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Abstract

After reviewing the underlying algebraic structures we give a unified
realization of split exceptional groups F4(4), E6(6), E7(7), E8(8) and of
SO(n + 3, m + 3) as quasiconformal groups that is covariant with respect
to their (Lorentz) subgroups SL(3, R), SL(3, R) × SL(3, R), SL(6, R),
E6(6) and SO(n, m) × SO(1, 1), respectively. We determine the spheri-
cal vectors of quasiconformal realizations of all these groups twisted by
a unitary character ν. We also give their quadratic Casimir operators
and determine their values in terms of ν and the dimension nV of the
underlying Jordan algebras. For ν = −(nV + 2) + iρ the quasiconformal
action induces unitary representations on the space of square integrable
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functions in (2nV + 3) variables, that belong to the principle series. For
special discrete values of ν the quasiconformal action leads to unitary
representations belonging to the discrete series and their continuations.
The manifolds that correspond to “quasiconformal compactifications” of
the respective (2nV + 3) dimensional spaces are also given. We discuss
the relevance of our results to N = 8 supergravity and to N = 4 Maxwell–
Einstein supergravity theories and , in particular, to the proposal that
three and four dimensional U-duality groups act as spectrum generating
quasiconformal and conformal groups of the corresponding four and five
dimensional supergravity theories, respectively.
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1 Introduction

Earliest studies of unitary representations of four-dimensional U-duality
groups of extended supergravity theories were given in [1–3]. These rep-
resentations were constructed using oscillators that transform in the same
representations of the U-duality groups as the vector field strengths plus
their magnetic duals. These works were motivated by the idea that in a
quantum theory global symmetries must be realized unitarily on the spec-
trum and the composite scenarios that attempted to connect maximal N = 8
supergravity with observation [4–6].1 In a composite scenario proposed
in [4] it was conjectured that SU(8) local symmetry of N = 8 supergrav-
ity becomes dynamical and acts as a family unifying grand unified theory
(GUT) which contains SU(5) GUT as well as a family group SU(3). A sim-
ilar scenario leads to E6 GUT with a family group U(1) in the exceptional
supergravity theory [7] whose U-duality group is E7(−25) in d = 4. However
with the discovery of possible counter terms at higher loops it was argued
that divergences would eventually spoil the finiteness properties of N = 8
supergravity. After the work of Green and Schwarz on anomaly cancellation
in superstring theory [8] attempts at composite scenarios in supergravity
were abandoned. However, recent discovery of unexpected cancellations of
divergences in supergravity theories [9–17] has brought back the question of
finiteness of N = 8 supergravity as well as of exceptional supergravity.

Over the last decade or so, there has been a great deal more work done
on unitary representations of U-duality groups of extended supergravity
theories. The renewed interest in unitary realizations of U-duality groups
was due partly to the proposals that certain extensions of U-duality groups
may act as spectrum generating symmetry groups of supergravity theories.
Based on geometric considerations involving orbits of extremal black hole

1For further references on the subject, see [6].
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solutions in N = 8 supergravity and N = 2 Maxwell–Einstein–supergravity
theories (MESGTs) with symmetric scalar manifolds, it was suggested that
four dimensional U-duality groups act as spectrum generating conformal
symmetry groups of the corresponding five dimensional supergravity theo-
ries [18–22]. This proposal was then extended to the proposal that three-
dimensional U-duality groups act as spectrum generating quasiconformal
groups of the corresponding four-dimensional supergravity theories [19–22].
Quasiconformal realization of U-duality group E8(8) of three-dimensional
maximal supergravity given in [19] is the first known geometric realization
of E8(8) and its quantization leads to the minimal unitary representation
of E8(8) [23]. Remarkably, quasiconformal realizations exist for different
real forms of all noncompact groups and their quantizations yield directly
the minimal unitary representations of the respective groups [23–26]. Fur-
thermore, the quasiconformal method gives a unified approach to the min-
imal unitary representations of all noncompact groups and extends also to
supergroups [26]. For symplectic groups Sp(2m, R) these minimal unitary
representations are simply the singleton representations.

Many results have been obtained over recent years that support the pro-
posals that four- and three-dimensional U-duality groups act as spectrum
generating conformal and quasiconformal groups of five- and four-dimen-
sional supergravity theories with symmetric scalar manifolds, respectively.
The work relating black hole solutions in four and five dimensions (4d/5d
lift) [27–30] is consistent with the proposal that four-dimensional U-duality
groups act as spectrum generating conformal symmetry groups of five-dimen-
sional supergravity theories from which they descend. Furthermore, the
work of [31,32] on using solution generating techniques to relate the known
black hole solutions of five-dimensional ungauged supergravity theories to
each other and generate new solutions using symmetry groups of the cor-
responding three-dimensional supergravity theories and related work on
gauged supergravity theories [33] are in accord with these proposals.

A concrete framework for implementing the proposal that three-
dimensional U-duality groups act as spectrum generating quasiconformal
groups was formulated in [34–36] for spherically symmetric stationary
Bogomolny-Prasad-Sommerfield (BPS) black holes. This framework is based
on the fact that the attractor equations [37,38] of spherically symmetric sta-
tionary black holes of four-dimensional supergravity theories are equivalent
to the equations describing the geodesic motion of a fiducial particle on the
moduli space M∗

3 of three-dimensional supergravity theories obtained by
reduction on a time-like circle.2 A related analysis on non-BPS extremal
black holes in theories with symmetric target manifolds was carried out

2This was first observed in [39] and used in [40, 41] to construct static and rotating
black holes in heterotic string theory.
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in [42, 43]. For N = 2 MESGTs defined by Euclidean Jordan algebras of
degree three the manifolds M∗

3 are para-quaternionic symmetric spaces

M∗
3 =

QConf(J)
Conf(J) × SU(1, 1)

,

where QConfJ and ConfJ are the quasiconformal and conformal groups of
the Jordan algebra J , respectively. When one quantizes the fiducial parti-
cle’s motion one is led to quantum mechanical wave functions that provide
the basis of a unitary representation of QConf(J). BPS black holes corre-
spond to a special class of geodesics and the twistor space Z3 of M∗

3 can
be identified with the BPS phase space. Then the spherically symmetric
stationary BPS black hole solutions of N = 2 MESGT’s are described by
holomorphic curves in Z3 [34–36, 44]. One finds that the action of three-
dimensional U-duality group QConf(J) on the natural complex coordinates
of the twistor space is precisely of the quasiconformal form [36]. Therefore
the unitary representations of QConf(J) relevant for BPS black holes of
N = 2 MESGTs are those induced by holomorphic quasiconformal actions
of QConf(J) on the corresponding twistor spaces Z3, which belong in general
to quaternionic discrete series representations of QConf(J) [36].

Another result in support of the proposal that three-dimensional U-duality
groups act as spectrum generating groups of the corresponding four-dimensi
onal theories comes from the connection established in [45] between the
harmonic superspace (HSS) formulation of N = 2, d = 4 supersymmetric
quaternionic Kähler sigma models that couple to N = 2 supergravity and
the minimal unitary representations of their isometry groups. One finds
that for N = 2 sigma models with quaternionic symmetric target spaces of
the form3

QConf(J)

C̃onf(J) × SU(2)
there exists a one-to-one mapping between the quartic Killing potentials
that generate the isometry group QConf(J) under Poisson brackets in the
HSS formulation, and the generators of the minimal unitary representa-
tion of QConf(J) obtained by quantization of its quasiconformal realization.
Therefore the “fundamental spectrum” of the quantum theory must fit into
the minimal unitary representation of QConf(J) and the full spectrum is
obtained by tensoring of the minimal unitary representation.

In [36] unitary representations of two quaternionic groups of rank two,
namely SU(2, 1) and G2(2), induced by their geometric quasiconformal
actions were studied in great detail. They are the isometry groups of four and
five dimensional simple N = 2 supergravity theories dimensionally reduced

3
˜Conf(J) is the compact form of Conf(J).
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on tori to three dimensions, respectively. Unitary representations induced
by the geometric quasiconformal action include the quaternionic discrete
series representations that were studied in mathematics literature using
other methods [46]. In the study of unitary representations of SU(2, 1) and
G2(2), in particular of quaternionic discrete series, studied in [36] spherical
vectors of maximal compact subgroups under their quasiconformal actions
play an essential role. In a recent paper [47] we gave a unified quasicon-
formal realization of three-dimensional U-duality groups QConf(J) of all
N = 2 MESGTs with symmetric scalar manifolds defined by Euclidean Jor-
dan algebras of degree three in a basis covariant with respect to their five-
dimensional U-duality groups. These three-dimensional U-duality groups
are F4(4), E6(2), E7(−5), E8(−24) and SO(nV + 2, 4) and their five dimensional
U-duality groups are SL(3, R), SL(3, C), SU∗(6), E6(−26) and SO(1, 1) ×
SO(nV − 1, 1), respectively.4 We gave their quadratic Casimir operators
and determined their values and most importantly presented the spherical
vectors of all these quasiconformal groups in a unified manner, which are
essential for the construction of the quaternionic discrete series representa-
tions.

In this paper we extend the results of [47] to the split exceptional groups
E6(6), E7(7), E8(8) and SO(n + 3, m + 3), which are the quasiconformal
groups of split non-Euclidean Jordan algebras of degree three.5 More specif-
ically, in Section 2 we review the necessary background regarding Euclidean
and non-Euclidean Jordan algebras of degree three and their rotation (auto-
morphism) and Lorentz (reduced structure) groups. The U-duality symme-
tries of maximal supergravity in five, four and three dimensions are simply
the Lorentz, conformal and quasiconformal groups of the split exceptional
Jordan algebra JOS

3 . The corresponding symmetry groups of N = 4 (16
supercharges) MESGTs are determined by the non-simple Jordan algebras
R ⊕ Γ(5,n). In Section 3 we review the conformal symmetry groups of the
relevant Jordan algebras. In Section 4 we present the unified quasiconfor-
mal realizations of E6(6), E7(7), E8(8) and SO(n + 3, m + 3) twisted by a
unitary character ν and their commutation relations as well as their qua-
dratic Casimir operators. We determine the values of the Casimir operators
as a function of ν and the dimension nV of the underlying Jordan algebra J .
From this we determine the values of ν for which the quasiconformal action
induces unitary representations on the space of square integrable functions
in (2nV + 3) variables, that belong to the principle series. In Section 5

4Of course, the rank two quaternionic quasiconformal groups can be obtained as a
trivial limit of the general unified formulation.

