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Abstract

In this paper we advance the program of using exceptional collec-
tions to understand the gauge theory description of a D-brane probing
a Calabi–Yau singularity. To this end, we strengthen the connection
between strong exceptional collections and fractional branes. To demon-
strate our ideas, we derive a strong exceptional collection for every Y p,q

singularity, and also prove that this collection is simple.
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1 Introduction

In the string theory context, fractional branes provide the most straight-
forward way to determine the low-energy gauge theory description of a set
of D-branes probing a Calabi–Yau singularity. The simplest case is that of
a space-filling D3-brane, but one can consider a vast array of topological
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charges. As the D-brane system settles into its lowest energy configuration
it usually decays, and the decay products form new bound states. The final
configuration of objects is usually referred to as the fractional branes.

Our main interest in this paper is to determine the fractional branes
associated to a given singularity. Since the system preserves supersymmetry,
there is an alternate algebraic description. Let X be a local Calabi–Yau
variety. The fractional branes are a collection of objects A = (A1, . . . , An)
in the derived category of coherent sheaves such that

• Ext0(Ai, Ai) = C.
• Extq(Ai, Aj) = 0 for q ≤ 0 if i �= j.

The first condition guarantees that the low-energy description is a gauge
theory. The second condition is necessary for stability and supersymmetry.
Assuming that the phases of the central charges of the Ai’s align at the
locus in Kähler moduli space corresponding to the singularity, the second
condition eliminates the tachyons between the Ai’s. We will discuss these
conditions in more detail in Section 2.

Exceptional collections provide a simple way of working with and under-
standing the fractional branes. In many cases they contain only line bundles
supported on the exceptional divisor S that partially resolves the Calabi–
Yau singularity.

Initially, exceptional collections appeared to have a limited use for under-
standing D-brane gauge theories. Physically relevant collections were known
only for del Pezzo surfaces, which led to the study of Calabi–Yau singular-
ities formed by shrinking a del Pezzo surface, an interesting but restricted
class of singularities.

More recently, it was discovered that these collections could be used to
study a much larger class of singularities [1].1 The examples studied were
toric, but the method is more general. The paper [1] left several loose
ends, some of which we tie up here. One underlying problem is that the
initial mathematical work on exceptional collections [2] assumed that S was a
smooth variety. By moving to singular Fano varieties, we need to reinterpret
old proofs and occasionally find new ones using the language of smooth
stacks.

Another issue is the precise relation between the exceptional collection and
the fractional branes. A central result of [3] was that given an exceptional
collection on a del Pezzo S that generated a strong helix, the collection lifts

1We refer to [1] for an overview of the vast literature.
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to a set of fractional branes on the total space of the canonical bundle of
S. In [1], we assumed that the necessary result generalized to the toric
singular cases studied. In this paper, we prove this result using the methods
of homological algebra in Section 3. In particular, we prove that a full
exceptional collection on S which generates a strong helix lifts to a set of
fractional branes A on the total space KS of the canonical bundle KS .

An important class of examples studied in [1] are the Y p,q singularities
[4, 5], where p and q are both non-negative integers. The paper [1] provided
strong exceptional collections for a fraction of the Y p,q’s, in particular for
Y p,p, Y p,p−1 and Y p,p−2. Here we provide a collection for all p − q > 2, thus
completing the list. We give two proofs that the collection is strong, one in
Section 4 and one in Section 5. The proof in Section 4 is more direct; the
actual cohomology groups are calculated explicitly. The proof in Section 5,
on the other hand, relies on the Kawamata–Viehweg vanishing theorem.
This second proof also demonstrates that the associated helix is strong.

We do not prove that our collection is complete, since this is beyond the
scope of the physical applications we have in mind. On the other hand,
we have evidence for completeness, and therefore we conjecture that our
collection is complete.

2 Preliminary ideas

In this section we present the ideas that underlie the approach taken in the
paper. In the first part of the section, we give an overview of some of the
notions that we need from the theory of quiver algebras, quiver representa-
tions and their link with exceptional collections on smooth spaces [7]. Our
exposition is partly based on [3, 8, 9], to which we also refer for more details
and references. In the second part of the section, we present a generalization
of these ideas using stacks.

2.1 Physical motivation

Let us start at a point in moduli space where a D-brane is marginally stable
against decaying into a collection of stable constituents, which we call Li.
Each constituent may appear with a multiplicity Ni, and is associated a
factor of U(Ni) in the world-volume gauge theory. Since these D-branes
are marginally bound, there are massless open strings connecting them,
which give chiral fields in the bifundamental representations. This way one
associates a quiver gauge theory to a D-brane decay.
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But we need to be more precise about the construction of the quiver. The
rules for representing topological D-branes as objects in the derived category
[10] tell us that it is precisely Ext1(Li, Lj) that counts the number of massless
scalars between Li and Lj . The open strings Extp(Li, Lj) for p > 1 are
massive and are therefore ignored. On the other hand, the existence of a
non-zero Ext0(Li, Lj) would signal a tachyonic instability, indicating that Li

and Lj formed a bound state, and thus our understanding of this particular
decay is incorrect. Therefore the Ext0(Li, Lj)’s are forbidden.

A natural setting where the above described decays happen is when we
consider D-branes sitting at singular points of a Calabi–Yau variety. The
original context in which quiver gauge theories were introduced is D-branes
probing a quotient singularity [11]. The decay products of the D0-brane2

at the singularity are usually referred to as “fractional branes.” Orbifolds
have a vast literature, and we refer to [12] for an overview.

Another class of models is provided by del Pezzo surfaces shrinking down
to a point inside a Calabi–Yau variety.3 This case is more general than it
appears. One shows that if a smooth irreducible divisor in a Calabi–Yau
three-fold is contractible to a point (i.e., one has a Type II degeneration)
and produces a canonical Gorenstein singularity, then it must be a del Pezzo
surface [13].

One can find a set of fractional branes for the del Pezzo case using the
technology of exceptional collections. First recall the following definition:

Definition 2.1. Consider the bounded derived category of coherent sheaves
D(S) on the algebraic variety S.

1. An object A ∈ D(S) is called exceptional if Extq(A, A) = 0 for q �= 0
and Ext0(A, A) = C.

2. An exceptional collection A = (A1, A2, . . . , An) in D(S) is an ordered
collection of exceptional objects such that

Extq(Ai, Aj) = 0, for all q, whenever i > j .

3. A strong exceptional collection A is an exceptional collection which in
addition satisfies: Extq(Ai, Aj) = 0 for q �= 0.

4. An exceptional collection is complete or full if it generates D(S).

2It is common practice to mention only the compact dimensions of the brane. Accord-
ingly, a D0-brane in this topological setting could refer to a D3-brane which fills the three
non-compact dimensions of the full string theory.

3Given a local Calabi–Yau X and a del Pezzo S, by shrinking down to a point, what
we really mean is that there is a partial crepant resolution of the singularity π : X → X∗

where X∗ is singular at a point p and π∗(p) = S.
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The existence of a full and strong exceptional collection for a given variety
S constrains the structure of S considerably. In particular, no smooth pro-
jective (and therefore compact) Calabi–Yau variety admits such a collection.
The obstruction comes from Serre duality. The exceptional collections we
are interested in are constructed on an exceptional divisor S of the Calabi–
Yau X rather than on X itself.

To simplify matters, and investigate properties inherent to a given del
Pezzo singularity, one usually restricts to the neighborhood of the singular-
ity, and calls it a “local” Calabi–Yau variety. The local neighborhood of
the blow-up is a quasi-projective variety. The adjunction formula and the
Calabi–Yau condition tell us that the normal bundle NS/X of the exceptional
divisor S equals the canonical bundle of S. Therefore, in the vicinity of S,
the resolved Calabi–Yau looks like the total space of KS . By blowing down
one shrinks the zero section of KS , and makes the Calabi–Yau locally look
like a cone over S. Finally, one constructs an exceptional collection on S.

The ultimate goal is to understand branes on the ambient local Calabi–
Yau X = Tot(KS), rather than the subspace S. On the other hand, S is
embedded in X, ι : S ↪→ X, and thus there is an induced map Rι∗ : D(S) →
D(X). We can think of the objects of Rι∗(D(S)) as branes wrapping S.
Understanding the structure of D(S) will teach us a great deal about D(X).
As a first step we use a strong full exceptional collection to understand the
structure of D(S).

