ψ(k′), (2.18)

where ψ(k) = 〈k|ψP 〉. Consisting of a linear combination of the orthonormal
basis functions, {|φn〉 ∈ HB}, the bound state projection is written as

|ψQ〉 =
∑

n

cn|φn〉. (2.19)

Thus, upon substitution of the separable potential, the momentum space
representation of (2.16) is

(2k2 − E)ψ(k) + λf(k)
∫
k′

f(k′)ψ(k′) +
∑

n

cn〈k|HPQ|φn〉 = 0. (2.20)

Elimination of the coupling term requires an examination of the bound state
projection.

Since the {|φn〉} are eigenstates of HQQ, their eigenvalues are identified
with detunings, εn, as in (2.13) and figure 2. Projecting the molecular
equation (2.17) onto one of the bound states, |φn〉, results in a solution for
the coefficients,

cn = − λαn

εn − E

∫
k′

f(k′)ψ(k′), (2.21)

with coupling constants, αn, defined through

HQP |k′〉 =
∑

j

λαjf(k′)|φj〉. (2.22)

Because it must vanish as the two-body strength is taken to zero, the cou-
pling is represented by the product λαn. Substitution of the coefficients into
(2.20) gives

(
2k2 − E

)
ψ(k) +

(
λ − λ2

∑
n

α2
n

εn − E

)
f(k)

∫
k′

f(k′)ψ(k′) = 0, (2.23)

thus illustrating the coupling to several bound states. Assuming the effect
of the highest lying molecular state to be dominant over the ones below, a
single bound state (denoted with the subscript 1) suffices for the description.
Comparison with the usual single channel result (obtained when α1 = 0)
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reveals that the molecular state can simply be included by a shift in the
strength,

λ → λ − λ2α2
1

ε − E
. (2.24)

After setting the energy to zero, a combination of (2.24) and (2.12) arrives
at an expression for the effective scattering length due to the presence of the
molecular state,

1
a(ε)

=
1

abg
+

8πα2
1

ε − λα2
1
. (2.25)

From the detuning (2.13), the scattering length can be put into the standard
form, explicitly dependent upon the magnetic field,

a(B) = abg

(
1 − ΔB

B − B0

)
, (2.26)

where the resonance width, ΔB, and the resonant field, B0, are defined by

ΔB = 8πabgα
2
1/Δg,

B0 = (λα2
1 − ε)/Δg − ΔB.

(2.27)

In addition, the full T matrix is obtained by the substitution of (2.24) into
(2.11), thus giving

〈k|T (2k2)|k′〉 =
f(k)

(
λ − λ2α2

1
ε − 2k2

)
f(k′)

1 +
(

λ − λ2α2
1

ε − 2k2

)∫
k′′

f(k′′)2

2k′′2 − 2k2 − iε

. (2.28)

Since a pole in the T matrix indicates a bound state, the binding energies
are given by the values of k2 where the denominator vanishes. After some
algebraic manipulations, there emerges the following equation for the zeros:

1
8πabg

− γ2
0
2

∫
k′′

1
k′′2

f(k′′)2

k′′2 + γ2
0

+
α2

1

ε + 2γ2
0 − λα2

1
= 0, (2.29)

with the binding energy defined as −k2 = γ2
0 . For negative background

scattering lengths, the zero range (b → 0) limit is taken in which λ → 0−

and f(k) → 1. In this limit, (2.29) reduces to a cubic equation in the square
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Figure 3: For the case of 85Rb, (a) shows the full scattering length of equa-
tion (2.26), with the horizontal dashed line as the asymptotic background
value and the solid vertical indicating the location of the resonance at
154.6 G. (b) With a vertical, dashed boundary line separating the region
of positive from that of negative scattering length, a plot is shown of the
85Rb binding energy corresponding to equation (2.30). Approaching the res-
onance, both the scattering length and molecular size become unbounded,
indicating an increasingly weakly bound molecular state. Confirming this
intuition, the binding energy is zero on resonance.

root of the binding energy:

(
ε + 2γ2

0
)(

1
abg

− γ0

)
= −8πα2

1. (2.30)

By the integral in (2.29), only roots with γ0 > 0 are permissible. Figure 3
shows the zero-range cases of the scattering length resonance along with the
binding energy for the 85Rb system.

2.4 Effective range

Frequently, the partial wave analysis is employed where the determination
of the phase shifts allows subsequent derivation of any other quantity of
physical interest. In particular, the scattering length, a, and the effective
range, reff , are extracted from the expansion

k cot δ0(k) = −a−1 +
1
2
reffk2 + . . . , (2.31)
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where δ0(k) is the s-wave phase shift for particles of energy 2k2. Recall that
the scattering amplitude is given by a sum over all partial waves, −A(θ, ϕ) =
k−1 ∑

�(2
 + 1)eiδ�(k) sin δ�(k)P�(cos θ). If only the s-waves contribute, this
reduces to A = (8π)−1T = −k−1eiδ0(k) sin δ0(k), thus suggesting that the
effective range may be found by an expansion of the ratio of real to imaginary
parts of T :

cot δ0(k) =
Re{T }
Im{T } . (2.32)

These parts are obtained from (2.28) after the integral is evaluated with∫
dk′/(k′2 − k2) = (2 k)−1[ln |(kb − 4π2)/(kb + 4π2)| + iπ]. Expanding the

logarithms for small k, then taking the ratio in (2.32) obtains

k cot δ0(k) = −1
a

+
[

b

2π3 − 16πα2
1
(
ε − λα2

1
)−2

]
k2 + . . . , (2.33)

giving the effective range

reff = π−3b − 32πα2
1
(
ε − λα2

1
)−2

. (2.34)

Note that in the absence of the molecular state (α1 = 0), the effective range
is simply proportional to the range, b, which justifies the identification. In
the zero range limit, the effective range becomes negative, reff → −32πα2

1/ε2,
due to the presence of the molecular state [9].

3 Many-body Hamiltonian of the coupled system

Having reviewed the two-body scattering physics, we now discuss a corre-
sponding Hamiltonian for the many-body case. In field operator language,
this Hamiltonian is

Ĥ =
∑
αβ

Ψ̂†
αTαβΨ̂β +

1
2

∑
αβγδ

Ψ̂†
αΨ̂†

βVαβ;δγΨ̂γΨ̂δ

+ ε
∑
α

Φ̂†
αΦ̂α +

λα1√
2

∑
αβγ

Φ̂†
αFα;βγΨ̂γΨ̂β + H. c.. (3.1)

Here, the first term is the kinetic energy whereas the second is the sum
over all pairwise contributions from the two-body interaction. Given by the
molecule number times the detuning, the next term accounts for the energy
of the molecular condensate component. With a proportionality constant
λα1 and a molecular form factor F , the final term is the interaction energy
due to coupling of atoms to molecules and vice versa [10].
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Before embarking on the analysis, it is worthwhile to attempt a simpli-
fication of the above model. Suppose there were no two-body potential
present. Having only a single Feshbach state with a coupling parameter g
and detuning ε, (2.23) becomes

(
2k2 − E

)
ψ(k) − g2

ε − E
f(k)

∫
k′

f(k′)ψ(k′) = 0. (3.2)

For a detuning far enough away from the binding energy, |ε| � |E|, the
effective interaction strength is ≈ −g2/ε, which can be chosen to be equal
to the original separable potential strength, λ. Accordingly, an appropri-
ate detuning, ε = 2/λ2, and a coupling, g =

√
−2/λ, are defined such that

the requirement |ε| � |E| is self-consistently fulfilled in the limit of zero-
range attraction, λ → 0−. Replacing the two-body potential with a term
that couples the atoms to an auxiliary molecular field, X̂, gives an effective
Hamiltonian [11],

Ĥ =
∑
αβ

Ψ̂†
αTαβΨ̂β + ε

∑
α

Φ̂†
αΦ̂α + ε

∑
α

X̂†
αX̂α

+
λα1√

2

∑
αβγ

Φ̂†
αFα;βγΨ̂γΨ̂β +

g√
2

∑
αβγ

X̂†
αFα;βγΨ̂γΨ̂β + H. c.. (3.3)

Although we have replaced the two-body interaction by a single Feshbach
state, it must be emphasized that the two Hamiltonians in (3.1) and (3.3)
are in general different for nonzero range.4

4 Gaussian variational principle

To obtain an equation of state for the coupled system, we employ a varia-
tional procedure in which a Gaussian trial functional is used in calculating
the expectation value of the Hamiltonian [12]. An extremization then deter-
mines the various solutions arising from the model. As a first step in this
procedure, we decompose the field operators in terms of their corresponding

4It turns out that that the two models are equivalent in the zero-range limit.
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coordinates, ψ̂, φ̂, χ̂, and their conjugate momenta, π̂, ω̂, ν̂:

Ψ̂α =
1√
2

(
ψ̂α + iπ̂α

)
; Ψ̂†

α =
1√
2

(
ψ̂α − iπ̂α

)
, (4.1a)

Φ̂α =
1√
2

(
φ̂α + iω̂α

)
; Φ̂†

α =
1√
2

(
φ̂α − iω̂α

)
, (4.1b)

X̂α =
1√
2

(χ̂α + iν̂α) ; X̂†
α =

1√
2

(χ̂α − iν̂α) . (4.1c)

Where appropriate, only the atomic field is used in illustrating the required
operator relationships since the molecular counterparts follow a straightfor-
ward comparison. As usual, the field operators’ commutation relations are

[
Ψ̂α, Ψ̂β

]
=

[
Ψ̂†

α, Ψ̂†
β

]
= 0,[

Ψ̂α, Ψ̂†
β

]
= δαβ ,

(4.2a)

which imply
[
ψ̂α, ψ̂β

]
= [π̂α, π̂β] = 0,[

iπ̂α, ψ̂β

]
= δαβ .

(4.2b)

In the functional Schrödinger picture, the state vector, |Ψ, t〉, depends on
the field ψ′,

|Ψ, t〉 → Ψ[ψ′, t]. (4.3)

Analogous to the coordinate space representation of single-particle opera-
tors, the action of ψ̂ and π̂ on the many-body state is

ψ̂α|Ψ, t〉 → ψ′
αΨ[ψ′, t], (4.4a)

π̂α|Ψ, t〉 → −i
δ

δψ′
α

Ψ[ψ′, t]. (4.4b)

Explicitly, the coherent many-body state is an ansatz consisting of a product
of Gaussian functionals, with one for each of the three fields:

Ψ[ψ′, φ′, χ′, t] = Nψ exp

⎧⎨
⎩−

∑
αβ

δψ′
α(t)

[
1
4
G−1

αβ(t) − iΣαβ(t)
]

δψ′
β(t)

+ i
∑
α

πα(t)δψ′
α(t)

}
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× Nφ exp

{
−

∑
α

[
1
2
δφ′

α(t)2 − iωα(t)δφ′
α(t)

]}

× Nχ exp

{
−

∑
α

[
1
2
δχ′

α(t)2 − iνα(t)δχ′
α(t)

]}
, (4.5)

where Nψ, Nφ and Nχ are the normalization constants and the fluctuations
are given by the fields minus their mean values:

δψ′
α(t) = ψ′

α − ψα(t), (4.6a)

δφ′
α(t) = φ′

α − φα(t), (4.6b)

δχ′
α(t) = χ′

α − χα(t). (4.6c)

Unlike the molecular functionals, the atomic Gaussian has extra degrees
of freedom as it is parametrized by a symmetric width composed of a real
part, G−1

αβ/4 = G−1
βα/4, along with its canonical conjugate, Σαβ = Σβα. With

their conjugates set to zero, the corresponding molecular widths are taken
to be 1/2. This simplification is justified due to the absence of any Φ̂Φ̂
and X̂X̂ terms in the Hamiltonian. Under a variational analysis, general
molecular widths simply reduce to the aforementioned values as anticipated
in the ansatz (4.5).