5Actually, maximally split orthogonal groups correspond to the case n = m. For n = 1
one gets the quasiconformal group of a Euclidean Jordan algebra.



QUASICONFORMAL REALIZATIONS OF E6(6), E7(7), E8(8) 1901

we present the spherical vectors of these quasiconformal groups in a uni-
fied manner and discuss each group separately. We also present the com-
pact spaces corresponding to the “quasiconformal compactification” of the
(2nV + 3)-dimensional spaces on which the quasiconformal groups QConf(J)
act for all Jordan algebras of degree three, Euclidean as well as split. In Sec-
tion 6 we point out the connection between real and split exceptional Jordan
algebras of degree three and the quaternionic Jordan algebras of degree four
and discuss the similarities and differences between the exceptional N = 2
supergravity and maximal N = 8 supergravity as they relate to quaternionic
Jordan algebras of rank four.

2 Euclidean (compact) and non-Euclidean (noncompact)
Jordan algebras of degree three

Referring to the monograph [48] for details and references on the subject we
shall give a brief review of Jordan algebras in this section, focussing mainly
on Jordan algebras of degree three.

A Jordan algebra over a field F, which we take to generally to be the real
numbers R, is an algebra, J , with a symmetric product ◦

X ◦ Y = Y ◦ X ∈ J, ∀X, Y ∈ J, (2.1)

such that the Jordan identity holds:

X ◦ (Y ◦ X2) = (X ◦ Y ) ◦ X2, (2.2)

where X2 ≡ (X ◦ X). Hence a Jordan algebra is commutative and in gen-
eral not associative algebra. They were introduced by Pascual Jordan in
his attempt to generalize the formalism of quantum mechanics and finite-
dimensional simple Jordan algebras were classified by him, von Neumann
and Wigner [49].

A Jordan algebra J is said to be Euclidean if for any two elements X and
Y of J the condition

X ◦ X + Y ◦ Y = 0

implies that both X and Y must vanish. Since the automorphism groups of
Euclidean Jordan algebras are compact they are also referred to as compact.
Otherwise the Jordan algebra is referred to as noncompact or non-Euclidean.
One can in general define a norm form, N : J → R over J that satisfies the
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composition property [50]

N({X, Y, X}) = N2(X)N(Y ), (2.3)

where {X, Y, Z} is the Jordan triple product defined as

{X, Y, Z} = X ◦ (Y ◦ Z) + Z ◦ (Y ◦ X) − (X ◦ Z) ◦ Y. (2.4)

The degree, p, of the norm form as well as of J is defined by the homogeneity
condition N(λX) = λpN(X), where λ ∈ R.

2.1 Euclidean Jordan algebras of degree three and 5D, N = 2
MESGTs

As was shown in [51], there exists a one-to-one correspondence between
Euclidean Jordan algebras of degree three and the 5D, N = 2 MESGTs
whose scalar manifolds are symmetric spaces such that G is a symmetry of
their Lagrangian. In these theories the symmetric C-tensor that describes
the F ∧ F ∧ A type coupling6

CIJKεμνλρσF IμνF JλρAJσ

of all the vector fields including the graviphoton is identified with the sym-
metric tensor that defines the cubic norm of the corresponding Euclidean
Jordan algebra J of degree three. Their scalar manifolds are of the form

M5(J) =
Str0(J)
Aut(J)

, (2.5)

where Str0(J) is the Lorentz (reduced structure) group of J and Aut(J)
is its rotation (automorphism) group. For Euclidean Jordan algebras the
rotation (automorphism) groups are compact.

There exists an infinite family of nonsimple Jordan algebras of degree
three which are the direct sum of a one-dimensional Jordan algebra R and
a Jordan algebra Γ(1,n−1) associated with a quadratic form of Lorentzian
signature:

J = R ⊕ Γ(1,n−1) (2.6)

which is referred to as the generic Jordan family. A simple realization of

6We should note that a given N = 2 MESGT in five dimensions is uniquely determined
by the C-tensor.
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Γ(1,n−1) is provided by 2[n/2] × 2[n/2] Dirac gamma matrices γi (i, j, . . . =
1, . . . , (n − 1)) of an (n − 1)-dimensional Euclidean space together with the
identity matrix γ0 = 1 and the Jordan product ◦ being one half the anti-
commutator:

γi ◦ γj =
1
2
{γi, γj} = δijγ0,

γ0 ◦ γ0 =
1
2
{γ0, γ0} = γ0, (2.7)

γi ◦ γ0 =
1
2
{γi, γ0} = γi.

The quadratic norm of a general element X = X0γ
0 + Xiγ

i of Γ(1,n−1) is
defined as

Q(X) =
1

2[n/2] Tr XX̄ = X0X0 − XiXi,

where

X̄ ≡ X0γ
0 − Xiγ

i.

The norm of a general element ξ ⊕ X of the nonsimple Jordan algebra J =
R ⊕ Γ(1,n−1) is simply given by

N(ξ ⊕ X) = ξQ(X), (2.8)

where ξ ∈ R.

The scalar manifolds of corresponding 5D, N = 2 MESGTs are

M =
SO(n − 1, 1)
SO(n − 1)

× SO(1, 1)

In addition to the generic infinite family there exist four simple Euclidean
Jordan algebras of degree three. They are generated by Hermitian (3 × 3)-
matrices over the four division algebras A = R, C, H, O

J =

⎛
⎝

α Z Ȳ
Z̄ β X
Y X̄ γ

⎞
⎠ ,

where α, β, γ ∈ R and X, Y, Z ∈ A with the product being one half the anti-
commutator. They are denoted as JR

3 , JC
3 , JH

3 , JO

3 , respectively, and the
corresponding N = 2 MESGts are called “magical supergravity theories.”
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They have the 5D scalar manifolds:

JR
3 : M = SL(3, R)/SO(3),

JC
3 : M = SL(3, C)/SU(3),

JH
3 : M = SU∗(6)/USp(6),

JO

3 : M = E6(−26)/F4.

(2.9)

The cubic norm form, N, of the simple Jordan algebras of degree three is
given by the “determinant” of the corresponding Hermitian (3 × 3)-matrices
(modulo an overall scaling factor):

N(J) = αβγ − αXX̄ − βY Ȳ − γZZ̄ + 2Re(XY Z), (2.10)

where Re(XY Z) denotes the real part of XY Z and bar denotes conjugation
in the underlying division algebra.

For a real quaternion X ∈ H we have

X = X0 + X1j1 + X2j2 + X3j3,

X̄ = X0 − X1j1 − X2j2 − X3j3, (2.11)

XX̄ = X2
0 + X2

1 + X2
2 + X2

3 ,

where the imaginary units ji satisfy

jijj = −δij + εijkjk. (2.12)

For a real octonion X ∈ O we have

X = X0 + X1j1 + X2j2 + X3j3 + X4j4 + X5j5 + X6j6 + X7j7,

X̄ = X0 − X1j1 − X2j2 − X3j3 − X4j4 − X5j5 − X6j6 − X7j7, (2.13)

XX̄ = X2
0 +

7∑
A=1

(XA)2.

Seven imaginary units of real octonions satisfy

jAjB = −δAB + ηABCjC , (2.14)

where ηABC is completely antisymmetric and in the conventions of [52] take
on the values

ηABC = 1 ⇔ (ABC) = (123), (471), (572), (673), (624), (435), (516). (2.15)

as indicated in Figure 1. The automorphism group of the division algebra
of octonions is the compact group G2.
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Figure 1: Multiplication table of imaginary units of real octonions O. Three
imaginary units on each side, height and circle correspond to the imaginary
units of a quaternion subalgebra. The arrows represent the positive direc-
tions for multiplication, e.g., j1j2 = −j2j1 = j3 and j6j2 = −j2j6 = j4, etc.

We should note that the simple Jordan algebras JA
3 of degree 3 have

nonsimple subalgebras generated by elements of the form

J =

⎛
⎝

α 0 0
0 β X
0 X̄ γ

⎞
⎠

that are isomorphic to generic Jordan algebras (R ⊕ Γ(1,2)), (R ⊕ Γ(1,3)),
(R ⊕ Γ(1,5)) and (R ⊕ Γ(1,9)) for A = R, C, H and O, respectively.

2.2 Non-Euclidean Jordan algebras of degree three and 5D,
N � 4 supergravity theories

In the generic infinite family of nonsimple Jordan algebras of degree three,
R ⊕ Γ, one can take the quadratic form defining the Jordan algebra Γ of
degree two to be of arbitrary signature different from Minkowskian, which
result in non compact or non-Euclidean Jordan algebras. If the quadratic
norm form has signature (n, m) we shall denote the Jordan algebra as
Γ(n,m). Γ(n,m) is realized by 2[(n+m)/2] × 2[(n+m)/2] Dirac gamma matrices γi

(i, j, . . . = 1, . . . , (n + m − 1)) together with the identity matrix γ0 = 1 and
the Jordan product ◦ being one-half the anticommutator:

γi ◦ γj =
1
2
{γi, γj} = ηijγ0,

γ0 ◦ γ0 =
1
2
{γ0, γ0} = γ0, (2.16)

γi ◦ γ0 =
1
2
{γi, γ0} = γi,
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where

ηij = δij , for i, j, .. = 1, 2, .., (n − 1),

ηij = −δij , for i, j, .. = n, n + 1, .., (n + m − 1).
(2.17)

The quadratic norm of a general element X = X0γ
0 + Xiγ

i of Γ(n,m) is
given by

Q(X) =
1

2[n/2] TrXX̄ = X0X0 + ηijXiXj ,

where
X̄ ≡ X0γ

0 − Xiγ
i.