If S admits a full and strong exceptional collection, then the structure
of D(S) is quite simple, due to a construction that goes back to Rickard
[14] and Bondal [15].4 Namely, if E1, . . . , En is a full strongly exceptional
collection of sheaves on S (or more generally objects in D(S)) then one
defines the endomorphism algebra

A = End(E1 ⊕ E2 ⊕ · · · ⊕ En), (2.1)

and Rickard and Bondal prove the following:

Theorem 2.1. If S has a full strongly exceptional collection {Ei}n
i=1, then

the derived category of coherent sheaves on S is equivalent to the derived
category of right A-modules D(mod-A). The equivalence is given by the
functor

HomD(S)

(
n⊕

i=1

Ei,−
)

: D(S) −→ D(mod-A).

4This construction owes a heavy debt to earlier work by Beilinson [16] on projective
space P

n.
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Bondal [15] observed in this geometric context that the non-commutative
finite-dimensional algebra A can be described as the path algebra of a quiver
with relations Q.5 It is the quiver Q that has direct physical relevance,
with the relations related to the superpotential [18]. But there is a one-
to-one correspondence between left A-modules and representations of the
quiver Q (and we will come to this shortly). Therefore, the Rickard–Bondal
theorem establishes a correspondence between two very different ways of
describing a D-brane: as an object in D(S) and as a representation of the
quiver Q [11, 19]. The dictionary goes much deeper, and one shows that the
original exceptional objects Ei correspond to certain projective objects in
the category of representations of the quiver Q (which, from now on, we call
Q-reps). The physical interpretation of the Ei’s remains obscure, but they
give convenient generators for D(S).

For the definition of the projective counterparts of the Ei’s, we need to
review a few constructions regarding quivers. This review will also shed
some light on the origin of the Rickard–Bondal theorem.

2.2 Quiver representations and path algebras

First we recall the definition of the path algebra of a quiver. Let Q be a
quiver with nodes vi and arrows α. We consider the paths in Q, as we flow
along the arrows. The nodes are zero length paths. The path algebra A of
Q is the C-algebra generated by the paths in the quiver. In particular, every
node vi is associated an element ei, while an arrow α gives an element aα.
Multiplication in A is defined by concatenation of paths:

aβ · aα =

{
aβα if head(α) = tail(β),
0 otherwise,

where βα is the path consisting of α followed by β, similarly to function
composition. The ei’s are idempotents: e2

i = ei.

The path algebra of a quiver with relations is defined similarly. First, we
construct the path algebra A as defined above, ignoring the relations. The
relations in the quiver mandate certain paths be equal. These equalities
generate an ideal of A, and we take the quotient A/I.

It is natural to look at the category of left A-modules A-mod. Given a
left A-module M , we can construct a representation of the quiver as follows.

5The general notion that a finite-dimensional algebra can be represented as a quiver is
much older — see for example [17].
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Using the idempotent ei, we can form the left A-module Vi = eiM , which
is also a vector space over C. Let ni = dim(Vi). The elements of A corre-
sponding to the arrows of Q give linear maps between the Vi’s. Indeed, for
an arrow β starting at node vi and ending at node vj we have that

aβ · x = ej · aβ · x ∈ Vj , for any x ∈ Vi.

Therefore we have a set of vector spaces C
ni , one for each node, and a set

of matrices, one for each arrow. By construction, these matrices satisfy the
quiver relations, and give a “quiver representation.” From now on we use
the notion of a left A-module and that of a Q-rep interchangeably.

The nodes of a quiver also label two useful sets of quiver representation.
First we have the simple objects. These are the representations Si that have
no non-trivial subrepresentations. They are particularly easy to describe:
all but the ith node is assigned the trivial vector space, while the ith node
is assigned the one-dimensional vector space C. In a more compact form:
nj = δij . All arrows are assigned the 0 morphism.

A D0-brane in the quiver language is the representation where every node
is assigned the vector space C, while the simple representations are the
fractional branes [19, 20]. In general, it is hard to determine the inverse
image of the simple representation Si under the equivalence of Theorem 2.1.
A systematic way of constructing the Si was presented in [21, 22], but the
examples treated there were all orbifolds.

The second set of quiver representations labeled by the nodes is defined
by Pi = Aei. That is Pi is the subspace of A generated by all paths starting
at node i, and is automatically a left A-module, and thus a representation.
One shows that the Pi’s are projective objects in the category of Q-reps.

If the quiver has directed loops, then some of the Pi’s may be infinite
dimensional.6 The quivers for the del Pezzo surfaces have no such loops,
nor do the Y p,q spaces. Therefore we assume that there are no directed loops
in the quiver Q associated to S. The quiver associated to KS in contrast
will generically contain loops.

The simple representations Si and projective representations Pi are dual
in the following sense:

Hom(Pi, Sj) = δij C.

6By a directed loop, we mean a path of arrows with the same starting and ending point.
Sometimes this object is called a cycle. As our point of view is geometric and cycle has
other connotations, we prefer loop.
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The Si’s and Pi’s contain all the information encoded in the quiver graph.
More precisely, for the Si’s we have

dim Ext1(Si, Sj) = nij , dim Ext2(Si, Sj) = rij , (2.2)

where nij is the number of arrows from node i to node j, whereas rij is the
number of independent relations imposed on paths from i to j.

The Pi’s reconstruct the path algebra A of the quiver directly. To this end
one considers the algebra of endomorphisms B = End(

⊕
i Pi). Multiplica-

tion in B is the composition of morphisms. For each Pi, End(Pi) = C, and
we get an idempotent element fi in B. One also notices that Hom(Pi, Pj) is
the vector space of paths from j to i. A careful analysis shows that

End
( ⊕

i

Pi

)
∼= Aop, (2.3)

where op means that the order of multiplication in A is reversed:7 a
op· b :=

b · a. In light of (2.3) the Rickard–Bondal theorem is more natural.

Finally, there is a surprisingly nice relation that links the projective
objects to the simple ones, using the technique of mutations. Since we
need this notion for both sheaves and quiver representations, we define it
in a more general context. Furthermore, mutations are most natural in the
context of a derived category. Therefore let D(A) be the derived category
of an abelian category A, and consider two objects A, B ∈ D(A). The left-
mutation of the pair (A, B) is the pair (LAB, A), where LAB is defined by8

LAB = Cone
(
RHomD(A)(A, B)

L
⊗ A

ev−→ B

)
. (2.4)

The map above is the canonical evaluation morphism. As an immediate
consequence of the definition we have the following distinguished triangle:

LAB[−1] −→ RHom(A, B)
L
⊗ A

ev−→ B −→ LAB.

We note in passing that left mutations have inverses, called right mutations,
and both implement an action of the braid group on D(A).

7This is by definition the opposite algebra. Left modules of A and right modules Aop

are interchanged. This switch is why one has right modules in Theorem 2.1.
8Our definition differs slightly from that of several authors, like [8, 2], but it agrees with

others [23], and is more convenient for our purposes.
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Returning to Q-reps, let Pk denote the projective Q-rep associated to the
kth node. For any k ≥ 2 we can define the following “mutated” objects:

Lk = LP1LP2 . . . LPk−1Pk. (2.5)

As observed by Bondal [7, 15], the Lk’s defined above are precisely the simple
Q-reps Si.

2.3 D(S) versus D(KS)

Now that we have spent some time exploring the structure of D(S) for
a space admitting a full strongly exceptional collection, we can return to
examine D(KS). In the physics literature the transition is usually referred
to as the “completion of the quiver.” Throughout this section we assume
that S is smooth.

At this point it is useful to recall a more general characterization of such
spaces:

Theorem 2.2 (3.1 of [24]). Let X be a variety of dimension n with only
log-terminal singularities, and let KS be the total space of the Q-bundle KS.
Then

KS = Tot(KS) = Spec

( ∞⊕
m=0

OS(−mKS)

)

is an (n + 1)-dimensional variety with only rational Gorenstein singularities
and trivial canonical bundle (i.e., KKS = 0).

