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Abstract

In this paper D-brane monodromies are studied from a world-sheet
point of view. More precisely, defect lines are used to describe the parallel
transport of D-branes along deformations of the underlying bulk confor-
mal field theories. This method is used to derive B-brane monodromies
in Kähler moduli spaces of non-linear sigma models on projective hyper-
surfaces. The corresponding defects are constructed at Landau–Ginzburg
points in these moduli spaces where matrix factorization techniques can
be used. Transporting them to the large volume phase by means of
gauged linear sigma model we find that their action on B-branes at large
volume can be described by certain Fourier–Mukai transformations which
are known from target space geometric considerations to represent the
corresponding monodromies.
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1 Introduction

As is well known, D-branes in a given closed string background form a
category, with morphisms given by open strings stretching from one D-brane
to another. An important tool in the study of such D-brane categories
are functors between them. Examples of such functors are T-duality, mirror
symmetry and the monodromies generated by transporting D-branes around
singular points in moduli spaces of Calabi–Yau compactifications.

From a world-sheet point of view, D-branes are described by boundary
conditions in the conformal field theory associated to the closed string vac-
uum under consideration, and natural operations on them arise from defects.
Defect lines are one-dimensional junctions separating possibly different
conformal field theories (CFTs)1 on the same world-sheet (see, e.g., [2–10]
for more details on defects in conformal field theories). Pushing such a
defect line onto world-sheet boundaries, a new boundary condition is cre-
ated out of the one originally imposed there. For general defects this fusion
process is singular (see, e.g., [1] for an example in the free boson CFT), but
if defects and boundary conditions preserve the same N = 2 superconformal
symmetry, it can be regularized and effectively described in the topologically
twisted theory [11, 12]. In this way, supersymmetry preserving defects give
rise to functors between D-brane categories.

The functors we will consider in this article are monodromy transfor-
mations obtained by transporting B-type D-branes around singularities in
Kähler moduli space of N = 2 supersymmetric non-linear σ-models. This in
particular includes the monodromies around Landau–Ginzburg and conifold
points.

1We do not distinguish defects between non-isomorphic CFTs, by calling them “inter-
faces” as is, e.g., done in [1].
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By means of target space geometric methods those functors have been
derived in [13–16] following a proposal by Kontsevich [17]. Using the large
volume realisation of B-branes, they can be represented in terms Fourier–
Mukai transformations on the bounded derived category of coherent sheaves
on the target space manifold, Db(X).

The approach we will take in this article is more direct. We propose to
use world-sheet techniques to analyse the behaviour of B-type D-branes,
i.e., B-type boundary conditions, under deformations of the underlying bulk
conformal field theories along closed loops in its Kähler moduli spaces. This
will be studied using a novel method put forward in [12]. Namely, on general
grounds one expects that the effect of Kähler perturbations of bulk conformal
field theories on B-branes can be described by the fusion with associated
B-type supersymmetry preserving defects between the deformed and the
undeformed theories.

Thus, our task is to find the specific B-type defects associated to defor-
mations along given loops around singularities in Kähler moduli spaces. As
base points for these loops we choose the Landau–Ginzburg or Gepner points
which exist for the models we will consider. At these points use can be made
of an elegant description of B-branes and B-type defects in terms of matrix
factorizations [11,18–20].

To compare the resulting defects to the Fourier–Mukai transformations
obtained using target space geometric methods, we need to transport them
from the Landau–Ginzburg point in Kähler moduli space to the large vol-
ume limit. The functor realizing this transport on the level of B-type D-
branes has been constructed in [21] and has recently been given a physical
understanding in [22] (see also [23]). In the latter work, B-type D-branes
in gauged linear σ-models have been defined and studied. This provides a
uniform description of B-branes on those parts of Kähler moduli space on
which the non-linear σ-models admit a gauged linear σ-model realization.
In particular, the techniques developed in [22] can be used to transport B-
type branes inside these parts of Kähler moduli space, and they immediately
generalize to the treatment of B-type supersymmetry preserving defects.

We therefore restrict our considerations to non-linear σ-models on pro-
jective hypersurfaces, which can be realized as gauged linear σ-models.
B-type defects defined at the Landau–Ginzburg point can then be lifted
to the gauged linear σ-model and transported to the large volume limit.
As a general result we find that any B-type defect transported from the
Landau–Ginzburg point to large volume in this way gives rise to a Fourier–
Mukai transformation on the large volume realization Db(X) of the B-brane
category.
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Such a relation is not completely unexpected. After all, the “folding
trick” allows one to interpret defects between two conformal field theories
as boundary conditions in the tensor product of the first of these theories
with that (parity dual) of the other one [3, 24], and also Fourier–Mukai
transformations between two large volume B-brane cateogries are specified
by B-branes on the product of the respective target space manifolds.

The Fourier–Mukai transformations that arise by transporting the mon-
odromy defects we construct at the Landau–Ginzburg point to large vol-
ume indeed agree with the ones obtained by more geometric methods in
[13,14,16].

In fact, lifting defects to the gauged linear σ-models and transporting
them in the respective Kähler moduli spaces provides an independent way to
derive the defects describing monodromies generated by loops in the those
parts of Kähler moduli space which are covered by a GLSM description.
Namely, by lifting the identity defect to the gauged linear σ-model, trans-
porting it around a singularity in the Kähler moduli space and then pushing
it down to the non-linear σ-model again, one obtains the respective mon-
odromy defect. This will be used as a confirmation of our more general
construction of monodromy defects at the Landau–Ginzburg point.

The plan of this paper is as follows: In the remaining part of this Introduc-
tion, we review the monodromies in Kähler moduli space of one-parameter
models in Section 1.1 and give some details about the fusion of supersym-
metric defects in Section 1.2. Following [12], we will motivate that the effect
Kähler deformations of bulk theories have on B-branes can be described
by the fusion with B-type defects. In Section 2 we review the matrix
factorization formalism used to describe B-type D-branes and defects at
Landau–Ginzburg points. The monodromy defects will be constructed in
this framework. In Section 3 we outline how B-type D-branes and defects
can be transported on Kähler moduli space by lifting them to the gauged
linear σ-model. We only give a brief sketch of the constructions we need
and illustrate them in the example of tensor product B-branes. For detailed
explanations we refer the reader to [22]. Using these techniques, we argue in
Section 3.5 that upon transport from the Landau–Ginzburg point, B-type
defects generally give rise to Fourier–Mukai transformations at large vol-
ume. Section 4 is devoted to the construction and the analysis of the defects
corresponding to the monodromy around Landau–Ginzburg points. At the
Landau–Ginzburg models themselves, they are obtained as those defects
realizing the quantum symmetries which these models exhibit. Transporting
them to large volume, we determine the respective Fourier–Mukai kernels.
Furthermore, transporting the identity defect around closed loops in Kähler
moduli space we also obtain the defects and Fourier–Mukai transformations
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for monodromies around those singularities which can be encircled in the
Kähler moduli space of the corresponding gauged linear σ-model. In Section
5 we construct general conifold monodromies in Landau–Ginzburg models
and transport them to large volume. Finally, in Section 6 we conclude with
some remarks about directions of future research.

1.1 D-brane monodromies in Kähler moduli space

The aim of this paper is to study the dependence of B-type D-branes on
Kähler parameters using world-sheet methods. In particular, we are
interested in monodromies of B-type D-branes around singular points in
the Kähler moduli space. We will focus our considerations on non-linear
σ-models with Calabi–Yau target spaces, which can be realized as hyper-
surfaces in projective space such as the cubic torus in P

2 or the quintic
hypersurface in P

4.

Such non-linear σ-models admit a realization as gauged linear σ-models
with U(1) gauge group [25]. The corresponding Kähler moduli space2 is
given by a two sphere which, however, has three singular points. The large
volume point is the limiting point where the volume of the target space goes
to infinity. Similarly, at the conifold point the (quantum) volume of the
target space goes to zero. Finally, the Landau–Ginzburg or Gepner point is
an orbifold point in the Kähler moduli space. At this point certain dualities
of the theories under consideration become self-dualities and enhance the
symmetry group of the theory.

We would like to study what happens to B-type D-branes when one moves
around these singular points in Kähler moduli space. As alluded to above,
from a world-sheet point of view this means that one has to understand how
boundary conditions evolve under deformations of the bulk conformal field
theories.

For a general CFT however, boundary conditions are very difficult to
construct. Even worse, in the situations we are interested in, the CFTs
themselves are only known explicitly at special points in the Kähler moduli
spaces and conformal perturbation theory becomes intractable at higher
orders in the perturbation parameters.

2In general, the Kähler moduli spaces of the gauged linear σ-models only capture two-
dimensional submanifolds of the non-linear σ-model Kähler moduli spaces. In case of
projective hypersurfaces of dimension three and higher the Lefschetz hyperplane theorem
guarantees that the two Kähler moduli spaces coincide.
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Fortunately, there are relatively nice descriptions of B-type branes at
special points in the Kähler moduli space. At large volume for instance B-
type D-branes have a geometric realization in terms of bounded complexes of
coherent sheaves on the target space [26–28], and as mentioned above, using
target space geometric arguments one can determine their monodromies
around the singular points in Kähler moduli space.

Namely, it has been been shown how the conifold monodromy manifests
itself as a result of stability considerations in [14]. The basic physical idea
underlying these arguments is that at a conifold point the quantum world-
volume of a particular D-brane collapses to zero. The D-brane becomes
massless [29] and its central charge goes to zero at this point. Therefore,
this D-branes can be created at the conifold point at no cost in energy. The
quantum world-volume of other D-branes and therefore their masses remain
finite. If such a massive probe brane is transported around the conifold
point, the open string states between the probe brane and the D-brane which
is massless at the conifold point become tachyonic at some point, triggering a
tachyon condensation of these D-branes to an energetically preferable bound
state. Thus, taking the probe brane around the conifold point, one ends up
with a bound state of it with the D-brane which becomes massless at the
conifold point [14,30,31].

Moreover, it is not difficult to see that the large volume monodromy
can be understood in terms of a shift in the B-field B → B + ξ, where ξ
is the generator3 of H1,1(X). Since the B-field enters the relevant charge
formulas for large volume B-branes only in the combination B + F with the
field strength F of the U(1)-connection on the D-brane, the action of the
monodromy is given by tensoring the Chan–Paton bundle of the B-brane
with a line bundle of first Chern class c1 = [ξ]4 .

The monodromy around the Landau–Ginzburg point is not so easy to
derive directly by means of geometric arguments. However, it can be
obtained by composing conifold and large volume monodromies. A more
direct derivation of this monodromy appeared in [33], combining linear
σ-model methods for the open string with the fact that this monodromy
is given by the quantum symmetry at the Landau–Ginzburg point.

3If dim H1,1(X) > 1 we will only consider the monodromy around the large volume
limit in the slice of the moduli space covered by the GLSM construction. Then ξ is the
generator of H1,1(X) inherited from the one-dimensional cohomology group H2(PN−1, R)
of the embedding projective space.

4Note that the appearance of F + B in the charge formulas a priori justifies the action
of the monodromy on the level of K-theory. However, by studying B-type D-branes in
the context of open topological string field theory [27, 32], this action carries over to the
derived category.
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To derive these monodromies directly using world-sheet techniques, one
has to deform the bulk conformal field theory along loops in Kähler mod-
uli space and analyse how B-type boundary conditions behave under these
deformations. The straightforward way to approach this problem is to use
conformal perturbation theory, which however becomes intractable at higher
orders. Therefore we will employ a method put forward in [12] to analyse
the effect of bulk perturbations on boundary conditions. Namely, we will
use the fact that Kähler perturbations can be described by B-type defects
between the unperturbed and the perturbed theory. This will be explained
in more detail in Section 1.2 below.

1.2 Bulk perturbations and defects

In this section we will briefly outline some aspects of defects and their fusion.
Furthermore, we will motivate why the effect of bulk perturbations of con-
formal field theories on boundary conditions can be described by the fusion
with defects between the unperturbed and the perturbed theory.

As mentioned above, defects are one-dimensional junctions separating
two possibly different conformal field theories on the same world-sheet (cf.
figure 1).

Two such defects between conformal field theories can be brought on
top of each other to form a new defect as illustrated in figure 2. Such a
“fusion” process involves taking the limit in which the distance between the
defects shrinks to zero. On the level of the full conformal field theory this
process is highly singular in general and needs to be regularized (see [1]
for an explicit calculation in the example of the free boson CFT). In case

Figure 1: Two two-dimensional CFTs are separated by a one-dimensional
defect.
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Figure 2: In the limit where the two defects coincide, a new defect connect-
ing theories 1 and 3 emerges.

Figure 3: In the limit where the defect coincides with the boundary, a new
boundary condition of theory 1 emerges.

the underlying conformal field theories are N = 2 superconformal, and the
defects preserve the same N = 2 superconformal symmetry, this fusion can
be regularized. Indeed, it can be described on the level of the topologically
twisted theory, where correlators do not depend on positions on the world-
sheet, in particular not on those of defects. Hence, in the topologically
twisted theory, correlators do not exhibit singularities when defects approach
each other, and fusion is well defined.

In the same way, defects can be brought on top of world-sheet boundaries
to transform the original boundary conditions imposed there into new ones
(cf. figure 3). In general, also the fusion of a defect and a boundary condition
is singular, but as in the case of fusion of two defects, it can be regularized
if defect and boundary conditions preserve the same N = 2 superconformal
symmetry. (In fact, boundary conditions in a conformal field theory can be
regarded as defects between this CFT and the trivial one, so that boundary
conditions are in fact a special type of defects.)
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In this way, fusion endows the set of all defects preserving a specific
N = 2 superconformal symmetry with a multiplicative structure, and these
defects act on the category of D-branes preserving the same N = 2 algebra
by means of functors between the respective D-brane categories. For the
case of Landau–Ginzburg theories, fusion of B-type defects and their action
on boundary conditions has been investigated in [11,12].

Analogously to D-branes, also defects exhibit fields which are defined on
them. These “defect-changing fields” can be used to perturb defects in
the same way as “boundary condition-changing fields” can be used to per-
turb boundary conditions. In particular, also defects can undergo tachyon
condensation and bound state formation. Not surprisingly, such bound
states will figure prominently in the construction of defects describing mon-
odromies around conifold points.