Because each term contains a balance of creation–destruction operator
pairs, the Hamiltonian remains invariant under any phase transformation of
the trial functional:

|Ψ, t〉 → e−iN̂θ(t)|Ψ, t〉. (4.7)

Put another way, the invariance with respect to the phase angle, θ(t), must
be connected with a fixed total particle number, N . Due to the continuous
symmetry in θ, there must exist a mode of zero energy, otherwise known as
the Goldstone mode. Upon conducting a small oscillation analysis in the
random phase approximation (RPA), the presence of this zero frequency is
explicitly demonstrated in Section 8.5.1.

In this formalism, the mean of any operator, O, is calculated from the
functional integral

〈Ψ, t|Ô|Ψ, t〉 =
∫

Dψ′Ψ∗[ψ′, t]ÔΨ[ψ′, t]. (4.8)
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For calculating the mean, it is useful to construct a basis of creation and
destruction operators for the atomic Gaussian in (4.5). As linear combina-
tions of ϕ̂ and π̂, these operators are found to be

ĉ†
α =

1√
2

∑
β

Gαβ

[
2
∑

γ

(
1
4
G−1

βγ + iΣβγ

)(
ψ̂γ − ψγ

)
− i (π̂β − πβ)

]
,

(4.9a)

ĉα =
1√
2

∑
β

Gαβ

[
2
∑

γ

(
1
4
G−1

βγ − iΣβγ

)(
ψ̂γ − ψγ

)
+ i (π̂β − πβ)

]
,

(4.9b)

omitting the explicit time dependence for convenience. A direct application
on the many-body state reveals that

ĉ†
α(t)|Ψ, t〉 → 1√

2
δψ′

α(t)Ψ[ψ′, t], (4.10a)

ĉα(t)|Ψ, t〉 = 0, (4.10b)

thus verifying the construction. Using the commutators (4.2b) along with
the symmetry of G and Σ, we have

[
ĉ†
α(t), ĉβ(t)

]
= −1

2
Gαβ(t). (4.11)

Transforming to the {ĉ†, ĉ} basis, it is possible to easily calculate all quan-
tities of interest. Inversion of (4.9) leads to the desired expression for the
field operators

Ψ̂α(t) = 2
∑

β

[
1
4
G−1

αβ(t) + iΣαβ(t) +
1
2
δαβ

]
ĉβ(t)

− 2
∑

β

[
1
4
G−1

αβ(t) − iΣαβ(t) − 1
2
δαβ

]
ĉ†
β(t) +

1√
2

[ψα(t) + iπα(t)] .

(4.12)
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Employing equations (4.10)–(4.12), all required mean values are calculated
in the following:

〈Ψ, t|Ψ̂α(t)|Ψ, t〉 =
1√
2
[ψα(t) + iπα(t)] = Ψα(t), (4.13a)

〈Ψ, t|Ψ̂α(t)Ψ̂β(t)|Ψ, t〉 = −Dαβ(t) + Ψα(t)Ψβ(t), (4.13b)

〈Ψ, t|Ψ̂†
α(t)Ψ̂β(t)|Ψ, t〉 = Rαβ(t) + Ψ∗

α(t)Ψβ(t), (4.13c)

〈Ψ, t|Ψ̂†
α(t)Ψ̂†

β(t)Ψ̂γ(t)Ψ̂δ(t)|Ψ, t〉 = D∗
αβ(t)Dγδ(t) − D∗

αβ(t)Ψγ(t)Ψδ(t)

+ Rβγ(t)Rαδ(t) + Rβδ(t)Rαγ(t)

+ Ψ∗
β(t)Ψδ(t)Rαγ(t) + Ψ∗

β(t)Ψγ(t)Rαδ(t)

+ Ψ∗
α(t)Ψδ(t)Rβγ(t) + Ψ∗

α(t)Ψγ(t)Rβδ(t)

− Ψ∗
α(t)Ψ∗

β(t)Dγδ(t)

+ Ψ∗
α(t)Ψ∗

β(t)Ψγ(t)Ψδ(t), (4.13d)

〈Ψ, t|i δ

δt
|Ψ, t〉 =

∑
α

[
πα(t)ψ̇α(t) + ωα(t)φ̇α(t)

+ να(t)χ̇α(t)
]

+
∑
αβ

Σαβ(t)Ġβα(t) + N θ̇(t)

+ total time derivatives. (4.13e)

In the expressions above, we have introduced Rαβ(t) and Dαβ(t) as the
respective fluctuations of 〈Ψ̂†Ψ̂〉 and 〈Ψ̂Ψ̂〉 about their mean field values of
|Ψ|2/2 and Ψ2/2. Explicitly, these fluctuations are parametrized by G−1

αβ(t)
and its conjugate, Σαβ(t):

Rαβ(t) =
1
2

[
1
4
G−1

αβ(t) + Gαβ(t) − δαβ

]
+ 2

∑
γδ

Σαγ(t)Gγδ(t)Σδβ(t),

(4.14a)

Dαβ(t) =
1
2

[
1
4
G−1

αβ(t) − Gαβ(t)
]

+ 2
∑
γδ

Σαγ(t)Gγδ(t)Σδβ(t)

− i
∑

γ

[Σαγ(t)Gγβ(t) + Gαγ(t)Σγβ(t)] . (4.14b)

Note that equation (4.13e) takes account of the wave functional phase, as
given in the transformation (4.7).
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Lastly, Hamilton’s equations of motion follow from the effective action
which is defined as

S =
∫

L(t)dt =
∫

dt〈Ψ, t|i∂t − Ĥ|Ψ, t〉. (4.15)

Substitution of the mean values (4.13) into the action obtains

S =
∫

dt

{∑
α

[πα(t)ψ̇α(t) + ωα(t)φ̇α(t) + να(t)χ̇α(t)]

+
∑
αβ

Σαβ(t)Ġβα(t) + N θ̇(t) − H

⎫⎬
⎭ , (4.16)

where

H = 〈Ψ, t|Ĥ|Ψ, t〉, (4.17)

N = 〈Ψ, t|N̂ |Ψ, t〉; (4.18)

N̂ =
∑
α

(
Ψ̂†

αΨ̂α + 2Φ̂†
αΦ̂α + 2X̂†

αX̂α

)
.

Since N is constant, θ̇ must be time independent, thus giving θ̇ = 0 ⇒ θ =
const. = μ, which we identify as the chemical potential at zero temperature.
By stationarizing the action, the equations of motion emerge as

Ġαβ(t) =
δ(H − μN )

δΣαβ(t)
, (4.19a)

Σ̇αβ(t) = −δ(H − μN )
δGαβ(t)

, (4.19b)

ψ̇α(t) =
δ(H − μN )

δπα(t)
, (4.19c)

π̇α(t) = −δ(H − μN )
δψα(t)

. (4.19d)

Not shown are the two molecular fields since their derivatives are straight-
forward analogs of (4.19c) and (4.19d). From these it is evident that (N , θ),
(π, ψ), (ω, φ), (ν, χ) and (Σ, G) are canonical pairs.
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Employing equations (4.13) and (4.18), the grand canonical Hamiltonian
corresponding to (3.3) has the momentum space expectation value of

K ≡ H − μN =
∫
k
(k2 − μ)[R(k,k, t) + Ψ∗(k, t)Ψ(k, t)]

+ (ε − 2μ)
∫
k

Φ∗(k, t)Φ(k, t) + (ε − 2μ)
∫
k

X∗(k, t)X(k, t)

+
1√
2

∫
k,k′,k′′

δ(k′′ − k + k′)f
(

k + k′

2

)

× {Ξ∗(k′′, t)[−D(k,k′, t) + Ψ(k, t)Ψ(k′, t)]

+ Ξ(k′′, t)[−D∗(k,k′, t) + Ψ∗(k, t)Ψ∗(k′, t)]}. (4.20)

In the kinetic energy term, we have used the momentum space form
T (k,k′) = k2δ(k − k′), whereas the coupling term’s form factor, F , has
been chosen to be proportional to f in the separable potential introduced in
(2.10). Simplifying the notation, two molecular fields have been combined
in the term Ξ(k′′, t) = λα1Φ(k′′, t) + gX(k′′, t).5 Before trying to analyze
the full time-dependent problem, it is beneficial to first examine the special
case of the static, uniform medium. Moreover, the uniform results may be
applied to nonuniform trapping geometries by an application of the local
density approximation.

5 Static, uniform solution

The static, uniform case has zero momenta (Σ = 0, π = ω = ν = 0) with
constant mean fields in all of space, thus imparting a continuous translational
symmetry to the system. For a hard sphere bose gas, the uniform energy
per particle (on the scale of �

2/2m) is known to be

e =
u

ρ
= 4πaρ +

512
√

π

15
a5/2ρ3/2 + . . . , (5.1)

where u is the energy density and a is the s-wave scattering length [13]. It
has also been shown that the lowest order term 4πaρ is independent of the
form of the two-body interaction [14].

We compare this result with a variational many-body analysis of the
Hamiltonian in (4.20) which is further simplified by noting that for a uniform

5Φ and X are defined in analogy to (4.13a).
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system, the Gaussian trial functional’s width is diagonal,

G(k,k′) = G(k)δ(k − k′). (5.2)

According to equations (4.14), this yields diagonal forms for the fluctuations
as well

R(k,k′) =
1
2

[
1
4
G(k)−1 + G(k) − 1

]
δ(k − k′)

≡ R(k)δ(k − k′) (5.3a)

D(k,k′) =
1
2

[
1
4
G(k)−1 − G(k)

]
δ(k − k′)

≡ D(k)δ(k − k′). (5.3b)

Likewise, in momentum space, the mean fields are simply constants multi-
plied by delta functions:

ψ(k) = ψδ(k), (5.4a)

φ(k) = φδ(k), (5.4b)

χ(k) = χδ(k). (5.4c)

To obtain finite quantities, the Hamiltonian is divided by the volume of
space. Applied to a uniform system, the First Law of Thermodynamics,
dE = −PdV + μdN , reveals the resulting quantity as the negative of the
pressure,6

−P =
1
V (H − μN ) =

∫
k
(k2 − μ)R(k) + ξ

∫
k

f(k)D(k) + (ξ − μ)
1
2
ψ2

+
(

1
2
ε − μ

)(
ξ + η

2λα1

)2

+
(

1
2
ε − μ

)(
ξ − η

2g

)2

.