What can we say about D(KS) given a full strongly exceptional collection
on S? The simplest case is when

dim K0(S) ⊗ C = dimS + 1. (2.6)

This number — the rank of the Grothendieck group — also equals the length
of a full exceptional collection. The projective space P

n is an example satis-
fying the condition. In general, the class of strong exceptional collections is
not closed under mutations. On the other hand, Bondal and Polishchuk [25]
introduced the class of “geometric” strong exceptional collections that is.
They showed that these collections exist only on varieties satisfying (2.6).
Obviously, condition (2.6) is extremely restrictive.9

9A more general formulation of this “geometric” condition but which still restricts to
algebras with only quadratic relations was presented in [26].
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Bridgeland gave an alternative characterization of the geometric condi-
tion, assuming that (2.6) is satisfied. We modify his definition to fit the
general case.

Definition 2.2. An exceptional collection (E1, . . . , En) on S is simple, if
for any integers 1 ≤ i, j ≤ n and any p ≥ 0, for k > 0

Extk
S(Ei ⊗ Kp

S , Ej) = 0.

In particular, a simple exceptional collection is strong. Given this defini-
tion, Bridgeland proves an extension of the Rickard–Bondal theorem [9].10

Proposition 2.1. Let (E1, . . . , En) be a simple collection on S. Denote
by π : KS → S the projection map of the canonical bundle, and define the
algebra B = EndKS(

⊕n
i=1 π∗Ei). Then the functor

HomD(KS)

( n⊕
i=1

π∗Ei,−
)

: D(KS) −→ D(mod-B)

is an equivalence of categories.

The algebra B is infinite dimensional, but Bridgeland shows that B is the
path algebra of a quiver with relations QB. The algebra A, as defined in
(2.1), is a subalgebra of B. To see this, first recall that π∗ and π∗ are an
adjoint pair:

HomKS(π∗E, π∗F ) = HomS(E, π∗π
∗F ). (2.7)

The projection formula gives π∗π∗F = F ⊗ π∗(OKS). Theorem 2.2 implies
that

π∗(OKS) =
⊕
p≤0

Kp
S = OS ⊕

⊕
r≤−1

Kr
S . (2.8)

Now

B = EndD(KS)
( n⊕

i=1

π∗Ei

)
=

n⊕
i=1

n⊕
j=1

HomKS

(
π∗Ei, π

∗Ej

)
.

Using (2.7) and (2.8) we obtain

B =
n⊕

i=1

n⊕
j=1

HomS

(
Ei, Ej

)
⊕ · · · = A ⊕ · · · .

10Strictly speaking, Bridgeland’s original proof of Proposition 4.1 in [9] assumed (2.6),
but the proof works using our definition of simple without assuming (2.6).
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It is the quiver associated to B that is the completed quiver of physical
interest. The obvious question to ask at this point is how do we construct
this quiver?

The simplest example to consider is KP
n. P

n has the well-known geomet-
ric exceptional collection of length n + 1

O,O(1), . . . ,O(n). (2.9)

The quiver describing the A algebra is the Beilinson quiver:

• n+1 ��• n+1 ��• · · · • n+1 ��•

The quiver for the algebra B turns out to be the McKay quiver of C
n+1/Zn+1,

where the Zn+1 action has weights (1 . . . , 1), i.e., it is supersymmetric. The
appearance of the McKay quiver in this context is not accidental. Rather it is
a manifestation of the fact that the resolution of the C

n+1/Zn+1 singularity
can be thought of as KP

n, and thus in this case Bridgeland’s Proposition 2.1
is a consequence of the McKay correspondence.

2.4 The physical quiver

Using the algebra B to obtain the physical quiver is equivalent to using the
projective objects in the category of QB-reps. But even in this simple case, it
is not completely elementary to write down the extended quiver QB. On the
other hand, we saw in Section 2.2 that the simple objects contain the same
information. So how do we go from the simples of the quiver to the simples of
the completed quiver? Our approach is to use the geometric representation
of the simples. As it turns out this gives a more straightforward procedure
to obtain the quiver.

Let us assume that we determined the dual collection Si in terms of
sheaves (complexes), for example by using mutations as explained at the
end of Section 2.2. For P

n the mutation theoretic dual of the exceptional
collection (2.9) is

Ωn(n)[n], . . . ,Ω1(1)[1],O. (2.10)
Since KS is the total space of the line bundle KS , the zero section of KS

embeds S into KS. We call the embedding ι:

ι : S ↪→ KS.

Using ι we can make the following observation:11

11We are not aware of the existence of this fact in the literature.
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Lemma 2.1. Given a dual pair {Pi} and {Sj} on S, the pair {π∗Pi} and
{ι∗Sj} is a dual pair on KS.

Proof. We need to compute HomKS(π∗Pi, ι∗Sj). For this we recall that π∗
is the right adjoint of π∗, and thus

HomKS(π∗Pi, ι∗Sj) = HomS(Pi, π∗ι∗Sj).

But π∗ι∗ = (π◦ ι)∗, while π◦ ι = id since ι is a section. The claim then follows
from the fact that {Pi} and {Sj} is a dual pair. �

The lemma implies that the ι∗Sj ’s are the simples of the extended quiver
QB. Using (2.2), the arrows of QB are given by the Ext1’s between the
ι∗Sj ’s. To compute these Ext1’s on KS we can use a spectral sequence
which is a consequence of the local to global spectral sequence. Namely, if
ι : S ↪→ X is an embedding, and NS/X the normal bundle of S in X, then
there is a spectral sequence with E2 term:

Ep,q
2 = Extp

S(E , F ⊗ ΛqNS/X) =⇒ Extp+q
X (ι∗E , ι∗F) , (2.11)

where Λq denotes the qth exterior power.

In our case NS/KS = KS , and using Serre duality we obtain

Extq
KS(ι∗Si, ι∗Sj) = Extq

S(Si, Sj) ⊕ Extd+1−q
S (Sj , Si)∨,

where d is the dimension of S.

Using the spectral sequence (2.11) it is easy to show that the Ext1-quiver
of the collection (2.10) is indeed the McKay quiver:

• n+1 ��• n+1 ��• · · · • n+1 ��•

n+1

��

From a physical point of view we are describing the decay of a D0-brane
in KS sitting inside S. When S shrinks and the D0 gets destabilized, we
expect the physics to localize in the neighborhood of S, and that only states
supported on this neighborhood would have normalizable wavefunctions.
The exceptional collection on S knows nothing about the neighborhood of
S. The extra data can be prescribed by the normal bundle NS/KS of S
in KS. A priori it is not clear how to use NS/KS to “fix” the exceptional
collection on S. Using the dual collection, i.e., the simples Si, the “fix” is
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straightforward. The ι∗Si’s are the fractional branes.12 The Ext1 quiver
QB of ι∗Si is the quiver describing the decay.

Our approach of constructing QB can be summarized in the following
four steps:

1. construct a full and simple exceptional collection on S,
2. construct the dual collection Si,
3. using the zero section ι : S ↪→ KS, construct ι∗Si and
4. compute the Ext1-quiver of the ι∗Si’s.

2.5 The stacky version

So far we presented a way to understand D-brane decay at the singularity in
KS = Tot(KS) created by contracting the zero section. Throughout S was
assumed to be smooth. Unfortunately, our main examples in this paper, the
Y p,q spaces, have their base S singular. But as we will see shortly, they have
only quotient singularities.

It is natural to ask whether any of the structure outlined earlier survives
if one has either a singular divisor, or a reducible divisor and one only par-
tially resolves the space, and therefore ends up with a singular Calabi–Yau
geometry, or both. On the negative side, one knows that the derived cate-
gory of coherent sheaves on a singular space is ill behaved, and in particular
it is not equivalent to the derived category on the resolved smooth space
[28]. But there is a well-known way of “beautifying” singular schemes, using
stacks. In the language of stacks, quotient singularities become smooth, and
the hope for an equivalence is revived. To this aim we cite a recent result of
Kawamata:

Theorem 2.3 (4.5 of [6]). Let X and Y be projective toric varieties with only
quotient singularities, and let X and Y be the associated smooth Deligne–
Mumford stacks. Let f : X → Y be a toric proper birational map which is
crepant in the sense that g∗(KX) = h∗(KY ) for two toric proper birational
morphisms from a common toric variety Z that makes the diagram

Z
g

����
��

��
�

h

���
��

��
��

�

X
f

�� Y .

12Katz and Sharpe [27] gave a direct physical interpretation to the spectral sequence
(2.11) using vertex operators, explaining the physical meaning of ι∗.
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commute. Then there is an equivalence of triangulated categories F : D(Y)→
D(X ).

