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Abstract

We prove that the Schwarzschild black hole is linearly stable under
electromagnetic and gravitational perturbations. Our method is to show
that for spin s = 1 or s = 2, solutions of the Teukolsky equation with
smooth, compactly supported initial data outside the event horizon, decay
in L∞

loc.

1 Introduction

In polar coordinates (t, r, ϑ, ϕ), the line element of the Schwarzschild metric
is given by

ds2 = gjk dxjxk =
Δ
r2 dt2 − r2

Δ
dr2 − r2 dϑ2 − r2 sin2 ϑ dϕ2,
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where
Δ = r2 − 2Mr,

and M is the mass of the black hole. The zero r1 := 2M of Δ defines the
event horizon of the black hole. The evolution of a massless wave Φ of
general spin s in the Schwarzschild geometry is described by the Bardeen–
Press equation [5]. Teukolsky [22] later generalized the equation to the Kerr
geometry, and therefore the equation is usually referred to as the Teukol-
sky equation [6]. We here work with a particularly convenient form of the
Teukolsky equation due to Whiting [25]:[

∂rΔ∂r − 1
Δ
(
r2∂t − (r − M)s

)2 − 4sr∂t

+ ∂cos ϑ sin2 ϑ∂cos ϑ +
1

sin2 ϑ
(∂ϕ + is cos ϑ)2

]
Φ(t, r, ϑ, ϕ) = 0. (1.1)

This is a second-order scalar wave equation, having complex coefficients
if s �= 0. (Note that our wave function differs from the function ψ in [22] by
a power of Δ, Φ = Δs/2ψ.) The parameter s is either integer or half-integer
valued. The case s = 0 gives the scalar wave equation. Of particular physical
interest are the cases s = 1

2 , 1, 2, which correspond respectively to the mass-
less Dirac equation, Maxwell’s equations and the equations for linearized
gravitational waves.

In this paper, we consider the Cauchy problem for the Teukolsky equa-
tion (1.1) with initial data

Φ|t=0 = Φ0, ∂tΦ|t=0 = Φ1, (1.2)

which is smooth and compactly supported outside the event horizon. Our
main theorem is the first rigorous result on time-dependent solutions of
the Teukolsky equation for higher spin, and proves linear stability of the
Schwarzschild black hole under electromagnetic and gravitational perturba-
tions.

Theorem 1.1. For spin s = 1 or s = 2, the solution of the Cauchy prob-
lem (1.1) and (1.2) for (Φ0, Φ1) ∈ C∞

0 ((r1,∞) × S2)2 decays in L∞
loc((r1,∞)

× S2) as t → −∞.

The study of linear stability of the Schwarzschild geometry was initiated
in 1957 by Regge and Wheeler [21], who discussed mode stability for metric
perturbations. In the case s = 0, the Cauchy problem (1.1) and (1.2) was
considered (for more general initial data) by Kay and Wald [15], and they
obtained a time-independent L∞-bound. Decay in L∞

loc was proved in [11,12]
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in the Kerr geometry, and worked out in [16] in the Schwarzschild geometry.
Related results for s = 0 in the Schwarzschild geometry were obtained in
[8,20]. If s = 1

2 , local decay was proved in the Kerr geometry in [9] (for both
the massive and massless case), and an exact decay rate was given in the
massive case [10]. Up to now, for higher spin s = 1 (Maxwell’s equations)
and s = 2 (linearized gravitational waves) only mode analyses have been
carried out for the Teukolsky equation; see [19] for a numerical study and [25]
for a rigorous proof of mode stability. We also mention the two papers on
the Regge–Wheeler equation [4, 13]. In the first paper, pointwise decay of
solutions is proved, whereas in the second paper time integral of solutions
is estimated locally in space.