The norm of a general element ξ ⊕ X of non-simple Jordan algebra J =
R ⊕ Γ(n,m) is simply given by

N(ξ ⊕ X) = ξQ(X), (2.18)

where ξ ∈ R. The invariance group of the cubic norm is

Str0(R ⊕ Γ(n,m)) = SO(1, 1) × SO(n, m). (2.19)

If one replaces the underlying division algebra A of three of the four
simple Euclidean Jordan algebras JA

3 by the corresponding split composition
algebras AS one obtains non-Euclidean simple Jordan algebras JAS

3 for AS =
CS , HS and OS .

For split octonions OS , four of the seven “imaginary units” square to +1,
while the other three square to −1. If we denote the split imaginary units as
js
μ (μ = 4, 5, 6, 7) and the imaginary units of the real quaternion subalgebra

as ji, (i = 1, 2, 3) we have:

js
μjs

ν = δμν − ημνiji,

jijj = −δij + εijkjk, (2.20)
jij

s
μ = ηiμνj

s
ν ,

where ηABC (A, B, C = 1, 2, . . . , 7) are the structure constant of the real
octonion algebra O defined above. For a split octonion

Os = o0 + o1j1 + o2j2 + o3j3 + o4j
s
4 + o5j

s
5 + o6j

s
6 + o7j

s
7

the norm is

OsŌs = o2
0 + o2

1 + o2
2 + o2

3 − o2
4 − o2

5 − o2
6 − o2

7,



QUASICONFORMAL REALIZATIONS OF E6(6), E7(7), E8(8) 1907

where Ōs = o0 − o1j1 − o2j2 − o3j3 − o4j
s
4 − o5j

s
5 − o6j

s
6 − o7j

s
7. The norm

has the invariance group SO(4, 4). The automorphism group of split octo-
nions is the exceptional group G2(2) with the maximal compact subgroup
SU(2) × SU(2).

The automorphism group of the split exceptional Jordan algebra defined
by 3 × 3 split octonionic Hermitian matrices of the form

J s =

⎛
⎝

α Zs Ȳ s

Z̄s β Xs

Y s X̄s γ

⎞
⎠ (2.21)

is the noncompact group F4(4) with the maximal compact subgroup USp(6)
×SU(2) and its reduced structure group is E6(6) with the maximal compact
subgroup USp(8).

The split exceptional Jordan algebra has a subalgebra generated by ele-
ments of the form

J s =

⎛
⎝

α 0 0
0 β Xs

0 X̄s γ

⎞
⎠ (2.22)

which is isomorphic to (R + Γ(5,5)), whose reduced structure and automor-
phism groups are SO(5, 5) × SO(1, 1) and SO(4, 5), respectively.

The split quaternion algebra H
s has two “imaginary units” js

m (m = 2, 3)
that square to +1:

js
mjs

n = δmn − εmnkjk,

(j1)2 = −1, (2.23)
j1j

s
m = ε1mnjs

n

For a split quaternion

Qs = q0 + q1j1 + q2j
s
2 + q3j

s
3,

the norm is

QsQ̄s = q2
0 + q2

1 − q2
2 − q2

3,

where Q̄s = q0 − q1j1 − q2j
s
2 − q3j

s
3 and it is invariant under SO(2, 2). The

automorphism group of the split Jordan algebra JHS
3 is Sp(6, R) with the

maximal compact subgroup SU(3) × U(1). Its reduced structure group is
SL(6, R).
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The split complex numbers have an “imaginary unit” that squares to +1
and the norm has SO(1, 1) invariance. The automorphism group of split
complex Jordan algebra JCs

3 is SL(3, R) and its reduced structure group is

SL(3, R) × SL(3, R)

The invariant tensor CIJK defining the cubic norm of the Jordan algebra
(R ⊕ Γ(5,n)) can be identified with the C-tensor in the F ∧ F ∧ A coupling

CIJKF I ∧ F J ∧ AK = CIJKεμνλσρF
IμνF JλσAKρ (2.24)

of (n + 5) vector fields of N = 4 MESGTs that describe the coupling of n
vector multiplets to N = 4 supergravity in five dimensions. Scalar manifolds
of these theories are symmetric spaces

M5 =
SO(5, n) × SO(1, 1)

SO(5) × SO(n)
, (2.25)

where the isometry group SO(5, n) × SO(1, 1) is simply the reduced struc-
ture group of the Jordan algebra (R ⊕ Γ(5,n)).

The bosonic field content of N = 6 simple supergravity is the same as that
of N = 2 MESGT defined by the Euclidean Jordan algebra JH

3 [7]. Hence
the scalar manifold of N = 6 supergravity is

M5(N = 6) =
Str0(JH

3 )
Aut(JH

3 )
=

SU∗(6)
USp(6)

. (2.26)

Therefore its invariant C-tensor is simply the one given by the cubic norm
of JH

3 , which is a Euclidean Jordan algebra.

As for N = 8 supergravity in five dimensions its C-tensor is simply the
one given by the cubic norm of the split exceptional Jordan algebra JOS

3
defined over split octonions OS . E6(6) is the invariance group of the C-
tensor as well as of the full maximal supergravity in five dimensions whose
scalar manifold is

M5(N = 8) =
E6(6)

USp(8)
. (2.27)

The five-dimensional N = 8 supergravity can be truncated to N = 4
MESGT describing the coupling of five vector multiplets to N = 4 super-
gravity with the scalar manifold

SO(1, 1) × SO(5, 5)
SO(5) × SO(5)

. (2.28)
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The C-tensor of this truncated theory coincides with the symmetric tensor
that defines the cubic norm of the Jordan subalgebra (R ⊕ Γ(5,5)) of JOS

3
given above.

3 Conformal groups of Jordan algebras and U-duality groups
in d = 4

The proposal [53] to define generalized spacetimes coordinatized by elements
of a Jordan algebra J identifies the automorphism Aut(J) and reduced struc-
ture groups Str0(J) of the Jordan algebra J with the rotation and Lorentz
groups of the corresponding spacetime, respectively. The Lorentz group and
dilatations generate the structure group Str(J) of J , which extends to the
generalized conformal group Conf(J) of the Jordan algebra J . Conf(J) can
be identified with the invariance group of the light cone defined by the norm
form of the Jordan algebra J [19, 53–55]. For Euclidean Jordan algebras
of dimensions n defined by a quadratic norm form with a Lorentzian sig-
nature the rotation, Lorentz and conformal groups are simply SO(n − 1),
SO(n − 1, 1) and SO(n, 2), respectively.

Lie algebra conf(J) of the generalized conformal group Conf(J) has a
natural three-grading with respect to the dilatation generator R. Choosing
a basis eI for the Jordan algebra and labelling the translations and special
conformal generators as TI and KI , respectively, we have

conf(J) = TI ⊕ RJ
I ⊕ KI , (3.1)

where I, J, .. = 1, 2, . . . ,dim(J) = nV . Traceless components LJ
I of RJ

I are
the Lorentz group generators and the trace part is proportional to the dilata-
tion generator R :

R =
1

nV
RK

K ,

RJ
I = LJ

I + δJ
I R. (3.2)

In the chosen basis eI for the Jordan algebra an element x ∈ J can be
written as x = eIq

I = ẽIqI . Then the action of the generators of conf(J) on
J can be written as differential operators acting on the “coordinates” qI .7

7Note that there are, in general, two inequivalent actions of the reduced structure
group: one on Jordan algebra and another one on its conjugate (or dual). The tilde refers
to the conjugate basis such that qIpI is invariant under the action of reduced structure
group Str0(J). For details on this issue see [55].
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These generators can be twisted by a unitary character λ and take the
simple form

TI =
∂

∂qI
,

RI
J = −ΛIK

JLqL ∂

∂qK
− λδI

J , (3.3)

KI =
1
2
ΛIK

JLqJqL ∂

∂qK
+ λqI . (3.4)

They satisfy the commutation relations

[TI , K
J ] = −RJ

I , (3.5)

[RJ
I , TK ] = ΛJL

IKTL, (3.6)

[RJ
I , KK ] = −ΛJL

IKKL, (3.7)

where ΛIJ
KL are the structure constants of the Jordan triple product

{eI , ẽ
K , eJ} = ΛKL

IJ eL, (3.8)

{ẽK , eI , ẽ
L} = ΛKL

IJ ẽJ . (3.9)

The generators of rotation (automorphism) group Aut(J) are

AIJ = RJ
I − RI

J . (3.10)

For Jordan algebras of degree three the structure constants can be written as

ΛIJ
KL := δI

KδJ
L + δI

LδJ
K − 4

3
CIJMCKLM , (3.11)

where CIJK is the symmetric tensor that defines the cubic norm of J and
satisfies the “adjoint identity” [51]:

CIJKCJ(MNCPQ)K = δI
(MCNPQ). (3.12)

Since the C-tensor is an invariant of the Lorentz (reduced structure) group
we have

CIJK = CIJK . (3.13)

The conformal groups of non-Euclidean Jordan algebras JCs
3 , JHs

3 , JOs
3 and

(R ⊕ Γ(m,n)) are listed in table 1. The conformal group of JOs
3 is E7(7) which

is the U-duality group of maximal supergravity in d = 4. Similarly, the con-
formal groups SO(6, n + 1) × SU(1, 1) of the Jordan algebras (R ⊕ Γ(5,n))
are the U-duality groups of N = 4 MESGTs in d = 4.