(5.5)

In addition to taking the mean fields as real quantities, we have defined

ξ = λα1φ + gχ, (5.6a)

η = λα1φ − gχ. (5.6b)

6The sign in front of D(k) is unimportant since it can be absorbed into the as yet
unknown parameter ξ.
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Along with G(k), the variational parameters include the mean fields ψ, ξ
and η. Extremizing on each results in the following set:

δP

δG
= 0 ⇒ G(k) =

1
2

√
k2 − μ + ξf(k)
k2 − μ − ξf(k)

, (5.7a)

δP

δψ
= (ξ − μ) ψ = 0, (5.7b)

δP

δξ
=

δP

δη
= 0 ⇒ 4τσ

τ + σ
ξ +

∫
k

f(k)D(k) +
1
2
ψ2 = 0, (5.7c)

where σ = (ε − 2μ)/(2λα1)2 and τ = (ε − 2μ)/(2g)2. We use a step function
form factor, f(k) = θ(|k| − 4π2/b), so that both R(k) and D(k) vanish for
k > 4π2/b where G = 1/2. Thus, the upper limit in all radial integrals is
cut off at 4π2/b while taking f(k) = 1 everywhere. As a further reduction,
the zero-range limit (b → 0 and λ → 0−) is taken, whence we require the
following quantities to the appropriate order in λ:7

4τσ

τ + σ
� − 1

λ
− α2

1
ε − 2μ

, (5.8a)

φ =
ξ + η

2λα1
� − α1ξ

ε − 2μ
, (5.8b)

χ2 =
(

ξ − η

2g

)2

� −
(

1
2
λ +

α2
1

ε − 2μ
λ2

)
ξ2. (5.8c)

After substitution of (5.7a) into equations (5.3), the required integrals are
written out explicitly, each being expressible in terms of elliptic integrals of
the first and second kind, denoted as F and E, respectively [15]:

∫
k

k2R(k) =
1

4π2

∫ 4π2/b

0
k4

[
k2 + γ2√

(k2 + γ2)2 − ξ2
− 1

]
dk

−→
b→0

√
γ2 + |ξ|
20π2 [−(3ξ2 + γ4)E + γ2(γ2 − |ξ|)F ] +

ξ2

2b
, (5.9a)

7Recall that g =
√

−2/λ and ε = 2/λ2.
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∫
k

R(k) =
1

4π2

∫ 4π2/b

0
k2

[
k2 + γ2√

(k2 + γ2)2 − ξ2
− 1

]
dk

−→
b→0

√
γ2 + |ξ|
12π2

[
γ2E −

(
γ2 − |ξ|

)
F
]
, (5.9b)

∫
k

D(k) = − ξ

4π2

∫ 4π2/b

0

[
k2√

(k2 + γ2)2 − ξ2
− 1

]
dk − ξ

b

−→
b→0

ξ

4π2

√
γ2 + |ξ|E − ξ

b
. (5.9c)

The resulting expressions have been expanded in the b → 0 limit, omitting
terms of order b and higher. Identifying μ = −γ2, the elliptic integral argu-
ments are implicitly understood to be

√
2|ξ|/(|ξ| + γ2).

Retaining only the nonvanishing terms in the λ → 0− limit, the pressure
and the density become

−P =
∫
k
(k2 − μ)R(k) + ξ

∫
k

D(k) + (ξ − μ)
1
2
ψ2 − 1

2
α2

1ξ
2

ε − 2μ
− ξ2

2λ

=
1
2

∫
k

[√
(k2 − μ)2 − ξ2 − (k2 − μ) +

ξ2

2k2

]
+ (ξ − μ)

1
2
ψ2

− ξ2

16πa(ε − 2μ)
, (5.10)

ρ =
∫
k

R(k) +
1
2
ψ2 +

α2
1ξ

2

(ε − 2μ)2
. (5.11)

As in (5.10), we will frequently find it convenient to use the full scattering
length (2.25), where ε is shifted by −2μ. Both pressure and density depend
on three parameters, ψ, γ2 = −μ and ξ, which are constrained by the two
variational equations (5.7b) and (5.7c). Through the relation (5.11), the
density is chosen as the free parameter.

5.1 ψ = 0 Solution

First, note that equation (5.7b) admits two solutions, with one for ψ = 0 and
the other for ξ = μ = −γ2. We begin with the former, describing a system
composed entirely of a molecular condensate and correlated atom pairs, but
with no atomic condensate component. Substitution of (2.25), (5.8a) and
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(5.9c) into (5.7c) results in an expression that relates ξ to γ2:

1
8πa(ε + 2γ2)

+
1

4π2

∫ 4π2/b

0

[
k2√

(k2 + γ2)2 − ξ2
− 1

]
dk = 0, (5.12)

where, constrained by the form of the integral, ξ ranges from −γ2 to zero.
Differentiation of the density expansion (5.11) indicates that dρ/dξ2 > 0,
thus implying an increasing density with increasing ξ2. When ξ = −γ2,
a critical density is reached since (5.12) no longer admits a real solution
for ξ2 > γ4. According to (5.11), dilute gases (ρa3  1) in the low-density
regime correspond to small ξ. In the limit ξ → 0, (5.12) reduces to

γ0a(ε + 2γ2
0) = 1. (5.13)

When compared with (2.30), this is identified as the equation for the binding
energy 2γ2

0 .

In addition to (5.12), the equation of state for ψ = 0 is specified by the
energy and number densities which, when cast in terms of the elliptic inte-
grals become

u = −P + μρ =

√
γ2 + |ξ|
20π2 [(2ξ2 − γ4)E + γ2(γ2 − |ξ|)F ]

− ξ2

16πa(ε + 2γ2)
− γ2α2

1ξ
2

(ε + 2γ2)2
, (5.14)

ρ =

√
γ2 + |ξ|
12π2 [γ2E − (γ2 − |ξ|)F ] +

α2
1ξ

2

(ε + 2γ2)2
. (5.15)

From the limit ξ → 0, the energy per particle, e = u/ρ, reduces to minus
half the molecular binding energy, −γ2

0 . This result makes physical sense
because at zero density, only the molecular state remains. Although the
ψ = 0 solution terminates when ξ = −γ2, the variational equation (5.7b) also
permits an alternative solution given by ξ = μ = −γ2, which corresponds to
a nonzero atomic field in general.

5.2 ψ �= 0 Solution

The solution for ξ = −γ2 permits an elementary evaluation of the integrals
in (5.9):

∫
k

k2R(k) −→
b→0

γ4

2b
−

√
2

5π2 γ5, (5.16a)
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∫
k

R(k) −→
b→0

√
2

12π2 γ3, (5.16b)
∫
k

D(k) −→
b→0

γ2

b
−

√
2

4π2 γ3. (5.16c)

Unlike the ψ = 0 case, (5.7c) is now solved for the atomic field:

1
2
ψ2 −→

b→0
− γ2

8πa(ε + 2γ2)
+

√
2

4π2 γ3. (5.17)

With these expressions, both the energy and number densities are para-
metrized by γ2:

u =
[

1
16πabg

+
1
2

εα2
1

(ε + 2γ2)2

]
γ4 −

√
2

5π2 γ5, (5.18)

ρ = − 1
8πa(ε + 2γ2)

γ2 +
√

2
3π2 γ3 +

α2
1

(ε + 2γ2)2
γ4. (5.19)

For the example of 85Rb, figure 4 shows the energy per particle curve
formed by the merging of the ψ = 0 and ψ �= 0 solutions at the critical

Figure 4: Two-piece collapsing ground state for the case of 85Rb at a mag-
netic field of 162.3 G, corresponding to a critical density, ρc, of 1.22 ×
1016 cm−3 with a full scattering length of 193 Bohr radii [26]. In the limit
of zero density, the energy per particle simply reduces to half the molec-
ular binding energy, BE/2 ∼ 1.85 neV. By tuning the magnetic field closer
to resonance, the relatively high critical density may be brought within the
regime of current experiments.
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point. The fact that this point marks a quantum phase transition [16–18]
follows from a discontinuity in the density between the two cases. That is,
one piece has an atomic condensate density component and the other does
not. Due to the persistently negative slope of the energy per particle, the
pressure, P = ρ2de/dρ, is always negative, by which we denote this two-piece
solution as the “collapsing ground state” of the model Hamiltonian (3.3).
Of particular importance is that this collapsing behavior persists even when
the full scattering length is tuned to positive values, a regime thought to
be stable against collapse. Indeed, this result challenges the intuitive low-
density scattering length behavior, e ∼ 4πaρ, indicated in expansion (5.1).

6 A complex chemical potential

Due to an innately negative scattering length, 85Rb has two-body interac-
tions that are attractive, resulting in an ensemble that tends toward collapse
as quantum degeneracy is approached. As such, this particular isotope can-
not form a condensate containing more atoms than some critical number.
However, by exploiting a Feshbach resonance, the appearance of the molecu-
lar state allows the effective scattering length to be tuned to positive values,
as indicated in figure 3(a). By tuning to positive values, a stable conden-
sate has been experimentally observed in which the low-density energy per
particle is found to have the usual behavior, e ∼ 4πaρ, where a is the full
scattering length [1].

Despite the positive scattering length, our previous solutions predict that
a uniform assembly should still tend toward collapse, confronting us with the
dilemma that the separable potential somehow does not capture the correct
many-body physics even though it does reproduce the correct two-body
scattering (see Section 2.2). To resolve this issue, it is necessary to reexamine
the solutions obtained in the collapsing case. Since the experiments have
observed the formation of an atomic condensate, we focus on the solution for
ψ �= 0, exploring the consequences of extending this solution to zero density.
To do so, the density equation (5.19) is inverted, thereby obtaining μ as an
expansion in

√
ρ:

−γ2 = μ = 8πa(ε)ρ − i
√

π

3
256a(ε)5/2ρ3/2

−
[
64a(ε)2

3π2 + 8πa(ε)
3α2

1
ε2

]
64π2a(ε)2ρ2 − . . . . (6.1)

When this expansion is substituted into (5.18), the usual low-density energy
dependence, e = u/ρ ∼ 4πaρ, is achieved (see figure 5). Although this does
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Figure 5: Real part of the energy per particle, e = u/ρ, [see equations (5.18)
and (6.1)], corresponding to the decaying excited state (1). Below this is
the two-piece collapsing ground state (2) as shown in figure 4. All results
correspond to 85Rb at an applied magnetic field of 162.3 G.

give the appropriate form, the chemical potential becomes complex at higher
order. At first it may seem that this is simply an unphysical solution, but
upon further consideration it is recognized as a signature of an instability
that is inherent in the original system.

With the Hamiltonian given by (3.3), consider the Heisenberg equation
of motion for the atomic field operator Ψ̂†

ζ : i�∂tΨ̂
†
ζ = [Ψ̂†

ζ , Ĥ]. Employing

the commutators [Ψ̂α, Ψ̂†
β] = δαβ , [Ψ̂†

ζ , Ψ̂
†
αΨ̂β] = −δζβΨ̂†

α and [Ψ̂†
ζ , Ψ̂γΨ̂β] =

−δζγΨ̂β − δζβΨ̂γ , the right-hand side can be readily evaluated using the
expectation value of the mean atomic field (4.13a). This leads to

i�
∂Ψ∗

∂t
= −

√
2 (λα1Φ∗ + gX∗) Ψ

= −
√

2 Ξ∗Ψ. (6.2)

We seek to add a phase to the mean fields such that (6.2) is consistent
with the variational equations (5.7). If we let

Ψ =
1√
2
ψe−iμt/�, (6.3a)

Ξ =
1√
2
ξe−2iμt/�, (6.3b)
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then (6.2) gives back (5.7b). Thus, it is reasonable to interpret the chemical
potential as the phase of the mean fields [19], where the imaginary part of
μ leads to a decay rate given by

Γ =
�

2m

√
π

3
512a(ε)5/2ρ3/2 + . . . . (6.4)

Displaying unique dependencies on both the scattering length [∼ a(ε)5/2] and
the density (∼ ρ3/2), this coherent rate can be tested by further experiments.
Under the conditions of the 85Rb experiment, there were 104 atoms within a
cloud of radius 25μm when the scattering length was tuned to 193a0 (a0 =
Bohr radius). These parameters yield a decay time, τ ∼ 1/Γ, of 14.3 s,8

which is in qualitative agreement with the observed 10 s lifetime [1].