Applied to the case of a toric13 partial crepant resolution f : X̃ → X,
the theorem implies that there is an equivalence of triangulated categories
between D(X̃ ) and D(X ). But the theorem also implies that

D(X ) ∼= D(partial crepant resolution) ∼= D(crepant resolution). (2.12)

In particular, for G abelian it proves the derived McKay correspondence
[29]:

D([Cn/G]) ∼= D(crepant resolution of C
n/G).

The equivalence in (2.12) gives a flexible framework to work in. What
we want is D0 decay in the singular space X. In the previous sections we
worked in the totally resolved space, and there were no partial resolutions.
In light of Theorem 2.3 we can work in a partially resolved space as well.
Since we work with topological B-branes, and the resolution is a Kähler
deformation, all these models are equivalent. This is in fact the content of
Theorem 2.3.

The other ingredient used in the first part of this section is the Rickard–
Bondal Theorem 2.1 providing an equivalence between the derived category
of sheaves with a derived category of modules. Fortunately, this one also
extends to the stacky case, as proved by Kawamata (Proposition 4.7 in [6]).
Therefore we have all the pieces in place, and we can use the strategy from
the end of the previous section.

It is important to note that in the realm of singular varieties as opposed
to stacks, the analog of the Rickard–Bondal Theorem 2.1 (or Kawamata’s
Theorem 2.3) is guaranteed to fail. Therefore there is no meaningful identi-
fication between the sheafy model of D-branes and the quivery model.

3 Vanishing results — absence of tachyons

In this section we lay out a set of sufficient conditions, which, if satisfied by
an exceptional collection on S, lead to a tachyon free spectrum of fractional
branes on the Calabi–Yau KS. From (2.4), in order for there to be no
tachyons between the fractional branes ı∗Si we need the vanishing of the
Ext0 and Extd+1 groups between the Si’s.

13The theorem is conjectured to hold for non-toric varieties, see, e.g., Section 2 of [6].
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In the next subsection, we find that the Ext0 automatically vanish if the
Si’s came from a strongly exceptional collection. However, the vanishing of
the Extd+1’s is more subtle. In Section 3.2 we show that a simple and full
exceptional collection guarantees that the Extd+1’s vanish.

The arguments of this section use only formal properties of a triangulated
category of sheaves, and therefore apply to either a smooth variety or a
smooth stack. Throughout the section we work on such a smooth space X
of dimension d.

3.1 Absence of Ext0’s

We begin by recalling a standard result about mutations:

Lemma 3.1 (Section 7.2.3 of [2]). Given an exceptional collection (A, B, C),
then for any q ∈ Z

Extq(LAB, LAC) = Extq(B, C) .

Next, we prove two auxiliary results that we will need in the sequel.

Lemma 3.2. Given an exceptional pair (A, B) in D(X), then for any q ∈ Z

Extq+1(LAB, A) = Ext−q(A, B) .

Proof. Applying the contravariant functor Hom(·, A) to the defining equa-
tion of left mutation, we find the long exact sequence (LES)

· · · → Extq(LAB, A) → Extq(B, A) → Extq(RHom(A, B) ⊗ A, A) → · · · .

Extq(B, A) = 0 for all q since (A, B) forms an exceptional pair. Furthermore,
one can show that Extq(RHom(A, B) ⊗ A, A) = Ext−q(A, B) due to the fact
that A is an exceptional object. The claim then follows immediately. �
Lemma 3.3. Given an exceptional collection (A, B, C) such that Extq(A, B)
= 0 for q �= 0 and Extq(A, C) = Extq+1(B, C) = 0 for q ≥ m, then Extq

(A, LBC) = 0 for q ≥ m.

Proof. Consider the covariant functor Hom(A, ·). Applying this functor to
the definition of left mutation, we find the LES

· · · → Extq(A,RHom(B, C) ⊗ B) → Extq(A, C) → Extq(A, LBC) → · · · .
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Because of the constraint on Extq(A, B), it follows that Extq(A,RHom(B, C)
⊗ B) = Extq(B, C) ⊗ Ext0(A, B). The claim then follows from the LES and
the constraints on Extq(A, C) and Extq(B, C). �

Given an exceptional collection E = (E1, E2, . . . , En), in light of equa-
tion (2.5) we define the dual collection to be F = (Fn, Fn−1, . . . , F1), where

Fj = LE1LE2 · · · LEj−1Ej .

These Fi’s are the geometric counterparts of the simple quiver representa-
tions Si of Section 2.

Proposition 3.1. The dual collection of an exceptional collection is also
exceptional.

Proof. Proposition 8.2.1 of [2, p. 77] shows that given an exceptional collec-
tion E = (E1, E2, . . . , En), the collection

E ′ = (E1, . . . , LEj−1Ej , Ej−1, Ej+1, . . . , En)

obtained by mutating Ej over its neighbor Ej−1 is also exceptional. Since
the definition of the dual collection involved a succession of left mutations,
the end result is exceptional as well. �

Now we are ready to prove the absence of tachyons coming from Ext0.

Proposition 3.2. Let E be a strong exceptional collection and F its dual col-
lection. For two different elements Fi and Fj of F , we have Extq(Fi, Fj) = 0
for q ≤ 0.

Proof. For i < j, the result follows from Proposition 3.1. Therefore we focus
on the case i > j. By definition

Extq(Fi, Fj) = Extq(LE1 · · · LEi−1Ei, LE1 · · · LEj−1Ej) .

Using Lemma 3.1 repeatedly gives

Extq(LE1 · · · LEi−1Ei, LE1 · · · LEj−1Ej) = Extq(LEj · · · LEi−1Ei, Ej) .

From Lemma 3.2 we have

Extq(LEj · · · LEi−1Ei, Ej) = Ext−q+1(Ej , LEj+1 · · · LEi−1Ei) .
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Consider the vector spaces

M q(j, i, k) ≡ Extq(Ej , LEiLEi+1 · · · LEi+k−1Ei+k)

for 1 ≤ j < i ≤ i + k ≤ n. The rest of the proof follows by induction on k.
We will show that M q(j, i, k) = 0 for q ≥ 1 and any j, i, and k in the allowed
range.

Consider first the case k = 0. Then M q(j, i, 0) = Extq(Ej , Ei), and this
vanishes for q �= 0 because the initial collection was strongly exceptional.
Thus M q(j, i, 0) = 0 for q ≥ 1.

Now assume that M q(j, i, k) = 0 for q ≥ 1 and any i > j; consider Mk(j, i,
k + 1). We can apply Lemma 3.3, setting A = Ej , B = Ei, C = LEi+1 · · ·
LEi+k

Ei+k+1 and m = 1. Extq(A, B) = 0 for q �= 0 since E is strongly excep-
tional. While the remaining conditions of the lemma are met by the induc-
tive assumptions on M q(i, i + 1, k) and M q(j, i + 1, k). The lemma then
implies that M q(j, i, k + 1) = 0 for q ≥ 1. �

3.2 Absence of Extd+1’s

In this part, we prove that if the exceptional collection is simple and full
then the Extd+1’s vanish as well. We actually prove a slightly stronger
result, replacing the simple assumption with the assumption of a strong
helix [1] which we define below. This result completes the proof of the
tachyon freeness for the fractional branes ı∗Si.

Once again, let X be a smooth variety or stack of dimension d, with
canonical bundle K. A helix of period n is a bi-infinite extension {Ei}i∈Z of
an exceptional collection E = (E1, · · · , En) satisfying

Ei−n
∼= Ei ⊗ K, for all i ∈ Z.

Helices are closely related to left mutations. Bondal proves (Theorem
8.4.1 of [2]) that for a full exceptional collection E

LE1LE2 · · · LEn−1En = En ⊗ K[d]. (3.1)

Strictly speaking, the original proof is presented for smooth varieties, but it
directly extends to smooth stacks.

We are only interested in helices generated by full exceptional collections.
A foundation of a helix is a minimal, finite set of consecutive elements of



ON THE GEOMETRY OF QUIVER GAUGE THEORIES 617

a helix which form a full exceptional collection. Note that if there exists
a foundation of length n, then by Serre duality and Lemma 8.2.2 of [2]
(which states that a mutation of a foundation is again a foundation), any
set of n consecutive elements is also a foundation. This result motivates the
following definition:

Definition 3.1. A strong helix is a helix where any foundation is a strong
exceptional collection.