QUASICONFORMAL REALIZATIONS OF E6(6), E7(7), E8(8) 1911

Table 1: Below we give the automorphism (Aut(J)), reduced structure
Str0(J), conformal (Conf(J)) and quasiconformal groups (QConf(J)) asso-
ciated with non-Euclidean Jordan algebras of degree three.

J Aut(J) Str0(J) Conf(J) QConf(J)

JCs
3 SL(3, R) SL(3, R) ×

SL(3, R)
SL(6, R) E6(6)

JHs
3 Sp(6, R) SL(6, R) SO(6, 6) E7(7)

JOs
3 F4(4) E6(6) E7(7) E8(8)

R ⊕ Γ(n,m) SO(n − 1, m) SO(1, 1) ×
SO(n, m)

SO(n+1,m+1)
× SU(1, 1)

SO(n + 3, 3 + m)

4 Quasiconformal groups associated with non-Euclidean
Jordan algebras of degree three

Quasiconformal realizations of Lie groups was first formulated over Freuden-
thal triple systems associated with Lie groups extended by an extra singlet
coordinate [19]. Given a simple Lie algebra g one can associate a Freuden-
thal triple system F with it via the Freudenthal–Kantor construction [56]
using the five-grading of g

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2 (4.1)

such that grade ±2 subspaces are one dimensional. The generators of grade
+1 and by conjugation also of −1 subspaces are labelled by the elements of
the underlying Freudenthal triple systems (FTS):

g = K̃ ⊕ ŨA ⊕ SAB ⊕ UB ⊕ K, (4.2)

where A, B ∈ F . Here we shall focus on quasiconformal realizations of
groups associated with FTSs defined by non-Euclidean Jordan algebras J
of degree three in a basis covariant with respect to their Lorentz (reduced
structure) groups. The elements of a FTS F(J) defined over J can be
represented as formal 2 × 2 “matrices”

X =
(

α x
y β

)
, (4.3)

where α, β ∈ R and x,y ∈ J . We shall write X simply as X ≡ (α, β,x,y) for
convenience. Every FTS admits a skew-symmetric bilinear form. Given two
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elements X = (α, β,x,y) and Y = (γ, δ,w, z) of F(J) their skew symmetric
bilinear form is

〈X, Y 〉 ≡ αδ − βγ + (x, z) − (y,w), (4.4)

where (x, z) is the symmetric bilinear form over J given by the trace Tr:

(x, z) ≡ Tr(x ◦ z). (4.5)

In the normalization and conventions of [19] the quartic norm Q4(X) of
X ∈ F(J) is given by

Q4(X) ≡ 1
48

〈(X, X, X), X〉, (4.6)

where (X, Y, Z) denotes the Freudenthal triple product. The automorphism
group of the FTS F(J) is isomorphic to the conformal group of the Jordan
algebra J :

Aut(F(J)) ∼= Conf(J) (4.7)

We note that under the action of Aut(F(J)) the elements X = (α, β,x,y) ∈
F(J) transform linearly, which is not to be confused with the nonlinear
action of the conformal group Conf(J) on J . Under the Lorentz subgroup
Str0(J) of Aut(F(J)) the Jordan components x and y of X transform in
conjugate (dual) representations.

For 5d supergravity theories whose C-tensors are given by the norm forms
of Jordan algebras J of degree three one-to-one correspondence between the
vector fields and the elements of J gets extended to a one-to-one corre-
spondence between the vector field strengths and their magnetic duals and
elements of the Freudenthal triple system F(J):

(AI
μ ↔ J) =⇒

((
F 0 F I

F̃ I F̃ 0

)
−→ F(J)

)
,

where F 0 denotes the field strength of the vector field that comes from the
5d graviton. Field strengths F I and their magnetic duals F̃ I transform in
conjugate representations under the Lorentz group Str0(J). Since the auto-
morphism group of a Freudenthal triple system F(J) defined over a Jordan
algebra J of degree three is isomorphic to the four-dimensional U-duality
group Aut(F(J)) = Conf(J) of corresponding supergravity theories the orig-
inal formulation of [19] is covariant with respect to Conf(J).

Consider now the vector space T of a FTS extended by an extra coor-
dinate. We shall denote vectors in this space as X = (X, x) ∈ T where X
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belongs to the FTS and x is the extra coordinate. The action of Lie algebra
of the quasiconformal group, associated with a FTS F , on the vector space
T is given by [19,25]:

K(X) = 0, UA(X) = A, SAB(X) = (A, B, X),

K(x) = 2, UA(x) = 〈A, X〉, SAB(x) = 2〈A, B〉x,

ŨA(X) =
1
2
(X, A, X) − Ax,

ŨA(x) = −1
6
〈(X, X, X), A〉 + 〈X, A〉x,

K̃(X) = −1
6
(X, X, X) + Xx,

K̃(x) =
1
6
〈(X, X, X), X〉 + 2x2,

(4.8)

where A, B ∈ F .

The quartic norm over the space T is defined as

N4(X ) := Q4(X) − x2 (4.9)

where Q4(X) is the quartic invariant of X ∈ F . Quartic “symplectic dis-
tance” d(X ,Y) between any two points X = (X, x) and Y = (Y, y) in T is
defined as the quartic norm of “symplectic difference”

δ(X ,Y) := (X − Y, x − y + 〈X, Y 〉) (4.10)

of two vectors in T

d(X ,Y) := N4(δ(X ,Y) = Q4(X − Y ) − (x − y + 〈X, Y 〉)2. (4.11)

The quasiconformal group action defined above leaves invariant light-like
separations [19]

d(X ,Y) = 0. (4.12)

In other words, the quasiconformal group is the invariance group of the
light-cone with respect to the quartic distance function (4.11). We shall
refer to the submanifold with base point X in the space T defined by the
condition (4.12) as the “quartic light-cone”.8 Quasiconformal realization of
a simple Lie algebra g over a FTS F extended by an extra singlet coordinate

8By an abuse of terminology we shall sometimes refer to the distance function (4.11)
also as the quartic light cone.
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carries over to the complexification of g. Therefore by taking different real
sections one can obtain quasiconformal realizations of different real forms of
the corresponding group G.

The quartic light-cone (4.11) is manifestly invariant under the Heisenberg
symmetry group corresponding to “symplectic translations” generated by
UA and K in (4.8). “Symplectic special conformal generators” ŨA and K̃
also form an Heisenberg subalgebra and their action on the quartic light-cone
d(X ,Y) results in overall multiplicative factors [19,36]

d(X ,Y) =⇒ f(X ,Y)d(X ,Y) (4.13)

which proves that light-like separations are left invariant under the full qua-
siconformal group action.

For supergravity theories whose five- and four-dimensional U-duality sym-
metry groups are the Lorentz and Conformal groups of a Jordan algebra J
of degree three the U-duality groups of corresponding 3d supergravity the-
ories are isomorphic to the quasiconformal groups QConf(J) of the Jordan
algebras J .

4.1 Quasiconformal Lie algebras of non-Euclidean Jordan
algebras of degree three twisted by a unitary character

We shall denote the basis vectors of F(J) as follows:
(

α x
y β

)
= αe0 + βẽ0 + xIeI + yI ẽI , (4.14)

where I = 1, . . . , nV = dim(J) and x and y transform in conjugate repre-
sentations of the Lorentz group Str0(J).

The quasiconformal Lie algebra associated with a Jordan algebra J of
degree three which we denote interchangeably as QConf(F(J)) or as
QConf(J) can be given a 7 × 5 graded decomposition that is covariant with
respect to the reduced structure group Str0(J) as shown in table 2. With
applications to supergravity theories in mind we shall label the elements
X, Y, .. of FTS F(J) in terms of coordinates (q0, qI) and momenta (p0, pI)
as follows9

X = q0ẽ0 + qI ẽI + pIeI + p0e0. (4.15)

9pIqI = (eIpI , qI ẽI) and (p�)I(q�)I = (p�
I ẽ

I , q�I
eI).
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Table 2: Below we give the 7 × 5 grading of the quasiconformal Lie algebra
QConf(J) associated with the Freudenthal triple system F(J) defined over
a Jordan algebra J of degree 3. The vertical five-grading is determined by
D = −Δ that commutes with the Lorentz group generators LJ

I and with R.
Horizontal seven-grading is determined by R. The generators R̃I , RJ

I and
RI generate the automorphism group Aut(F(J)) under which the generators
(U0, UI , V

I , V 0) as well as (Ũ0, ŨI , Ṽ
I , Ṽ 0) transform linearly in a symplectic

representation.

K

U0 UI V I V 0

− − − R̃I − − − (D ⊕ LJ
I ⊕ R) − − − RJ − − −

Ũ0 ŨI Ṽ I Ṽ 0

K̃

We shall normalize the basis elements and cubic norm (C-tensor) such that
the quartic invariant is given by

I4(X) = (p0q0 − pIqI)2 − 4
3
CIJKpJpKCILMqLqM

+
4

3
√

3
p0CIJKqIqJqK +

4
3
√

3
q0CIJKpIpJpK

= (p0q0 − pIqI)2 − 4
3
(p�)I(q�)I

+
4

3
√

3
p0N (q) +

4
3
√

3
q0N (p), (4.16)

where

N (q) ≡ CIJKqIqJqK , (q�)I ≡ CIJKqJqK ,

N (p) ≡ CIJKpIpJpK , (p�)I ≡ CIJKpJpK .