Because all quantities depend on μ, which is in general complex, it follows
that the various other thermodynamic functions assume a complex charac-
ter as well. This is not unphysical since the imaginary parts should simply
be regarded as signatures of the coherent decay with the real parts assum-
ing their usual physical interpretations (see figure 5). Although complex
frequencies are well known to signify the damping of collective modes [20],
we emphasize that the distinctive effect here is a decay of the condensate
itself, in the absence of any excitations. However, a physical analogy may
be found in the context of quantum electrodynamics, where the instability
of a static electric field emerges through a complex action [21].

7 Decay in the nonuniform case

The complex chemical potential persists even in the static, but nonuniform
case. Thus far, only the uniform solutions have been discussed since it has
been assumed that any nonuniformity can be accommodated using a local
density approximation. Therefore, one could conjecture that a chemical
potential assuming a complex value is simply an artifact arising because
the uniform solution is too restrictive to capture the physics observed in
experiment.

To address this concern, the origin of the complex μ must be identified.
First, it is recognized that the expected solution has an equation of state
associated with a positive chemical potential. At low density, the energy per
particle and its derivative satisfy e ∼ 4πaρ > 0 and de/dρ > 0, respectively.

8For an attractive interaction, the longest decay time is attained in the limit λ → 0−

since the rate increases with decreasing λ [4].
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By the relationship9 μ = du/dρ and the definition of e as u/ρ, it follows
that μ = ρ(de/dρ) + e. The positivity of e, ρ and de/dρ thus implies the
same for μ. From (5.7a), it is seen that if μ is positive, then G becomes
imaginary for sufficiently small values of k. By construction, G−1 is the real
part of the Gaussian functional’s width, raising an apparent contradiction
unless the chemical potential is allowed to be complex instead. Therefore,
an imaginary G is also a harbinger of the same instability described in the
previous section. Most importantly, the ranging of G into imaginary values
provides a convenient test for this instability when discussing the nonuniform
case where a full analytic expression for μ is not possible.

For static nonuniformities, the grand canonical Hamiltonian can be writ-
ten as

K =
∑
αβ

hαβ

(
Rαβ +

1
2
ψ∗

αψβ

)
+

(
1
2
ε − μ

)∑
α

φ∗
αφα

+
(

1
2
ε − μ

)∑
α

χ∗
αχα +

1
2

∑
αβγ

ξ∗
αFα;βγ

(
Dγβ +

1
2
ψγψβ

)
+ H.c., (7.1)

where hαβ = Tαβ − μδαβ . The fluctuation terms are given by the static form
of (4.14):

Rαβ =
1
2

(
1
4
G−1

αβ + Gαβ − δαβ

)
, (7.2a)

Dαβ =
1
2

(
1
4
G−1

αβ − Gαβ

)
. (7.2b)

Differentiating with respect to Gρσ yields

δRαβ

δGρσ
=

1
2

(
−1

4
G−1

αρG−1
βσ + δαρ δβσ

)
, (7.3a)

δDαβ

δGρσ
=

1
2

(
−1

4
G−1

αρG−1
βσ − δαρδβσ

)
. (7.3b)

Using these derivatives, (7.1) is extremized on the width

δK

δGρσ
= −1

8

∑
αβ

G−1
ρα (hαβ + F̃αβ)G−1

βσ +
1
2

∑
αβ

δρα

(
hαβ − F̃αβ

)
δβσ = 0,

(7.4)

9This can be seen by extremizing the pressure, P = μρ − u, with respect to ρ,
δP/δρ = 0.
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with F̃ related to the form factor F by10

F̃αβ =
∑

τ

Re{ξτ}Fτ ;αβ . (7.5)

After defining new matrices Y and Z as

Yαβ = hαβ + F̃αβ , (7.6a)

Zαβ = hαβ − F̃αβ , (7.6b)

the variational equation (7.4) can be put into the compact matrix form

−1
4
G−1Y G−1 + Z = 0. (7.7)

To obtain a symmetric solution for G−1, we first multiply by
√

Y on the
right and on the left,

−1
4

√
Y G−1

√
Y

√
Y G−1

√
Y +

√
Y Z

√
Y = 0. (7.8)

Moving the first term to the right-hand side, then taking the square root,
G−1 is seen to be11

G−1 = 2
1√
Y

√√
Y Z

√
Y

1√
Y

. (7.9)

Likewise, the symmetric form of G is most easily obtained by multiplying
(7.7) on the left and right by G, then following the same steps to end up
with

G =
1
2

1√
Z

√√
ZY

√
Z

1√
Z

. (7.10)

In momentum space, the operator h is given by h(k,k′) = (k2 − μ)δ(k −
k′). For k2 = μ, h = 0. At such values of k, equations (7.6) show that

10We have used the symmetry Fτ ;αβ = Fτ ;βα.
11This series of manipulations obtains the required symmetric form for G−1. In general,

however, this is not a unique solution since multiplying (7.7) on the right by Y , then taking
the square root results in G−1 = 2

√
ZY Y −1, which is different than the solution in (7.9).
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Y = −Z = F̃ , thus giving

G
∣∣∣
k2=μ

=
1
2

√
1√
−F̃

F̃
1√
−F̃

= ± i
2
, (7.11)

indicating that G is in general complex. By our earlier observation, it follows
that the coherent decay is present even in the nonuniform case.

8 Small oscillations: generalized RPA

Evidence for the production of a coherent atom–molecule condensate has
been demonstrated by the dynamical response of the 85Rb system near a
Feshbach resonance. In particular, oscillations in the atomic density were
observed in trapped samples by Donley et al. [22], indicating the coexistence
of a molecular counterpart. Although theoretical investigations have been
conducted by Holland et al. [23] and by Kokkelmans and Holland [24], it is
perplexing that only the latter seems to predict a much longer damping rate
in agreement with the experiment. In any event, all of these investigations
dealt with the dynamics of the expected solution, which expands against the
trap due to the positive scattering length. Instead, our aim is to carry out a
small oscillation expansion of the collapsing ground state since its spectrum
completes the physical picture by providing an interpretation of the coherent
decay uncovered in the previous two sections.

To find the collapsing state’s low-lying excitations, all variational quanti-
ties are expanded about their stationary values, resulting in an oscillator-like
Hamiltonian expressed in terms of effective mass (A) and spring (B) matri-
ces. Solving the full problem is accomplished in a series of stages, with each
including an added generality over the previous. As the first and simplest
step, we consider only the diagonal or noninteracting part of the Hamilton-
ian from which the corresponding (δG, δΣ) oscillations represent the energy
of two free quasi-bosons. Including both the diagonal and off-diagonal ele-
ments in A, a zero is obtained as a discrete point in its spectrum, thus verify-
ing the presence of the Goldstone mode in general. Nevertheless, a complete
accounting of the excitations must be obtained from the product A · B. Cor-
respondingly, the eigenvalue problem has the familiar Lippmann–Schwinger
form, suggesting the associated eigenfrequencies be interpreted as the energy
of two interacting quasi-bosons. In addition to discrete modes, there exists
a phonon continuum of the collapsing solution. Since the expected energy
per particle lies within the continuum, energy conservation gives a natural
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interpretation of the decay as a transition into the phonon excitations of the
collapsing state.

8.1 General expansion

All stationary quantities are expanded about their uniform equilibrium val-
ues:

G(k,k′, t) = G(k)δ(k − k′) + δG(k,k′, t), (8.1a)

Σ(k,k′, t) = δΣ(k,k′, t), (8.1b)

ψ(k, t) = ψδ(k) + δψ(k, t), (8.1c)

π(k, t) = δπ(k, t), (8.1d)

φ(k, t) = φδ(k) + δφ(k, t), (8.1e)

ω(k, t) = δω(k, t), (8.1f)

χ(k, t) = χδ(k) + δχ(k, t), (8.1g)

ν(k, t) = δν(k, t), (8.1h)

ξ(k, t) = ξδ(k) + δξ(k, t). (8.1i)

It will prove convenient to define new momenta

P = k − k′, (8.2a)

q =
1
2
(
k + k′) , (8.2b)

having the interpretation as the respective total and relative momenta of a
pair of quasiparticles.

To illustrate the relationship between the variations and their inverses,
consider the expression for G−1(k,k′, t), which, to second-order in δG, we
write as

G−1(k,k′, t) = G(k)−1δ(k − k′) + δG−1(k,k′, t) +
1
2
δG−2(k,k′, t). (8.3)

By using the identity GG−1 = 1, it follows that

δG−1(k,k′, t) = −G(k)−1δG(k,k′, t)G(k′)−1, (8.4a)

δG−2(k,k′, t) = 2G(k)−1
∫
k′′

δG(k,k′′, t)G(k′′)−1δG(k′′,k′, t)G(k′)−1.

(8.4b)
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Upon promoting all quantities to the new variables (P,q), Hermitian con-
jugation, δG(k,k′, t)† = δG∗(k′,k, t), obeys the mapping

δG(k,k′, t) → δG(q,P, t) ⇔ δG∗(k′,k, t) → δG∗(q,−P, t), (8.5)

which, by the definition of P given in (8.2a), follows from the interchange
of k and k′.

Undertaking a harmonic analysis, the mean grand canonical Hamiltonian,
K = 〈Ĥ − μN̂〉, must be expanded to second-order in the small deviations
of (8.1),

K = K(0) + δKδP +
1
2
δP†

AδP +
1
2
δQ†

BδQ, (8.6)

where the vector δQ and its canonical conjugate δP are given as

δQ†(q,P, t) = [δΣ(q,−P, t), δπ(−P, t), δω(−P, t), δν(−P, t)], (8.7a)

δP†(q,P, t) = [δG(q,−P, t), δψ(−P, t), δφ(−P, t), δχ(−P, t)]. (8.7b)

In expression (8.6), the zero-order constant term, K(0), is the static, uniform
piece that can be dropped as it merely represents a constant energy shift,
having no effect on any ensuing dynamics. Also, the first variation, δK,
is zero at the stationary points given by (5.7), thus leaving a quadratic
Hamiltonian in δQ and δP. Consequently, A and B can be interpreted as
the mass and spring matrices whose product has eigenvalues that determine
the low-lying excitations of the system.