Defects have a rich structure and are very interesting objects, and they
also turn out to be very useful. For instance, it has been realized in [12] that
they can be employed to study the behaviour of D-branes under (marginal
or relevant) perturbations of the underlying bulk conformal field theory.5

The basic reasoning behind this is to restrict the perturbation of a con-
formal field theory on a world-sheet with boundary a fixed distance ε away
from the latter. Performing the renormalization group flow associated to
this restricted perturbation, one ends up with the following situation in the
IR (cf. figure 4). On the part of the surface the perturbation was restricted
to, the theory has flown from the UV to the IR of the particular bulk per-
turbation considered, whereas the theory in the ε-strip around the boundary
from which the perturbation was kept away stays at the UV. These two the-
ories are separated by a defect line situated in ε-distance from the boundary.
In this way, every bulk perturbation gives rise to a unique “flow defect.”

Moving this defect towards the boundary, i.e., sending ε to zero, spreads
the perturbation to the entire surface. As alluded to above this process is
singular in general. That is not surprising, because the perturbing bulk fields
can have singularities when they approach the boundary. For that reason
the unrestricted bulk perturbation on the surface with boundary needs to
be regularized and counterterms on the boundary have to be added. In
general, such an unrestricted bulk perturbation will therefore also trigger a
simultaneous boundary perturbation. In the same way, the process of taking
the defect towards the boundary needs to be regularized. The regularized
fusion of the defect with the boundary condition then describes to what
boundary condition in the IR theory a given boundary condition in the UV

5Boundary flows have been realized by means of defects in [5, 8].
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Figure 4: The perturbation is restricted to the shaded domain. UV and IR
are separated by a defect. Fusing this defects with the UV boundary, one
obtains the IR boundary condition.

theory flows under the bulk perturbation, i.e., it encodes the behaviour of
boundary conditions under bulk flows.

The corresponding regularization can be very tricky however. Fortu-
nately, we are interested in a special case, namely bulk perturbations of
N = (2, 2) superconformal field theories, which preserve an N = 2 super-
symmetry even in the presence of world-sheet boundaries. For these pertur-
bations, one can topologically twist the corresponding theories all along the
flow. The flow defects also preserve the N = 2 supersymmetry in this case,
and its fusion with boundary conditions can be effectively described in the
twisted theory, where no singularities arise when the defect is moved towards
the boundary. In this way, it is possible to avoid dealing with regularization
issues for these particular perturbations.

The condition that the perturbation preserves supersymmetry on a sur-
face with boundary however is very constraining. There are two classes of
N = (2, 2) supersymmetry preserving bulk perturbations, those generated
by elements of the (c, c)- and (a, a)-rings (chiral multiplets) which correspond
to “complex structure-type” perturbations, and those generated by elements
of the (a, c)- and (c, a)-rings (twisted-chiral multiplets), which correspond to
“Kähler-type” perturbations. Concretely, the bulk perturbation generated
by a twisted chiral field takes the form (notations are taken from [34])

ΔS =
∫

dθ̄−dθ+Ψ|θ̄+=θ−=0 + c.c. , (1.1)

where Ψ is the perturbing twisted chiral multiplet. On world-sheets without
boundary, the perturbation is invariant under the full N = (2, 2)-
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supersymmetry variation

δ = ε+Q− − ε−Q+ − ε̄+Q̄− + ε̄−Q̄+ . (1.2)

On world-sheets with boundaries one can impose A- or B-type boundary
conditions and preserve one half of the supersymmetry. An A-type super-
symmetry variation (setting ε := ε+ = ε̄− in (1.2)) of a twisted chiral per-
turbation yields a boundary term that in general cannot be cancelled by the
supersymmetry variation of a boundary term.6 Hence, in the presence of
a boundary on which an A-type boundary condition is imposed, the bulk
perturbation generated by a twisted chiral field breaks supersymmetry.

On the other hand, the boundary term coming from a B-type supersym-
metry variation (i.e., ε := ε+ = −ε−, ε̄ := ε̄+ = −ε̄−) can always be cancelled
by adding a simple additional boundary term involving only bulk fields

B ∼
∫

∂Σ
(ψ − ψ̄), (1.3)

where ψ denotes the upper component of the twisted chiral superfield Ψ.
Thus, twisted chiral bulk perturbations preserve supersymmetry in the pres-
ence of boundaries with B-type boundary conditions.7

Hence, it can be concluded that Kähler-type perturbations preserve super-
symmetry in the presence of boundary conditions of B-type but not in gen-
eral of those of A-type. The flow defects associated to these perturbations
preserve the same B-type supersymmetry. Similarly, complex structure-type
perturbations preserve supersymmetry in the presence of boundary condi-
tions of A-type but not of those of B-type, and the corresponding flow defects
preserve A-type supersymmetry.

In both these cases regularization issues in the fusion of flow defects with
boundary conditions can be avoided by considering the fusion in the topolo-
gically twisted theory, the B-twisted one in the first case, and the A-twisted
one in the second.

6In fact, this calculation is mirror to the one performed in [18, 19, 34] in the case of
B-type boundary conditions for the superpotential part of the action. There, additional
degrees of freedom at the boundary helped to cancel the undesired term. Here, we can
only use the fields that are already part of the theory.

7Note however that the perturbations can rotate the gluing conditions imposed on
the spectral flow operator. On the level of CFT this can be seen using the methods
of [35]. From a space time point of view, this implies that the target space supersymmetry
is rotated and possibly broken. These effects were fundamental for the discussion of
Π-stability.
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In this article we are interested in the first of these two cases. Namely,
from a world-sheet perspective, monodromies of B-branes in the Kähler mod-
uli space of non-linear σ-models are obtained by deforming the non-linear
σ-model in the presence of B-type boundary conditions along closed loops in
Kähler moduli space. By the reasoning above the effect of this deformation
on B-branes can be described by the fusion with a B-type flow-defect.

2 B-type defects in Landau–Ginzburg models and matrix
factorizations

In Landau–Ginzburg models, both B-type supersymmetric D-branes and
B-type supersymmetry preserving defects have an elegant description in
terms of matrix factorizations [11,18–20]. A matrix factorization P of a poly-
nomial W ∈ C[x1, . . . , xN ] is given by a pair (P1, P0) of free C[x1, . . . , xN ]
modules together with homomorphisms ps : Ps → P(s+1) mod 2 between them
which compose to W times the identity map, i.e., p1p0 = W idP0 and p0p1 =
W idP1 . In the following we will often represent matrix factorizations by

P : P1
p1
�
p0

P0. (2.1)

Sometimes it is useful to regard them as two-periodic twisted8 complexes.
Indeed, such matrix factorizations form a category, with morphisms
H∗(P, Q) between two matrix factorizations P and Q given by the coho-
mology of the Hom-complex of the two twisted complexes associated to P
and Q. The latter is a two-periodic untwisted complex.

There are always matrix factorizations with modules Ps = C[x1, . . . , xN ]
where one of the maps pr = 1 and the other one p(r+1) mod 2 = W . They
are trivial in that they only have zero-morphisms with any other (including
themselves) matrix factorization, and two matrix factorizations which differ
by the addition of such a trivial matrix factorization are equivalent.

As was shown in [18, 19], B-type supersymmetric D-branes in Landau–
Ginzburg models with chiral superfields x1, . . . , xN and superpotential W ∈
C[x1, . . . , xN ] can be represented by matrix factorizations of W , where open
strings between two such D-branes are described by morphisms between the
respective matrix factorizations.

In the same way, it has been argued in [11] that B-type supersymmetry
preserving defects between two Landau–Ginzburg models, one with chiral

8The differential squares to W .
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fields x1, . . . , xN and superpotential W1 ∈ C[x1, . . . , xN ] and one with chiral
superfields y1, . . . , yM and superpotential W2 ∈ C[y1, . . . , yM ] can be repre-
sented by matrix factorizations of W1 − W2 over the polynomial ring
C[x1, . . . , xN , y1, . . . , yN ].

As mentioned in Section 1.2, one interesting property of N = 2-
supersymmetric defects is that they can be fused with other such defects, or
with D-branes (boundary conditions) preserving the same supersymmetry.
Namely, two such defects can be brought on top of each other to produce
a new defect, or a defect can be moved onto a world sheet boundary to
change the boundary condition imposed there. This fusion has a very sim-
ple realization in terms of the matrix factorization description. For instance,
let xi, yi, zi be the chiral superfields of three Landau–Ginzburg models
with superpotentials W1 ∈ C[xi], W2 ∈ C[yi] and W3 ∈ C[zi], respectively,
which are separated by two defects represented by matrix factorizations P 1

of W1 − W2 and P 2 of W2 − W3. Fusing the two defects gives rise to a
new defect separating the Landau–Ginzburg model with chiral fields xi and
superpotential W1 from the one with chiral fields zi and superpotential W3.
This fused defect is given by the matrix factorization

P 1 ∗ P 2 =
(
P 1 ⊗ P 2)red

C[xi,zi]
. (2.2)

Here, the tensor product of two matrix factorizations is defined by taking
the tensor product of the associated twisted complexes, which again is a
two-periodic complex which is twisted by the sum of the twists of the tensor
factors. More concretely, the tensor product P ⊗ Q of matrix factorizations
P and Q of W and W ′, respectively, can be written as

P ⊗ Q : P1 ⊗ Q0 ⊕ P0 ⊗ Q1
r1
�
r0

P0 ⊗ Q0 ⊕ P1 ⊗ Q1 (2.3)

with

r1 =
(

p1 ⊗ id id ⊗ q1
−id ⊗ q0 p0 ⊗ id

)
, r0 =

(
p0 ⊗ id −id ⊗ q1
id ⊗ q0 p1 ⊗ id

)
, (2.4)

which is a matrix factorization of W + W ′.

In the situation above, P 1 is a matrix factorization of W1 − W2 and P 2

one of W2 − W3. Hence, P 1 ⊗ P 2 is a matrix factorization of W1 − W3 ∈
C[xi, zi], but it is still a matrix factorization over C[xi, yi, zi]. That means
that the modules (P 1 ⊗ P 2)s are free C[xi, yi, zi]-modules and also the maps
rs between them depend on the yi. The notation

(
P 1 ⊗ P 2

)
C[xi,zi]

means
that this matrix factorization has to be regarded as one over C[xi, zi] only.
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As such, it is of infinite rank, because the modules (P 1 ⊗ P 2)s regarded
as modules over C[xi, zi] are free modules of infinite rank. For instance,
C[xi, yi, zi] can be decomposed as

C[xi, yi, zi] =
⊕

(l1,...,lN )∈NN
0

yl1
1 . . . ylN

N C[xi, zi] (2.5)

into free C[xi, zi]-modules. Physically speaking, the chiral fields yi of the
theory squeezed in between the two defects are promoted to new defect
degrees of freedom in the limit where the two defects coincide. However,
most of them are trivial. Namely, if both P 1 and P 2 are of finite rank,
the matrix factorization

(
P 1 ⊗ P 2

)
C[xi,zi]

can be reduced to finite rank by
splitting off infinitely many trivial matrix factorizations. It is the result
of this reduction

(
P 1 ⊗ P 2

)red
C[xi,zi]

which describes the fused defect. More
details about this can be found in [11].

In the same way, fusion of B-type defects and B-type D-branes in Landau–
Ginzburg models can be formulated in the matrix factorization framework.
The fusion of a B-type defect separating a Landau–Ginzburg model with
chiral fields xi and superpotential W1 ∈ C[xi] from one with chiral fields yi

and superpotential W2 ∈ C[yi] and a B-type D-brane (boundary condition)
in the second of these Landau–Ginzburg models can be represented by the
matrix factorization

P ∗ Q = (P ⊗ Q)red
C[xi] , (2.6)

where P is the matrix factorization of W1 − W2 associated to the defect and
Q the matrix factorization of W2 associated to the D-brane.

This formalism can be easily generalized to the context of Landau–
Ginzburg orbifolds. If Γ is an orbifold group in a Landau–Ginzburg model
with chiral fields x1, . . . , xN and superpotential W ∈ C[x1, . . . , xN ], then it
has an action ρ : Γ → End(C[x1, . . . , xN ]) on C[x1, . . . , xN ] which is compa-
tible with multiplication, i.e.,

ρ(γ)(ab) = ρ(γ)(a)ρ(γ)(b) for a, b ∈ C[x1, . . . , xN ], γ ∈ Γ, (2.7)

and which leaves W invariant. The Landau–Ginzburg orbifolds which will
appear in this article are of the following type. W ∈ C[x1, . . . , xN ] is a
homogeneous polynomial of degree d, and the orbifold group Γ = Zd acts on
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monomials of degree l by phase multiplications:

γ(n)(xl1
1 . . . xlN

N ) = e
2πi
d

n
∑

i lixl1
1 . . . xlN

N n ∈ Zd. (2.8)

B-type D-branes in Landau–Ginzburg orbifolds can then be represented by
Γ-equivariant matrix factorizations of W [36, 37]. These are matrix factor-
izations

P : P1
p1
�
p0

P0 (2.9)

together with representations ρs of Γ on Ps, which are compatible with the
module structure

ρs(γ)(ar) = ρ(γ)(a)ρs(γ)(r) for a ∈ C[x1, . . . , xN ], γ ∈ Γ, r ∈ Ps (2.10)

and commute with the maps ps

ρ(s+1) mod 2(γ)ps = psρs(γ) for γ ∈ Γ, s = 0, 1. (2.11)

Note that because of the compatibility with the multiplication, the ρi are
fixed by the respective action on the degree-zero subspaces C

k ⊂ C[xi]k ∼=
Ps. It is this action which we will later specify in the definition of equivari-
ant matrix factorizations. In the case of Zd- or U(1)-actions we will often
indicate the respective charge q of 1 ∈ C[xi] by writing C[xi][q].

Given two such equivariant matrix factorizations P and Q the above con-
ditions ensure that the Γ-action pushes through to the cohomology of the
Hom-complex, so that one can define the space of morphism in the category
of equivariant matrix factorizations to be H∗

orb(P, Q) = (H∗(P, Q))Γ, the Γ-
invariant part of the morphism spaces in the underlying unorbifolded cate-
gory. These are the spaces of open strings between the respective D-branes
in the orbifold Landau–Ginzburg model.