To consider the limit t → −∞ (and not t → +∞) is purely a matter
of convenience. To see this, first note that in a general space-time, a
massless field of spin s �= 0 satisfies a coupled system of 2s + 1 complex,
first-order partial differential equations. As shown by Teukolsky [22], this
system can be decoupled in the Kerr geometry by multiplying with a suit-
able first-order differential operator. Then the first component of the sys-
tem satisfies the Teukolsky equation (1.1), whereas the last component also
satisfies (1.1), but with s replaced by −s. From either the first or the
last component, all the other components can be obtained by applying the
so-called Teukolsky–Starobinsky identities, see [6]. In view of this, we may
restrict attention to the Teukolsky equation (1.1) for either s or −s. Next,
we point out that the Teukolsky equation (1.1) is invariant under the trans-
formations (t, s, ϑ, ϕ) → (−t, −s, ϑ,−ϕ). We thus see that Theorem 1.1 also
makes a similar statement on the solution Φ of the Teukolsky equation for
spin −s in the limit t → +∞. Since the Teukolsky–Starobinsky identities
relate the solutions of the Teukolsky equations for ±s to each other, obtain-
ing decay for the spin −s equation as t → ∞ immediately yields decay for
the spin s equation as t → ∞. Thus there is no loss in generality to con-
sider in Theorem 1.1 the case t → −∞. This case will turn out to be most
convenient if one uses the sign conventions in [22] as well as the factor e−iωt

in the time separation.

Let us specify in which sense the Teukolsky equation governs the linear
perturbations of the Schwarzschild black hole. For spin s = 1, the Teukol-
sky equation takes into account all electromagnetic perturbations except
for adding a constant electric charge (see [22, p. 644]), thus perturbing
Schwarzschild to the Reissner–Nordström space-time. For s = 2, the Teukol-
sky equation describes perturbations of the Weyl tensor, and it is a quite
difficult task to reconstruct metric perturbations from a solution of the
Teukolsky equation; for details see [18, 26]. It is important to keep in mind
that the Teukolsky equation excludes perturbations of Schwarzschild to the
Kerr space-time, but does take into account all other regular perturbations
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(see [23]). Hence, our theorem shows linear stability of the Schwarzschild
black hole under all perturbations, except for linear perturbations to the
stationary Kerr–Newman black hole.

We now briefly discuss energy conservation and its role in our proof. In the
Schwarz–Schild geometry, the physical energy can be written as the spatial
integral of a positive energy density. More precisely, in the cases s = 0 and 1,
this energy is obtained by integrating the normal component of the vector
field T i

0, where Tij is the energy-momentum tensor corresponding to the
spin s field,

E =
∫

t=const
Tij νi

(
∂

∂t

)j

dμ =
∫

t=const
T 0

0 dμ,

where ν is the future-directed normal and dμ is the integration measure on
the hypersurface t = const. This energy is conserved because the energy-
momentum tensor is divergence-free and ∂t is a Killing field. Using the
dominant energy condition and the fact that ∂t is timelike, it is easy to
verify that the energy density is indeed non-negative. In the case s = 2, a
conserved energy of the gravitational field is given by the integral of the
Bel–Robinson tensor Q (see, for example, [17, p. 42ff])

E =
∫

t=const
Q0

000 dμ. (1.3)

This energy is the sum of the gravitational energy of the Schwarzschild
metric and the energy of the gravitational wave. Thus the energy Egv of the
gravitational wave is obtained by subtracting the energy of the background,

Egv =
∫

t=const

(
Q0

000 − (QS)0 000
)
dμ, (1.4)

where QS is the Bel–Robinson tensor in Schwarzschild. It is shown in the
appendix that Egv is conserved and quadratic in the perturbation of the
Weyl tensor and that the integrand in (1.4) is non-negative.

For computing the energy density in (1.4), one needs to know all the
components of the spin s field. In order to compute all these component
functions from a given solution Φ of the Teukolsky equation (1.1), one can
proceed in two essentially different ways. The first method is to take Φ as
the first component and to compute all the other components inductively
using the first-order system of differential equations. The second, probably
more elegant method is to regard Φ as the so-called Debye potential (a gen-
eralization of the classical Hertz potential in electrodynamics), from which
all the field components are obtained by differentiation; this is worked out
in detail in [7, 24]. In any case, substituting the resulting expressions for



TEUKOLSKY EQUATION FOR HIGHER SPIN 75

the field components into (1.4), unfortunately for s = 1 or 2, one gets very
complicated expressions involving higher derivatives of Φ, which seem very
difficult to handle. For this reason, we are unable to use the explicit form
of the energy density. In particular, we cannot work with a correspond-
ing energy scalar product. As a consequence, the associated Hamiltonian
will not be a symmetric operator, and thus we cannot use spectral theory in
Hilbert spaces. The main technical difficulty of the present paper is to prove
completeness and decay without using the spectral theorem. Nevertheless,
we will make use of the existence of a positive energy density a few times,
without referring to its explicit form.