The second-order expansion of H − μN has been carried out explicitly in
the Appendix, which finds the A and B matrices to be

A(q,q′,P, t) =

[
sM (q,P)δ(q − q′) cM (q,P)

cT
M (q′,P) A(P)

]
, (8.8a)

B(q,q′,P, t) =

[
sK(q,P)δ(q − q′) cK(q,P)

cT
K(q′,P) B(P)

]
, (8.8b)

where A(P) and B(P) are 3 × 3 matrices [compare (A.23)]. Finally, along
with their corresponding transposes, cT

M and cT
K , the off-diagonal terms are

cM (q,P) =
[
AGψ(q,P) AGφ(q,P) AGχ(q,P)

]
, (8.9a)

cK(q,P) =
[
BΣπ(q,P) BΣω(q,P) BΣν(q,P)

]
. (8.9b)
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8.2 Quasi-Boson interpretation

As suggested by (8.8), it is natural to separate the diagonal or noninteracting
part of KRPA from the off-diagonal piece so that12

KRPA = K0 + Kint, (8.10)

with

K0 =
1
2
δP†

(
sM 0
0 A0

)
δP +

1
2
δQ†

(
sK 0
0 B0

)
δQ, (8.11a)

Kint =
1
2
δP†

(
0 cM

cT
M A − A0

)
δP +

1
2
δQ†

(
0 cK

cT
K B − B0

)
δQ. (8.11b)

For the noninteracting case involving only K0, it is simpler to introduce the
multiplicative canonical transformation

⎛
⎜⎜⎝

δΣ
δπ
δω
δν

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

δΣ
δπ
δω
δν

⎞
⎟⎟⎠

′

=

⎛
⎜⎜⎝

δΣ
√

sM

δπ
√

Aψψ

δω
√

Aφφ

δν
√

Aχχ

⎞
⎟⎟⎠ , (8.12a)

⎛
⎜⎜⎝

δG
δψ
δφ
δχ

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

δG
δψ
δφ
δχ

⎞
⎟⎟⎠

′

=

⎛
⎜⎜⎝

δG/
√

sM

δψ/
√

Aψψ

δφ/
√

Aφφ

δχ/
√

Aχχ

⎞
⎟⎟⎠ , (8.12b)

resulting in

K0 =
1
2
(
δΣ∗ δπ∗ δω∗ δν∗)′

⎛
⎜⎜⎝

Ω2
2 0 0 0

0 ω2
Ψ 0 0

0 0 ω2
Φ 0

0 0 0 ω2
X

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δΣ
δπ
δω
δν

⎞
⎟⎟⎠

′

+
1
2

∣∣δP ′∣∣2 .

(8.13)

Associated with each of the respective pairs, (δΣ, δG), (δπ, δψ), (δω, δφ),
(δν, δχ), is a frequency given by

Ω2(q,P) =
√

sM (q,P)sK(q,P), (8.14a)

ωΨ(P) =
√(

P2 − μ
)2 − ξ2, (8.14b)

12The subscript 0 denotes the diagonal part of the matrix.
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ωΦ = ε − 2μ, (8.14c)

ωX = ε − 2μ. (8.14d)

An explicit calculation of Ω2 yields an interesting interpretation. From
(A.25) and (A.35) we have

sM (q,P) =
1
4
G−1

+ G−1
− (ω+ + ω−), (8.15a)

sK(q,P) = 4G+G−(ω+ + ω−), (8.15b)

where, in addition to the form of G in (5.7a), we have used the definition13

ω± ≡ ωΨ(q±) =
√

(q2
± − μ)2 − ξ2. (8.16)

Multiplication of sM and sK obtains

√
sMsK = ω+ + ω−. (8.17)

Recalling the definitions of q and P in (8.2) leads to

Ω2(q,P) = ω(k) + ω(k′), (8.18)

thus suggesting that ω and Ω2 are one and two free quasi-boson ener-
gies, respectively. Extrapolating these results to the more general case
which includes off-diagonal elements, the corresponding eigenfrequencies
are interpreted as the energy of two interacting quasi-bosons. As will be
demonstrated in Section 8.5.2, discrete, real-valued eigenfrequencies repre-
sent bound states whereas discrete, complex quantities represent scattering
into a continuum.

8.3 Eigenspectrum of A

Before trying to solve for the spectrum of A · B, it is helpful to first consider
the solution for the eigenvalues of A alone, for this simplified case serves to
illustrate the approach in the more general problem. Furthermore, a zero
mode of either A or B implies its presence in their product. For instance,
consider a discrete basis where A is diagonal. If A has a zero eigenvalue, then
multiplication by B reveals a product having an all-zero row, thus proving
the persistence of the zero mode. Therefore, the analysis of A can also serve

13The ± subscripts denote coordinate shifts of ±P/2 as in f± = f(q ± P/2).
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as a check on the results obtained thus far since the Goldstone mode is built
into the equations from the particle number symmetry of the Hamiltonian.

Throughout, our attention is primarily concerned with the eigenspectrum
for the ψ = 0 solution. We begin with the eigenvalue equation14

AδP = ΩaδP, (8.19)

which, with the aid of (8.7b), (8.8a) and (8.9a), can be written as four
linearly independent equations in the variables δG, δψ, δφ and δχ:

∫
q′

sM (q)δ(q − q′)δG(q′) + AGφ(q)δφ + AGχ(q)δχ = ΩaδG(q), (8.20a)

Aψψδψ = Ωaδψ, (8.20b)∫
q′

AφG(q′)δG(q′) + Aφφδφ = Ωaδφ, (8.20c)
∫
q′

AχG(q′)δG(q′) + Aχχδχ = Ωaδχ. (8.20d)

In addition to the notational conciseness of dropping the P indices, we have
used (A.30) and (A.31) in setting Aψφ and Aψχ to zero for the ψ = 0 case.
Elimination of the fluctuations δφ and δχ leads to a single equation in δG(q),

∫
q′

{[sM (q) − Ωa]δ(q − q′) + ζ(Ωa)V (q,q′)}δG(q′) = 0. (8.21)

Using the expressions for Aφφ, Aχχ, AGφ and AGχ in Section A.6, V (q,q′)
simplifies to a single separable term,

V (q,q′) = y(q)y(q′), (8.22)

where we have defined

ζ(Ωa) =
λ2α2

1
Ωa − ε + 2μ

+
g2

Ωa − ε + 2μ
, (8.23)

y(q) =
1
2

(
1
4
G−1

+ G−1
− + 1

)
. (8.24)

Identifying the operator in (8.21) as O(q,q′) = [sM (q) − Ωa]δ(q − q′) +
ζ(Ωa)V (q,q′), its spectrum is found by solving for the values of Ωa at which

14The subscript a is used to avoid confusion with the eigenvalue label used for A ·B
(see Section 8.4).
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an inverse, O−1, does not exist. Without loss of generality, it may be
assumed that O−1 has the form

O−1(q′′,q′) =
1

sM (q′) − Ωa
δ(q′′ − q′) + S(q′′,q′), (8.25)

where S(q′′,q′) is obtained from the requirement
∫

O(q,q′′)O−1(q′′,q′) =
δ(q − q′). Performing the necessary multiplications, this condition is met
only if

[sM (q) − Ωa]S(q,q′) + ζ(Ωa)
∫
q′′

V (q,q′′)S(q′′,q′)

= −ζ(Ωa)V (q,q′)
1

sM (q′) − Ωa
. (8.26)

Defining a new matrix

T (q,q′) = [sM (q) − Ωa] S(q,q′)
[
sM (q′) − Ωa

]
, (8.27)

gives the Lippmann–Schwinger equation used in scattering theory:

T (q,q′) + ζ(Ωa)
∫
q′′

V (q,q′′)
1

sM (q′′) − Ωa
T (q′′,q′) = −ζ(Ωa)V (q,q′).

(8.28)

Because this condition must be satisfied in order to invert the operator in
(8.21), values of Ωa are sought for which (8.28) has no solution. According
to the Fredholm alternative [25], (8.28) cannot be solved if there exists a
solution to its homogeneous counterpart,

1
ζ(Ωa)

T (q,q′) +
∫
q′′

V (q,q′′)
1

sM (q′′) − Ωa
T (q′′,q′) = 0. (8.29)

Thus, at least part of the spectrum is found by the {Ωa} that satisfy (8.29).

As was done in the two-body case, we take a separable form for the
T -matrix,

T (q,q′) = ty(q)y(q′), (8.30)

which upon substitution into (8.29) gives

1
ζ(Ωa)

+
∫
q

y(q)2

sM (q) − Ωa
= 0. (8.31)

An exhaustive solution for the Ωa’s is not attempted here as the nonzero
elements of the spectrum reveal little in acquiring the eigenfrequencies of
A · B. However, a zero mode of A does prove its presence in the product,
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prompting us to check whether (8.31) may be solved for Ωa = 0. Since the
Goldstone mode occurs at zero total momentum, the required expressions
are obtained from the P = 0 form of (8.24) and (A.25), thus giving

∫
q

y(q,P = 0)2

sM (q,P = 0)
=

1
2

∫
q

(q2 − μ)2

[(q2 − μ)2 − ξ2]3/2

= − ∂

∂ξ

∫
q

D(q)

= − 1
ζ(0)

. (8.32)

Obtaining the second line requires the explicit form of
∫

D(q) in (5.9c),
whereas the last line is derived from a combination of (5.7c) and (8.23),
thus verifying that the Goldstone mode is present in A.

In addition to Ωa = 0, the inverse matrix, O−1, will not exist if

Ωa = sM (q,P)

=

√
(q2

+ − μ − ξ)(q2
− − μ − ξ)

(q2
+ − μ + ξ)(q2

− − μ + ξ)
(ω+ + ω−) . (8.33)

Due to its dependence on q, this solution represents the continuum. More
importantly, the system’s excitations can be found from the eigenvalues of
A · B using this same approach.

8.4 The A · B product

For the full excitation spectrum, it is necessary to first obtain the matrix
product which, by using the definitions (8.8), is15

A · B(q,q′,P)

= M(q,q′,P)

=

[
sM (q)sK(q′)δ(q − q′) + cM (q)cT

K(q′) sM (q)cK(q) + cM (q)B

cT
M (q′)sK(q′) + AcT

K(q′)
∫
q′′ c

T
M (q′′)cK(q′′) + A · B

]

=

⎡
⎢⎢⎣

MGG(q,q′,P) MGψ(q,P) MGφ(q,P) MGχ(q,P)
MψG(q′,P) Mψψ(P) Mψφ(P) Mψχ(P)
MφG(q′,P) Mφψ(P) Mφφ(P) Mφχ(P)
MχG(q′,P) Mχψ(P) Mχφ(P) Mχχ(P)

⎤
⎥⎥⎦ . (8.34)

15It is understood that all quantities within the matrix depend on the total momentum
P = P′.
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Through (5.7a), (8.9), (8.15), (8.16) and (8.24), the matrix elements are
explicitly given by

MGG(q,q′) = (ω+ + ω−)2δ(q − q′) + (λ2α2
1 + g2)y(q)(G′

+ + G′
−), (8.35a)

MGψ(q) = −(λ2α2
1 + g2)y(q)ψ, (8.35b)

MGφ(q) = −λα1

4
(G−1

+ + G−1
− )(ω+ + ω−) − λα1 y(q)(ε − 2μ), (8.35c)

MGχ(q) = −g

4
(G−1

+ + G−1
− )(ω+ + ω−) − g y(q)(ε − 2μ), (8.35d)

MψG(q′) = −(λ2α2
1 + g2)(G′

+ + G′
−)ψ, (8.35e)

MφG(q′) = −4 λα1 y(q′)G′
+G′

−(ω′
+ + ω′

−)

− λα1 (G′
+ + G′

−)(ε − 2μ), (8.35f)

MχG(q′) = −4gy(q′)G′
+G′

−(ω′
+ + ω′

−)

− g (G′
+ + G′

−)(ε − 2μ), (8.35g)

Mψψ = (P 2 − μ)2 − ξ2 + (λ2α2
1 + g2)ψ2, (8.35h)

Mψφ = λα1(P 2 − 3μ + ξ + ε)ψ, (8.35i)

Mψχ = g(P 2 − 3μ + ξ + ε)ψ, (8.35j)

Mφψ = λα1(P 2 − 3μ − ξ + ε)ψ, (8.35k)

Mφφ = λ2α2
1(2I1 + ψ2) + (ε − 2μ)2, (8.35l)

Mφχ = Mχφ = λα1g(2I1 + ψ2), (8.35m)

Mχψ = g(P 2 − 3μ − ξ + ε)ψ, (8.35n)