The basis vectors eI (ẽI) of the Jordan algebra J (and its conjugate J̃) are
normalized such that

(ẽJ , ẽI) = Tr ẽI ◦ ẽJ = ηIJ , (4.17)

(eI , eJ) = Tr eI ◦ eJ = ηIJ , (4.18)

(eI , ẽ
J) = Tr eI ◦ ẽJ = δJ

I , (4.19)
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where ηIJ is diagonal and equal to δIJ for Euclidean (compact) elements and
equal to −δIJ for non Euclidean (noncompact) elements and will be explic-
itly given below. Furthermore, we will label the basis elements of the Jordan
algebra J such that e1, e2 and e3 are the three irreducible idempotents of J
and the identity element I is simply

I = e1 + e2 + e3. (4.20)

The action of the generators of quasiconformal group QConf(J) on the
space T = F(J) ⊕ R with coordinates q0, qI , p0, pI of F(J) plus an extra
singlet coordinate x ∈ R, twisted by a unitary character ν, is given by the
following differential operators:

K = ∂x, (4.21)

U0 = ∂p0 + q0∂x, (4.22)

UI = −∂pI + qI∂x, (4.23)

V 0 = ∂q0 − p0∂x, (4.24)

V I = ∂qI + pI∂x, (4.25)

RI = −
√

2CIJKpK∂qK −
√

3
2
(p0∂pI + qI∂q0), (4.26)

R̃I =
√

2CIJKqJ∂pK +

√
3
2
(q0∂qI + pI∂p0), (4.27)

RI
J =

3
2
δI

J(p0∂p0 − q0∂q0)

+
3
2

(
δI

NδK
J − 4

3
CIKLCJNL

)
(qN∂qK − pK∂pN ), (4.28)

R =
1

nV
RI

I =
3
2
(p0∂p0 − q0∂q0) +

1
2
(pI∂pI − qI∂qI ), (4.29)

Δ == −D = −(p0∂p0 + pI∂pI + q0∂q0 + qI∂qI − ν) − 2x∂x, (4.30)

K̃ = x(p0∂p0 + pI∂pI + q0∂q0 + qI∂qI − ν) + (x2 + I4)∂x

+
1
2

(
∂I4

∂p0 ∂q0 − ∂I4

∂q0
∂p0 +

∂I4

∂qI
∂pI − ∂I4

∂pI
∂qI

)
. (4.31)

The vertical five grading is determined by the adjoint action of D
⎡
⎢⎢⎣D,

⎛
⎜⎜⎝

U0
UI

V I

V 0

⎞
⎟⎟⎠

⎤
⎥⎥⎦ =

⎛
⎜⎜⎝

U0
UI

V I

V 0

⎞
⎟⎟⎠ . (4.32)
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The vertical grade −1 generators are obtained from the grade +1 generators
by commutation with the grade −2 generator K̃

Ũ0 = [U0, K̃], (4.33)

Ṽ 0 = [V 0, K̃], (4.34)

ŨI = [UI , K̃], (4.35)

Ṽ I = [V I , K̃] (4.36)

and satisfy
⎡
⎢⎢⎣D,

⎛
⎜⎜⎝

Ũ0

ŨI

Ṽ I

Ṽ 0

⎞
⎟⎟⎠

⎤
⎥⎥⎦ = −

⎛
⎜⎜⎝

Ũ0

ŨI

Ṽ I

Ṽ 0

⎞
⎟⎟⎠ . (4.37)

The remaining nonvanishing commutation relations of Lie algebra of
QConf(J) are as follows:

[K, K̃] = Δ, (4.38)

[Δ, K] = −2K, (4.39)

[Δ, K̃] = 2K̃, (4.40)

[UI , V
J ] = −2δJ

I K, (4.41)

[U0, V
0] = −2K, (4.42)

[K, Ũ0] = U0, (4.43)

[K, ŨI ] = UI , (4.44)

[K, Ṽ I ] = V I , (4.45)

[K, Ṽ 0] = V 0, (4.46)

[ŨI , Ṽ
J ] = −2δJ

I K̃, (4.47)

[Ũ0, Ṽ
0] = −2K̃, (4.48)

[U0, Ṽ
0] = −2R + D, (4.49)

[V 0, Ũ0] = −2R − D, (4.50)

[RJ
I , RK ] =

3
2
ΛJL

IKRL, (4.51)

[RJ
I , R̃L] = −3

2
ΛJK

IL R̃L, (4.52)

[RJ
I , UK ] =

3
2
ΛJL

IKUL − 3
2
δJ
I UK , (4.53)
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[RJ
I , V K ] = −3

2
ΛJK

IL V L +
3
2
δJ
I V K , (4.54)

[RJ
I , ŨK ] =

3
2
ΛJL

IKŨL − 3
2
δJ
I ŨK , (4.55)

[RJ
I , Ṽ K ] = −3

2
ΛJK

IL Ṽ L +
3
2
δJ
I Ṽ K , (4.56)

[RI , R̃
J ] = −RJ

I , (4.57)

[U0, Ṽ
I ] = 2

√
2
3
R̃I , (4.58)

[Ũ0, V
I ] = −2

√
2
3
R̃I , (4.59)

[V 0, ŨI ] = −2

√
2
3
RI , (4.60)

[Ṽ 0, UI ] = −2

√
2
3
RI , (4.61)

[UI , Ṽ
J ] =

4
3
RJ

I − δJ
I (Δ + 2R), (4.62)

[ŨI , V
J ] = −4

3
RJ

I − δJ
I (Δ − 2R), (4.63)

[UI , ŨJ ] = −4
3

√
2CIJKR̃K , (4.64)

[V I , Ṽ J ] = −4
3

√
2CIJKRK , (4.65)

[V I , RJ ] = −
√

3
2
δI
JV 0, (4.66)

[Ṽ I , RJ ] = −
√

3
2
δI
J Ṽ 0, (4.67)

[ŨI , R̃
J ] = −

√
3
2
δJ
I Ũ0, (4.68)

[UI , R̃
J ] = −

√
3
2
δJ
I U0, (4.69)

where

ΛIJ
KL := δI

KδJ
L + δI

LδJ
K − 4

3
CIJMCKLM . (4.70)

There is a distinguished SL(3, R) subgroup of QConf(J) whose centralizer
is the Lorentz group Str0(J) generated by LJ

I , whose generators are K, K̃,
U0, Ũ0, V 0, Ṽ 0, R and D . Its maximal compact subgroup SO(3) ⊂ SL(3, R)
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is generated by

T1 :=
1√
2
(U0 − Ṽ 0), (4.71)

T2 :=
1√
2
(V 0 + Ũ0), (4.72)

T3 := −(K + K̃) (4.73)

that satisfy

[Ti, Tj ] = εijkTk, (4.74)

where i, j, k = 1, 2, 3. The generators of the maximal compact subgroup K
of QConf(J) are

(UI − ηIJ Ṽ J),

(V I + ηIJ ŨJ),

(RI + ηIJ R̃J),

(RJ
I − ηIKηJLRK

L ), (4.75)

(Ũ0 + V 0),

(−U0 + Ṽ 0),

(K + K̃),

where I, J, . . . = 1, 2, . . . , nV where nV is the dimension of J .10

4.2 Quadratic Casimir operators of quasiconformal Lie algebras

The generators LJ
I of the reduced structure (Lorentz) group of a Jordan

algebra are given by the traceless components of RJ
I :

LJ
I = RJ

I − 1
nV

δJ
I (RK

K) = RJ
I − δJ

I R. (4.76)

The quadratic Casimir operator of the quasiconformal group QConf(J) of
a simple Jordan algebra J of degree three can then be written in a gen-
eral form involving a single parameter α, valid both for Euclidean and

10For the supergravity theories whose C-tensors are determined by a Jordan algebra,
nV is the number of vector fields in five dimensions. Hence the notation.
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non-Euclidean J :

C2 = αLJ
I LI

J − 4
3
(R2 + R̃IRI + RIR̃

I) + (U0Ṽ
0 + UI Ṽ

I + Ṽ 0U0 + Ṽ IUI)

− (Ũ0V
0 + ŨIV

I + V 0Ũ0 + V IŨI) − 2(KK̃ + K̃K) + Δ2, (4.77)

where α takes on the following values for different quasiconformal Lie groups
QCG(J):

α(F4(4)) =
16
45

,

α(E6(6)) =
8
27

,

α(E7(7)) =
2
9
,

α(E8(8)) =
4
27

.

(4.78)

As for the quasiconformal groups QConf(R ⊕ Γ(n,m)) = SO(n + 3, m + 3)
associated with the generic family of reducible Jordan algebras J = R ⊕
Γ(n,m) the quadratic Casimir can be written in the form:

C2(SO(n + 3, m + 3))

=
4
9
RJ

I RI
J − 4

3
(R̃IRI + RIR̃

I) − (n + m − 2)
9

(R2
2 + R3

3)
2

+ (U0Ṽ
0 + UI Ṽ

I + Ṽ 0U0 + Ṽ IUI)

− (Ũ0V
0 + ŨIV

I + V 0Ũ0 + V IŨI) − 2(KK̃ + K̃K) + Δ2. (4.79)

The dimension of J = R ⊕ Γ(n,m) is

nV = n + m + 1. (4.80)

The quadratic Casimir operators for all the quasiconformal groups
QConf(J) reduce to a c-number whose value can be expressed universally in
terms of the twisting parameter and the dimension nV of the Jordan algebra
J as

C2(QCG(J)) = ν(ν + 2nV + 4). (4.81)

As a consequence the representations induced by the quasiconformal action
of QConf(J) on the space of square integrable functions L2(pI , qI , x) of
(nV + 1) coordinates qI , (nV + 1) momenta and the singlet coordinate x are
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unitary representations belonging to the principle series under the scalar
product

〈f |g〉 =
∫

f̄(p, q, x)g(p, q, x) dp dq dx (4.82)

for

ν = −(nV + 2) + iρ, (4.83)

where ρ ∈ R. For special discrete values of the twisting parameter ν one
obtains representations belonging to the discrete series and their continu-
ations. Typically, these representations arise as submodules of the Verma
modules obtained by the action of noncompact generators on the spherical
vectors of quasiconformal group actions. For the quasiconformal groups of
Euclidean Jordan algebras these special representations include the quater-
nionic discrete representations and their continuations [36,57], which can be
realized over the space of holomorphic functions of complexified quasicon-
formal coordinates. These holomorphic coordinates can be identified with
the natural complex coordinates of the twistor spaces associated with the
quaternionic symmetric spaces

QConf(J)

C̃onf(J) × SU(2)

when J is Euclidean. For rank two quaternionic quasiconformal groups
SU(2, 1) and G2(2) these representations were studied in [36].