Similarly, B-type defects separating a Landau–Ginzburg orbifold with chi-
ral fields xi, superpotential W1 ∈ C[xi] and orbifold group Γ1 and one with
chiral fields yi, superpotential W2 ∈ C[yi] and orbifold group Γ2 can be rep-
resented by Γ1 × Γ2-equivariant matrix factorizations of W1 − W2 [12]. The
conditions on the Γ-representations above imply that the matrix factoriza-
tion obtained by fusing two equivariant matrix factorizations P and Q in
the unorbifolded category is again equivariant with respect to the product
of all orbifold groups present. In particular, one can take the part of this
matrix factorization which is invariant under the orbifold group Γsqueezed of
the model which is squeezed in between the two defects, or the defect and
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the boundary. This represents the fusion in the orbifold theory

P ∗orb Q = (P ∗ Q)Γsqueezed . (2.12)

Since most of the discussion in the following will be concerned with orbifolds
of Landau–Ginzburg models, we will often omit to write the subscript “orb”
in case confusion is unlikely.

As alluded to above, in this article we are dealing with homogeneous
superpotentials W of degree d. The corresponding Landau–Ginzburg models
exhibit a U(1)R-symmetry which acts on the chiral fields as

ρR(ϕ)(xl1
1 . . . xlN

N ) = e2πiϕ
∑

i
2li
d xl1

1 . . . xlN
N ϕ ∈ R, (2.13)

i.e., the xi have U(1)R-charge 2
d , such that the superpotential has charge 2.

The existence of this additional symmetry guarantees that the theory flows
to a conformal field theory in the IR. Similarly, also B-type boundary condi-
tions and defects of the Landau–Ginzburg model flow to conformal bound-
ary conditions and defects in the IR if they preserve this U(1)R-symmetry.
This means that they are given by U(1)R-equivariant matrix factorizations.
Since W is not invariant under U(1)R, but has R-charge 2, one has to slightly
modify the definition of equivariant matrix factorizations in this case. More
precisely the commutation relation (2.11) cannot hold in this case, but it
has to be replaced by

ρR
(s+1) mod 2(e

2πiϕ)ps = e2πiϕpsρ
R
s (e2πiϕ), (2.14)

reflecting the fact that the maps ps have R-charge 1. Note that there is a
relation between the representation ρR of U(1)R and the representation ρ
of the orbifold group Γ = Zd. First of all the representation of U(1)R and
Γ = Zd commute with each other. Secondly, the combination ρR(1

2)ρ(−1)
leaves all chiral fields xi invariant. Thus, for irreducible matrix factorizations
P , ρR

s (1
2)ρs(−1) ∼ idPs . Furthermore, ρR

s (1
2)ρs(−1) anti-commute with the

maps ps, and it can be chosen to be

ρR
s

(1
2

)
ρs(−1) = (−1)sidPs . (2.15)

Diagonalizing the actions of ρR
s and ρs simultaneously, one arrives at the

following relation between the U(1)R-charges r and Γ = Zd-charges q on the
modules Ps

r − 2q

d
∈ 2Z + s onPs. (2.16)
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3 Gauged linear sigma models and matrix factorizations

To compare the monodromies we obtain in terms of defects at the Landau–
Ginzburg points with the monodromy transformations at large volume
derived by more geometric methods [16,30], we need to transport B-type D-
branes between these two points in Kähler moduli space. The corresponding
functors between the categories of B-branes in Landau–Ginzburg models and
those in non-linear σ-models has been constructed in [21]. A physical under-
standing of these functors has been developed in [22], using a gauged linear
σ-model description of B-type D-branes, see [23,33,38,39] for earlier work.

Indeed, the models we are considering have a realization in terms of
gauged linear σ-models with gauge group U(1), chiral superfields (p, x1, . . . ,
xN ) of U(1)-charge (−d, 1, . . . , 1) and R-charge (2, 0, . . . , 0), and superpo-
tential pW (x1, . . . , xN ), where W is a polynomial of degree d in the fields xi

(see [25]). We are mostly interested in the Calabi–Yau case, in which d = N .
These models depend on a complex parameter t = r + iθ, a combination of
the Fayet–Iliopoulus parameter r and the θ-angle, which parametrizes their
Kähler moduli spaces (r, θ) ∈ (R × R/2πZ)\{(d log d, [πd])}. The large vol-
ume limit point is situated at t = ∞, where the GLSM reduces to a σ-model
on the projective hypersurface X ⊂ P

N−1 defined by W = 0. At t = −∞
on the other hand the field p receives a non-vanishing vacuum expecta-
tion value, which breaks the gauge group down to Zd, and the GLSM
reduces to a Landau–Ginzburg orbifold with chiral superfields xi, super-
potential W and orbifold group Γ = Zd. The conifold point corresponds to
(r = d log d, θ = [πd]).

The GLSMs provide a uniform description of all the models in Kähler
moduli space. A description of D-branes in these models therefore allows
to transport B-type D-branes between arbitrary points in Kähler moduli
space. This has been worked out in [22], and will be used here to compare
monodromies at Landau–Ginzburg and large volume points. In this section
we will briefly describe the techniques we need. For more details we refer
the reader to [22].

3.1 B-type D-branes in GLSMs

Because of the monodromies B-type D-branes exhibit on the Kähler moduli
spaces of gauged linear σ-models, a uniform description of these D-branes
can only be expected on a cover of these moduli spaces. In the cases
we are considering, this cover is given by R × R\({d log d} × 2πZ + πd).
On it, B-type D-branes can be represented by U(1) × U(1)R-equivariant
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matrix factorizations of pW (x1, . . . , xN ). However, on the phase bound-
ary r = d log d not all of these matrix factorizations lead to physically well-
defined boundary conditions. This gives rise to the “grade restriction rule” of
[22]. Namely, on a component Nn = {d log d} × (πd − 2π(n + 1) + (0, 2π))
of the phase boundary, only matrix factorizations give rise to well-defined
boundary conditions, whose U(1)-charges q satisfy

1 − d + n ≤ q ≤ n. (3.1)

We denote the respective “window” of integral U(1)-charges compatible with
this phase boundary component Nn = {1 − d + n, . . . , n}.

Our aim is to transport B-branes from the Landau–Ginzburg to the large
volume point of such a GLSM, where they can be represented by matrix
factorizations of W and complexes of coherent sheaves on X, respectively.
To this end, we will discuss in the following how B-branes behave under
the reduction of the GLSM to these limiting models. We will, however, only
present the recipe here. More detailed explanations can be found in [22].

3.2 Reduction to Landau–Ginzburg models

In the Landau–Ginzburg phase of the GLSM the field p receives a non-
vanishing vacuum expectation value [25], which can be gauged to 1. This
breaks the gauge group from U(1) down to Zd. The fields xi remain massless
and the model reduces to the Landau–Ginzburg orbifold with superpotential
W and orbifold group Γ = Zd.

On the level of B-type D-branes, a U(1) × U(1)R-equivariant matrix fac-
torization P̂ representing a B-type brane in the GLSM reduces to a Zd ×
U(1)R-equivariant matrix factorization of W , representing a B-type brane
in the Landau–Ginzburg orbifold in the following way. One sets all entries
p in the maps p̂s to 1 and replaces P̂s by P̂s/pP̂s. This reduces the U(1)-
equivariance to a Zd-equivariance, where the representations ρ̂s are replaced
by the induced representations of Zd ⊂ U(1). Furthermore, the U(1)R-
representations ρR

s of the reduced matrix factorizations arise as the com-
bination ρR

s = ρ̂R
s ρ̂2

s of the U(1)R and U(1)-representations of the GLSM
matrix factorizations.

Since we would like to transport B-type branes from the Landau–Ginzburg
to the large volume point, we are interested in the reverse of this reduc-
tion. Namely, given a B-brane in the Landau–Ginzburg orbifold, i.e., a
Zd × U(1)R-equivariant matrix factorization P of W , we would like to lift it
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to a U(1) × U(1)R-equivariant matrix factorization P̂ of pW , which can be
transported through a specified component Nn of the phase boundary, and
which by the above procedure reduces to P at the Landau–Ginzburg point.
Indeed, in the Calabi–Yau case, for every matrix factorization P of W and
every component Nn of the phase boundary, there is exactly one such lift
P̂ [22]. The lifts can be constructed by introducing factors p into the maps
ps in such a way that the representations ρs of Zd lift to representations ρ̂s

of U(1) and that the corresponding charges lie in the charge window Nn.
We refrain from giving more details about the general construction here, but
will later on explicitly discuss the lifts we will need. In particular, the case
of tensor product B-branes is discussed in Section 3.4 below.

3.3 Reduction to large volume

At large volume, one recovers the complex of coherent sheaves representing
the large volume B-brane out of the GLSM matrix factorization P̂ in the
following way. Consider the module P = P̂0 ⊕ P̂1/W (P̂0 ⊕ P̂1) and regard
it as R = C[x1, . . . , xN ]/(W )-module. Because of the presence of the p, it
is a free R-module of infinite rank, but since p has U(1)R-charge 2, every
submodule Pr of fixed U(1)R-charge r ∈ Z is a free R-module of finite rank.
Moreover, there is an rmin ∈ Z, such that for all r < rmin Pr = 0, and, having
U(1)R-degree 1, the maps p̂s define maps Pr → Pr+1. In this way, one
obtains from P̂ a U(1)-equivariant complex

P : Prmin → Prmin+1 → Prmin+1 → . . . (3.2)

of R-modules, in which the position in the complex is determined by the
U(1)R-charge. This complex is bounded to the left, but unbounded to the
right. The desired complex P̃ of coherent sheaves on the projective hyper-
surface X = Proj(R) in P

N−1 is obtained from P by sheafification. In partic-
ular, free R-modules R[q] with U(1)-representation specified by q ∈ Z which
appear in P give rise to sheaves OX(−q) on X in P̃. A priori this is a com-
plex of coherent sheaves on X which is unbounded to the right, but in fact it
is quasi-isomorphic to a bounded complex [22]. In this way, one obtains the
large volume interpretation of the GLSM B-brane P̂ . In the next subsection
we will present a simple example of this construction.

3.4 Example: tensor product branes

As an example let us discuss how to transport tensor product B-branes
from the Landau–Ginzburg to the large volume phase. These B-branes exist
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for any Landau–Ginzburg model with homogeneous superpotential. So let
W ∈ S := C[x1, . . . , xN ] be a homogeneous polynomial of degree d. Then
W can be written as

W (xi) =
∑

j

xjAj(xi) (3.3)

for some homogeneous polynomials Aj of degree d − 1. The Aj are not
unique in general, but the equivalence class of the tensor product P =⊗

j P (j) of rank-one matrix factorizations

P (j) : P (j)1 ∼= S
p(j)1=xj

�
p(j)0=Aj

S ∼= P (j)0 (3.4)

of xjAj is independent of the choice. Being a tensor product matrix factor-
ization,

P : P1
p1
�
p0

P0 (3.5)

has the following form:

Ps =
⊕

(si)∈ZN
2

s−
∑

i si even

N⊗
i=1

P (i)si , (3.6)

ps =
∑

(si)∈ZN
2

s−
∑

i si even

N∑
j=1

(−1)
∑j−1

k=1 sk idP (1)s1
⊗ . . . ⊗ p(j)sj ⊗ . . . ⊗ idP (N)sN

.

Indeed, there is a slightly more elegant Koszul-type representation of this
matrix factorization (cf. [40, Section 4.3]), which will be very useful later
for the extraction of the large volume complex. In order to describe it, one
introduces the vector space V = SN with basis (ei)i and dual basis (e∗

i )i.
Then P can be written as

P : ΛoddV
δ+σ
�
δ+σ

ΛevenV (3.7)

with9

δ = ı∑
j xje∗

j
, σ =

⎛
⎝∑

j

Ajej

⎞
⎠ ∧ ·. (3.8)

9Note that δσ + σδ = W id.
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As a side remark let us point out that the Koszul representation for tensor
product matrix factorization appears very naturally in the discussion of B-
type boundary conditions in Landau–Ginzburg models. There, one typically
introduces additional boundary fermions ψi and their duals ψ∗

i in order to
achieve B-type supersymmetry despite the presence of the boundary [41–43].
These fermions satisfy a Clifford algebra with relations {πi, π

∗
j } = δij , and

their presence gives rise to the boundary contribution

Qbdry =
∑

j

(
Ajπ

∗
j + xjπj

)
(3.9)

of the supercharge. In the Koszul representation, these fermions are realized
by the operators

πi = ei ∧ ·, π∗
i = ıe∗

i
, (3.10)

with corresponding Fock space Λ∗V . The supercharge can be easily recog-
nized to be the matrix factorization map Qbdry = δ + σ in this representa-
tion.

We are interested in the Zd-orbifold of the Landau–Ginzburg model with
superpotential W , where Zd acts on the xi by collective phase multiplica-
tions. The B-branes we would like to consider here are the ones associ-
ated to the matrix factorizations obtained from P by means of the orbifold
construction. Being invariant under Zd, the orbifold just introduces
Zd-representations on the modules Ps. The result are the following
Zd-equivariant matrix factorizations specified by m ∈ Zd:

P̃m : P̃m
1

P̃ m
1

�
P̃ m

0

P̃m
0 , (3.11)

with

P̃m
s =

⊕
(si)∈ZN

2
s−

∑
i si even

(
N⊗

i=1

P (i)si

) [
m +

∑
i

si

]
(3.12)

and the maps P̃m
s = ps. Here [·] denotes the Zd-representation on the respec-

tive modules. The Koszul-type representation can be made equivariant as
well by setting the Zd-degree [ei] of the basis vectors ei of V to be 1. Then,
P̃m can be written as

P̃m :
(
ΛoddV

)
[m]

δ+σ
�
δ+σ

(ΛevenV ) [m] (3.13)

with maps δ and σ as above.
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The U(1)R-representations can be specified by lifting m to be an element
of Z. The U(1)R-charges of the modules

⊗
i P (i)si are then defined to be

2
d(m +

∑
i(si − d)). In the Koszul-representation this amounts to giving R-

charge −1 + 2
d to the basis vectors ei and shifting the overall R-charge of

the ΛsV by 2m
d .

As discussed in Section 3 the Landau–Ginzburg orbifold can be obtained
as a limit of a gauged linear σ-model with gauge group U(1), which in the
LG-phase is broken down to Zd. Apart from the fields xj of charge 1 which
are also present in the LG-model, there is an additional chiral field p of
charge −d in the GLSM. The R-charge of the fields xj and p are 0 and 2,
respectively, and the superpotential is given by Ŵ (xj , p) = pW (xj).