The main step in the proof is to derive an integral representation for the
propagator, whereby we integrate over the real line R together with another
line parallel to R (see Theorem 8.5). The latter line integral reflects the
fact that the essential spectrum of the Hamiltonian has a contribution in
the complex plane. The appearance of a complex essential spectrum can be
understood from the fact that the Teukolsky equation (1.1) involves first-
order time derivatives, which after time separation e−iωt with real ω lead to
complex potentials in the resulting radial equation. These complex poten-
tials make it impossible to apply standard techniques used for 1-dimensional
Schrödinger equations. In particular, the fundamental solutions of the radial
ODE behave asymptotically near infinity like a power of r times a plane wave
(and no longer just like plane waves as in the case s = 0). This requires us
to develop new techniques like obtaining refined WKB estimates for Jost
solutions with complex potentials, and working with non-closed integration
contours. To prove completeness, we use an idea in Bachelot [3], which
reduces the completeness problem to obtaining resolvent estimates for large
values of the spectral parameter ω.

We remark that in the case s = 1
2 , Theorem 8.5 gives an integral repre-

sentation for the propagator of the massless Dirac equation, which is con-
siderably different from the integral representation obtained in [9]. This
surprising fact will be discussed in Section 10.

This paper is organized as follows. In Section 2, we separate out the time
and angular dependence in the Teukolsky equation and obtain the radial
ODE. In Section 3, we construct holomorphic families of Jost solutions of
the radial equation which have prescribed asymptotics near the event horizon
or at infinity. In Section 4, we write the Teukolsky equation in Hamiltonian
form and express the resolvent of the Hamiltonian in terms of the Jost
functions. Section 5 is devoted to the derivation of WKB estimates, which
give precise bounds for the Jost functions asymptotically near the event
horizon and at infinity, and also globally if |ω| is sufficiently large. Using
these estimates, in Section 6, we study the decay properties of the resolvent
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for large values of the spectral parameter. These resolvent estimates allow
us in Section 7 to express the propagator in terms of contour integrals,
thereby also obtaining a completeness result. In Section 8, we use classical
Whittaker functions together with an energy argument to show that the
integration contour can be deformed onto both the real axis and another
line parallel to it. In Section 9, we prove Theorem 1.1 using a Riemann–
Lebesgue argument for a finite number of angular modes, together with an
estimate for the remaining infinite number of modes. Finally, Section 10 is
devoted to general remarks on our integral representation in the case s = 1

2
and on possible extensions of our methods to the Kerr geometry.

2 Separation of variables

Using spherical symmetry, we can separate out the angular dependence with
the usual multiplicative ansatz

Φ(t, r, ϑ, ϕ) = R(t, r) Y (ϑ, ϕ).

The spin-weighted spherical harmonics Y = sYlm with l = |s|, |s| + 1, . . .,
m = −l, −l + 1, . . . , l (see [14]) form an eigenvector basis of the angular oper-
ator

A = −∂cos ϑ sin2 ∂cos ϑ − 1
sin2 ϑ

(∂ϕ + is cos ϑ)2 ,

on L2(S2), corresponding to the eigenvalues λl = l(l + 1) − s2 (note that
our angular operator is related to the operator H0 in [19] by A = −H0 − s2).
Restricting attention to one angular momentum mode, the Teukolsky equa-
tion reduces to[