Mχχ = g2(2I1 + ψ2) + (ε − 2μ)2, (8.35o)

where we have conveniently defined

I1 ≡ 1
2

∫
q

y(q)(G+ + G−). (8.36)

These elements are used in the set of equations corresponding to the eigen-
value problem, MδP = Ω2δP :

∫
q′′

MGG(q,q′′)δG(q′′) + MGψ(q)δψ + MGφ(q)δφ + MGχ(q)δχ

= Ω2δG(q), (8.37a)
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∫
q′′

MψG(q′′)δG(q′′) + Mψψδψ + Mψφδφ + Mψχδχ = Ω2δψ, (8.37b)
∫
q′′

MφG(q′′)δG(q′′) + Mφψδψ + Mφφδφ + Mφχδχ = Ω2δφ, (8.37c)
∫
q′′

MχG(q′′)δG(q′′) + Mχψδψ + Mχφδφ + Mχχδχ = Ω2δχ. (8.37d)

Up to this point the equations are general, describing the excitation spec-
trum of any stationary solution. For the ψ = 0 case, MGψ, MψG, Mψφ, Mφψ,
Mψχ and Mχψ all vanish, reducing the above system to only three inde-
pendent equations. Further, we restrict the discussion to long wavelength
excitations, P → 0, assuming the general case to have similar properties.
With these simplifications, the molecular field displacements are obtained
in terms of δG:

δφ =
1
d

∫
q′′

[
(Ω2 − Mχχ)MφG(q′′) + MφχMχG(q′′)

]
δG(q′′), (8.38a)

δχ =
1
d

∫
q′′

[
(Ω2 − Mφφ)MχG(q′′) + MχφMφG(q′′)

]
δG(q′′), (8.38b)

where after defining

Ω2
ε = Ω2 − (ε − 2μ)2, (8.39a)

Ω2
ε = Ω2 − (ε − 2μ)2, (8.39b)

the denominator is expressed as

d = (Ω2 − Mφφ)(Ω2 − Mχχ) − MφχMχφ

= Ω2
ε Ω2

ε − 2g2I1 Ω2
ε − 2λ2α2

1I1 Ω2
ε. (8.40)

Substitution of (8.38) into (8.37a) obtains an effective matrix equation for
δG,

∫
q′′

[h(q)δ(q − q′′) + y(q)r(q′′) + z(q)s(q′′)]δG(q′′) = 0. (8.41)

In addition to y(q) given in (8.24), the terms appearing in this expression
are identified by the following:

h(q) = 4ω(q)2 − Ω2, (8.42a)

z(q) = G(q)−1ω(q) = 2(q2 − μ − ξ), (8.42b)
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r(q′′) = 2
{

λ2α2
1 + g2 +

1
d

[
λ2α2

1 (ε − 2μ)2 Ω2
ε

+g2 (ε − 2μ)2 Ω2
ε − 2λ2α2

1g
2I1(ε − ε)2

]}
G(q′′)

+
8
d

[
λ2α2

1(ε − 2μ)Ω2
ε + g2(ε − 2μ)Ω2

ε

]
y(q′′)G(q′′)2ω(q′′), (8.42c)

s(q′′) =
2
d

[
λ2α2

1(ε − 2μ)Ω2
ε + g2(ε − 2μ)Ω2

ε

]
G(q′′)

+
8
d

(
λ2α2

1Ω
2
ε + g2Ω2

ε

)
y(q′′)G(q′′)2ω(q′′). (8.42d)

The problem to be solved is to find all Ω such that equation (8.41) has
no solution except the trivial case δG = 0. Along with a discrete set of
eigenvalues, a continuum arises simply from the structure of the inverse
matrix, as was indicated in the analogous calculation for A.

8.5 Point spectrum at long wavelength (P = 0)

Proceeding in analogy with the method used for A, the operator in (8.41)
can be written as

O(q,q′′) = h(q)δ(q − q′′) +
[
y(q) z(q)

]
·
[
r(q′′)
s(q′′)

]
. (8.43)

If it exists, the inverse, O−1, has the form

O−1(q′′,q′) =
1

h(q′′)
δ(q′′ − q′) +

1
h(q′′)

[
y(q′′) z(q′′)

]
T

[
r(q′)
s(q′)

]
1

h(q′)
,

(8.44)

where T is some 2 × 2 matrix, yet to be determined. From the identity∫
q′′ O(q,q′′) O−1(q′′,q′) = δ(q − q′), we have

T + 1 +

⎡
⎢⎢⎢⎣

∫
q′′

r(q′′)y(q′′)
h(q′′)

∫
q′′

r(q′′)z(q′′)
h(q′′)∫

q′′

s(q′′)y(q′′)
h(q′′)

∫
q′′

s(q′′)z(q′′)
h(q′′)

⎤
⎥⎥⎥⎦ T = 0. (8.45)
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By the discussion following equation (8.28), there can be no solution if

∫
q

r(q)y(q)
h(q)

=
∫
q

s(q)z(q)
h(q)

= −1, (8.46a)
∫
q

r(q)z(q)
h(q)

=
∫
q

s(q)y(q)
h(q)

= 0. (8.46b)

Hence, the values of Ω that solve (8.46) determine the point spectrum of
A · B.

8.5.1 Verification of the Goldstone mode

Because of the particle number symmetry in the original Hamiltonian, a
zero-frequency mode must emerge as a general feature of this description,
independent of specific parameter values. For a proof, it is easiest to take
Ω = 0 then see whether equations (8.46) are satisfied. Utilizing the vari-
ational condition (5.7c) along with the appropriate partial derivatives of
(5.9c), all required integrals are expressed in terms of μ, ε, λ2α2

1 and g2:

∫
q

G(q)y(q)
h(q, Ω = 0)

= − 1
4ξ

∂

∂μ

∫
q

D(q)

= −1
2

g2(ε − 2μ)2 + λ2α2
1(ε − 2μ)2

[g2(ε − 2μ) + λ2α2
1(ε − 2μ)]2

, (8.47a)
∫
q

G(q)z(q)
h(q, Ω = 0)

= − 1
2ξ

∫
q

D(q)

=
1
2

(ε − 2μ)(ε − 2μ)
g2(ε − 2μ) + λ2α2

1(ε − 2μ)
, (8.47b)

∫
q

y(q)G(q)2ω(q)y(q)
h(q, Ω = 0)

= −1
8

∂

∂ξ

∫
q

D(q)

=
1
8

(ε − 2μ)(ε − 2μ)
g2(ε − 2μ) + λ2α2

1(ε − 2μ)
, (8.47c)

∫
q

y(q)G(q)2ω(q)z(q)
h(q, Ω = 0)

=
1
4
I1. (8.47d)

Also, the Ω = 0 forms of d, r and s are

d(Ω = 0) = (ε − 2μ)2 (ε − 2μ)2 + 2g2I1 (ε − 2μ)2

+ 2λ2α2
1I1 (ε − 2μ)2 , (8.48)
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r(q, Ω = 0) =
4I1

d

[
g2 (ε − 2μ) + λ2α2

1 (ε − 2μ)
]2

G(q)

− 8
d

(ε − 2μ) (ε − 2μ)
[
g2 (ε − 2μ)

+λ2α2
1 (ε − 2μ)

]
y(q)G(q)2ω(q), (8.49)

s(q, Ω = 0) = −2
d

(ε − 2μ) (ε − 2μ)
[
g2 (ε − 2μ) + λ2α2

1 (ε − 2μ)
]
G(q)

− 8
d

[
g2 (ε − 2μ)2 + λ2α2

1 (ε − 2μ)2
]
y(q)G(q)2ω(q). (8.50)

Finally, a combination of (8.47)–(8.50) satisfies the eigenvalue conditions
(8.46), confirming the presence of the Goldstone mode for arbitrary para-
meter values.

8.5.2 Eigenfrequencies in the zero-range limit

We now solve for the nonzero solutions to the eigenvalue equations in the
zero-range limit, λ → 0−. First, r and s are expanded to the appropriate
order in λ, then used in (8.46). Defining I1 = κλ−3 + const., all subsequent
expressions may be conveniently written in terms of κ. Accordingly, the
denominator has the limit

2
d

−−−−→
λ→0−

λ5

4κα2
1

[
1 − κ − 1

2κα2
1
Ω2

ελ + 2μλ2 +
(κ − 1)2

4κ2α4
1

Ω4
ελ

2
]
. (8.51)

When substituted into (8.42c) and (8.42d) this leads to

r(q) −−−−→
λ→0−

[
− 2

α2
1
Ω2

ε − 4 (ε − 2μ) λ +
κ − 1
κα4

1
Ω4

ελ

]
G(q)

+
[
− 4

κα2
1
Ω2

ελ
2 − 4

κ
(ε − 2μ) λ3

+
2 (κ − 1)

κ2α4
1

Ω4
ε λ3

]
y(q)G(q)2ω(q), (8.52a)

s(q) −−−−→
λ→0−

− 1
κα2

1
Ω2

ε λ2G(q) − 4λ3

κ
y(q)G(q)2ω(q). (8.52b)

Next, it is necessary to calculate the small λ versions of (8.47). How-
ever, in this case the variational condition cannot be utilized since Ω �= 0
in general. It is easiest to write these expansions in terms of the following
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integrals16

J1 =
1
2

∫ ∞

−∞

q2
(
q2 − μ

)
√

(q2 − μ)2 − ξ2

1
(q2 − μ)2 − Ω′ 2

dq

= −π

4
1√

Ω′ 2 − ξ2

(√
−μ − Ω′ +

√
−μ + Ω′

)
, (8.53a)

J2 =
1
2

∫ ∞

−∞

⎡
⎣q2

√
(q2 − μ)2 − ξ2

(q2 − μ)2 − Ω′ 2
− 1

⎤
⎦ dq

= −π

4

√
Ω′ 2 − ξ2

Ω′

(√
−μ − Ω′ −

√
−μ + Ω′

)
, (8.53b)

where Ω′2 = ξ2 + Ω2/4. To the required order in λ, the analogs of (8.47)
may now be expressed as

∫
q

G(q)y(q)
h(q)

−−−−→
λ→0−

1
16π2 J1, (8.54a)

∫
q

G(q)z(q)
h(q)

−−−−→
λ→0−

− 1
2λ

+
1

16πabg
+

1
8π2 J2, (8.54b)

∫
q

y(q)G(q)2ω(q)y(q)
h(q)

−−−−→
λ→0−

− 1
8λ

+ const. (8.54c)

∫
q

y(q)G(q)2ω(q)z(q)
h(q)

−−−−→
λ→0−

κ

4λ3 + const. (8.54d)

With equations (8.52) and (8.54), the eigenvalue conditions (8.46) become
∫
q

r(q)y(q)
h(q)

−−−−→
λ→0−

− J1

8π2α2
1

Ω2
ε = −1, (8.55a)

∫
q

r(q)z(q)
h(q)

−−−−→
λ→0−

ε − 2μ −
(

1
8πabg

+
J2

4π2

)
1
α2

1
Ω2

ε = 0, (8.55b)
∫
q

s(q)y(q)
h(q)

−−−−→
λ→0−

O(λ2) = 0, (8.55c)
∫
q

s(q)z(q)
h(q)

−−−−→
λ→0−

−1 + O(λ), (8.55d)

16These expressions are obtained by first factorizing the integrand denominator as
(q + i

√
−μ − Ω′)(q − i

√
−μ − Ω′)(q + i

√
−μ + Ω′)(q − i

√
−μ + Ω′), then choosing either

the upper or lower semicircular contour.
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thus showing that the last two are automatically satisfied for zero range.
Aside from the Goldstone mode, the other eigenfrequencies are obtained
most easily by solving (8.55a) and (8.55b) for J1 and J2 then equating their
product to that given by a direct calculation using equations (8.53):

J1J2 = −π2

8
= 32π4α4

1 (ε − 2μ)
1
Ω4

ε

− 4π3α2
1

abg

1
Ω2

ε

. (8.56)

From the definition of Ω2
ε (8.39a) and the solution of (8.56), two distinct

eigenfrequencies finally emerge as

Ω2 = (ε − 2μ)2 +
16πα2

1
abg

[
1 ±

√
1 − a2

bg (ε − 2μ)
]
, (8.57)

depending on the density through μ only. In addition to a stable response
frequency of the many-body collective, real values of Ω may be interpreted
as the binding energies of two interacting quasi-bosons. On the other hand,
scattering states are implied by complex Ω, with the imaginary part quanti-
fying damping in the corresponding collective excitation. It turns out that
for the case depicted in figure 6, both roots of Ω are complex, having real
parts that lie well within the scattering continuum at ∼23 neV.