To transport B-branes from the LG-point to the large volume point of the
Kähler moduli space, we follow [22] and first lift them to the GLSM. Thus,
as discussed in Section 3.2 we need to construct U(1) × U(1)R-equivariant
matrix factorizations which at the Landau–Ginzburg point reduce to the
Zd × U(1)R-equivariant matrix factorizations P̃m. Before doing that, let us
first discuss the lifts of the tensor factors

P̃ (j)m : S[m + 1]
P̃ (j)m

1 =xj

�
P̃ (j)m

0 =Aj

S[m] (3.14)

to the GLSM. Each P̃ (j)m has two types of lifts:

P̂ (j)[α,a,r] : Ŝ[a + 1 − dα, r − 1 + 2α]
p̂(j)[α,a,r]

1 =pαxj

�
p̂(j)[α,a,r]

0 =p1−αAj

Ŝ[a, r], (3.15)

m = a mod d, α ∈ {0, 1} which differ in which of the maps P̃m
s is multiplied

by p. Here Ŝ = C[xi, p] and [·, ·] denotes the U(1) × U(1)R-representations.
Moreover, the lifted R-charge is given by r = 2m−a

d .

For the lift to the GLSM and the transport of the B-branes corresponding
to P̃m to the large volume phase, we restrict the discussion to the “Calabi–
Yau”-case, so from now on d = N . It is not difficult to see that in that
case, there is only one lift of each P̃m which is compatible with a given
charge window Nη = {1 − d + η, . . . , η}. This lift is given in the following
way. First, choose a = m − dk ∈ Nη for some k ∈ Z and give U(1) × U(1)R-
representation [a, r = 2k] to

⊗
j P (j)0. Then, in the tensor product maps

P̃m
s = ps written in (3.6) one replaces the p(j)s by p̂(j)[0,·,·]

s everywhere
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except in the (n = 1 + η − a)th step

⊕
(s1,...,sN )
∑

i si=n

⊗
j

P (j)sj �
⊕

(s1,...,sN )
∑

i si=n−1

⊗
j

P (j)sj (3.16)

where one replaces them by p̂(j)[1,·,·]
s . Noting that

source(p̂(j)[α,a,r]
1 ) = target(p̂(j)[β,a+1−dα,r−1+2α]

1 ) (3.17)

one arrives at the following matrix factorization:

P̂ [n,a,r] : P̂
[n,a,r]
1

p̂
[n,a,r]
1
�

p̂
[n,a,r]
0

P̂
[n,a,r]
0 , (3.18)

with

P̂ [n,a,r]
s =

⊕
(si)∈ZN

2
s−

∑
i si even

(
N⊗

i=1

P (i)si

)

[
a +

∑
i

si − dΘ

(∑
i

si − n

)
, r −

∑
i

si + 2Θ

(∑
i

si − n

)]

(3.19)

and

p̂[n,a,r]
s =

∑
(si)∈ZN

2
s−

∑
i si even

N∑
j=1

(−1)
∑j−1

k=1 sk idP (1)s1
⊗ . . .

. . . ⊗ p̂(j)[δ(S(j,s)−n),a+S(j,s)−dΘ(S(j,s)−n),r−S(j,s)+2Θ(S(j,s)−n)]
sj

⊗ . . .

. . . ⊗ idP (N)sN
, (3.20)

where S(j, s) =
∑

k �=j sk.

In the Koszul-type representation this can be written as follows. First,
set V̂ := ŜN , and give degree [1,−1] to its basis vectors ei. Then P̂ [n,a,r]
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can be written as

P̂ [n,a,r] :
⊕
s odd

(
ΛsV̂

)
[a − dΘ(s − n), r + 2Θ(s − n)]

δ̂+σ̂
�
δ̂+σ̂

⊕
s even

(
ΛsV̂

)
[a − dΘ(s − n), r + 2Θ(s − n)], (3.21)

where

δ̂
∣∣
ΛsV̂

=

{
δ, for s 
= n,

pδ, for s = n,
σ̂
∣∣
ΛsV̂

=

{
pσ, for s 
= n − 1,

σ, for s = n − 1.
(3.22)

Let us transport the B-branes corresponding to Pm from the Landau–
Ginzburg to the large volume phase through the phase boundary compo-
nent N0. The lift of Pm compatible with the corresponding charge window
N0 = {1 − d, . . . , 0} is given by P̂ [1−a,a,r], where a = m − dk ∈ N0 for some
k ∈ Z, and r = 2k. We now follow [22] to construct the B-brane obtained by
transporting the LG-brane associated to P̃m to the large volume phase along
a path which traverses the phase boundary in the segment N0. As described
in Section 3.3 we first have to tensor the matrix factorization P̂ [1−a,a,r] by
Ŝ/(W ). Then we regard it as a complex over R := Ŝ/(W, p) and “unfold”
it with respect to U(1)R-charge. The sheafification of the resulting com-
plex represents the large volume B-brane. For the case at hand, we use the
Koszul-type representation of P̂ [1−a,a,r] and introduce VR := V̂ ⊗ R. Then
it is not difficult to see that the resulting complex indeed has the form

Cone(K−a σ→ C){−r}, (3.23)

where {·} denotes the shift of complexes and K−a is the complex

K−a : Λ−aVR[a] δ→ Λ−a−1VR[a] δ→ . . .
δ→ Λ0VR[a] → 0, (3.24)

starting at position a. Moreover, C is an infinite complex which itself can
be written as successive cone:

C = Cone(Kd{−2} ⊗ R[a] σ→ C{−2} ⊗ R[−d]). (3.25)

Now Kt can be identified as the dual of the Koszul complex of (xi) truncated
at the −(t + 1)st position. Its sheafification K̃t is exact except at the −tth
position with cohomology M̃t. It is a well-known fact (cf. e.g., [44, Chap-
ter 5B] – for more details on the Koszul complex see, e.g., [45]) that the
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Table 1: The first column shows a collection of tensor product matrix fac-
torizations describing B-branes in the Landau–Ginzburg phase. Their lifts
to the gauged linear σ-model compatible with charge window N0 are listed
in the second column. The third column contains the large volume B-branes
obtained by transporting the LG-branes through the phase boundary com-
ponent N0 into the large volume phase. Here underlining marks position
zero in complexes.

LG brane GLSM brane LV brane
...

...
...

P̃ 0 P̂ [1,0,0] Ω0
PN−1

∣∣
X

(0) ∼= OX

P̃−1 P̂ [2,−1,0] Ω1
PN−1(1)

∣∣
X

{1} ∼= O⊕d
X → OX(1)

P̃−2 P̂ [3,−2,0] Ω2
PN−1(2)

∣∣
X

{2} ∼= O⊕(d
2)

X → OX(1)⊕d → OX(2)
...

...
...

P̃−(d−1) P̂ [d,1−d,0]
Ωd−1

PN−1(d − 1)
∣∣
X

{d − 1} ∼=
O⊕( d

d−1)
X → · · · → OX(d − 2)⊕(d

1) → OX(d − 1)

P̃−d P̂ [1,0,−2] Ω0
PN−1

∣∣
X

(0){2} ∼= OX{2}
...

...
...

sheafification of Mt is given by

M̃t
∼= Ωt

PN−1(t)
∣∣
X

, (3.26)

where Ωt
PN−1(t)

∣∣
X

is the vector bundle Λt T ∗
P

N−1 ⊗ O(t) on the projective
space P

N−1 restricted to the hypersurface X. It is zero for t ≥ N . Thus, K̃t

is quasi-isomorphic to
K̃t ∼= Ωt

PN−1(t)
∣∣
X

{t}, (3.27)

whereas K̃d is quasi-isomorphic to the trivial complex. The latter implies
that C is quasi-isomorphic to the trivial complex as well, and therefore, as
summarized in table 1, we obtain the large volume B-brane

Cone(K̃−a σ̃→ C̃){−2k} ∼= K̃−a{−2k} ∼= Ω−a
PN−1(−a)

∣∣
X

{−a − 2k}, (3.28)

by transporting the Landau–Ginzburg B-brane associated to the matrix
factorization P̃m, (m = a + dk, a ∈ N0, k ∈ Z) into the large volume phase
along a path intersecting the phase boundary in N0. This is indeed the
expected result [46].
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3.5 Defects

As discussed in Section 2, at the Landau–Ginzburg point, defects can be
described by matrix factorizations D of W1(x1, . . . , xN ) − W2(y1, . . . , yM ).
As such they can be transported to the large volume point in the same way as
B-type D-branes. Namely, they can be lifted to defects between two GLSMs,
i.e., to matrix factorizations of pW1(x1, . . . , xN ) − qW (y1, . . . , yM ). This
provides a uniform description of B-type defects on the Kähler moduli space
of the product of the two GLSMs. The latter is the product of the two Kähler
moduli spaces. In particular, one can transport B-type defects through the
product N × N ′ of phase boundary components of the respective models to
the product of their large volume points. In this way, one obtains a complex
D of coherent sheaves on the product X × Y of projective hypersurfaces
X = {W1 = 0} ⊂ P

N−1, Y = {W2 = 0} ⊂ P
M−1 which represents the defect

at large volume. We will now argue that this defect acts on the category
Db(Y ) as Fourier–Mukai transformation with kernel given by D ⊗ (OX �
OY (d){−1}).

Let us recall some basic facts about Fourier–Mukai transformations (for
more details see, e.g., [47, 48]). To every object R ∈ Db(X × Y ) one can
associate a functor

ΦR : Db(Y ) → Db(X), ΦR( · ) = Rπ1 ∗

(
R

L
⊗ Lπ∗

2( · )
)

, (3.29)

where πi denote the projections X
π1← X × Y

π2→ Y on the factors, and “L”
and “R” indicate that the tensor product, the pullback and the pushforward
are left- and right-derived, respectively.10 In particular, for F ∈ Db(X),
G ∈ Db(Y ) this functor satisfies the following formula:

Hom(F � G∨,R) ∼= Hom(F , ΦR(G)). (3.30)

Here we used the abbreviation F � G = π∗
1(F) ⊗ π∗

2(G).

Now, let us turn back to the Landau–Ginzburg point. Let Q and P be
matrix factorizations of W1(xi) and W2(yi), respectively, representing B-
type D-branes in the corresponding Landau–Ginzburg models, and let D be
a matrix factorization of W1(xi) − W2(yi) describing a defect between these

10For an introduction to derived categories and derived functors see, e.g., [49]. In the
following for ease of notation we do not explicitly denote in our formulae the left- or
right-derived property of a functor.
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models. Then the following “folding formula” holds:11

H(Q, D ∗ P ) ∼= H(Q ⊗ P ∗, D), (3.31)

where the dual P ∗ of a matrix factorization P is defined by

(
P1

p1
�
p0

P0

)∗
=

(
P ∗

1

p∗
0

�
−p∗

1

P ∗
0

)
. (3.32)

To transport these matrix factorizations to large volume, we fix components
N and N ′ of the phase boundary in the Kähler moduli space of the two
models. Let us denote by LVW the parallel transport from the Landau–
Ginzburg point to large volume through the component W of the phase
boundary. Then define the complexes

Q := LVN (Q), P := LVN ′(P ), P∗ := LV−N ′(P ∗), F := LVN (D ∗ P ),

T := LVN×(−N ′)(Q ⊗ P ∗), D := LVN×(−N ′)(D). (3.33)

Note that −N ′ is the component of the phase boundary dual to N ′, i.e., the
corresponding charge windows satisfy N ′ = −N .

Since transport to large volume is an equivalence of categories (3.31)
implies

Hom(Q,F) ∼= Hom(T ,D). (3.34)

But it is not difficult to see that indeed

T ∼= Q � P∗ ∼= Q � P∨ ⊗ OY (−d){1}, (3.35)

where P∨ denotes the dual complex of P. In the second step we used the
relation

P∗ ∼= P∨ ⊗ OY (−d){1} (3.36)

between duality of matrix factorization and duality of large volume com-
plexes shown in Appendix A. Therefore, using (3.30) we arrive at

Hom(Q,F) ∼= Hom(Q � (P ⊗ OY (d){−1})∨ ,D)
∼= Hom(Q, ΦD⊗(OX�OY (d){−1})P). (3.37)

11This is obvious from the folding trick, in which defects between two theories are
regarded as boundary conditions in the tensor product of the first theory and the world-
sheet parity dual of the second one.
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From this we deduce that fusion with the defect D transported from the
Landau–Ginzburg point to large volume through the component N × (−N ′)
is realized by the Fourier–Mukai transform ΦR with kernel

R ∼= D ⊗ (OX � OY (d){−1}). (3.38)

4 Landau–Ginzburg monodromy

The monodromies which are most easily described in the Landau–Ginzburg
framework are those around the Landau–Ginzburg points themselves. These
are orbifold points in Kähler moduli space, at which certain dualities become
self-dualities. As a consequence, the symmetry groups of the theory at these
points are enhanced by “quantum symmetries,” which in turn realize the
monodromies around these points.

The models we are interested in here are one-parameter models which
can be realized as gauged linear σ-models with U(1) gauge group, chi-
ral superfields (p, x1, . . . , xN ) of charge (−d, 1, . . . , 1) and superpotential
pW (x1, . . . , xN ), where W ∈ C[x1, . . . , xN ] is homogeneous of degree d. At
the Landau–Ginzburg point, the field p receives a non-vanishing vacuum
expectation value, and the model degenerates to a Landau–Ginzburg orbi-
fold with chiral superfields xi, superpotential W and orbifold group Zd to
which the gauge group is broken.

The action of the quantum symmetries in these orbifolds are well known.
They act by phase multiplications in the twisted sectors. On the level of
D-branes, this action is given by a shift in the representations of the orbifold
group Zd and the R-symmetry group U(1)R.12

Using the results of [11] one can easily construct defect matrix factoriza-
tions realising precisely this shift.

4.1 Landau–Ginzburg phase

In this section we will construct the graded matrix factorizations repre-
senting the defects associated to Landau–Ginzburg monodromies. Let W ∈

12This is rather obvious from the gauged linear σ-model perspective [22], where
boundary actions only depend on the θ-angle through the combination θ + 2πq. Thus
going around the Landau–Ginzburg point θ �→ θ + 2π shifts the U(1)-representations q of
D-branes by q �→ q − 1.
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C[x1, . . . , xN ] be a homogeneous polynomial of degree d. We assume that
the orbifold group Γ = Zd acts on the xi by a collective phase multiplication.