∂rΔ∂r − 1
Δ
(
r2∂t − (r − M)s

)2 − 4sr∂t − λ

]
R(t, r) = 0, (2.1)

where we set λ = λl. We transform to the Regge–Wheeler variable u ∈ R

defined by

du

dr
=

r2

Δ
, so u = r + 2M log(r − 2M), (2.2)

which maps the event horizon r = 2M to u = −∞. Furthermore, setting

φ(t, r) = r R(t, r),

the Teukolsky equation becomes
[
r3

Δ
∂ur2∂u

1
r

− 1
Δ
(
r2∂t − (r − M)s

)2 − 4sr∂t − λ

]
φ(t, r) = 0.
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Applying the identity ∂ur2∂u = r∂2
ur − r(∂2

ur), we can write this equation in
the simpler form[

∂2
u −
(

∂t − (r − M)s
r2

)2

− 4sΔ
r3 ∂t − ∂2

ur

r
− λ

Δ
r4

]
φ(t, r) = 0. (2.3)

Using the time translation symmetry, we can further separate out the
time dependence with the ansatz

φ(t, r) = e−iωt φ(r). (2.4)

Then the Teukolsky equation reduces to the ODE in Schrödinger form

− d2

du2 φ(u) + V (u) φ(u) = 0, (2.5)

where the potential V is given by

V (u)= −ω2+ isω

[
2(r − M)

r2 − 4Δ
r3

]
+

(r − M)2 s2

r4 +
∂2

ur

r
+ λ

Δ
r4 . (2.6)

Note that in the case s �= 0, V is complex even for real ω.

3 Construction of the Jost solutions

In this section, we construct Jost solutions φ́ and φ̀ of the Schrödinger
equation (2.5), which are defined by their asymptotic behavior near the
event horizon and near infinity, respectively. Near the event horizon, the
potential has the limit

lim
u→−∞

V (u) = −Ω2 where Ω := ω − is

4M
.

Writing the Schrödinger equation in the form

(−∂2
u − Ω2) φ́ = −W (u) φ́(u),

the potential W behaves near the event horizon linearly in (r − r1), and thus
has exponential decay in the Regge-Wheeler coordinate (2.2) near u = −∞.
More precisely, for u near −∞ there is a constant c > 0 such that

|W (u)| ≤ c eu/2M .

Using this exponential decay, φ́ can be constructed exactly as in [12, The-
orem 3.1] (see also [2, 16]). The properties of φ́ are summarized in the
following theorem.
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Theorem 3.1. For every ω in the domain

D− =
{

ω
∣∣∣ Im ω <

s

4M
+

1
4M

}

there is a solution φ́− of (2.5) having the asymptotics

lim
u→−∞

e−iΩu φ́−(u) = 1, lim
u→−∞

(
e−iΩu φ́−(u)

)′
= 0. (3.1)

These solutions can be chosen to form a holomorphic family, in the sense
that for every u ∈ R, the function φ́−(u) is holomorphic in ω ∈ D−. Simi-
larly, on the domain

D+ =
{

ω
∣∣∣ Im ω >

s

4M
− 1

4M

}

there is a holomorphic family of solutions φ́+ of (2.5) with the asymptotics

lim
u→−∞

eiΩu φ́+(u) = 1, lim
u→−∞

(
eiΩu φ́+(u)

)′
= 0.

Near infinity, the potential has the following asymptotic form,

V (u) = −ω2 − 2isω

u
+ O

(
log u

u2

)
. (3.2)

In the remainder of this section we always assume that u � 1. In the
case s = 0, the solutions φ̀ were constructed in [12, 16]; thus we assume in
what follows that s ≥ 1

2 . Because of the non-integrable u−1-term in V , the
standard Jost solution method [2] cannot be implemented. We choose u0
so large that V has no zeros on [u0,∞). We introduce the WKB wave
functions ά and ὰ by

ά(u) = ć V (u)−1/4 exp
(∫ u

u0

√
V

)
, ὰ(u)= c̀ V (u)−1/4 exp

(
−
∫ u

u0

√
V

)
,

(3.3)

with constants ć, c̀ �= 0 to be determined later. To explain the sign conven-
tion for

√
V , we first note that taking the square root of (3.2) gives

√
V (u) = ±

(
iω − s

u

)
+ O

(
log u

u2

)
. (3.4)

Our sign convention is {
+ if Im ω ≤ 0
− if Im ω > 0.

(3.5)

Thus if Im ω �= 0, the real part of
√

V (u) is positive for large u and so ὰ
decays at plus infinity. Furthermore, we note that our sign convention does
not change if ω approaches the real line from below. Also, we point out
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that for real ω, the function ὰ does not decay at infinity, but increases
polynomially like us.