8.6 Continuous spectrum of the lower state

Unlike the discrete elements, the continuum is obtained directly from the
construction of the inverse. Specifically, the condition h(q) = 0 also pre-
cludes O−1 from existing, thus giving the continuous part of the spectrum,

Ω = 2ω(q)

= 2
√

(q2 − μ)2 − ξ2. (8.58)

Since the form of h(q) is the same regardless of whether ψ = 0 or ψ �= 0,
equation (8.58) remains valid for the continuum of the entire lower state.
At long wavelength (P = 0), these excitations are parametrized only by
q2, with the lowest energy obtained for q = 0. Consequently, half of the
lowest quasi-boson energy, Ω/2|q=0, plus the energy per particle gives the
continuum boundary:

Eexc = e +
√

μ2 − ξ2. (8.59)

As shown in figure 6, this threshold lies above the ψ = 0 solution (μ �= ξ),
but intersects with the collapsing state at the critical point. Thereafter,
the boundary coincides with the ψ �= 0 piece (μ = ξ), indicating that the
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Figure 6: Shows the same curves as in figure 5, but including hatched regions
that indicate the continuum of modes belonging to the collapsing lower state.
As discussed in the text, the upper solution always lies in the continuum
of the lower state, thus indicating that the decay of the upper solution
represents a transition into collective phonon excitations of the collapsing
solution. Note that the density of states for ψ �= 0 is greater than that for
ψ = 0, as shown by the hatched lines above each region. Additionally, the
real parts of the discrete spectrum given by (8.57) lie relatively far up in the
continuum at ∼ 23 neV.

continuum contains the zero mode for the second piece of the collapsing
solution.

It is now possible to give the decay found in Section 6 a more complete
physical explanation. Note that the real part of the energy per particle lies
inside the continuum of the collapsing state. Due to energy conservation,
this upper solution can only evolve into a state at the same level, suggesting
the coherent decay be interpreted as a transition into collective phonon
excitations which inherit the same collapsing behavior as their associated
ground state. Hence, the condensate is initially lost through decay into
the phonons of the lower level, as opposed to a physical loss of particles.
Nevertheless, as the system collapses, qusiparticles will emerge causing a
kinematical atom loss akin to the semiclassical recombination models [5, 6].
However, the previous analysis is only valid for low-temperature systems,
and therefore may not be applicable to these kinematic effects.

9 Summary

We have considered the case of an atom–molecule condensate in which the
interactions were attractive yet the effective scattering length was positive.
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This situation raised the question of whether the condensate collapsed due
to the mutual attractions or remained stable in accordance with the positive
scattering length. Starting with a two-body analysis, a separable potential
was used to realistically model the interparticle interaction. Due to its suc-
cess, this separable form was implemented in the many-body Hamiltonian.
Equations of state were then obtained from the application of a variational
principle that utilized a Gaussian trial wave functional for the many-body
state. Despite the positive scattering length, a collapsing solution was
obtained, consisting of a relatively low-density piece having only a molecular
component to its condensate. At higher density, there occurred a quantum
phase transition after which the solution comprised both atomic and molec-
ular condensate components. Only by allowing the chemical potential to
assume complex values could the experimentally observed case be obtained.

As the phase of the order parameter, the chemical potential has an imag-
inary part quantifying a decay rate, assigned a physical meaning through a
small oscillation analysis about the equilibrium solutions. Expanding around
the stationary points revealed two discrete eigenfrequencies associated with
the low-density molecular condensate solution. Moreover, the experimen-
tally observed energy per particle lay within an excitation continuum of
the collapsing two-piece lower state. From energy conservation, the decay
was interpreted as a coherent process corresponding to the evolution of the
observed case into the excitations of the lower solution.
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Appendix A Derivation of the RPA Hamiltonian

In the Appendix, we expand the expectation value of the Hamiltonian (4.20)
to second-order in the variations given by (8.1), thus deriving the A and B

matrix elements used throughout Section 8.

A.1 Expansion of R, D, Ψ2, Φ2, X2 and Ξ

As appears in (4.20), the momentum space forms of the quantities are
given by
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R(k,k′, t) =
1
2

[
1
4
G−1(k,k′, t) + G(k,k′, t) − δ(k − k′)

]

+ 2
∫
k′′,k′′′

Σ(k,k′′, t)G(k′′,k′′′, t)Σ(k′′′,k′, t), (A.1a)

D(k,k′, t) =
1
2

[
1
4
G−1(k,k′, t) − G(k,k′, t)

]

+ 2
∫
k′′,k′′′

Σ(k,k′′, t)G(k′′,k′′′, t)Σ(k′′′,k′, t)

− i
∫
k′′

[
Σ(k,k′′, t)G(k′′,k′, t) + G(k,k′′, t)Σ(k′′,k′, t)

]
(A.1b)

Ψ(k, t) =
1√
2

[
ψ(k, t) + iπ(k, t)

]
. (A.1c)

The molecular field expressions are straightforward, following from (A.1c).
Expanding K to second-order first requires an expansion of R, D, Ψ, Φ, X
and Ξ in terms of the variations (8.1). Using (A.1) obtains

R(k,k′, t) = R(0)(k,k′, t) + R(1)(k,k′, t) + R(2)(k,k′, t), (A.2)

where

R(0)(k,k′, t) =
1
2

[
1
4
G(k)−1 + G(k) − 1

]
δ(k − k′)

= R(k)δ(k − k′), (A.3a)

R(1)(k,k′, t) =
1
2

[
−1

4
G(k)−1G(k′)−1 + 1

]
δG(k,k′, t), (A.3b)

R(2)(k,k′, t) =
1
8
G(k)−1

∫
k′′

δG∗(k,k′′, t) G(k′′)−1δG(k′′,k′, t)G(k′)−1

+ 2
∫
k′′

δΣ∗(k,k′′, t)G(k′′)δΣ(k′′,k′, t). (A.3c)

Similarly, the first few orders of the other fluctuations are

D(0)(k,k′, t) =
1
2

[
1
4
G(k)−1 − G(k)

]
δ(k − k′)

= D(k)δ(k − k′), (A.4a)
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D(1)(k,k′, t) = −1
2

[
1
4
G(k)−1G(k′)−1 + 1

]
δG(k,k′, t)

− i
[
G(k) + G(k′)

]
δΣ(k,k′, t), (A.4b)

D(2)(k,k′, t) =
1
8
G(k)−1

∫
k′′

δG∗(k,k′′, t) G(k′′)−1δG(k′′,k′, t)G(k′)−1

+ 2
∫
k′′

δΣ∗(k,k′′, t)G(k′′)δΣ(k′′,k′, t)

− i
∫
k′′

[
δΣ∗(k,k′′, t)δG(k′′,k′, t)

+ δG∗(k,k′′, t)δΣ(k′′,k′, t)
]
. (A.4c)

Expanding the products of mean fields gives

Ψ∗Ψ(0)(k,k′, t) =
1
2
ψ2δ(k)δ(k′), (A.5a)

Ψ∗Ψ(1)(k,k′, t) =
1
2
ψδ(k′) [δψ∗(k, t) − iδπ∗(k, t)]

+
1
2
ψ δ(k)

[
δψ(k′, t) + iδπ(k′, t)

]
, (A.5b)

Ψ∗Ψ(2)(k,k′, t) =
1
2
[
δψ∗(k, t)δψ(k′, t) + iδψ∗(k, t)δπ(k′, t)

− iδψ(k′, t)δπ∗(k, t) + δπ∗(k, t)δπ(k′, t)
]
, (A.5c)

ΨΨ(0)(k,k′, t) =
1
2
ψ2 δ(k)δ(k′), (A.6a)

ΨΨ(1)(k,k′, t) =
1
2
ψ δ(k′) [δψ(k, t) + iδπ(k, t)]

+
1
2
ψδ(k)

[
δψ(k′, t) + iδπ(k′, t)

]
, (A.6b)

ΨΨ(2)(k,k′, t) =
1
2
[
δψ(k, t)δψ(k′, t) + iδψ(k, t)δπ(k′, t)

+ iδψ(k′, t)δπ(k, t) − δπ(k, t)δπ(k′, t)
]
, (A.6c)

Φ∗Φ(0)(k,k′, t) =
1
2
φ2δ(k)δ(k′), (A.7a)

Φ∗Φ(1)(k,k′, t) =
1
2
φδ(k′) [δφ∗(k, t) − iδω∗(k, t)]

+
1
2
φδ(k)

[
δφ(k′, t) + iδω(k′, t)

]
, (A.7b)
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Φ∗Φ(2)(k,k′, t) =
1
2
[
δφ∗(k, t)δφ(k′, t) + iδφ∗(k, t)δω(k′, t)

− iδφ(k′, t)δω∗(k, t) + δω∗(k, t)δω(k′, t)
]
, (A.7c)

X∗X(0)(k,k′, t) =
1
2
χ2δ(k)δ(k′), (A.8a)

X∗X(1)(k,k′, t) =
1
2
χδ(k′) [δχ∗(k, t) − iδν∗(k, t)]

+
1
2
χδ(k)

[
δχ(k′, t) + iδν(k′, t)

]
, (A.8b)

X∗X(2)(k,k′, t) =
1
2
[
δχ∗(k, t)δχ(k′, t) + iδχ∗(k, t)δν(k′, t)

− iδχ(k′, t)δν∗(k, t) + δν∗(k, t)δν(k′, t)
]
, (A.8c)

Ξ(0)(k′′, t) =
ξ√
2
δ(k′′)

=
1√
2
(λα1φ + gχ)δ(k′′), (A.9a)

Ξ(1)(k′′, t) =
1√
2
δξ(k′′, t)

=
1√
2
[λα1δφ(k′′, t) + gδχ(k′′, t)]

+
i√
2
[λα1δω(k′′, t) + gδν(k′′, t)]. (A.9b)

Along with (A.1a) and (A.1b), these expansions are used to calculate the
second-order contribution from each term in (4.20).