Bridgeland’s simple criterion for a full exceptional collection implies that
the helix must be strong. However, the converse is not necessarily true — a
strong helix only guarantees the simple criterion for p = 0 and 1.

Proposition 3.3. Let H be a strong helix on X, and choose a foundation
E of H. Let F be the dual of E. Then for any two elements Fi, Fj ∈ F ,
Extq(Fi, Fj) = 0 for q ≥ d + 1.

Proof. Write F = (Fn, . . . , F1). Then Proposition 3.1 guarantees that F is
an exceptional collection, and thus Extq(Fi, Fj) = 0 for i ≤ j and q > 0. So
we need to consider only the case i > j.

Since H is a strong helix, the adjacent foundation E ′ = (En ⊗ K, E1, E2,
. . . , En−1) is a strong exceptional collection. The dual of E ′ is

F ′ = (F ′
n, F ′

n−1, . . . , F
′
1)

= (LEn⊗KFn−1, LEn⊗KFn−2, . . . , LEn⊗KE1, En ⊗ K) .

On the other hand, for j > 1,

Extq(F ′
j , F

′
1) = Extq(LEn⊗KFj−1, En ⊗ K)

= Ext−q+1(En ⊗ K, Fj−1) by Lemma 3.2

= Ext−q+d+1(En ⊗ K[d], Fj−1)

= Ext−q+d+1(Fn, Fj−1) by equation (3.1) .

By Proposition 3.2, Extq(F ′
j , F

′
1) = 0 for q ≤ 0, and thus Extq(Fn, Fj−1) = 0

for q ≥ d + 1.

Since we started with a strong helix, we can repeat the argument with E ′

playing the role of E , and the above argument shows that Extq(F ′
n, F ′

j−1) = 0
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for q ≥ d + 1 and j > 1. But for j > 2,

Extq(F ′
n, F ′

j−1) = Extq(LEn⊗KFn−1, LEn⊗KFj−2)

= Extq(Fn−1, Fj−2) by Lemma 3.1.

Thus Extq(Fn−1, Fj−2) = 0 for q ≥ d + 1 and j > 2. The full result then
follows by induction, showing that Extq(Fn−k, Fj−1−k) = 0 for q ≥ d + 1,
0 ≤ k < n, and j > k + 1. �

3.3 Invariance of the quiver

Given a complete exceptional collection E , we generated a helix H through
tensoring by K. In this section, given an arbitrary foundation E ′ of H, we
try to understand its dual, F ′, in terms of F , the dual of E .

Let E = (E1, . . . , En) and let the neighboring foundation be E ′ = (Fn[−d],
E1, . . . , En−1). Then the dual collection takes the form

F ′ = (LFn[−d]Fn−1, . . . , LFn[−d]F1, Fn[−d]) . (3.2)

Consider the Ext’s of F ′. These are identical to those of F except for
pairs involving Fn[−d]:

Extq(LFn[−d]Fj , Fn[−d]) = Ext−q+1(Fn[−d], Fj) = Extd+1−q(Fn, Fj).

This relation exchanges the Ext1’s of Fn to Fj with the Extd’s of LFn[−d]Fj

to Fn[−d], and vice versa. Result (2.4) then implies that the extended quiver
associated to F is the same as the one associated to F ′.

4 The geometry of the Y p,q spaces

The Y p,q spaces, for integers 0 ≤ q ≤ p, are three-dimensional toric vari-
eties.14 They appeared first in the physics literature as a set of Ricci flat
metrics [4, 5]. Later, Martelli and Sparks [30] classified these three-folds
using toric geometry. At last, Benvenuti et al. [31] provided gauge theories
on these spaces using physics techniques. Our aim is to obtain a complemen-
tary understanding of these gauge theories, using the mathematical method
of exceptional collections on a toric stack.

14The case Y 0,0 is excluded.
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Figure 1: The toric fan for the Xp,q space.

We begin by investigating the geometry of the Y p,q spaces as stacks. The
toric fan consists of one cone generated by the following four vectors:

V1 = (1, 0, 0) , V2 = (1, 1, 0) , V3 = (1, p, p) , V4 = (1, p − q − 1, p − q).
(4.1)

In [1] we provided strong exceptional collections on several Y p,q spaces.
In particular, we treated Y p,p, which are orbifolds of C

3,15 Y p,p−1 and
Y p,p−2r, for gcd(p, r) = 1 [1]. In this paper, we will give a strong exceptional
collection for all p − q − 2 ≥ 0. For q = p − 2r this new collection is different
from the one in [1].

We can partially resolve the Y p,q space by blowing up the various toric
divisors. If we choose the points in the plane x = 1 in the interior of the
polygon generated by V1, . . . , V4 then the partial resolution is crepant. In
this paper we choose to blow up V = (1, 1, 1), and we denote the partially
resolved space Ỹ p,q.

As usual in toric geometry, the divisor DV corresponding to V = (1, 1, 1)
is also a toric variety. We call it Xp,q. The toric fan of Xp,q is obtained from
(4.1), and is depicted in Figure 1.

15In this case the fractional branes can be constructed quite explicitly [22].
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The rays in question are

v1 = (−1,−1), v2 = (0,−1),

v3 = (p − 1, p − 1), v4 = (p − q − 2, p − q − 1) .
(4.2)

By construction Ỹ p,q is the total space of the canonical sheaf over the toric
surface Xp,q. Thus Ỹ p,q is an example of a space discussed in Section 2. The
linear equivalence relations among the toric divisors of Xp,q are

D4 ∼ D2, D1 ∼ (p − 1)D3 + (p − q − 2)D4. (4.3)

We can gain insight into the structure of this space by using the stacky
modification [32] of Cox’s holomorphic quotient construction [33]. Let
x1, . . . , x4 be coordinates on C

4. Then Xp,q is the quotient of C
4 − {x1 =

x3 = 0, x2 = x4 = 0} by C
∗ × C

∗, where the weights of the two C
∗ actions

can be read out from (4.2):

(λp−1
1 λp−q−2

2 x1, λ2x2, λ1x3, λ2x4) , (4.4)

and (λ1, λ2) ∈ C
∗ × C

∗.

From the holomorphic quotient perspective, consider first the x1 = 0 sub-
space; call it D1. Since the subset {x1 = x3 = 0} is excluded and x1 = 0 we
must have x3 �= 0. Therefore we can use the first C

∗ action to completely fix
x3, say to x3 = 1. What we are left with is C

2 − {x2 = x4 = 0}/C
∗ ∼= P

1.

The same answer is obtained if we use the stacky method of [32].16 The
lattice associated to D1 is the quotient of Z

2 by the subgroup generated by
v1 = (−1,−1): ND1 = Z

2/〈v1〉.

More generally, if we consider the abelian group Z
2, and the subgroup

〈(a, b)〉 generated by (a, b), for a, b ∈ Z, then the quotient Z
2/〈(a, b)〉 is again

a finitely generated abelian group. By the fundamental theorem of finitely
generated abelian groups it is necessarily of the form Z

r ⊕ finite torsion. In
fact, it is easy to show that Z

2/〈(a, b)〉 ∼= Z ⊕ Zgcd(a,b).

From this observation, it is automatic that ND1
∼= Z. We choose the fol-

lowing isomorphism: first we do a change of basis in Z
2, with new basis

vectors (−1,−1) and (0, 1). Then ψ : ND1 = Z
2/〈(−1,−1)〉 → Z is projec-

tion on the subspace generated by (0, 1). The Star of D1 consists of the

16An easily readable account of some of the results in [32] is given in the appendix of
[34].
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cones C1 and C4. The image of v2 = (0,−1) in ND1
∼= Z is −1. Similarly,

the image of v4 = (p − q − 2, p − q − 1) in ND1
∼= Z is 1. Running the BCS

construction this gives a P
1, as expected.