The functions ά and ὰ are solutions of the equation

Lα = 0, (3.6)

where L is the differential operator defined by

L = −∂2
u + V0 and V0 := V − V ′′

4V
+

5
16

(
V ′

V

)2

.

Writing the Schrödinger equation (2.5) as

L φ = −W φ, (3.7)

we see that the new potential W := V − V0 is integrable, since

|W (u)| ≤ c

1 + |ω|
1
u3 on [u0,∞). (3.8)

Since the WKB wave functions ά and ὰ form a fundamental system
for (3.6), we can use them to construct a Green’s function for the oper-
ator L. In what follows, Θ denotes the usual Heaviside function.

Lemma 3.2. Under the sign convention (3.5), the function

S(u, v) =
1
2

Θ(v − u) (V (u)V (v))−1/4

×
[
exp
(∫ v

u

√
V

)
− exp

(
−
∫ v

u

√
V

)]
(3.9)

is, for all u, v > u0, a distributional solution of the equation

Lu S(u, v) = δ(u − v). (3.10)

Proof. We make the ansatz

S(u, v) = Θ(v − u) (c1(v) ά(u) + c2(v) ὰ(u))

and determine the coefficients c1 and c2 from the conditions

lim
u↗v

S(u, v) = 0, lim
u↗v

∂uS(u, v) = −1.

This gives (3.9), and a straightforward calculation yields (3.10). �
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We now make the perturbation ansatz

φ̀ =
∞∑

n=0

φ(n), (3.11)

where the φ(n) are defined by the iteration scheme

φ(0)(u) = ὰ(u)

φ(l+1)(u) = −
∫ ∞

u
S(u, v) W (v) φ(l)(v) dv.

⎫⎬
⎭ (3.12)

Before stating the next theorem, we must study the asymptotics of ὰ near
infinity. Carrying out the integral in (3.3) using (3.4), we obtain

ὰ(u) ∼ e∓iωu±s log u = u±s e∓iωu.

Due to our sign convention (3.5), we find that

ὰ(u) ∼
{

u−s eiωu if Im ω ≥ 0,
us e−iωu if Im ω < 0.

(3.13)

We next prove that the perturbation series (3.11) converges to a solution φ̀
of the full equation (3.7) having the same asymptotics as ὰ.

Theorem 3.3. On the domain E+ := {ω | ω �= 0 and Im ω > 0}, there is a
family of solutions φ̀+(u) of (3.7), holomorphic in the interior of E+, having
the asymptotics

lim
u→∞

us e−iωu φ̀+(u) = 1, lim
u→∞

(
us e−iωu φ̀+(u)

)′
= 0. (3.14)

Likewise, on the domain E− := {ω | ω �= 0 and Im ω < 0}, there is a family
of solutions φ̀−(u) of (3.7), holomorphic in the interior of E−, with the
asymptotics

lim
u→∞

u−s eiωu φ̀−(u) = 1, lim
u→∞

(
u−s eiωu φ̀−(u)

)′
= 0. (3.15)

Proof. From the definitions (3.3) and (3.9) and our sign convention (3.5), it
is obvious that

|ὰ(u)| ≤ d |V (u)|−1/4 exp
(

−
∫ u

u0

|Re
√

V |
)

|S(u, v)| ≤ Θ(v − u) |V (u) V (v)|−1/4 exp
(∫ v

u
|Re

√
V |
)
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where we take

d = exp
(

2
∫ u1

u0

|Re
√

V |
)

,

with u1 chosen so large that the real part of the square root of V is positive
for all u > u1.

We will show inductively that for u > u0,∣∣∣φ(l)(u)
∣∣∣ ≤ c̀d

C l

u2l l!
|V (u)|−1/4 exp

(
−
∫ u

u0

|Re
√

V |
)

, (3.16)

where
C =

c

2(1 + |ω|)
and c is as in (3.8). The case l = 0 is obvious. Assume that (3.16) holds for
a given l. Then

|φ(l+1)(u)| ≤ c̀d
C l

l!
|V (u)|−1/4 e−

∫ u
u0

|Re
√

V |
∫ ∞

u

c

1 + |ω|
1

v3+2l
dv

= c̀d
C l+1

u2(l+1) (l + 1)!
|V (u)|−1/4 e−

∫ u
u0

|Re
√

V |
.