A.2 Kinetic contribution

From equations (A.3), the second-order part of
∫
k(k2 − μ)R(k,k, t) is

∫
k
(k2 − μ)R(2)(k,k, t) =

∫
q,P

[
δG∗(q,P, t)(k2 − μ)RG2(q,P)δG(q,P, t)

+ δΣ∗(q,P, t)(k2 − μ)RΣ2(q,P)δΣ(q,P, t)
]
,

(A.10)
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where the total and relative momenta are identified in (8.2).Furthermore,
we have used the transformation δG∗(k′,k, t) → δG∗(q,P, t), with the sym-
metry under inversion P → −P incorporated by the following definitions:

(k2 − μ)RG2(q,q′,P) =
1
16

[
(q2

+ − μ)G−2
+ G−1

−

+ (q2
− − μ)G−2

− G−1
+

]
δ(q − q′), (A.11a)

(k2 − μ)RΣ2(q,q′,P) =
[
(q2

+ − μ)G− + (q2
− − μ)G+

]
δ(q − q′). (A.11b)

For notational simplicity, the ± subscripts denote a shift of ±P/2 in the
argument of any function f such that

f± = f
(
q ± 1

2
P
)
, f ′

± = f
(
q′ ± 1

2
P′

)
. (A.12)

By (A.5c), the second-order contribution from
∫
k(k2 − μ)Ψ∗(k, t)Ψ(k, t)

is ∫
k
(k2 − μ)Ψ∗Ψ(2)(k,k, t) =

∫
k
(k2 − μ)

1
2
[
δψ(k, t)2 + δπ(k, t)2

]

=
∫
P

[
δψ∗(P, t)(k2 − μ)Ψ∗Ψψ2(P)δψ(P, t)

+ δπ∗(P, t)(k2 − μ)Ψ∗Ψπ2(P)δπ(P, t)
]
.

(A.13)

In addition to using the fact that the fluctuations are real, we have defined

(k2 − μ)Ψ∗Ψψ2(P) =
1
2
(P2 − μ), (A.14a)

(k2 − μ)Ψ∗Ψπ2(P) =
1
2
(P2 − μ). (A.14b)

A.3 Molecular contribution

The second-order contributions from the molecular detunings are given by

(ε − 2μ)
∫
k

Φ∗Φ(2)(k,k, t) + (ε − 2μ)
∫
k

X∗X(2)(k,k, t)

=
∫
P

[
δφ∗(P, t)Φ∗Φφ2(P)δφ(P, t) + δω∗(P, t)Φ∗Φω2(P)δω(P, t)

+ δχ∗(P, t)X∗Xχ2(P)δχ(P, t) + δν∗(P, t)X∗Xν2(P)δν(P, t)
]
.

(A.15)
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Reading off the results from (A.7c) and (A.8c), we identify

Φ∗Φφ2(P) = Φ∗Φω2(P) =
1
2
ε − μ, (A.16a)

X∗Xχ2(P) = X∗Xν2(P) =
1
2
ε − μ. (A.16b)

A.4 Contribution from the coupling

The last integral of (4.20) gives the energy due to the coupling of atoms to
both of the molecular states. In this contribution, there is an Ξ∗D term
with a second-order part given by

1√
2

∫
k,k′,k′′

δ(k′′ − k + k′)f
(

k + k′

2

)

× [Ξ∗(0)(k′′, t)D(2)(k,k′, t) + Ξ∗(1)(k′′, t)D(1)(k,k′, t) + H. c.]

=
∫
k,k′′′

f(k)ξ
[
δG∗(k,k′′′, t)

1
8
G(k)−2G(k′′′)−1δG(k′′′,k, t)

+ δΣ∗(k,k′′′, t)2G(k′′′)δΣ(k′′′,k, t)
]

+
∫
k,k′,k′′

δ(k′′ − k + k′)f
(

k + k′

2

)

×
{

−λα1

2
δφ∗(k′′, t)

[
1
4
G(k)−1G(k′)−1 + 1

]
δG(k,k′, t)

− g

2
δχ∗(k′′, t)

[
1
4
G(k)−1G(k′)−1 + 1

]
δG(k,k′, t)

− λα1δω
∗(k′′, t)[G(k) + G(k′)]δΣ(k,k′, t)

− gδν∗(k′′, t)[G(k) + G(k′)]δΣ(k,k′, t)
}

, (A.17)

which can be more compactly written as

∫
q,q′,P

[
δG∗(q,P, t)DG2(q,q′,P)δG(q,P, t)

+ δΣ∗(q,P, t)DΣ2(q,q′,P)δΣ(q,P, t)
]
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+
∫
q,P

[
δφ∗(P, t)DGφ(q,P)δG(q,P, t)

+ δχ∗(P, t)DGχ(q,P, t)δG(q,P, t)

+ δω∗(P, t)DΣω(q,P)δΣ(q,P, t)

+ δν∗(P, t)DΣν(q,P)δΣ(q,P, t)
]
, (A.18)

where

DG2(q,q′,P) = ξ

[
f

(
q +

1
2
P
)

1
16

G−2
+ G−1

−

+f

(
q − 1

2
P
)

1
16

G−2
− G−1

+

]
δ(q − q′), (A.19a)

DΣ2(q,q′,P) = ξ

[
f

(
q +

1
2
P
)

G−

+f

(
q − 1

2
P
)

G+

]
δ(q − q′), (A.19b)

DGφ(q,P) = −λα1

2
f(q)

(
1
4
G−1

+ G−1
− + 1

)
, (A.19c)

DGχ(q,P) = −g

2
f(q)

(
1
4
G−1

+ G−1
− + 1

)
, (A.19d)

DΣω(q,P) = −λα1f(q)(G+ + G−), (A.19e)

DΣν(q,P) = −gf(q)(G+ + G−). (A.19f)

Likewise, the second-order part from the Ξ∗ΨΨ term is

1√
2

∫
k,k′,k′′

δ(k′′ − k + k′)f
(

k + k′

2

)

×
[
Ξ∗(0)(k′′, t)ΨΨ(2)(k,k′, t) + Ξ∗(1)(k′′, t)ΨΨ(1)(k,k′, t) + H. c.

]

=
∫
k

f(k)
ξ

2
[
δψ(k, t)2 − δπ(k, t)2

]
+

1
2

∫
k,k′,k′′

δ(k′′ −k+k′)f
(
k + k′

2

)

×
{[

λα1δφ(k′′, t) + gδχ(k′′, t)
] [

ψδ(k′)δψ(k, t) + ψδ(k)δψ(k′, t)
]

+
[
λα1δω(k′′, t) + gδν(k′′, t)

] [
ψδ(k′)δπ(k, t) + ψδ(k)δπ(k′, t)

]}
.

(A.20)
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After multiplying out the integrand, this becomes
∫
P

[
δψ∗(P, t)Ψ2

ψ2(P)δψ(P, t) + δπ∗(P, t)Ψ2
π2(P)δπ(P, t)

+ δφ∗(P, t)Ψ2
φψ(P)δψ(P, t) + δχ∗(P, t)Ψ2

χψ(P)δψ(P, t)

+ δω∗(P, t)Ψ2
ωπ(P)δπ(P, t) + δν∗(P, t)Ψ2

νπ(P)δπ(P, t)
]
, (A.21)

where

Ψ2
ψ2(P) = −Ψ2

π2(P) =
ξ

2
f(P), (A.22a)

Ψ2
φψ(P) = Ψ2

ωπ(P) = λα1ψf

(
1
2
P
)

, (A.22b)

Ψ2
χψ(P) = Ψ2

νπ(P) = gψf

(
1
2
P
)

. (A.22c)

A.5 Matrix form of the RPA

Expressed in matrix form, the grand canonical RPA Hamiltonian corre-
sponding to equation (4.20) can be written as17

KRPA =
1
2
δP†(q)

⎡
⎢⎢⎣

AGG(q,q′) AGψ(q) AGφ(q) AGχ(q)
AψG(q′) Aψψ Aψφ Aψχ

AφG(q′) Aφψ Aφφ Aφχ

AχG(q′) Aχψ Aχφ Aχχ

⎤
⎥⎥⎦ δP(q′)

+
1
2
δQ†(q)

⎡
⎢⎢⎣

BΣΣ(q,q′) BΣπ(q) BΣω(q) BΣν(q)
BπΣ(q′) Bππ Bπω Bπν

BωΣ(q′) Bωπ Bωω Bων

BνΣ(q′) Bνπ Bνω Bνν

⎤
⎥⎥⎦ δQ(q′),

(A.23)

with the coordinates, δQ, and momenta, δP, defined as

δQ†(q,P) =
[
δΣ(q,P) δπ(P) δω(P) δν(P)

]
, (A.24a)

δP†(q,P) =
[
δG(q,P) δψ(P) δφ(P) δχ(P)

]
. (A.24b)

To find explicit expressions for the matrix elements, we combine the results
of (A.11), (A.14), (A.16), (A.19) and (A.22).

17The dependence on the total momentum P has been omitted for notational clarity.
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A.6 A Matrix elements

As in the discussion following (5.7), we take f(k) = 1 with a cutoff at |k| =
4π2/b. Subsequently, the matrix elements are simply matched with the
expansions, leading to the following identifications:

AGG(q,q′,P) = 2RG2(q,q′,P) + 2DG2(q,q′,P)

=
1
8
[
(q2

+ − μ + ξ)G−2
+ G−1

− + (q2
− − μ + ξ)G−2

− G−1
+

]
δ(q − q′)

= sM (q,P)δ(q − q′). (A.25)

In the above case, for instance, the terms were obtained from (A.11a) and
(A.19a). Similarly, the remaining elements are:

AGψ(q,P) = AψG(q,P) = 0, (A.26)

AGφ(q,P) = AφG(q,P) = DGφ(q,P) = −λα1

2

(
1
4
G−1

+ G−1
− + 1

)
, (A.27)

AGχ(q,P) = AχG(q,P) = DGχ(q,P) = −g

2

(
1
4
G−1

+ G−1
− + 1

)
, (A.28)

Aψψ(P) = 2(k2 − μ)Ψ∗Ψψ2(P) + 2Ψ2
ψ2(P) = P 2 − μ + ξ, (A.29)

Aψφ(P) = Aφψ(P) = Ψ2
φψ(P) = λα1ψ, (A.30)

Aψχ(P) = Aχψ(P) = Ψ2
χψ(P) = gψ, (A.31)

Aφφ(P) = 2Φ∗Φφ2(P) = ε − 2μ, (A.32)

Aφχ(P) = Aχφ(P) = 0, (A.33)

Aχχ(P) = 2X∗Xχ2(P) = ε − 2μ. (A.34)

A.7 B Matrix elements

BΣΣ(q,q′,P) = 2RΣ2(q,q′,P) + 2DΣ2(q,q′,P)

= 2
[
(q2

+ − μ + ξ)G− + (q2
− − μ + ξ)G+

]
δ(q − q′)

= sK(q,P)δ(q − q′), (A.35)

BΣπ(q,P) = BπΣ(q,P) = 0, (A.36)

BΣω(q,P) = BωΣ(q,P) = DΣω(q,P) = −λα1(G+ + G−), (A.37)

BΣν(q,P) = BνΣ(q,P) = DΣν(q,P) = −g(G+ + G−), (A.38)
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Bππ(P) = 2(k2 − μ)Ψ∗Ψπ2(P) + 2Ψ2
π2(P) = P 2 − μ − ξ, (A.39)

Bπω(P) = Bωπ(P) = Ψ2
ωπ(P) = λα1ψ, (A.40)

Bπν(P) = Bνπ(P) = Ψ2
νπ(P) = gψ, (A.41)

Bωω(P) = 2Φ∗Φω2(P) = ε − 2μ, (A.42)

Bων(P) = Bνω(P) = 0, (A.43)

Bνν(P) = 2X∗Xν2(P) = ε − 2μ. (A.44)
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