The x2 = 0 and x4 = 0 subspaces are also straightforward. Consider
the subspace D2 given by x2 = 0. Once again, the {x2 = x4 = 0} sub-
set is excluded, and the second C

∗ action completely fixes x4, yielding
C

2 − {x1 = x3 = 0}/C
∗. The weights are p − 1 and 1. We expect a Zp−1

quotient singularity, and D2 = P
1(p − 1, 1). The toric stack method shows

this: now v2 = (0,−1), and once again ND2
∼= Z. We choose the isomor-

phism to be projection on the first coordinate. The Star of D2 consists of
the cones C1 and C2. The image of v1 = (−1,−1) in ND1

∼= Z is −1. Simi-
larly, the image of v4 = (p − 1, p − 1) in ND1

∼= Z is p − 1. Running the BCS
construction one indeed obtains a P

1(p − 1, 1).

A similar analysis applies to the x4 = 0 subspace, and we get another
P

1(p − 1, 1). In this case the crucial observation is that gcd(p − q − 2, p −
q − 1) = 1.

The most interesting case is D3, since we start with a toric variety with
N = Z

2 and no torsion, but ND3 will have torsion. More precisely ND3
∼=

Z ⊕ Zp−1. This case cannot be treated with the “naive” holomorphic quo-
tient method. We start with an explicit isomorphism

Z
2/〈v3〉

φ �� Z ⊕ Zp−1

Since we have to quotient by v3 = (p − 1, p − 1) = (p − 1) · (1, 1) first we
construct a morphism ψ : Z

2 → Z
2 that takes (1, 1) to (1, 0). We can be

quite general here, and for any fixed a ∈ Z we can consider

ψ : Z
2

(
a + 1 −a
−1 1

)
��
Z

2

Note that ψ is an isomorphism, since det(ψ) = 1, and is simply a change
of basis. It is obvious that ψ(v3) = (p − 1, 0), ψ(v2) = (a,−1) and ψ(v4) =
(p − q − a − 2, 1). Therefore the matrix whose kernel gives the Zp−1 action is

(
a p − q − a − 2 p − 1

−1 1 0

)

The kernel is generated by the vector (α, α, γ), where (p − q − 2)α +
(p − 1)γ = 0. Let g = gcd(p − q − 2, p − 1). Then α = (p − 1)/g and
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γ = −(p − q − 2)/g is a solution. Following [32], α determines the Zp−1
action, and D3 = P

1/Zp−1. The Zp−1 action is (x0, x1) �→ (ξα
p−1x0, ξ

α
p−1x1),

where ξp−1 is a (p − 1)th root of unity. We observe that the subgroup Zα

of Zp−1 generated by g acts trivially. Therefore D3 has a generic stabilizer.
Note that if g = gcd(p − q − 2, p − 1) = 1, then Zp−1 itself fixes every point.

To further our understanding of the Xp,q geometry, we need to look at the
intersection products. Lemma 5.1 of [32] shows that the Chow rings of the
Deligne–Mumford toric stack and its coarse moduli space (i.e., the singular
toric variety) are isomorphic. The intersection products can be computed
from the fan (4.2). For reasons to become clear soon, let us introduce the
following notation:

f = D4, s = D3.

In these terms D2 = f and D1 = (p − 1)s + (p − q − 2)f and the intersection
products are:

f2 = 0, s2 = −p − q − 2
(p − 1)2

, s · f =
1

p − 1
.

The two C
∗ actions in (4.4) indicate that Xp,q is only a projective bundle

over P
1 rather than a direct product. The fibers are weighted projective

lines P
1(p − 1, 1), and two of them are torus invariant: D2 and D4. This

structure is in line with f = D2 ∼ D4 and f2 = 0. D1 and D3 are sections
of this projective bundle. D1 goes through smooth points in the fibers
P

1(p − 1, 1), whereas D3 goes through the “singular” point of every fiber.17

We summarize this structure in the following diagram, where π denotes the
projection:

Xp,q

π

��

P
1(1, p − 1)��

P
1

Therefore Xp,q is a stacky generalization of the Hirzebruch surface Fn.

Both P
1 and P

1(p − 1, 1) have strong exceptional collections. One might
hope that Xp,q does as well.

4.1 An exceptional collection on Fn

To get a feel for the Xp,q exceptional collection it is useful to study the same
question on the Hirzebruch surface Fn. Fn is a P

1-bundle over P
1, with

17As a scheme P
1(p − 1, 1) is just a P

1, but as stacks they are different.
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c1 = −n. It also equals the projectivization of the rank two split-bundle on
P

1: P(O ⊕ O(−n)). Let f denote the generic fiber, and let s denote the −n
section. One has the intersection products: f2 = 0, s · f = 1 and s2 = −n.

The Hirzebruch surface Fn has a strong and complete exceptional collec-
tion (see, e.g., [2, p. 100]):

O , O(f) , O(s + nf) , O(s + (n + 1)f) ,

for any n ∈ Z+.

It is instructive to look at the proof of the strong exceptionality in [2].
Our proof in the stacky case will be a more complicated version of this proof,
which in the Fn case is in fact shorter than the one given in [2], but uses
more technology.

4.2 The exceptional collection

Theorem 4.1. For ki = � (p−q−2)i
p−1 � and p − q − 2 > 0 the following:18

OX ,OX (D4),OX (D3 + k1D4),OX (D3 + (k1 + 1)D4),OX (2D3 + k2D4),

OX (2D3 + (k2 + 1)D4), . . . ,OX ((p − 1)D3 + (p − q − 2)D4),

OX ((p − 1)D3 + (p − q − 1)D4)
(4.5)

is a strong exceptional collection on Xp,q.

The theorem will follow from a more general result concerning strong
exceptional collections on stacky Hirzebruch surfaces. Let F

p
n be a projec-

tive space bundle over the projective line P
1, with fibers isomorphic to the

weighted projective line P
1(1, p), and twist specified by n, as defined in

Chapter 14 of [35]. Alternatively, F
p
n can be defined as a toric stack with

N = Z
3 and cone generated by19

(−1,−1), (0,−1), (p, p), (n, n + 1). (4.6)

18The round up �x� of a real number x is the smallest integer at least as large as the
number itself.

19The Xp,q space in this notation is F
p−1
p−q−2.
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Let f denote the generic fiber. F
p
n has a section s such that

f2 = 0, s2 = − n

p2 , s · f =
1
p
. (4.7)

Proposition 4.1. The collection

OX ,OX (f) , . . . ,OX (is + kif) ,OX (is + (ki + 1)f) , . . . ,OX (ps + nf) ,

OX (ps + (n + 1)f)
(4.8)

where ki = �ni
p �, is a strong exceptional collection on F

p
n for p > n.

Proof. Let us start by observing that OX (us + vf) is an invertible sheaf for
arbitrary integers u and v, and therefore

Exta(OX (u1s + v1f),OX (u2s + v2f))

= Ha(X ,OX ((u2 − u1)s + (v2 − v1)f)) . (4.9)

This reduces the problem to computing cohomology groups.

First we show that the collection is exceptional. Consider two members,
OX (is + lif) and OX (js + ljf), which appear in this precise order in the
above list. The li’s are necessarily of the form ki or ki + 1 (where ki = �ni

p �).
There are two cases to consider

1. i < j,
2. i = j and (li, lj) = (ki, ki + 1).

Let us consider the second case first. The Ext groups in question reduce
to Ha(X ,OX (−f)). Now take the short exact sequence (SES)

0 ��OX (−f) ��OX ��Of
��0 , (4.10)

and remember that the fiber is f = P
1(1, p). The associated LES in coho-

mology shows that

Ha(X, OX (−f)) = 0, for all a ∈ Z. (4.11)

Returning to the first case, i < j, we need to compute Ha(X ,OX ((i − j)
s + (li − lj)f), for 0 ≤ i < j ≤ p. Therefore −p ≤ i − j < 0. The vanish-
ing of these cohomology groups follows from the first part of the following
lemma:
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Lemma 4.1. For integers v ∈ Z and a ≥ 0 we have

Ha(X ,OX (us + vf)) =

{
0 for −p ≤ u < 0,

Ha(P1,O(v)) for 0 ≤ u < p.

We will prove the lemma shortly.

This lemma completes the proof of exceptionality. We are left to show
that the collection is strongly exceptional as well. Thus we need that

Exta(OX (is + lif),OX (js + ljf)) = Ha(X ,OX ((j − i)s + (lj − li)f)) = 0,

for a > 0, whenever i < j, or i = j and (li, lj) = (ki, ki + 1).

In the second case, i = j, we are reduced to Ha(X ,OX (f)). Tensoring
(4.10) with OX (f), and using the fact that f · f = 0, we obtain the SES

0 ��OX ��OX (f) ��Of
��0 .