The estimate (3.16) shows that the series (3.11) converges absolutely,
uniformly for u > u0. Similarly, one can show that the series obtained by
differentiating (3.11) termwise again converges in the same sense. Thus
we can differentiate the series termwise, thereby showing that φ̀ is a solu-
tion of (3.7). According to (3.13), we can choose c̀ such that the func-
tion φ(0) satisfies the boundary conditions (3.14) or (3.15), and since the
estimate (3.16) involves a factor u−2l, it is obvious that φ̀ also satisfies the
first relation in (3.14) or (3.15). The second relations are obtained by differ-
entiating (3.11) and (3.12) with respect to u; a lengthy but straightforward
calculation yields the result.

To prove analyticity in ω, we first note that ὰ, W and S(u, v) are obviously
analytic. Hence, each φ(l) is analytic being an integral of analytic functions.
Since the constants c̀ and d, C in (3.16) can be chosen locally uniformly in ω,
we conclude from Morera’s theorem that φ̀ is also analytic. �

4 Hamiltonian formulation, construction of the resolvent

At this stage, we do not know whether the separation ansatz (2.4) will give
us a complete set of solutions of the time-dependent equation (2.3). To
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remedy this situation, we shall write the equation in Hamiltonian form. To
this end, we set

Ψ =
(

φ(t, r)
i∂tφ(t, r)

)

and obtain

i∂tΨ = HΨ with H =
(

0 1
α β

)
(4.1)

and

α = −∂2
u +

(r − M)2 s2

r4 +
∂2

ur

r
+ λ

Δ
r4 , (4.2)

β = is

[
2(r − M)

r2 − 4Δ
r3

]
. (4.3)

The Hamiltonian H can be considered as an operator on the Hilbert space

H := H1,2(R, du) ⊕ L2(R, du),

densely defined on the domain D(H) = S(R)2, the Schwartz functions. Note
that H is not symmetric on H.

We assume for the rest of this section that

Im ω �∈
[
0,

s

4M

]
. (4.4)

For a given ω satisfying these conditions, we will show that the resolvent
of H exists, and we will express it in terms of the Jost solutions. Depending
on the sign of Imω, we let φ̀ be the function φ̀+ or φ̀− of Theorem 3.3,
respectively. If ω ∈ D+ ∩ D−, there are two Jost solutions φ́± near the
event horizon, one of which decays exponentially, the other of which grows
exponentially. We choose the solution with exponential decay. Thus in the
case Im ω > s/(2M), we let φ́ = φ́+, whereas in the case Im ω < s/(2M), we
let φ́ = φ́−.

The next lemma relies crucially on Whiting’s mode stability result [25].

Lemma 4.1. For any ω satisfying (4.4), the Wronskian

w(φ́, φ̀) := φ́′ φ̀ − φ́ φ̀′ (4.5)

is non-zero.

Proof. If the Wronskian were zero, the solutions φ́ and φ̀ would be lin-
early dependent. Then there would be a solution φ decaying exponen-
tially fast at both u = ±∞. If Im ω < 0, such solutions have been ruled
out by Whiting [25]. (Note that Whiting considers the case s < 0 in the
limit t → +∞. Using the symmetries (t, s, ϑ, ϕ) → (−t, −s, ϑ,−ϕ), this is
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equivalent to considering the case s > 0 in the limit t → −∞, which corre-
sponds to mode solutions in the lower half plane as considered here).

In the case Im ω > s/(4M) and Re ω �= 0, we use that φ is a solution
of (2.5) to obtain

0 =
〈(

− d2

du2 + V

)
φ, φ

〉
L2(R)

−
〈

φ,

(
− d2

du2 + V

)
φ

〉
L2(R)

.