5 Spherical vectors of quasiconformal groups associated with
split non-Euclidean Jordan algebras of degree three

A Jordan algebra J of degree three admits three mutually orthogonal irre-
ducible idempotents P1,P2,P3:

Pi ◦ Pj = δijPi, (5.1)

Tr(Pi) = 1, i, j, .. = 1, 2, 3.

As stated earlier in our labelling of the basis elements of split Jordan algebras
of degree three we identify ei with Pi for i = 1, 2, 3. By the action of the
automorphism group Aut(J) one can “diagonalize” a general element x ∈ J

Aut(J) : x −→ xD = λ1e1 + λ2e2 + λ3e3. (5.2)
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The cubic norm of x is therefore

N (x) = 3
√

3(λ1λ2λ3). (5.3)

This holds true for Euclidean as well as for split non-Euclidean Jordan
algebras of degree three (assuming nV � 3). The quasiconformal group of
the Jordan subalgebra generated by the irreducible idempotents is SO(4, 4)
which is the U-duality group of the STU model and was studied in [47]. This
Jordan subalgebra is isomorphic to the Euclidean algebra (R ⊕ Γ(1,1)), which
is a subalgebra of all the generic family of Jordan algebras (R ⊕ Γ(m,n)) for
m, n > 1. The simple split non-Euclidean Jordan algebras all have JR

3 as a
subalgebra and hence its quasiconformal group F4(4) is a subgroup of the
split exceptional quasiconformal groups E6(6), E7(7) and E8(8) of the split
simple Jordan algebras JCs

3 , JHs
3 JOs

3 . Now the quasiconformal groups of all
Euclidean Jordan algebras of degree three are of the quaternionic real form,
in particular the groups SO(4, 4) and F4(4).

Unitary representations induced by the action of quaternionic quasicon-
formal groups with unitary character ν include the quaternionic discrete
series representations of Gross and Wallach [46] as was shown explicitly for
rank two cases in [36]. The explicit expressions for the spherical vectors
of quasiconformal realizations of SU(2, 1) and G2(2) were essential to estab-
lish this result [36]. The quaternionic discrete series representations and
their continuations appear as submodules in the Verma modules generated
by the action of noncompact generators on the spherical vectors for spe-
cial discrete values of the parameter ν that is the twisting parameter in
the quasiconformal group action. The spherical vectors for all quaternionic
quasiconformal groups defined by Euclidean Jordan algebras of degree three
were given in [47]. In this section we shall extend these results to quasi-
conformal groups of all split non-Euclidean Jordan algebras of degree three.
The study of discrete series representations induced by the corresponding
quasiconformal group actions will be subjects of separate studies.

Now the spherical vector of quasiconformal group action of QConf(J)
twisted by a unitary character ν is a function Φν(p, q, x) of 2nv + 3 variables
q0,qI ,p0,pI and x that is annihilated by all the generators KM of the maximal
compact subgroup K of QConf(J):

KMΦν(p, q, x) = 0. (5.4)

In [47] we presented the spherical vectors of all quasiconformal groups asso-
ciated with Euclidean Jordan algebras of degree three. The spherical vec-
tor of a general quasiconformal group QConf(J) associated with a split



QUASICONFORMAL REALIZATIONS OF E6(6), E7(7), E8(8) 1923

non-Euclidean Jordan algebra J can be written in the form:

Φν(p, q, x) =
[
(1 + x2 + IS

2 − I4)2 − (IS
2 )2 + 8I4 +

1
2
IS
6 + 8xJS

4 +
4
81

HS
4

]ν
4
,

(5.5)

where

IS
2 = (p0)2 + (q0)2 + pIηIJpJ + qIη

IJqJ , (5.6)

I4 = (p0q0 − pIqI)2 − 4
3
CIJKpJpKCILMqLqM

+
4

3
√

3
p0CIJKqIqJqK +

4
3
√

3
q0CIJKpIpJpK , (5.7)

JS
4 =

1
4

(
p0 ∂I4

∂q0
− q0

∂I4

∂p0 + qIη
IJ ∂I4

∂pJ
− pIηIJ

∂I4

∂qJ

)
, (5.8)

IS
6 =

(
∂I4

∂p0

)2

+
(

∂I4

∂q0

)2

+
(

∂I4

∂pI

)
ηIJ

(
∂I4

∂pJ

)

+
(

∂I4

∂qI

)
ηIJ

(
∂I4

∂qJ

)
+ 4I4I

S
2 , (5.9)

HS
4 = 27ηIJ((p#)I −

√
3p0qI)((p#)J −

√
3p0qJ)

+ 27ηIJ((q#)I −
√

3q0p
I)((q#)J −

√
3q0p

J)

+ 54((q#)I −
√

3q0p
I)((p#)I −

√
3p0qI) + CS

4 (J), (5.10)

where (p#)I = CIJKpJpK and (q#)I = CIJKqJqK . CS
4 (J) is the “correc-

tion” term that vanishes when restricted to the subalgebra SO(4, 4) and has
a different form for simple Jordan algebras and non-simple ones. For simple
split non-Euclidean Jordan algebras J of degree three the quartic correction
term CS

4 (J) is given by

CS
4 (JAS

3 ) = 81(Tr[M0(p) ◦ M̃0(q)])2 +
81
2

Tr[M0(p)2]Tr[M̃0(q)2]

− 243Tr[{M0(p), M̃0(q), M0(p)} ◦ M̃0(q)], (5.11)

where

M0(q) = M(q) − 1
3
TrM(q), (5.12)

M(q) = eIqI ∈ JAS
3 (5.13)

and M̃(q) = M∗(q) where ∗ is the conjugation that replaces the “imaginary”
units jS

μ that square to +1 by −jS
μ in the underlying split composition
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algebra A
S . {A, B, C} denotes the Jordan triple product

{A, B, C} = A ◦ (B ◦ C) + C ◦ (B ◦ A) − (A ◦ C) ◦ B. (5.14)

For special Jordan algebras with the Jordan product

A ◦ B =
1
2
(AB + BA),

one finds

{A, B, A} = ABA. (5.15)

Therefore for Jordan algebras JCS
3 and JHS

3 the term CS
4 (J) can be written as

CS
4 (JAS

3 ) = 81(Tr[M0(p)M̃0(q)])2 +
81
2

Tr[M0(p)2]Tr[M̃0(q)2]

− 243Tr[M0(p)M̃0(q)M0(p)M̃0(q)]. (5.16)

For the generic nonsimple Jordan algebras (R ⊕ Γ(n,m)) (m, n � 1 of
degree three the cubic form is

N (q) = CIJKqIqJqK =
3
√

3
2

q1[2q2q3 − ηÎĴqÎqĴ ] (5.17)

and the quartic correction term CS
4 that appears in HS

4 is given by

CS
4 (R ⊕ Γ(n,m)) = −81

2
{(p2 − p3)(q2 − q3) + 2pÎqÎ}

2 +
81
2

{(p2 − p3)2

+ 2ηÎĴpÎpĴ}{(q2 − q3)2 + 2ηÎĴqÎqĴ}, (5.18)

where Î , Ĵ , . . . = 4, 5, . . . , (m + n + 1).

We should perhaps recall that the Euclidean Jordan algebra JR
3 is a sub-

algebra of all simple split Jordan algebras of degree three. An element of
JR

3 can be written as

M(p) =
1√
2

⎛
⎜⎜⎝

√
2p1 p6 p5

p6
√

2p2 p4

p5 p4
√

2p3

⎞
⎟⎟⎠ (5.19)
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and its cubic norm is simply

N (M(p)) = 3
√

3DetM = CIJKpIpJpK = 3
√

3
{

p1p2p3

− 1
2

[
p1(p4)2 + p2(p5)2 + p3(p6)2

]
+

1√
2
p4p5p6

}
. (5.20)

5.1 Quasiconformal group E8(8)

The quasiconformal group associated with the split exceptional Jordan alge-
bra JOS

3 is the split exceptional group E8(8). A general element of JOS
3 can

be written as

M(p) =
1√
2

⎛
⎜⎝

√
2p1 P 6

S P̄ 5
S

P̄ 6
S

√
2p2 P 4

P 5
S P̄ 4

S

√
2p3

⎞
⎟⎠, (5.21)

where P 4
S , P 5

S and P 6
S are split octonions. The cubic norm of M(p) is nor-

malized to be

N (M(p)) = 3
√

3{p1p2p3 − 1
2
(p1P 4

S P̄ 4
S + p2P 5

S P̄ 5
S + p3P 6

S P̄ 6
S)

+
1√
2
Re(P 4

SP 5
SP 6

S)}, (5.22)

where Re(XS) denotes the real part of XS ∈ OS and X̄S is the octonion
conjugate of XS . If we expand the elements P 4

S , P 5
S and P 6

S in terms of their
real components:

P 4
S = p4 + p4+3iji + p4+3μjs

μ,

P̄ 4
S = p4 − p4+3iji − p4+3μjs

μ,

P 5
S = p5 + p5+3iji + p5+3μjs

μ,

P̄ 5
S = p5 − p5+3iji − p5+3μjs

μ,

P 6
S = p6 + p6+3iji + p6+3μjs

μ,

P̄ 6
S = p6 − p6+3iji − p6+3μjs

μ,

(5.23)

where the indices i and μ are summed over with i running over 1, 2, 3 and
μ running over 4, 5, 6, 7, we can write the cubic norm as