In the unorbifolded Landau–Ginzburg model, the identity defect is rep-
resented by the tensor product matrix factorization (see, e.g., [11])

I =
N⊗

i=1

I(i), (4.1)

of the rank-one matrix factorizations

I(i) : I(i)1 = S
ı(i)1
�

ı(i)0
S = I(i)0, ı(i)1 = (xi − yi), ı(i)0 = Ai(xj , yj). (4.2)

Here S = C[xj , yj ] and Ai are homogeneous polynomials of degree d − 1 such
that13 W (xj) − W (yj) =

∑N
i=1(xi − yi)Ai(xj , yj).

The graded matrix factorizations corresponding to the Landau–Ginzburg
monodromies in the Γ-orbifold can be obtained from I by means of the
orbifold construction. For the case of Landau–Ginzburg models with one
chiral field, i.e., N = 1 this has been discussed in [12]. Let us briefly review
this construction for the rank-one factorizations (4.2). Since the defects
separate two orbifold theories, they have to be orbifolded by the product
of the orbifold groups on either side. In this case the group is Γ̂ = Γ × Γ =
Zd × Zd, where the first factor acts on the variables xj and the second one on
the variables yj only. As usual, the orbifold procedure requires to choose on
the given unorbifolded matrix factorization a representation of the subgroup
Γ̂s ⊂ Γ̂ which stabilizes it. Then one sums over its orbit under Γ̂/Γ̂s. The
result is a Γ̂-equivariant matrix factorization.

The matrix factorizations I(i) are invariant under the diagonal subgroup
Γs = Γdiag ⊂ Γ × Γ, because the maps ı(i)s are homogeneous polynomials.
Therefore one has to choose a representation of Γ ∼= Γs on it, which we will
denote by m ∈ Zd. The next step is to sum up the Γ × Γ/Γdiag ∼= Γ orbit.
The result is a direct sum of d rank-one factorizations. By construction the
action of Γ × Γ is not diagonal in the sum basis, but one can diagonalize it. In
the corresponding basis the resulting Γ × Γ-equivariant matrix factorizations

13Although the Ai are not determined uniquely by this equation, the equivalence class
of I is independent of the choices of the Ai.
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Ĩ(i)m are given by

Ĩ(i)m : Ĩ(i)m
1 = V m+1

ı̃(i)m
1

�
ı̃(i)m

0

V m = Ĩ(i)m
0 , (4.3)

where

V m =
d−1⊕
ν=0

S[m + ν,−ν],

ı̃(i)m
1 =

⎛
⎜⎜⎜⎝

xi −yi

−yi

. . .

. . . . . .
−yi xi

⎞
⎟⎟⎟⎠ , (̃ı(i)m

0 )μν = Aμ−ν
i (xj , yj). (4.4)

Here [·, ·] specifies the Zd × Zd-representation on this module, and Al
i(xj , yj)

are the degree [d − 1 − l, l]-parts of the polynomials Ai(xj , yj). To write this
in a more compact form, denote by (fm

μ )μ the basis of V m with degrees
[fm

μ ] = [m + μ,−μ], and define the map τ : V m → V m, fm
μ �→ fm

μ+1 mod d.
Then

ı̃(i)m
1 = xiid − yiτ, ı̃(i)m

0 =
d−1∑
l=0

Al
i(xj , yj)τ l. (4.5)

For a more detailed discussion see [12].

Indeed, this construction can easily be generalized to the matrix facto-
rization (4.1) corresponding to the identity defect. As tensor product the
latter has the following form:

I : I1
ı1
�
ı0

I0, (4.6)

where

Is =
⊕

(si)∈ZN
2

s−
∑

i si even

N⊗
i=1

I(i)si , (4.7)

and

ıs =
∑

(si)∈ZN
2

s−
∑

i si even

N∑
j=1

(−1)
∑j−1

k=1 sk idI(1)s1
⊗ . . . ⊗ ı(j)sj ⊗ . . . ⊗ idI(N)sN

. (4.8)



1108 ILKA BRUNNER ET AL.

As in the case of tensor product B-branes discussed in Section 3.4, a Koszul-
type representation of this matrix factorization is useful. Let V := SN with
basis (ei)i and denote the dual basis by (e∗

i )i. Then the identity matrix
factorization (4.1) can be represented by

I : ΛoddV
δ+σ
�
δ+σ

ΛevenV, (4.9)

with14

δ = ı∑
i(xi−yi)e∗

i
, σ =

(∑
i

Aiei

)
∧ ·. (4.10)

Applying the orbifold construction to this matrix factorization yields the
equivariant matrix factorizations

Ĩm : Ĩm
1

ı̃m1
�
ı̃m0

Ĩm
0 (4.11)

with

Ĩm
s =

⊕
(si)∈ZN

2
s−

∑
i si even

N⊗
i=1

I(i)si ⊗ V m+
∑

i si , (4.12)

and

ı̃ms =
∑

(si)∈ZN
2

s−
∑

i si even

N∑
j=1

(−1)
∑j−1

k=1 sk idI(1)s1
⊗ . . . ⊗ ı̃(j)

m+
∑

k �=j sk
sj ⊗ . . .

. . . ⊗ idI(N)sN
. (4.13)

To describe the result of the orbifold construction in the Koszul-
representation (4.9), we set the Zd × Zd-degree of the basis vectors ei of
V to [1, 0]. Then the orbifolds of the identity matrix factorization can be
written as

Ĩm : ΛoddV ⊗ V m
δ̃+σ̃
�
δ̃+σ̃

ΛevenV ⊗ V m, (4.14)

with

δ̃ = ı∑
i xie∗

i
⊗ id − ı∑

i yie∗
i
⊗ τ, σ̃ =

∑
i,l

Al
i(ei ∧ ·) ⊗ τ l. (4.15)

14As in the case of the tensor product D-branes discussed in Section 3.4 δσ + σδ =
(W (xj) − W (yj))id.
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The U(1)R-representations on the matrix factorizations Ĩm are specified as
follows. Similarly to the case of tensor product D-branes discussed in Section
3.4, m is lifted to an integer, and the R-charge of vectors in V m+

∑
i si in

(4.12) is defined to be 2
d(m +

∑
i(si − d)). In the Koszul-representation

(4.14) one also sets the R-charge of vectors of V m to 2m
d , and the ones of

the basis vectors ei of V to −1 + 2
d .

4.2 Lift to the GLSM

Next, we will lift the matrix factorizations corresponding to Landau–
Ginzburg monodromies which have been constructed in Section 4.1 to the
gauged linear σ-model. Apart from the chiral fields xi which were also
present in the Landau–Ginzburg model, this model contains an additional
field p, and the gauge group which is broken to Γ = Zd in the Landau–
Ginzburg phase is U(1). The xi have charge 1 with respect to it, and
the field p charge −d. The model also exhibits a U(1)R, with charges 0
and 2 of the fields xi and p, respectively. The superpotential of the model
is given by Ŵ (p, xj) = pW (xj). To lift a Zd × U(1)R-equivariant matrix
factorization P of W from the Landau–Ginzburg to the gauged linear σ-
model means to construct U(1) × U(1)R-equivariant matrix factorizations
of Ŵ which in the Landau–Ginzburg phase reduce to P . As alluded to in
Section 3.2 there are in general several lifts of a given matrix factorization
P . We are going to lift the defect matrix factorizations Ĩm constructed
in Section 4.1, i.e., a Zd × Zd × U(1)R-equivariant matrix factorization of
W (xj) − W (yj) to U(1) × U(1) × U(1)R-equivariant matrix factorizations of
Ŵ (p, xj) − Ŵ (q, yj). In order to do so, we will again start by lifting the orb-
ifold factorizations Ĩ(i)m of the tensor factors of the identity defect in the
unorbifolded Landau–Ginzburg models.

It is not difficult to see how to promote the factorizations Ĩ(i)m to the
gauged linear σ-model. To be able to lift the Zd × Zd-representations to
U(1) × U(1)-representations, one needs to replace one of the entries xi of
ı̃(i)m

1 by pxi, and one of the entries yi by qyi. At the same time, one has
to introduce monomial factors in p and q in the entries of ı̃(i)m

0 accordingly.
Once the factors of p and q have been placed in ı̃(i)m

1 the distribution of
factors in ı̃(i)m

0 is fixed. The lifts of the matrix factorizations Ĩ(i)m are
given by

Î(i)[n,a,b,r] : V [n+1,a+1,b,r−1]
ı̂(i)[n,a,b,r]

1
�

ı̃(i)[n,a,b,r]
0

V [n,a,b,r], (4.16)
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with

V [n,a,b,r] =
d−1⊕
ν=0

Ŝ[a + ν − dΘ(ν − d + n), b − ν, r + 2Θ(ν − d + n)], (4.17)

and

ı̂(i)[n,a,b,r]
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

xi −qyi

−yi

. . .

. . . pxi

. . . . . .
−yi xi

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(
ı̂(i)[n,a,b,r]

0

)
μν

= Zμ,ν(p, q)Aμ−ν
i (xj , yj). (4.18)

Here Ŝ = C[xj , yj , p, q], [·, ·, ·] specifies the U(1) × U(1) × U(1)R-
representation and the entry pxi in ı̂(i)[n,a,b,r]

1 is at the (d − n)th position.
The matrix Zμν has the form

Z(p, q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p q . . . q q pq . . . . . . pq
...

. . . . . .
...

...
...

. . .
...

...
. . . q

...
...

. . .
...

p . . . . . . p q pq . . . . . . pq

1 . . . . . . 1 1 q . . . . . . q

1 . . . . . . 1 1 p q . . . q
...

. . .
...

...
...

. . . . . .
...

...
. . .

...
...

...
. . . q

1 . . . . . . 1 1 p . . . . . . p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.19)

where the (d − n)th row and column have been marked. Omitting factors
of p and q which can be reconstructed out of the U(1) × U(1) × U(1)R-
representations by noting that the maps ı̂(i)[n,a,b,r]

s have degree [0, 0, 1], this
can again be written in a more compact form. Let (f [n,a,b,r]

μ )μ be a basis15 of
V [n,a,b,r] with [f [n,a,b,r]

μ ] = [a + μ − dΘ(μ − d − n), b − μ, r + 2Θ(μ − d − n)]

15The basis used to write (4.16).
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and define τ̂ : f
[n,a,b,r]
μ �→ f

[n,a,b,r]
μ+1 mod d, then

ı̂(i)[n,a,b,r]
1 = xiid − yiτ̂ , ı̂(i)[n,a,b,r]

0 =
d−1∑
l=0

Al
i(xj , yj)τ̂ l. (4.20)

The GLSM matrix factorizations Î(i)[n,a,b,r] are labelled by representations
(a, b, r) of U(1) × U(1) × U(1)R and n ∈ {0, . . . , d − 1}, and it makes sense
to define

Î [n+dk,a,b,r] := Î [n,a−dk,b,r+2k]. (4.21)

It is easy to see that Î(i)[n,a,b,r] reduces to the matrix factorization Ĩ(i)m at
the Landau–Ginzburg point if

(a + b − m) mod d = 0 and r =
2
d
(m − a − b). (4.22)

Given these lifts, one can easily lift the orbifold matrix factorization Ĩm (c.f.
(4.13)) of the identity factorization I to the GLSM. Using the fact

Source
(
ı̂(i)[n,a,b,r]

1

)
= Target

(
ı̂(i)[n+1,a+1,b,r−1]

1

)
(4.23)

one arrives at

Î [n,a,b,r] : Î [n,a,b,r]
s

ı̂
[n,a,b,r]
1
�

ı̂
[n,a,b,r]
0

Î [n,a,b,r]
s (4.24)

with

Î [n,a,b,r]
s =

⊕
(si)∈ZN

2
s−

∑
i si even

N⊗
i=1

(
I(i)si ⊗ Ŝ

)
⊗ V [n+

∑
i si,a+

∑
i si,b,r−

∑
i si] (4.25)

and

ı̂[n,a,b,r]
s =

∑
(si)∈ZN

2
s−

∑
i si even

N∑
j=1

(−1)
∑j−1

k=1 sk idI(1)s1⊗Ŝ ⊗ . . .

. . . ⊗ ı̂(j)
[n+

∑
k �=j sk,a+

∑
k �=j sk,b,r−

∑
k �=j sk]

sj ⊗ . . . ⊗ idI(N)sN
⊗Ŝ ,

(4.26)

where as before (a + b − m) mod d = 0 and r = 2
d(m − a − b). Again this

can be more elegantly formulated in a Koszul-type representation. For this
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define V̂ := ŜN with basis (ei)i of U(1) × U(1) × U(1)R-degree [1, 0,−1].
Then the matrix factorizations Î [n,a,b,r] can be represented as

Î [n,a,b,r] :
⊕
s odd

ΛsV̂ ⊗ V [s+n,a,b,r]
δ̂+σ̂
�
δ̂+σ̂

⊕
s even

ΛsV̂ ⊗ V [s+n,a,b,r], (4.27)

with

δ̂ = ı∑
i xie∗

i
⊗ id − ı∑

i yie∗
i
⊗ τ̂ , σ̂ =

∑
i,l

Al
i(ei ∧ ·) ⊗ τ̂ l. (4.28)

Here, for ease of notation, factors of p, q have been omitted. Their positions
can be reconstructed out of the U(1) × U(1) × U(1)R-degrees by noting that
the maps δ̂ + σ̂ have degree [0, 0, 1].

The matrix factorization Î [n,a,b,r] has charges in the window Na+d−n−1 ×
Nb. Thus, the lift of the matrix factorization Ĩm compatible with a window
Nη1 × Nη2 is given by Î [n,n+η1+1−d,η2,r] for n ∈ {0, . . . , d − 1} such that n =
m − 1 − η1 − η2 mod d.

4.3 Transport to the large volume phase

Having lifted the matrix factorizations Ĩm representing the LG monodromies
to the gauged linear σ-model, we can now transport them to large volume
to obtain the corresponding Fourier–Mukai kernels as discussed in Section
3.5. Using the Koszul-type representation one easily sees that the large
volume complex obtained by transporting the GLSM defect matrix facto-
rization Î [n,a,b,r] from the Landau–Ginzburg point through phase boundary
component Na+d−n−1 × Nb into the large volume phase has the form

Cone(K̃[n,a,b,r]
0

σ̃→ C̃[n,a,b,r]
0 ). (4.29)

Here

K[n,a,b,r]
0 : Λd−n−1V ⊗ V

[d−1,a,b,r−d+n+1]
0

δ→ Λd−n−2V ⊗ V
[d−2,a,b,r−d+n+2]
1

δ→ . . .
δ→ Λ0V ⊗ V

[n,a,b,r]
d−1 , (4.30)

where the “unhatted” V ’s are defined by V = V̂ ⊗Ŝ Ŝ/(p, q, W (xi), W (yi)).
For μ = d − n − 1, V

[n,a,b,r]
μ = spannR(f [n,a,b,r]

ν )0≤ν≤μ are the subspaces of
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V̂ [n,a,b,r] of U(1)R-charge r. In more detail this complex looks like

Λd−n−1V [a, b] → Λd−n−2V [a, b] → . . . → Λ0V [a, b]
↘ ⊕ ↘ . . . ↘ ⊕

Λd−n−2V [a + 1, b − 1] → . . . → Λ0V [a + 1, b − 1]
↘ . . . ↘ ⊕

. . .
...