Using the exponential decay of φ as u → ±∞, we can integrate by parts to
get

0 = −2 〈φ, (Im V ) φ〉L2(R) . (4.6)

On the other hand, we see from (2.6) that

Im V = −2 Re ω

(
Im ω − s

2

[
2(r − M)

r2 − 4Δ
r3

])
. (4.7)

A short computation shows that the round bracket is strictly positive. Thus
Im V is either strictly positive or strictly negative, contradicting (4.6).

In the final case, Im ω > s/(4M) and Re ω = 0, we see from (4.7) that V
is real, and a short computation using (2.6) shows that it is even strictly
positive. Using that according to (3.1), the fundamental solution φ́ is posi-
tive and increasing near u = −∞, we conclude that φ́ is convex. Hence, it
cannot be a multiple of the function φ̀, which decays at infinity according
to (3.14). �

This lemma allows us to introduce Green’s function G(u, v) of the
Schrödinger equation (2.5) by the standard formula

G(u, v) =
1

w(φ́, φ̀)
×
{

φ́(u) φ̀(v) if v ≥ u,

φ̀(u) φ́(v) if v < u.
. (4.8)

It satisfies the distributional equation
(

− d2

du2 + V (u)
)

G(u, v) = δ(u, v). (4.9)

We let G denote the corresponding operator with integral kernel G(u, v).

Lemma 4.2. For every ω satisfying (4.4), G is a bounded linear operator
from L2(R) to H1,2(R), and maps C∞

0 (R) to S(R).
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Proof. We restrict attention to the case Im ω < 0, since the other case is
analogous. To prove the first part, we let ψ be in L2(R). Then the func-
tion Gψ can be written as

(Gψ)(u) =
1

w(φ́, φ̀)

(
φ́(u)

∫ ∞

u
φ̀(v) ψ(v) dv + φ̀(u)

∫ u

−∞
φ́(v) ψ(v) dv

)
.

We consider only the first term, because the second term can be treated
similarly. Thus our task is to bound the function

f(u) := φ́(u)
∫ ∞

u
φ̀(v) ψ(v) dv (4.10)

in H1,2. From Theorem 3.1 we know that the solution φ́ behaves near the
event horizon like φ́ ∼ eiΩu. Integrating the Wronskian equation
φ́′h − φ́h′ = 1 via the method of variation of constants, we obtain another
fundamental solution

h(u) = φ́(u)
∫ 0

u

1

φ́2(x)
dx.

Using the asymptotics of φ́, one sees that h is bounded near the event horizon
by a multiple of |e−iΩu|. We conclude that the function φ̀, being a linear
combination of these two fundamental solutions, satisfies the inequality

|φ̀(v)| ≤ C e−|Im Ω| v for v � 0.

Using similar arguments near infinity, we conclude from Theorem 3.3 that

|φ́(u)| ≤ C us e|Im ω| u for u � 0.

Combining these inequalities with Theorems 3.1 and 3.3, we have estimates
for both φ́ and φ̀ at both asymptotic ends. Since on any compact set,
the solutions can be bounded using simple Gronwall estimates, one sees
that choosing ε = min(|Im ω|, |Im Ω|), we have the following estimate for
sufficiently large c,

∣∣∣φ́(u) φ̀(v)
∣∣∣ ≤ c e−ε (v−u) for all v ≥ u. (4.11)

This estimate gives the pointwise bound

|f(u)| ≤ c

∫ ∞

u
e−ε(v−u) |ψ(v)| dv. (4.12)
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Setting

g(x) = c Θ(x) e−εx,

we can write the right of side of (4.12) as the convolution g ∗ |ψ|. Then using
the Plancherel theorem together with the fact that convolution in position
space corresponds to multiplication in momentum space, we have

‖f‖2 ≤ ‖g ∗ |ψ|‖2 = ‖ĝ · ˆ|ψ|‖2 ≤ ‖ĝ‖∞ ‖ψ‖2.

The function ĝ can be computed (ignoring factors of 2π) to be

ĝ(k) = c

∫ ∞

0
e−εx eikx dx =

c

ε − ik
,

and thus ĝ is a bounded function. We conclude that there is a constant C
such that

‖f‖2 ≤ C ‖ψ‖2.