N (M(p)) = 3
√

3

{
p1p2p3 − 1

2
p1[(p4)2 + p4+3ip4+3i − p4+3μp4+3μ]
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− 1
2
p2[(p5)2 + p5+3ip5+3i − p5+3μp5+3μ]

− 1
2
p3[(p6)2 + p6+3ip6+3i − p6+3μp6+3μ]

+
1√
2

{
p4p5p6 − p4(p(5+3i)p(6+3i) − p(5+3μ)p(6+3μ))

− p5(p(4+3i)p(6+3i) − p(4+3μ)p(6+3μ))

− p6(p(4+3i)p(5+3i) − p(4+3μ)p(5+3μ))
}

− 1√
2
εijkp

4+3ip5+3jp6+3k

+
1√
2
ηiμνp

4+3ip5+3μp6+3ν +
1√
2
ημiνp

4+3μp5+3ip6+3ν

+
1√
2
ημνip

4+3μp5+3νp6+3i

}
. (5.24)

With the above labelling of the basis elements we have

ηAB = δAB,

ηRS = −δRS , (5.25)
ηAR = 0,

where A, B, .. = 1, 2, . . . , 15 and R, S, .. = 16, 17, . . . , 27. The conjugate ele-
ments M̃(p) of JOS

3 obtained by conjugation ∗ is given by

M(p) =
1√
2

⎛
⎜⎜⎝

√
2p1 (P 6

S)∗ (P̄ 5
S)∗

(P̄ 6
S)∗ √

2p2 (P 4)∗

(P 5
S)∗ (P̄ 4

S)∗ √
2p3

⎞
⎟⎟⎠ , (5.26)

where ∗ is the conjugation under which

(ji)∗ = ji,

(js
μ)∗ = −js

μ,

where i = 1, 2, 3 and μ = 4, 5, 6, 7. Thus we find

Tr M(p) ◦ M̃(p) =
27∑

I=1

pIpI .

The explicit expressions for the generators of quasiconformal group E8(8)
and its spherical vector are obtained by substituting the expressions for the
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cubic form (5.24) and the metric ηIJ in (4.21)–(4.31) and in (5.5). The
generators of the maximal compact subgroup SO(16) of E8(8) are

(UA − Ṽ A),

(UR + Ṽ R),

(V A + ŨA),

(V R − ŨR),

(RA + R̃A),

(RR − R̃R),

(RB
A − RA

B),

(RS
R − RR

S ),

(RS
A + RA

S ),

(Ũ0 + V 0),

(−U0 + Ṽ 0),

(K + K̃).

(5.27)

SU(8) subgroup of SO(16) generated by (RB
A − RA

B), (RS
R − RR

S ), (RS
A +

RA
S ), (RA + R̃A) and (RR − R̃R) act linearly in the quasiconformal action of

E8(8) on the 57-dimensional space with coordinates p0,pI ,q0,qI and x. Thus
we shall refer to the coset space

K(QConf(JOS
3 ) =

SO(16)
SU(8)

(5.28)

as the “quasiconformal compactification” of this 57-dimensional space [58].
As explained in detail in [19] one can embed the subgroup E7(7) inside E8(8)
in essentially three different ways. The E7(7) subgroup generated by the
grade zero generators (with respect to D) acts linearly. In addition we have
two different subgroups, which we label as Eq

7(7) and Ep
7(7) that act as the

nonlinear conformal group of JOS
3 on the coordinates and momenta, respec-

tively. The conformal compactification of the corresponding 27-dimensional
space is [58]

K(Conf(JOS
3 ) =

SU(8)
USp(8)

(5.29)

It is interesting to compare E8(8) as the quasiconformal group associ-
ated with the split exceptional Jordan algebra with E8(−24) as the quasi-
conformal group of the Euclidea exceptional Jordan algebra defined over
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the division algebra of real octonions. E8(−24) has the maximal compact
subgroup E7 × SU(2). The quasiconformal action E8(−24) extends naturally
to a holomorphic quasiconformal action on the complex coordinates of the
corresponding twistor space [36]

E8(−24) × SU(2)
E7 × SU(2) × U(1)

=
E8(−24)

E7 × U(1)

The quasiconformal compactification of the 57-dimensional space on which
E8(−24) acts is the coset space [58]

K(QConf(JO

3 ) =
E7 × SU(2)
E6 × U(1)

. (5.30)

The subgroup E7(−25) has similarly three inequivalent embeddings inside
E8(−24). The conformal compactification of the 27-dimensional space on
which E7(−25) = Conf(JO

3 ) acts nonlinearly is the coset space

K(Conf(JO

3 ) =
E6

F4
× S1. (5.31)

5.2 Quasiconformal group E7(7)

Quasiconformal group associated with the Jordan algebra JHS
3 over the split

quaternions HS is E7(7). A general element of JHS
3 can be written in the

form

M(p) =
1√
2

⎛
⎜⎜⎝

√
2p1 P 6

S P̄ 5
S

P̄ 6
S

√
2p2 P 4

P 5
S P̄ 4

S

√
2p3

⎞
⎟⎟⎠ , (5.32)

where P 4
S , P 5

S and P 6
S are now split quaternions. The cubic norm of M(p)

is given by

N (M(p)) = 3
√

3
{

p1p2p3 − 1
2
(p1P 4

S P̄ 4
S + p2P 5

S P̄ 5
S + p3P 6

S P̄ 6
S)

+
1√
2
Re(P 4

SP 5
SP 6

S)
}

, (5.33)

where Re(XS) denotes the real part of XS ∈ HS and X̄S is the quaternion
conjugate of XS . If we expand the elements P 4

S , P 5
S and P 6

S in terms of their
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components

P 4
S = p4 + p7j1 + p4+3mjs

m,

P̄ 4
S = p4 − p7j1 − p4+3mjs

m,

P 5
S = p5 + p8j1 + p5+3mjs

m,

P̄ 5
S = p5 − p8j1 − p5+3mjs

m,

P 6
S = p6 + p9j1 + p6+3mjs

m,

P̄ 6
S = p6 − p9j1 − p6+3mjs

m,

(5.34)

where the indices m, n, . . . are summed over and take values 2, 3.

The cubic norm N (M(p)) of M(p) can thus be written as

N (M(p)) = 3
√

3

{
p1p2p3 − 1

2
p1[(p4)2 + (p7)2 − p4+3mp4+3m]

− 1
2
p2[(p5)2 + (p8)2 − p5+3mp5+3m]

− 1
2
p3[(p6)2 + (p9)2 − p6+3mp6+3m]

+
1√
2

{
p4p5p6 − p4(p8p9 − p(5+3m)p(6+3m))

− p5(p7p9 − p(4+3m)p(6+3m))

− p6(p7p8 − p(4+3m)p(5+3m))
}

+
1√
2
ε1mnp7p5+3mp6+3n

+
1√
2
εm1np4+3mp8p6+3n +

1√
2
εmn1p

4+3mp5+3np9

}
. (5.35)

With the above labelling of the basis elements we have

ηAB = δAB,

ηRS = −δRS , (5.36)
ηAR = 0,

where A, B, .. = 1, 2, . . . , 9 and R, S, .. = 10, 11, . . . , 15. The conjugate ele-
ments M̃(p) of JCS

3 obtained by conjugation ∗ is given by

M(p) =
1√
2

⎛
⎜⎜⎝

√
2p1 (P 6

S)∗ (P̄ 5
S)∗

(P̄ 6
S)∗ √

2p2 (P 4)∗

(P 5
S)∗ (P̄ 4

S)∗ √
2p3

⎞
⎟⎟⎠ , (5.37)
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where under the conjugation ∗ we have

j∗
1 = j1

(js
m)∗ = −js

m.
(5.38)

The maximal compact subgroup of E7(7) is SU(8) and its generators can
be obtained by restricting the range of indices in (5.27) such that A, B, .. =
1, 2, . . . , 9 and R, S, .. = 10, 11, . . . , 15. The quasiconformal compactification
of the 33-dimensional space on which E7(7) acts is

K(QConf(JHS
3 ) =

SU(8)
SU(4) × SU(4)

. (5.39)

The subgroup SO(6, 6) has three different embeddings in E7(7), two of which
are conformal acting on 15 coordinates or momenta, respectively. The con-
formal compactification of the 15-dimensional space on which SO(6, 6) acts is

K(Conf(JHS
3 ) =

SU(4) × SU(4)
SU(4)

. (5.40)

We recall that for the Euclidean Jordan algebra JH
3 the associated quasi-

conformal group is E7(−5) and the quasiconformal compactification of the
corresponding 33 dimensional space is [58]

K(QConf(JH
3 ) =

SO(12) × SU(2)
SU(6) × U(1)

. (5.41)

The quasiconformal group E7(−5) has a subgroup SO∗(12) which acts on
the underlying Jordan algebra JH

3 as a conformal group. The conformal
compactification of the corresponding 15 dimensional space is

K(Conf(JH
3 ) =

SU(6)
USp(6)

× S1. (5.42)

5.3 Quasiconformal group E6(6)

Quasiconformal group associated with the Jordan algebra JCS
3 over the split

complex numbers CS is E6(6). A general element of JCS
3 can be written in
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the form

M(p) =
1√
2

⎛
⎜⎜⎝

√
2p1 P 6

S P̄ 5
S

P̄ 6
S

√
2p2 P 4

P 5
S P̄ 4

S

√
2p3

⎞
⎟⎟⎠ , (5.43)

where P 4
S , P 5

S and P 6
S are now split complex numbers. The cubic norm of

M(p) is given by

N (M(p)) = 3
√

3{p1p2p3 − 1
2
(p1P 4

S P̄ 4
S + p2P 5

S P̄ 5
S + p3P 6

S P̄ 6
S)

+
1√
2
Re(P 4

SP 5
SP 6

S)}, (5.44)

where Re(XS) denotes the real part of XS ∈ CS and X̄S is the complex
conjugate of XS . If we expand the elements P 4