Λ0V [a + d − n − 1,
b − d + n + 1]

, (4.31)

where the U(1)R-degree has been dropped. Horizontal and diagonal arrows
represent the maps ı∑

j xje∗
j

and ı∑
j yje∗

j
, respectively. As discussed in Section

3.4 the sheafifications of the rows in this complex are quasi-isomorphic to

Ωd−n−1−i
PN−1 (−a − i)

∣∣
X

� OX(−b + i){−r + d − n − 1 − i}, (4.32)

where X is the projective hypersurface {W = 0} in P
N−1. The sheafification

K̃[n,a,b,r]
0 can therefore be written as

Ωd−n−1
PN−1 (−a)

∣∣
X

� OX(−b) → Ωd−n−2
PN−1 (−a − 1)

∣∣
X

� OX(−b + 1) → . . .

. . . → Ω0
PN−1(−a − d + n + 1)

∣∣
X

� OX(−b + d − n − 1), (4.33)

where the last term is at position r.

To discuss the complexes C[n,a,b,r]
0 , define V

[n,a,b,r]
μ for all μ to be the

subspace of V̂ [n,a,b,r] of U(1)R-charge r + 2((μ + n) div d), and denote its
basis vectors by f

[n,a,b,r]
ν = p(μ+n) div d−(ν+n) div dqν div df

[n,a,b,r]
ν mod d .

Indeed, as in the discussion of the tensor product B-branes in Section 3.4
the complex C[n,a,b,r]

0 can be written as successive cone:

C[n,a,b,r]
i = Cone(K[n,a,b,r]

i+1
σ→ C[n,a,b,r]

i+1 ), (4.34)

where

K[n,a,b,r]
i+1 = (p + q)K[n,a,b,r]

i and C[n,a,b,r]
i+1 = (p + q)C[n,a,b,r]

i for i > 0
(4.35)

and C[n,a,b,r]
i is an infinite complex which starts at position r − d + 2 + 2i.

Moreover,

K[n,a,b,r]
1 : ΛdV ⊗ V

[n+d,a,b,r−d]
d−n

δ→ Λd−1V ⊗ V
[n+d−1,a,b,r−d+1]
d−n+1

δ→ . . .

. . .
δ→ ΛiV ⊗ V

[n+i,a,b,r−i]
2d−i−n

δ→ Λ0V ⊗ V
[n,a,b,r]
2d−n . (4.36)
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Similarly to K[n,a,b,r]
0 , also K[n,a,b,r]

1 can be written in triangular shape (4.31),
and its sheafification K̃[n,a,b,r]

1 is quasi-isomorphic to

Ωd−1
PN−1(−a + n)

∣∣
X

� OX(−b + d − n) →
→ Ωd−2

PN−1(−a + n − 1)
∣∣
X

� OX(−b + d − n + 1) → · · ·
· · · → Ω0

PN−1(−a + n − d + 1)
∣∣
X

� OX(−b + 2d − n − 1), (4.37)

where the last term is at position r + 2. Indeed, K̃[n,a,b,r]
i for any i ≥ 0

is quasi-isomorphic to the complex (4.37) tensored by OX � OX(di) and
shifted to the right by 2i.

Using Beilinson’s resolution

0 → ΩN−1
PN−1(N − 1) � OPN−1(1 − N) → . . . → Ω1

PN−1(1) � OPN−1(−1)

→ Ω0
PN−1(0) � OPN−1(0) → OΔ → 0

(4.38)

of the diagonal Δ ⊂ P
N−1 × P

N−1, we easily see that

K̃[n,a,b,r]
i

∼= OΔ ⊗ (OX(−a + n − d + 1)

� OX(−b + d − n − 1 + di)) {−r − 2i}. (4.39)

for i > 0. One can then use the resolution

0 → OPN−1(−d) � OPN−1(−d)

→ (OPN−1(−d) � OPN−1) ⊕ (OPN−1 � OPN−1(−d))

→ OPN−1 � OPN−1 → OX×X → 0 (4.40)

of OX � OX on P
N−1 × P

N−1 to obtain

K̃[n,a,b,r]
i

∼= OΔX(−a − b + (i − 1)d){−r − 2i + 1}
⊕ OΔX(−a − b + di){−r − 2i} (4.41)

for i > 0. In this complex all maps are zero, i.e., K̃[n,a,b,r]
i is quasi-isomorphic

to its cohomology. Now, it is not difficult to see that the map σ : K̃[n,a,b,r]
i →

K̃[n,a,b,r]
i+1 in cohomology descends to the map 1 : OΔX(−a + b + di){−r −

2i} → OΔX(−a + b + di){−r − 2i} from the second summand in (4.41) for
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K̃[n,a,b,r]
i to the first summand for K̃[n,a,b,r]

i+1 . Thus these summands succes-

sively cancel in the cone construction of C̃[n,a,b,r]
0 , and one ends up with

C̃[n,a,b,r]
0

∼= OΔX(−a − b){−r − 1}. (4.42)

Thus, this indeed completes (4.33) to the large volume kernel

Ωd−n−1
PN−1 (−a)

∣∣
X

� OX(−b) → Ωd−n−2
PN−1 (−a − 1)

∣∣
X

� OX(−b + 1) → · · ·
· · · → Ω0

PN−1(−a − d + n + 1)
∣∣
X

� OX(−b + d − n − 1) → OΔX(−a − b),
(4.43)

where the last term is at position r + 1.

Let us transport the LG-monodromy defect matrix factorizations Ĩm from
the Landau–Ginzburg point through the phase boundary component N0 ×
Nd−1 corresponding to the combination of dual charge windows N0 × (−N0)
into the large volume phase. To simplify notation we parametrize m = M +
dk with M ∈ {−d, . . . ,−1}. As discussed at the end of Section 4.2, the lift of
the matrix factorization Ĩm to this window is given by Î [M+d,M+1,d−1,2k−2].
Following the arguments above, the corresponding large volume complex
can be read off from (4.43) to be

(Ω−M−1
PN−1 (−M − 1)

∣∣
X

� OX(1 − d)

→ Ω−M−2
PN−1 (−M − 2)

∣∣
X

� OX(2 − d) → · · ·
· · · → Ω0

PN−1(0)
∣∣
X

� OX(−M − d) → OΔX(−M − d)){1 − 2k}. (4.44)

As discussed in Section 3 the associated Fourier–Mukai kernels are obtained
by tensoring these complexes by OX � OX(d){−1}:

(
Ω−M−1

PN−1 (−M − 1)
∣∣
X

� OX(1) → Ω−M−2
PN−1 (−M − 2)

∣∣
X

� OX(2) → . . .

· · · → Ω0
PN−1(0)

∣∣
X

� OX(−M) → OΔX(−M)){−2k}. (4.45)

We indeed find the expected (see [14, 16, 30]) Fourier–Mukai kernels for the
Landau–Ginzburg monodromies G−m, where G is the generator of this mon-
odromy (cf. table 2). In particular for the identity defect Ĩ0, the result-
ing kernel (M = −d, k = 1) is nothing but OΔX , the kernel of the trivial
Fourier–Mukai transform.
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Table 2: Summary of the result of the transport of the Landau–Ginzburg
monodromy defects given in the first column through the phase boundary
component N0 × (−N0) into the large volume phase. The second column
contains the lifts of the defects to the gauged linear σ-model compatible with
the corresponding charge window N0 × (−N0). The last column shows the
resulting Fourier–Mukai kernels which are obtained from the large volume
defects by tensoring with OX � OX(d){1}. The underlined sheaves are at
position zero in the complexes.

LG defect GLSM defect FM kernel
...

...
...

Ĩ0 Î [0,1−d,d−1,0] OΔX

Ĩ−1 Î [d−1,0,d−1,−2] OX � OX(1) → OΔX(1)

Ĩ−2 Î [d−2,−1,d−1,−2] Ω1
PN−1(1)

∣
∣
X

� OX(1) → OX � OX(2) → OΔX(2)

...
...

...

Ĩ−(d−1) Î [1,−(d−2),d−1,−2] Ωd−2
PN−1(d − 2)

∣
∣
X

� OX(1) → Ωd−3
PN−1(d − 3)

∣
∣
X

� OX(2)
· · · → OX � OX(d − 1) → OΔX(d − 1)

Ĩ−d Î [0,1−d,d−1,−2] OΔX{2}
...

...
...

4.4 Conifold and large-volume monodromies in the GLSM
moduli space

Before we start to analyse the monodromy structure in the gauged linear
σ-model we should remark that the Kähler moduli space of the latter not
always coincides with the Kähler moduli space of the corresponding non-
linear σ-model. Already in its geometric phases gauged linear σ-models only
capture those Kähler moduli of the non-linear σ-models on hyperplanes X,
which are inherited from the ambient space.16 However, if the ambient space
is the projective space P

N−1, and if N > 4 then the Lefschetz hyperplane
theorem guarantees that the pullback of the embedding map induces an
isomorphism from the cohomology group H2(PN−1, Z) of the ambient space
to the cohomology group H2(X, Z) of the embedding space. Therefore, for

16In particular for more general geometries this implies that one cannot include non-
toric divisors because the gauged linear σ-model is tailor-made to describe only toric data.
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these cases we expect that the Kähler moduli spaces of gauged linear σ-model
and non-linear σ-model and also monodromies in these moduli spaces agree.

Note that the above argument excludes the cubic torus in P
3 and the

quartic K3 surface in P
4. In the former example, although the dimensions

of the integer cohomology groups are the same, the pullback of the generator
of H2(P3, Z) does not map to the generator of H2(X, Z). As a consequence
the large radius monodromy of the gauged linear σ-model is the third power
of the large radius monodromy of the non-linear σ-model on the torus [31],
whereas monodromies around Landau–Ginzburg and conifold point agree.
In the latter example the gauged linear σ-model description only covers a
slice of the non-linear σ-model Kähler moduli space, because for (algebraic)
K3 surfaces dim H1,1(X) = 20.

After this interlude about the relation between Kähler moduli spaces
and monodromies in non-linear and gauged linear σ-models, let us now
return to the discussion of the monodromies in gauged linear σ-models. By
transporting the LG monodromy defects through different phase boundary
components in the Kähler moduli space of the gauged linear σ-model, one
can indeed also obtain the monodromies around conifold and large volume
point in the gauged linear σ-model.

For instance, transporting the identity defect Ĩ0 from the Landau–
Ginzburg point into the large volume phase through the component N0 × Nd

of the phase boundary is the same as first transporting it through the compo-
nent N0 × Nd−1 and then transporting it around the conifold point once. As
discussed in Section 4.3, transporting the identity defect through N0 × Nd−1
one obtains the large volume kernel OΔX of the identity Fourier–Mukai
transform tensored by OX � OX(−d){1}. The effect of taking it around
the conifold point is then given by an action of the Fourier–Mukai transfor-
mation associated to the conifold monodromy. Therefore, transporting the
identity defect through N0 × Nd gives rise the the Fourier–Mukai kernel of
the conifold monodromy tensored by OX � OX(−d){1}.

As has been shown in (4.2), the lift of the identity defect Ĩ0 to the GLSM
compatible with N0 × Nd, i.e., the one which can be transported through
the phase boundary component N0 × Nd is given by Î [d−1,0,d,−2]. The cor-
responding large volume complex can be read off from (4.43) to be

(OX � OX(−d) → OΔX(−d)) {1}, (4.46)

giving rise to the expected Fourier–Mukai kernel

OX � OX → OΔX (4.47)
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associated to the conifold monodromy17 (see [14, 16, 30] for a target space
geometric derivation of this monodromy transformation).

The Landau–Ginzburg realization of the conifold monodromy can be
obtained by transporting the large volume complex (4.46) back to the
Landau–Ginzburg point through the phase boundary component N0 × Nd−1
corresponding to the charge window N0 × (−N0). This is easy to accom-
plish. We first note that (4.46) is a cone of two one-term complexes which
we know how to transport to the LG point. Namely, OΔX(−d){1} has been
obtained by transporting Ĩ0 through N0 × Nd−1 to large volume in Section
4.3 above. Moreover, OX � OX(−d){1} is a product sheaf. As has been
discussed in Section 3.4, the first factor OX can be obtained by transport-
ing the tensor product matrix factorization P̃ 0 of W (xi) to large volume
through N0.

Furthermore, using the fact (discussed in Appendix A) that the dual P ∗

of a matrix factorization P transported to large volume through a phase
boundary component N corresponding to charge window N gives rise to
the dual of the large volume complex obtained by transporting P to large
volume through the component −N associated to the dual charge window
−N tensored by OX(−d){1}, we see that OX(−d){1} ∼= O∗

X(−d){1} can be
obtained by transporting (P̃ 0)∗ to large volume through phase boundary
component Nd−1. Thus, the realisation of the conifold monodromy is given
by the cone

Cone
(
r̃ : P̃ 0(x) ⊗

(
P̃ 0(y)

)∗
→ Ĩ0

)
, (4.48)

where P̃ 0(x) denotes the respective equivariant tensor product matrix fac-
torization of W (x1, . . . , xN ), and the map r̃ is induced by the identity map
id : P 0 → P 0 by means of the folding isomorphism (3.31). In physics termi-
nology this is the tachyon condensation of the sum of defect matrix factor-
izations

P̃ 0(x) ⊗
(
P̃ 0(y)

)∗
{1} ⊕ Ĩ0 (4.49)

with tachyon associated to r̃. In Section 5 we will discuss the conifold
monodromies in more detail and more generality.