The associated LES shows that Ha(X ,OX (f)) = 0 for a > 0, and H0(X ,
OX (f)) = C

2.

The first case, i < j, is a bit more involved. Since 0 ≤ i < j ≤ p, then
0 < j − i ≤ p, and we cannot use the lemma directly. We have to treat the
cases 0 < j − i < p and 0 < j − i = p separately.

0 < j − i < p : Now the second part of the lemma applies, and we have
that

Ha(X ,OX ((j − i)s + (lj − li)f)) = Ha(P1,O(lj − li)).

Thus H2 = 0 automatically, while for H1 we argue as follows. By assumption
li equals ki or ki + 1, and similarly for lj . Furthermore, ki = �ni

p �. Therefore,
kj ≥ ki for j > i. Then

lj − li ≥ kj − li ≥ kj − ki − 1 ≥ −1.

But H1(P1,O(v)) = 0 for v ≥ −1, and we are done with this case.

0 < j − i = p : In this case we are working with the two very first and
very last terms in (4.8). So li = 0 or 1, and lj = n or n + 1. One observes
that ps + nf is linearly equivalent to D1, as in (4.3). As we saw D1 = P

1.
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As a result we have a SES

0 ��OX (−ps − nf) ��OX ��OD1
��0 ,

Since (ps + nf)2 = n tensoring this with OX (ps + nf) gives the SES

0 ��OX ��OX (ps + nf) ��OP1(n) ��0 .

This gives H0(X ,OX (ps + nf)) = C ⊕ C
n+1 = C

n+2 and Ha(X ,OX (ps +
nf)) = 0 for a > 0.

So far this takes care of the Ext’s between OX and OX (ps + nf), and
resp. OX (f) and OX (ps + (n + 1)f). We still need to look at the pairs OX
and OX (ps + (n + 1)f), and resp. OX (f) and OX (ps + nf). We deal with
the latter one explicitly, while the former one has an identical treatment.

Tensoring (4.2) with OX (−f) gives the SES

0 ��OX (−f) ��OX (ps + (n − 1)f) ��OP1(n − 1) ��0 . (4.12)

We have already seen in (4.11) that Ha(X, OX (−f)) = 0, and therefore the
associated cohomology LES completes the proof of the proposition, provided
that n − 1 ≥ −1. But this was our initial assumption: n ≥ 0. �

Proof of the lemma. The proof will use Grauert’s theorem, the projection
formula, and the Leray spectral sequence. First of all, the fibration structure
of X guarantees that for two integers u and v

OX (us + vf) = OX (us) ⊗X π∗OP1(v) .

Therefore the projection formula gives

Riπ∗OX (us + vf) = Riπ∗(OX (us) ⊗X π∗OP1(v))

= Riπ∗OX (us) ⊗P1 OP1(v) (4.13)

Now let us recall the Leray spectral sequence, which for a map f : X → Y ,
and a sheaf E on X reads:

Ei,j
2 = H i(Y, Rjf∗ E) =⇒ H i+j(X, E) . (4.14)

Although the usual Leray spectral sequence was derived for topological
spaces, it nevertheless extends to stacks, which have only Grothendieck
topologies. The key observation here is to remember that the Leray spectral
sequence is a consequence of the composition of the total derived functors:
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Γ — the global sections functor, and f∗ — the direct image functor. In other
words: Γ(Y, f∗F) = Γ(X, F) and thus RΓ(Y, -)◦Rf∗ = RΓ(X, -).20 All the
functors involved are well defined for stacks (see, e.g., [35]), and give rise to
the Leray spectral sequence.

Applying the Leray spectral sequence to π : X → P
1, we have

Ei,j
2 = H i(P1, Rjπ∗OX (us) ⊗P1 OP1(v)) =⇒ H i+j(X , OX (us + vf)) .

(4.15)

To compute Rjπ∗OX (us) we can use the stacky version of Grauert’s theo-
rem (for the original, see, e.g., Corollary III.12.9 in [37]). First recall that X
is a fibration over P

1, π : X → P
1, and the fibers are f = P

1(1, p). Grauert
instructs us to pick a point y ∈ P

1 in the base, look at the fiber Xy over y,
and for a sheaf F compute the cohomology groups of the restriction of F to
Xy: H i(Xy,F|Xy).

In our case F = OX (us). The restriction of this to a fiber f is a line
bundle. The intersection product s · f = 1

p in X shows that the restriction
of OX (s) to f has degree 1

p , and therefore it is the bundle that one usually
calls OP1(1,p)(1).21 By the same token F = OX (us) restricts to OP1(1,p)(u).
This is good news, since the cohomology of OP1(1,p)(u) is very simple (note
that KP1(1,p) = O(−1 − p)). In particular

H i(P1(1, p),O(u)) =

⎧⎪⎨
⎪⎩

0 for −p ≤ u < 0, and i ≥ 0,

0 for 0 ≤ u, and i > 0,

C for 0 ≤ u < p, and i = 0.

(4.16)

Using the first two lines of (4.16) Grauert’s theorem implies that

Riπ∗OX (us) = 0 for −p ≤ u < 0 and i ≥ 0; and for 0 ≤ u and i > 0.
(4.17)

The third line of (4.16) and Grauert’s theorem implies that π∗OX (us) is
locally free of rank 1 on P

1 for 0 ≤ u < p, and using an argument similar to

20For more details the reader can consult Section 10.8.3 of [36].
21For a nice review of the weighted projective lines the reader can consult Section 9 of

[38].
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one in the proof of Lemma V.2.1 of [37] one proves that

π∗OX (us) = OP1 for 0 ≤ u < p. (4.18)

In the light of these the Leray spectral sequence (4.15) degenerates. For
−p ≤ u < 0 (4.17) and Leray imply the first part of the lemma. For 0 ≤ u
using both (4.17) and (4.18) we get the second statement. �

5 The toric approach

From a conceptual point of view it would be desirable to use Kodaira van-
ishing to prove the exceptionality of our collection. But the usual notion
of ampleness does not work for stacks. Nevertheless, we can use the coarse
moduli space of the stack to harness the power of ampleness. Let us see how
this works.

The starting point is Proposition 3.2 of [32] which shows that for Σ a
rational simplicial fan, the associated toric stack X (Σ) is a Deligne–Mumford
stack. Furthermore, Proposition 3.7 of [32] shows that the toric variety X(Σ)
is the coarse moduli space of X (Σ).

At this point we could try to use Theorem 2.1 of [39], which we reproduce
here for the convenience of the reader22

Theorem 5.1. Let X be a smooth proper Deligne–Mumford stack of dimen-
sion d with projective coarse moduli space π : X → X. Suppose that π is flat
and let L be an invertible sheaf on X such that some power of L descends
to an ample invertible sheaf on X. Then H i(X , KX ⊗ L) = 0 for i > 0.

Instead of using this theorem directly, we find it more convenient in prac-
tice to use Lemma 2.3.4 of [40], which for a separated stack X with coarse
moduli scheme π : X → X states that π∗ is exact. As we already men-
tioned, our toric stacks Xp,q fulfill these conditions. Using the Leray spectral
sequence, the exactness of π∗ allows us to reformulate the problem in terms
of computing cohomologies on a (singular) toric variety X:

H i(X ,L) = H i(X, π∗L).

On X we can use the power of ampleness, and deduce vanishing on the
stack. In fact, this lemma is used to prove Theorem 5.1.

22We specialized to the case that is most relevant in our context.
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5.1 Toric Kawamata–Viehweg vanishing

First we establish some useful criteria to determine if the higher cohomology
groups of an invertible sheaf on a toric variety vanish. Throughout the
section X is a complete toric variety and all divisors are T-invariant Weil
divisors. Di is the divisor associated to the ray vi. Our starting point is a
toric Kawamata–Viehweg vanishing theorem [41]:23

Theorem 5.2. If there is an E =
∑d

j=1 djDj with dj ∈ Q, 0 ≤ dj ≤ 1, such
that D + E is an ample Q-Cartier divisor, then H i(OX(D)) = 0 for all
i ≥ 1.

In the toric context we can use the Ψ function [42] to test ampleness. For
D =

∑
i aiDi, the function ΨD : Δ → R is linear on each cone σ ⊂ Δ of the

fan and is thus determined by the data ΨD(vi) = −ai.