S , P 5
S and P 6

S in terms of their
components

P 4
S = p4 + p7js,

P̄ 4
S = p4 − p7js,

P 5
S = p5 + p8js,

P̄ 5
S = p5 − p8js,

P 6
S = p6 + p9js,

P̄ 6
S = p6 − p9js,

(5.45)

where js is the split “imaginary” unit that squares to +1

(js)2 = 1. (5.46)

The cubic norm N (M(p)) of M(p) can thus be written as

N (M(p)) = 3
√

3

{
p1p2p3 − 1

2
p1[(p4)2 − (p7)2]

− 1
2
p2[(p5)2 − (p8)2] − 1

2
p3[(p6)2 − (p9)2]

+
1√
2
{p4p5p6 + p4(p8p9) + p5(p7p9) + p6(p7p8)

}}
.
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With the above labelling of the basis elements we have

ηAB = δAB,

ηRS = −δRS , (5.47)
ηAR = 0,

where A, B, .. = 1, 2, . . . , 6 and R, S, .. = 7, 8, 9. The conjugate elements
M̃(p) of JHS

3 obtained by conjugation ∗ is given by

M(p) =
1√
2

⎛
⎜⎜⎝

√
2p1 (P 6

S)∗ (P̄ 5
S)∗

(P̄ 6
S)∗ √

2p2 (P 4)∗

(P 5
S)∗ (P̄ 4

S)∗ √
2p3

⎞
⎟⎟⎠ , (5.48)

where under the conjugation ∗ we have

(js)∗ = −(js). (5.49)

The maximal compact subgroup of E6(6) is USp(8) and its generators can
be obtained by restricting the range of indices in (5.27) such that A, B, .. =
1, 2, ..., 6 and R, S, .. = 7, 8, 9. The quasiconformal compactification of the
21-dimensional space on which E6(6) acts is

K(QConf(JCS
3 ) =

USp(8)
SU(4)

. (5.50)

The subgroup SL(6, R) has three different embeddings in E6(6), two of which
are conformal acting on 9 coordinates or momenta, respectively. The con-
formal compactification of the corresponding 9 dimensional space on which
SL(6, R) acts is

K(Conf(JCS
3 ) =

SO(6)
SO(3) × SO(3)

. (5.51)

We recall that for the Euclidean Jordan algebra JC
3 the associated qua-

siconformal group is E6(2) and the quasiconformal compactification of the
corresponding 21-dimensional space is [58]

K(QConf(JC
3 ) =

SU(6) × SU(2)
SU(3) × SU(3) × U(1)

. (5.52)

The quasiconformal group E6(2) has a subgroup SU(3, 3) which acts on
the underlying Jordan algebra JC

3 as a conformal group. The conformal
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compactification of the corresponding nine-dimensional space is

K(Conf(JC
3 ) =

SU(3) × SU(3)
SU(3)

× S1. (5.53)

5.4 Quasiconformal group SO(n + 3, m + 3)

For the generic nonsimple Jordan algebras (R ⊕ Γ(n,m)) of degree three the
cubic form is

N (q) = CIJKqIqJqK =
3
√

3
2

q1[2q2q3 − ηÎĴqÎqĴ ], (5.54)

where Î , Ĵ , . . . = 4, 5, . . . , (m + n + 1) and

ηÎĴ = δÎĴ , Î, Ĵ = 4, 5, . . . , m + 2,

ηÎĴ = −δÎĴ , Î, Ĵ = m + 3, m + 4, . . . , n + m + 1
(5.55)

and the associated quasiconformal group is SO(n + 3, m + 3). The quartic
correction term CS

4 that appears in HS
4 in the spherical vectors is given by

CS
4 (R ⊕ Γ(n,m)) = −81

2
{(p2 − p3)(q2 − q3) + 2pÎqÎ}

2 +
81
2

{(p2 − p3)2

+ 2ηÎĴpÎpĴ}{(q2 − q3)2 + 2ηÎĴqÎqĴ} (5.56)

and the full metric ηIJ is given by

ηAB = δAB, for A, B, .. = 1, 2, ...., m + 2,

ηRS = −δRS , for R, S, .. = m + 3, m + 4, . . . , m + n + 1.
(5.57)

The quasiconformal compactification of the (2n + 2m + 5)-dimensional
space on which SO(n + 3, m + 3) is realized as the quasiconformal group is

K(QConf(R ⊕ Γ(n,m)) =
SO(n + 3) × SO(m + 3)

SO(n + 1) × SO(m + 1) × SO(2)
. (5.58)

The subgroup SO(m + 1, n + 1) × SO(2, 1) can be embedded in SO(n + 3,
m + 3) in three inequivalent ways. Two of these embeddings act nonlinearly
as conformal groups on the coordinates and momenta, respectively. The
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conformal compactification of the (m + n + 1) dimensional space on which
SO(m + 1, n + 1) × SO(2, 1) acts via conformal transformations is

K(Conf(R ⊕ Γ(n,m))) =
SO(m + 1) × SO(n + 1)

SO(m) × SO(n)
× S1. (5.59)

For Euclidean Jordan algebras (R ⊕ Γ(1,m) the quasiconformal group is
SO(4, m + 3) and the conformal group is SO(2, m + 1) × SO(2, 1) leading to
the following compactified spaces

K(QConf(R ⊕ Γ(1,m)) =
SO(4) × SO(m + 3)

SO(2) × SO(m + 1) × SO(2)
, (5.60)

K(Conf(R ⊕ Γ(1,m))) =
SO(m + 1)

SO(m)
× S1 × S1. (5.61)

6 Exceptional N = 2 MESGT, N = 8 supergravity and
Jordan algebras of degree four

As explained above the U-duality symmetry groups of the maximal super-
gravity in 5, 4 and 3 dimensions are simply the Lorentz (reduced structure),
conformal and quasiconformal groups of the split exceptional Jordan algebra
JOS

3 , which is not Euclidean. On the other hand the corresponding U-duality
groups of the exceptional N = 2 supergravity are the Lorentz, conformal and
quasiconformal groups of the real exceptional Jordan algebra JO

3 which is
Euclidean. The scalar manifold of the exceptional theory in five dimensions
is simply

M5(J
O

3 ) =
Str0(J

O

3 )

Aut(JO

3 )
=

E6(−26)

F4
.

However the scalar manifold of the maximal supergravity is

E6(6)

USp(8)

so that the maximal compact subgroup is not the automorphism group of
the split exceptional Jordan algebra. Remarkably, there is a formulation
of the exceptional Jordan algebras in terms of degree four Jordan algebras
in which the situation gets reversed. As was shown in [59] the exceptional
supergravity can also be formulated in terms of Lorentzian Jordan algebra
JH

(1,3) of 4 × 4 quaternionic matrices that are Hermitian with respect to a
Lorentzian metric. This is achieved by the mapping between the traceless
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elements , which we denote as JH

(1,3)0
, of JH

(1,3) and the elements of the

exceptional Jordan algebra JO

3 :

x ∈ JO

3 =⇒ X ∈ JH

(1,3)0 (6.1)

such that the cubic norm N (x) of x is equal to the trace of X3:

N (x) = Tr(X3). (6.2)

Now the automorphism group of JH

(1,3)0
is USp(6, 2) which is the manifest

symmetry of the trace form. Hence the trace of X3 has “hidden” extra sym-
metries which extend USp(6, 2) to E6(−26), which is the Lorentz (reduced
structure) group of JO

3 . However, the Lorentz (reduced structure) group
SU∗(8) of JH

(1,3) is not a symmetry of the exceptional MESGT in five dimen-
sions.

Similarly there is a mapping between the elements y of the split excep-
tional Jordan algebra JOS

3 and the traceless elements Y of Euclidean Jordan
algebra JH

4 of 4 × 4 Hermitian matrices over the division algebra of quater-
nions H [60]

y ∈ JOS
3 =⇒ Y ∈ JH

40
(6.3)

such that one finds
N (y) = Tr(Y3). (6.4)

The automorphism group USp(8) of JH
4 is the manifest symmetry of the

trace form. Again extra hidden symmetries of Tr(Y3) extend it to the
Lorentz (reduced structure) group E6(6) of JOS

3 . However the scalar manifold
of the maximal supergravity in five dimensions is

M5(N = 8) =
Str0(J

OS
3 )

Aut(JH
4 )

=
E6(6)

USp(8)
. (6.5)

The Lorentz (reduced) structure group SU∗(8) of JH
4 is not a symmetry

of maximal supergravity in five dimensions. In four dimensions the scalar
manifold of maximal supergravity is

M4(N = 8) =
Conf(JOS)

3

S̃tr0(JH
4 )

=
E7(7)

SU(8)
, (6.6)

where S̃tr0(JH
4 ) denotes the compact real form of the Lorentz (reduced
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structure) group of JH
4 ). In three dimensions one has the scalar manifold

M3(N = 8) =
QConf(JOS

3 )

C̃onf(JH
4 )

=
E8(8)

SO(16)
, (6.7)

where C̃onf(J) refers to the compact real form of the conformal group of J .

One can truncate the above correspondences between the real and split
exceptional Jordan algebras and JH

(1,3) and JH
4 , respectively, to correspon-

dences between rank three complex and quaternionic Jordan algebras and
rank four real and complex Jordan algebras:

JC
3 ⇐⇒ JR

(1,3)0 ,

JH
3 ⇐⇒ JC

(1,3)0 ,

JCS
3 ⇐⇒ JR

40
,

JHS
3 ⇐⇒ JC

40
.

(6.8)

Remarkably the N = 2 MESGT defined by Lorentzian Jordan algebras
JA

(1,3) belong to three infinite families of unified MESGT’s in five dimensions
defined by Lorentzian Jordan algebras of arbitrary rank [59]. Study of qua-
siconformal groups associated with Lorentzian Jordan algebras will be left
to future studies.
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