To obtain the inverse of the large volume monodromy one has to compose
the generator of the conifold monodromy with the inverse of the generator
G of the Landau–Ginzburg monodromy. The corresponding large volume
complex can be obtained by transporting the defect Ĩ1 through the phase

17This is indeed also the expected monodromy in the Kähler moduli space of the
corresponding non-linear σ-model.
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boundary component N0 × Nd. The lift of Ĩ1 compatible with the corre-
sponding charge window N0 × (−N0 + 1) is given by Î [0,1−d,d,0]. The large
volume complex can then be read off from (4.43) to be

OΔX(−1 − d){1}. (4.50)

Tensoring by OX � OX(d){−1} we obtain the Fourier–Mukai kernel
OΔX(−1) of the inverse of the large-volume monodromy. This is also the
expected result for the monodromy around the large volume limit in the
Kähler moduli space of the gauged linear σ-model [13,14,16]. Note that, as
alluded to above, in the case that X is the cubic torus in P

2, i.e., N = d = 3,
this monodromy does not coincide with the large volume monodromy in the
Kähler moduli space of the corresponding non-linear σ-model, but is its
third power.

5 Conifold monodromy

Let us now discuss the conifold monodromy in more detail. A conifold
point in the Kähler moduli space of a non-linear σ-model on a Calabi–Yau
manifold X is characterized by the property that at this point a certain
B-type BPS brane Q becomes massless. This means that its (quantum)
world-volume in the Calabi–Yau space vanishes while the (quantum) world-
volumes of other B-type branes remain finite [50]. Such points are easily
identified in the mirror geometry, where the vanishing quantum cycle of
the B-brane Q arises classically as a singularity in the mirror Calabi–Yau
manifold. Locally, the latter can be described by the geometry of a singular
conifold [51].

B-type D-branes transform under the monodromy around conifold points
in Kähler moduli space in a non-trivial way. The monodromy action on
D-brane charges is encoded in the periods in the vicinity of the conifold
point [50, 52, 53]. But the analysis can be extended beyond the level of D-
brane charges to the category of topological B-branes. It turns out that
the conifold monodromy acts on the large volume realization Db(X) of this
category by means of the Fourier–Mukai transformation ΦKC

Q with kernel

KC
Q = Cone(r : Q � Q∨ → OΔX), (5.1)

determined by the large volume complex Q associated to the B-brane Q
[14, 54]. Here Q∨ denotes the dual of Q, and OΔX is structure sheaf of the
diagonal ΔX ⊂ X × X. The map r is the restriction map to the diagonal



1120 ILKA BRUNNER ET AL.

ΔX. If for instance Q = OX , then the map r restricts OX×X = OX � OX

to OΔX .

In general, the map r, which is an element of Hom(Q � Q∨,OΔX), is
induced from the identity map id ∈ Hom(Q,Q) by means of the following
chain of isomorphisms: The complex Q is quasi-isomorphic to its image
ΦOΔX (Q) under the trivial Fourier–Mukai transform. Therefore Hom(Q,Q)
is isomorphic to Hom(Q, ΦOΔX (Q)), which in turn is isomorphic to Hom(Q �
Q∨,OΔX) (cf. Equation (3.30)).

The action of the Fourier–Mukai transformation ΦKC
Q associated to the

kernel (5.1) on a complex E can also be represented in the following way
[31,54]:

E �→ Cone (ev : Hom(Q, E) ⊗ Q → E) , (5.2)

where ‘ev’ denotes the evaluation map. This expression also makes more
transparent that the advocated Fourier–Mukai transformation ΦKC

Q indeed
reduces to the expected map on the level of D-brane charges.

In this paper, we focused our considerations on non-linear σ-models whose
target spaces X are projective Calabi–Yau hypersurfaces. The Kähler mod-
uli spaces of the gauged linear σ-model realization of these models exhibit
a conifold singularity, at which the (quantum) world-volume of the entire
target space is zero.

The monodromy around this point was derived in Section 4.4 by lifting
the identity defect to the gauged linear σ-model and transporting it around
the singularity. In the large volume phase we indeed obtained the Fourier–
Mukai transformation with kernel (4.47) which is of the general form KC

Q
where Q = OX is the large volume complex representing the B-brane which
becomes massless at the conifold point.

Thus, this approach provides an independent derivation of the conifold
monodromy for this particular case. Moreover, it also yields a realization of
this monodromy at the Landau–Ginzburg point. Namely, we obtained the
cone (4.48) as the matrix factorization representing the defect which realizes
this monodromy. The structure of this matrix factorization is very reminis-
cent of the structure of the Fourier–Mukai kernel KC

Q. In the following, we
will generalize these Landau–Ginzburg defects to arbitrary B-branes Q and
show that transported to large volume they reproduce the Fourier–Mukai
kernels KC

Q. Hence, we obtain a Landau–Ginzburg realization of arbitrary
conifold monodromies.
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5.1 Conifold-like defects in general CFTs

As preparation, we would like to give a non-technical description of a class of
defects arising in any N = (2, 2) superconformal field theory, whose action
on boundary conditions mimics conifold monodromy transformations. The
conifold monodromy defects which we will present in the next section are
a concrete example of this general construction in the context of Landau–
Ginzburg models.

As described in the Introduction, conifold monodromies can be under-
stood as follows. Any number of D-branes Q which become massless at a
conifold point can be created there at no cost in energy. When one transports
a massive probe D-brane E around this point, it forms bound states with
these D-branes, provided there are suitable open string tachyons between Q
and E. This is exactly what is described by formula (5.2) in the context of
large volume non-linear σ-models.

Therefore, a defect mimicking such a monodromy transformation has to
map a boundary condition E to itself, and in addition it has to create a copy
of a chosen boundary condition Q for every possible tachyon between Q and
E. Moreover, it has to form a bound state of this collection of boundary
conditions.

Defects which upon fusion with a boundary condition E create the above
constituent boundary conditions before bound state formation are very easy
to find. First of all, the identity defect Id, which exists in all CFTs maps
any boundary condition E to itself. The second constituent can be obtained
by fusion with a totally reflective defect.

Totally reflective defects are defects which do not allow the transmission
of excitation from one of the adjacent CFTs to the other. Hence, they are
defined by boundary conditions in each of these CFTs. For instance, one can
choose the boundary condition Q on one side of the defect and the world-
sheet parity dual Q∗ of Q on the other side. If the corresponding defect
TQ = Q ⊗ Q∗ is fused with the boundary condition E, it creates a copy of
the boundary condition Q for every tachyon between Q and E, or to be
more precise, it turns E into the boundary condition H∗(Q, E) ⊗ Q. Thus,
identity defect Id and the totally reflective defect TQ indeed provide the
building blocks needed to produce conifold-like transformation on boundary
conditions, cf. (5.2).

The bound state formation of this collection of boundary conditions is
then induced by a bound state formation of the anti-defect TQ{1} whose
R-charges have been shifted by 1 relative to TQ and the trivial defect Id.
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Figure 5: The spectrum of boundary fields of a boundary condition Q (right)
always contains the identity. This yields a universal element in the spectrum
of defect-changing fields between the totally reflective defect TQ and the
identity defect (left).

Indeed, there is a universal defect-changing field in the spectrum between
these two defects which can be used to trigger the corresponding tachyon
condensation. It can be described by means of the folding trick, cf. figure 5.
Being a totally reflective defect, one can cut open the world-sheet along the
defect TQ. In particular, if Id and TQ run parallel along a cylinder, the latter
can be unfolded to a strip with boundary conditions Q at both its edges.
Since Id is the trivial defect, the spectrum of defect-changing fields between
Id and TQ is therefore isomorphic to the spectrum of boundary fields on
the boundary condition Q. (This is a special case of the folding formula
(3.31).)

Thus, the identity boundary field on Q gives rise to a universal bosonic
defect-changing field between TQ and Id, which is promoted to a fermionic
field between the shifted defect TQ{1} and Id. This defect-changing field can
be used to form a bound state CQ of the defects TQ{1} and Id, and upon
fusion of CQ with a boundary condition E it induces exactly the tachyons
between E and the collection of boundary conditions Q created by TQ (i.e.,
H∗(Q, E) ⊗ Q), which trigger the desired bound state formation. It is the
exact analogue of the map ev in (5.2).

Hence, the bound state defect CQ realizes conifold-like actions on bound-
ary conditions in any N = (2, 2) superconformal field theory.

To relate this general construction to the derivation of the special conifold
defects in Section 4.4, note that the conifold defects (4.48) obtained there
in the context of Landau–Ginzburg orbifolds indeed are of the form CQ,
where Q is given by the matrix factorization P̃ 0. The map r̃ is exactly the
universal defect-changing field discussed above.
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5.2 Conifold defects in the Landau–Ginzburg phase

After this digression into the context of general N = (2, 2) superconfor-
mal field theories, we will turn back to conifold monodromies in non-linear
σ-models. In the following, we will realize the Fourier–Mukai transforma-
tions ΦKC

Q representing monodromies around conifold points associated to
B-type D-branes with arbitrary large volume complex Q as defects in the
Landau–Ginzburg phase.

Guided by the above discussion, we first need to identify the equivariant
matrix factorization

Q : Q1
q1 �� Q0
q0

�� , (5.3)

of W (x1, . . . , xN ) which in the Landau–Ginzburg phase represents the BPS
brane that becomes massless at the chosen conifold locus. Let Q∗ be the
dual of the matrix factorization Q defined as in (3.32). Note that the repre-
sentations of the orbifold group Γ and R-symmetry group on the dual matrix
factorization Q∗ are given by the dual of the representations on Q.

Now let us denote by Q(y) the matrix factorization W (y1, . . . , yN )
obtained from Q by replacing the variables xi by yi, and set Q(x) = Q. The
tensor product (as defined in (2.3)) Q(x) ⊗ Q∗(y) of the matrix factorizations
Q(x) and the dual of Q(y) yields a matrix factorization of W (x1, . . . , xN ) −
W (y1, . . . , yN ) which will eventually corresponds to the large volume com-
plex Q � Q∨ in the conifold Fourier–Mukai kernel KC

Q defined in (5.1). We
denote this tensor product matrix factorization by TQ. Concretely, it reads

TQ = Q(x) ⊗ Q∗(y) :

Q1(x) ⊗ Q∗
0(y)

⊕
Q0(x) ⊗ Q∗

1(y)

t1=
(

q1(x)⊗id id⊗q∗
0(y)

id⊗q∗
1(y) q0(x)⊗id

)

��
Q0(x) ⊗ Q∗

0(y)
⊕

Q1(x) ⊗ Q∗
1(y)t0=

(
q0(x)⊗id −id⊗q∗

0(y)
−id⊗q∗

1(y) q1(x)⊗id

)�� (5.4)

This is a Γ × Γ × U(1)R-equivariant matrix factorization with representa-
tions induced by the ones on the factors Q(x) and Q∗(y).

The next ingredient in the defect (4.48) realizing the monodromy around
the conifold point associated to OX is the matrix factorization Ĩ0 represent-
ing the identity defect. As has been discussed in Section 4.1 this corresponds
to the trivial Fourier–Mukai transform at large volume, which has the diag-
onal structure sheaf OΔX as kernel.
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Finally, the map r̃ in (4.48) is replaced by the analogous map r̃ ∈ H0
orb(TQ,

Ĩ0) represented by the maps r̃s in the commutative diagram

(TQ)1
t1 ��

r̃1
��

(TQ)0
t0

��

r̃0
��

Ĩ1

ı̃1 ��
Ĩ0

ı̃0
��

(5.5)

which is induced by the identity morphism of the matrix factorization Q by
means of the folding isomorphisms H0(Q(x), Q(x)) ∼= H0(Q(x), Ĩ0 ∗ Q(y)) ∼=
H0(TQ, Ĩ0), cf. (3.31). This map corresponds to the restriction map r in
the Fourier–Mukai kernel (5.1) at large volume. Its explicit computation is
given in Appendix B.

Now we have all the ingredients at hand to state the matrix factorization
representing the the conifold defect at the Landau–Ginzburg point. As in
(4.48) it is given by the cone construction with respect to the map r̃:

CQ = Cone(r̃ : Q(x) ⊗ Q∗(y) → Ĩ0). (5.6)

In physics language this construction corresponds to the topological con-
densate [55] of the tensor product defect TQ{1} and Ĩ0, triggered by the
fermionic open-string cohomology element corresponding to r̃. Note that
here TQ{1} denotes the anti-defect of TQ whose R-charges have been shifted
by 1. By this spectral flow, the bosonic morphism r̃ has become fermionic
[56]. The final result of this condensation process yields the matrix factor-
ization CQ for the conifold defect, which more concretely reads

CQ :
Ĩ1
⊕
T̃0

c1=
(

ı̃1 r̃0
0 −t0

)

��
Ĩ0
⊕
T̃1c0=

(
ı̃0 r̃1
0 −t1

)�� (5.7)

Note that due to the constant entries in the topological tachyon r̃, this
matrix factorization can always be reduced to smaller rank by removing
trivial brane-anti-brane pairs [57].

In this way we obtain candidates for the Landau–Ginzburg defect real-
izations of general conifold monodromies. In the next section we will show
that they indeed give rise to the desired Fourier–Mukai transformations ΦKC

Q

with kernels (5.1) when transported into the large volume phase.
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5.3 Transport to the large volume phase

In order to transport the conifold defect (5.6) to the large volume phase we
again follow the steps used in Section 4.4. We first observe that if two matrix
factorizations P of W (xi) and Q of W (yi) give rise to large volume com-
plexes P and Q when transported into the large volume phase through phase
boundaries N and N ′, respectively, the tensor product P ⊗ Q gives rise to
the exterior product P � Q when transported to large volume through the
phase boundary segment N × N ′. This can directly be seen by comparing
the unbounded complex obtained from the lift of the tensor product P ⊗ Q
to the exterior product of the two unbounded complexes P and Q. This
general relation can be formulated as

LVN (P ) � LVN ′(Q) ∼= LVN×N ′(P ⊗ Q). (5.8)

Furthermore, we use the relation (A.1)

LV−N (P ∗) ∼= (LVN (P ))∨ ⊗ OX(d){−1} (5.9)

between duality of matrix factorizations at the Landau–Ginzburg point and
duality of complexes of coherent sheaves at large volume derived in Appendix
A. Here −N is the phase boundary component whose associated charge
window is the dual −N of the one N associated to N .

Using these two relations, one easily sees that if the matrix factorization
Q corresponds to the large volume complex Q when transported from the
Landau–Ginzburg to the large volume phase through the phase boundary
component N , TQ gives rise to

LVN×N∗ ∼= Q � (Q∨ ⊗ OX(−d){1}) (5.10)

upon parallel transport through the phase boundary segment N × N∗.