Proposition 5.1 (page 70 of [42]). On a complete toric variety, a Cartier
divisor D is ample iff ΨD is strictly convex.

We can reformulate the Kawamata–Viehweg vanishing theorem in the
following way:

Corollary 5.1. Let X be simplicial and D be as above. If there exists
an E =

∑
i diDi, with 0 ≤ di ≤ 1 where di ∈ Q, such that ΨD+E is strictly

convex, then H i(X, O(D)) = 0 for all i > 0.

Proof. Since X is simplicial, D + E is Q-Cartier, and n(D + E) is Cartier
for some n > 0. From Proposition 5.1, n(D + E) is ample iff Ψn(D+E) is
strictly convex. But Ψn(D+E) is strictly convex iff ΨD+E is strictly convex.
Now the corollary reduces to Theorem 5.2. �

5.2 Specializing to a toric surface

From now on X is a complete simplicial toric surface determined by the
fan {vi ∈ Z

2 : i = 1, 2, . . . , n} and D =
∑

i aiDi. We choose the vi’s to be
ordered counterclockwise around the origin.

23A Weil divisor D is Q-Cartier if there exists an integer n > 0 such that nD is Cartier.
Furthermore, D is ample if nD is ample.
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Lemma 5.1. With the above notation, ΨD is strictly convex iff

〈vi−1, vi〉ai+1 + 〈vi+1, vi−1〉ai + 〈vi, vi+1〉ai−1 > 0

for all i. (〈·, ·〉 is the usual 2 × 2 determinant formed from the components
of the two vectors, and vn+1 = v1.)

Proof. We show that ΨD is strictly convex iff this geometric condition holds.

The question is local, and we need to check convexity for three ordered
adjacent vectors, say v1, v2 and v3. There are two cases to consider: v1 and
v3 are collinear or not.

Case 1 (v1 and v3 are not collinear). Since we are in R
2 we have that

α v1 + β v3 = v2 for some α, β ∈ R.

This system of two linear equations has the solution

α = 〈v2, v3〉/〈v1, v3〉, β = 〈v1, v2〉/〈v1, v3〉. (5.1)

On the one hand ΨD(v2) = −a2, on the other hand (α + β �= 0 since the
vectors are not collinear)

1
α + β

v2 =
α

α + β
v1 +

β

α + β
v3,

and strict convexity implies that

1
α + β

(−a2) = ΨD

(
1

α + β
v2

)

>
α

α + β
ΨD(v1) +

β

α + β
ΨD(v3)

=
α

α + β
(−a1) +

β

α + β
(−a3). (5.2)

Substituting (5.1) into (5.2) and multiplying through by R ≡ 〈v1, v2〉
+ 〈v2, v3〉 gives the equation in the statement for v1, v2 and v3. (By defini-
tion v1 and v2, resp. v2 and v3, generate strongly convex cones, and therefore
〈v1, v2〉 > 0 and 〈v2, v3〉 > 0.) It is immediate that the result for v1, v2, and
v3 implies strict convexity locally, and once convexity is checked for adjacent
triples, since ΨD is piecewise-linear, it is true in general.
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Case 2 (v1 and v3 are collinear). In this case 〈v1, v3〉 = 0 and

α v1 + β v3 = 0 for some α, β ∈ R. (5.3)

Since v1 and v3 are in adjacent cones, both α and β are positive. By rescal-
ing we choose them such that α + β = 1. Strict convexity in this case is
equivalent to the following:

0 = ΨD(α v1 + β v3) > α ΨD(v1) + β ΨD(v3) = −α a1 − β a3.

But (5.3) also implies that α 〈v1, v2〉 + β 〈v3, v2〉 = 0. Combining this with
the previous inequality gives the lemma again. �

Remark. For every vi consider the three dimensional vector Vi, whose first
two coordinates are those of vi, and third coordinate is −ai: Vi = (vi,−ai).
The inequality in Lemma 5.1 is equivalent to the statement that the 3 × 3
determinant 〈Vi−1, Vi, Vi+1〉 < 0. This determinant gives the oriented area
of the parallelepiped defined by the three Vi’s.

5.3 The Y p,q case

In this section, using the Kawamata–Viehweg vanishing theorem, we prove
that the exceptional collection (4.8) on Y p,q is simple. Let X be the toric
surface F

p
n from Section 4.2. From Lemma 5.1, the three conditions D =∑

i aiDi must satisfy for ΨD to be strictly convex reduce to24

a1p + a3 > 0, (a2 + a4)p > a3n, a1n + a2 + a4 > 0. (5.4)

To apply Kawamata–Viehweg vanishing for O(D) we add a suitable E =∑
i diDi and attempt to show that ΨD+E is strongly convex.

First, we prove that the higher cohomologies between any two elements in
(4.8) vanish. A general element in this collection is of the form iD3 + liD4,
where li = �ni

p � or li = �ni
p � + 1, and i = 0, 1, . . . , p. We pick two of these,

iD3 + liD4 and jD3 + ljD4. We are interested in the cohomology of O(D) =
O((i − j)D3 + (li − lj)D4). For E =

∑
i diDi the criteria (5.4) for O(D + E)

24The first equation in fact appears twice.
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become

d1p + i − j + d3 > 0, (d2 + li − lj + d4)p > (i − j + d3)n,

d1n + d2 + li − lj + d4 > 0. (5.5)

The range of i − j is from −p to p and li − lj from n + 1 to −n − 1. For
i − j > −p we can set d1 = d2 = d4 = 1 and d3 = 0, and the first and third
inequalities of (5.5) are clearly true. Rewrite the second inequality as

li − lj + 2 > (i − j)
n

p
.

This inequality holds because 0 ≤ �x� − x < 1, and thus x− y = x− �y� +
(�y� − y) < x− �y� + 1 < �x� − �y� + 1, and finally li − lj ≥ �ni

p � − �nj
p � − 1.

Now we can return to the case i − j = −p.25 Here we take di = 1 for
all i. The first and third inequalities of (5.5) are satisfied readily, while the
second inequality reads

(li − lj + 2)p > (−p + 1)n .

In this case li − lj = −n + s where s = −1, 0, or 1. Thus the second inequal-
ity reduces to (s + 2)p > n, which is true for every s since p > n.

To prove that this collection is exceptional, we also need to establish that
H0(O(D′ − D)) vanishes whenever D occurs later in the collection than D′.
In general, the dimension of H0 is the number of lattice points inside a
polygon:

dim H0
(

O
( ∑

i

aiDi

))
= card{u ∈ Z

2 : u · vi ≥ −ai}, (5.6)

where vi are the rays of the fan, in our case the ones in (4.6).

For an invertible sheaf O(a3D3 + a4D4), the four inequalities defining the
polygon are

x + y ≤ 0, y ≤ 0, x + y ≥ −a3

p
, nx + (n + 1)y ≥ −a4 . (5.7)

Let D = iD3 + liD4 and D′ = jD3 + ljD4. Since D occurs later than D′

we have that i ≥ j. For a3 = j − i < 0 the polygon is clearly empty. For
a3 = j − i = 0 necessarily a4 = −1. In this case the first and third inequal-
ities imply that x + y = 0. Inserting this result into the second and fourth

25It is interesting that both proofs require a separate treatment of these cases.
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inequalities yields the contradiction 0 ≥ y ≥ 1. This completes the proof of
strong exceptionality.

The fact that the collection is simple follows from the following proposi-
tion:26

Proposition 5.2. Let E be a strong exceptional collection of invertible
sheaves on a Fano variety X. If there exists a divisor E, satisfying the
criteria of the Kawamata–Viehweg vanishing theorem, and D − D′ + E is
ample for all D, D′ ∈ E, then E is simple.

Proof. For E to be simple, we need Hq(X, O(D − D′ − pK)) = 0 for q > 0,
p ≥ 0 and all D, D′ ∈ E . By assumption D − D′ + E is ample, and −K
is ample since X is Fano. Therefore ΨD−D′+E and Ψ−K are both strictly
convex, and hence ΨD−D′+E−pK = ΨD−D′+E + pΨ−K is also strictly convex
for all p ≥ 0. Thus D − D′ + E − pK is ample and the higher cohomology
of O(D − D′ − pK) vanishes by Kawamata–Viehweg. �
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