Using that the identity defect transports to the large volume complex

LVN×N∗(Ĩ0) ∼= OΔX(−d){1} (5.11)

which was shown in Section 4.3, we finally arrive at the large volume complex

LVN×N∗(CQ) ∼= Cone(r : Q � (Q∨ ⊗ OX(−d){1}) → OΔX(−d){1})
(5.12)
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arising by transporting the defect CQ of (5.6) through the phase boundary
segment N × N∗ to the large volume phase. Here, the restriction map r
arises in the following way: In the Landau–Ginzburg phase the correspond-
ing morphism r̃ of matrix factorizations is induced from the identity map
in Hom(Q, Q). As a result the large volume counterpart must be induced
from the identity morphism Hom(Q,Q) as well. This, however, is precisely
the definition of the restriction map r in Equation (5.1).

Tensoring the large volume kernel (5.12) by OX � OX(d){−1} to obtain
the associated Fourier–Mukai kernel (cf. (3.38)), we indeed find that the
defect CQ at the Landau–Ginzburg point realizes the Fourier–Mukai trans-
formation ΦKC

Q on the category of the large volume B-branes which is asso-
ciated to the conifold kernel KC

Q. This shows that CQ indeed represents the
monodromy around the conifold point at which the D-brane associated to
Q becomes massless.

6 Discussion

In this paper we have discussed B-brane monodromy transformations from
the world-sheet point of view. Our construction of monodromies can be
understood as an application of the idea put forward in [12] that the effect
which bulk perturbations of conformal field theories have on boundary con-
ditions imposed on the world-sheet boundaries can be realized by fusion
with specific defects associated to the perturbations.

We have constructed the defects corresponding to deformations along
closed loops in Kähler moduli space of non-linear σ-models, which start
and end at Landau–Ginzburg points. At these points the study of B-type
defects and D-branes is particularly simple, because they can be elegantly
described by means of matrix factorizations.

Using the description of B-type D-branes in gauged linear σ-models devel-
oped in [22] we have shown that the action of any B-type defect at the
Landau–Ginzburg point is realized by a Fourier–Mukai transformation on
the B-brane category at large volume. Moreover, the particular Fourier–
Mukai transformations arising in this way from our monodromy defects
indeed agree with the ones obtained from a more target space geometric
approach to monodromies in [13,14,16].

This gives further support to the idea that the effect of bulk perturbations
on boundary conditions can be efficiently described using defects. A different
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type of examples, namely relevant flows between N = 2 minimal models has
been analysed in [12].

We have focused our considerations on non-linear σ-models on Calabi–
Yau hypersurfaces in projective space, and also on the part of their Kähler
moduli spaces which can be realized by means of a gauged linear σ-model
with U(1) gauge group. It would be interesting to adapt our constructions
to more general situations such as models with a more complicated phase
structure. In particular, the lift to the gauged linear σ-model allows to
derive all defects arising from monodromies around singularities in Kähler
moduli space which are captured by the GLSM, by transporting the identity
defect around the respective loops in Kähler moduli space. In this way, also
more complicated monodromy groups could be analysed.

Our finding that fusion of defects at Landau–Ginzburg points is realized
by means of Fourier–Mukai transformations in the large volume regime can
also be turned around to provide a complementary perspective on functors
on B-brane categories. Fusion of defects in Landau–Ginzburg models seems
to be conceptually simpler and in some cases easier to work with in practice
than the corresponding Fourier–Mukai transformations at large volume. As
the example of the “quantum symmetry defects” discussed in Section 4.1
strikingly demonstrates, there are functors which seem to be rather com-
plicated at large volume but have a very simple defect realization at the
Landau–Ginzburg point.

In particular, the Landau–Ginzburg realization provides a new and poten-
tially simpler method to calculate D-brane monodromies [14, 15, 31].
Interesting cases to study include the action of monodromies on D0-branes
supported at specific points of Calabi–Yau target spaces, as well as examples
exhibiting K-theory torsion.
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Appendices

A Dual matrix factorizations and dual complexes

Lifting a matrix factorization P and its dual P ∗ to the GLSM and trans-
porting it into the large volume phase through the phase boundary com-
ponent N with associated charge window N and its dual N∗ with charge
window −N , respectively, one obtains two complexes P := LVN (P ) and
lineP := LVN∗(P ∗). In this Appendix we will show that they satisfy the
following relations:

LVN (P ) ∼= (LVN∗(P ∗))∨ ⊗ OX(−d){1}
(LVN (P ))∨ ∼= LVN∗(P ∗)∨ ⊗ OX(d){−1}. (A.1)

Here “∼=” means quasi-isomorphic, and “∨” refers to the dual complex of
coherent sheaves.

The dual P ∗ of the matrix factorization P is defined in Equation (3.32),
and it carries the duals ρ∗, (ρR)∗ of the representations ρ and ρR of the
orbifold group Γ = Zd and the R-symmetry group U(1)R defined on P :

(ρ∗)s(γ) = (ρs)∗(γ−1), ((ρR)∗)s(ϕ) = (ρR)∗
s(−ϕ). (A.2)

As reviewed in Section 3 the large radius complex, P = LVN (P ) obtained
by transporting the Landau–Ginzburg B-brane represented by the matrix
factorization P through the phase boundary component N into the large
volume phase has the general form

P : · · · �� Pk−1
℘k−1 �� Pk

℘k �� Pk+1
℘k+1 �� · · · . (A.3)

The sheaves Pk which appear in the complex at grading k are given by

Pk =
⊕
i∈Ak

OX

(
d
2(k − ri) + qi

)
, (A.4)

in terms of the GLSM R-charges ri defined in Section 3.2 and the index sets

Ak =
{

i

∣∣∣∣ 0 ≤ 1
2

(k − ri) ∈ Z

}
. (A.5)

The U(1)R-charges qi lie in the charge window N associated to the phase
boundary component N . Finally, the maps ℘k are truncations of the maps
ps defining the matrix factorizations P .
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The index set Ak arises from the fact that in order to go to the large
volume phase we need to integrate out the field p. On the boundary however,
the field p gives rise to a boundary interaction, which generates a Fock space
for each index i [22]. The Fock space vacua have U(1) × U(1)R charges
(qi, ri), whereas their jth excited states have U(1) × U(1)R charges (qi +
jd, ri + 2j). The index set Ak is a bookkeeping device for all the states in
the Fock spaces. At large volume these states give rise to the line bundles
OX(qi + jd) in the complex representing the D-brane under consideration.

There are a few comments in order. First, we observe that the com-
plex (A.3) is bounded to the left because for sufficiently small k the index
sets Ak are all empty. On the other hand, for k sufficiently large the complex
becomes two-periodic in the sense that ℘k = pk mod 2.

Analogously, lifting dual matrix factorization P ∗ to the GLSM and trans-
porting it through the phase boundary component N∗ corresponding to the
dual charge window N ∗ = −N , the resulting complex reads

P̄ : · · · �� P̄k−1
℘̄k−1 �� P̄k

℘̄k �� P̄k+1
℘̄k+1 �� · · · , (A.6)

with

P̄k =
⊕
i∈A∗

k

OX

(
d
2(k + ri) − qi

)
, A∗

k =
{

i

∣∣∣∣ 0 ≤ 1
2

(k + ri) ∈ Z

}
. (A.7)

Here the signs of the U(1)- and U(1)R-charges are reversed relative to the
ones appearing in the definition of P, because P ∗ carries the dual represen-
tations of Γ = Zd and U(1)R, and P ∗ was lifted in a way compatible with
the dual charge window −N . The maps ℘k in this complex are now trun-
cations of the maps (p∗)0 and −(p∗)1 defining the dual P ∗ of the matrix
factorization P .

In order to determine the relation between the complexes (A.6) and (A.3)
we form the dual complex, P̄∨:

P̄∨ : · · · �� (P̄∨)−(k+1)
℘̄∗

k �� (P̄∨)−k
℘̄∗

k−1�� (P̄∨)−(k−1) �� · · · .

(A.8)

The maps ℘̄∗
k in the dual complex are induced by the maps (p∗

s)
∗ = ps. The

coherent sheaves in the dual complex at grading −k are the dual sheaves of
the original complex at grading k. Therefore, for the coherent sheaves in
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the dual complex at grading k we arrive at

(P̄∨)k =
⊕

i∈A∗ ∨
k

OX

(
d
2(k − ri) + qi

)
, A∗ ∨

k =
{

i

∣∣∣∣ 0 ≥ 1
2

(k − ri) ∈ Z

}
.

(A.9)

By construction this dual complex is bounded to the right and two-periodic
to the left with (℘̄∗)k = pk mod 2 for k sufficiently small. Note that the left
two-periodic part of P̄∨ is given by the maps ps, as is the right two-periodic
part of P. Thus, it is tempting to combine these two complexes to form
a single two-periodic complex unbounded to both sides. This is not quite
possible however, because the index sets Ak and A∗ ∨

k are not complementary.
But this can be easily remedied by tensoring the complex P̄∨ with the one-
term complex OX(−d){2}. The resulting complex

F := P̄∨⊗OX(−d){2} : · · · �� Fk−1 �� Fk �� Fk+1 �� · · · ,

(A.10)
now consists of sheaves

Fk =
⊕
i∈Bk

OX

(
d
2(k − ri) + qi

)
, Bk =

{
i

∣∣∣∣ 0 >
1
2

(k − ri) ∈ Z

}
(A.11)

defined by index sets Bk which are complementary to Ak.

Let us now analyse the consequences of this observation. As indicated
we can now combine the two complexes P and P̄∨⊗OX(−d){2} to form the
announced unbounded two-periodic complex, which we denote by Z. This
is achieved in two steps. We first take the direct sum of these two com-
plexes and then supplement the maps, which we collectively denote by δ℘
in the resulting complex at various gradings in order to obtain the desired
two-periodicity. The described procedure, however, is simply the cone con-
struction, i.e., the resulting complex Z is formally given by

Z = Cone
(
δ℘ : P̄∨⊗OX(−d){1} → P

)
. (A.12)

But this complex is nothing but the unbounded two-periodic complex defined
by the matrix factorization P , with maps zk = pk mod 2. Therefore, for all
k the image of the map zk equals the kernel of the map zk+1, and hence
the complex Z has no cohomology and is quasi-isomorphic to the null com-
plex. This in turn implies that the constituents P̄∨⊗OX(−d){1} and P are
quasi-isomorphic to each other, which implies the advocated relations (A.1).
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B Restriction map tachyon

Here we derive the bosonic morphism r̃ between the tensor product matrix
factorizations TQ̃ defined in (5.4) and the matrix factorization Ĩ0 repre-
senting the identity defect. It is an element of the BRST-cohomology group
H0

orb(TQ̃, Ĩ0) which is induced from the identity map in H0
orb(Q̃, Q̃) by means

of the folding isomorphism (3.31). First, we construct the cohomology ele-
ment r = (r0, r1) of the corresponding matrix factorizations in the unorb-
ifolded theory. It arises in the following commutative diagram:

Q1 ⊗ Q∗
0⊕

Q0 ⊗ Q∗
1

t1=
(

q1(x)⊗id id⊗q∗
0 (y)

id⊗q∗
1 (y) q0(x)⊗id

)
��

r1=

⎛
⎜⎜⎜⎝

q
(1)
1 (x,y) −q

(1)
0 (x,y)

q
(3)
1 (x,y) −q

(3)
0 (x,y)

...
...

⎞
⎟⎟⎟⎠

��

Q0 ⊗ Q∗
0⊕

Q1 ⊗ Q∗
1t0=

(
q0(x)⊗id −id⊗q∗

0 (y)
−id⊗q∗

1 (y) q∗
1 (x)⊗id

)��

r0=

⎛
⎜⎜⎝

1 −1

q
(2)
1 (x,y) −q

(2)
0 (x,y)

...
...

⎞
⎟⎟⎠

��
ΛoddV

δ+σ �� ΛevenV
δ+σ

��

(B.1)

In order to construct all the entries of the matrices (r0, r1) we first observe
that the map δ acts on the module Λ∗V as a differential obeying δ2 = 0.
Thus we can analyse its cohomology. The only non-trivial cohomology is in
degree 0, and it is given by C[xi, yi]/(x1 − y1, . . . , xN − yN ).

This allows us now to recursively define the entries of the matrices r0 and
r1. The first entries, q

(1)
0 and q

(1)
1 , of the matrix r1 are defined by

δ(q(1)
s (x, y)) = qs(x) − qs(y), s = 0, 1. (B.2)

Note that the right-hand sides vanish for x = y and are therefore δ-exact.
Hence these two equations define q

(1)
s up to unimportant δ-closed one-forms.

Then the entries q
(k)
s for k ≥ 2 are given recursively by

δ(q(k)
s (x, y)) = −

∑
i

Ai(x, y)ei ∧ q(k−2)
s (x, y)

+ q(2k−1)
s (x, y)qs(x) − qs(y)q(2k−1)

s+1 (x, y), (B.3)
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with q
(0)
s = (−1)s+11. Similarly to the case k = 1, it is straightforward to

check that the right-hand sides of all the equations (B.3) are δ-closed. More-
over, due to the fact that there is no non-trivial cohomology at higher degree,
δ-closedness implies δ-exactness. Thus the relations (B.3) also can be solved
recursively to define (again up to unimportant closed contributions) all the
other entries of r0 and r1.

With the definitions of the entries r0 and r1 at hand it is straightforward
to check that the diagram (B.1) is indeed commutative. In addition, the
constant entries in the matrix r0 ensure that (r1, r0) defines a non-trivial
morphism in H0(Q ⊗ Q∗, I). In fact, it can be identified with the identity
morphism in H0(Q, Q).

Eventually we need the corresponding morphism r̃ ∈ H0
orb(Q̃

ρ ⊗ Q̃ρ ∗, Ĩ0)
in the orbifold category. The orbifold construction for matrix factorization
has been reviewed in Section 4.1. The upshot is that we obtain the morphism
r̃ for the equivariant matrix factorization Q̃ in the basis which diagonalizes
the action of the orbifold group Γ × Γ simply by replacing the variables x
and y in r by the matrices x id and y τ introduced in Section 4.1, respectively,
and then projecting on its Γ × Γ invariant part:

r̃(x, y) = (r(x id, y τ))Γ×Γ . (B.4)
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