To get a similar L2-bound on f ′, we first differentiate (4.10),

f ′(u) := −φ́(u)φ̀(u) ψ(u) + φ́′(u)
∫ ∞

u
φ̀(v) ψ(v) dv.

Using (4.11), we see that the first term is in L2. To bound the second term,
we solve the Wronskian equation (4.5) for φ́′ and use the above inequalities
to obtain

|φ́′(u)| ≤ C us e|Imω| u for u � 0.

In view of Theorem 3.1, we have similar inequalities for φ́′ as for φ́, and thus
we can repeat the above arguments with φ́ replaced by φ́′ to obtain

‖f ′‖2 ≤ C ‖ψ‖2.

We conclude that G is a bounded operator from L2 to H1,2.

It remains to show that G maps C∞
0 into the Schwartz class. By iteratively

taking the derivatives (∂u + ∂v) of (4.8), we see that (∂u + ∂v)nG(u, v) is
continuous in both variables. Since for any ψ ∈ C∞

0 ,

∂u

∫ ∞

−∞
G(u, v) ψ(v) dv =

∫ ∞

−∞
((∂u + ∂v)G(u, v)) ψ(v) dv

+
∫ ∞

−∞
G(u, v) ψ′(v) dv,

where the last integral was obtained by partial integration, it follows that Gψ
is in C1. The higher regularity follows by induction. To prove that Gψ has
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rapid decay, we choose u to the left of the support of ψ. Then

(Gψ)(u) = φ́(u)
∫ ∞

−∞

φ̀(v) ψ(v)

w(φ́, φ̀)
dv.

Since φ́ has exponential decay, it follows that Gψ has rapid decay at u =
−∞. A similar argument using φ̀ shows that Gψ has rapid decay at +∞.
Differentiating through the Schrödinger equation (2.5), one sees that the
derivatives of φ́ and φ̀ also have rapid decay at their respective asymptotic
ends, implying that all derivatives of Gψ have rapid decay. �

We now express the resolvent of H in terms of G.

Theorem 4.3. Every complex number ω satisfying (4.4) lies in the resolvent
set of the operator H. The resolvent Rω := (H − ω)−1 has the integral kernel
representation

(Rω Ψ)(u) =
∫ ∞

−∞
Rω(u, v) Ψ(v) dv, (4.13)

where

Rω(u, v) =
(

0 0
δ(u, v) 0

)
+ G(u, v)

(
ω − β(v) 1

ω (ω − β(v)) ω

)
, (4.14)

and β is defined as in (4.3).

Proof. A short calculation using (4.1), (4.14) and (4.9) shows that

(H − ω) Rω(u, v) = 11 δ(u − v). (4.15)

Using Lemma 4.2, we can use (4.13) to define Rω as a bounded operator
from H = H1,2 ⊕ L2 to itself.

Let us show that the image of the operator (H − ω) (with domain of
definition D(H) = S(R)2)) is dense in H. To this end, for given Ψ ∈ H we
choose a sequence Ψn ∈ C∞

0 with Ψn → Ψ in H. According to Lemma 4.2,
the functions Φn := RωΨn are Schwartz functions. Hence the Φn are in the
domain of H, and from (4.15) we see that (H − ω)Φn = Ψn.

We conclude that ω lies in the resolvent set of H and that (H − ω)−1

= Rω. �

We end this section by showing that the boundary of the set (4.4) lies in
the essential spectrum of H.

Proposition 4.4.

σess(H) ⊃ R ∪
(

R +
is

4M

)
.
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Proof. Let ω ∈ R ∪ (R + is
4M ) and set κ = Re ω. We choose a positive test

function η ∈ C∞
0 ((−2, 2)) with η|(−1,1) ≡ 1 and consider for any L �= 0 the

“wave packet”

Ψκ,ω,L(u) =
1
L

η

(
u − L3

L2

)
e−iκu

(
1
ω

)

of momentum κ, localized in the interval [L3 − 2L2, L3 + 2L2]. A scaling
argument shows that ‖Ψκ,ω,L‖L2 = ‖η‖L2 , and thus the Hilbert space norm
‖Ψκ,ω,L‖H is bounded away from zero as L → ±∞. Furthermore, moving
the wave packet to infinity and to the event horizon, respectively, we can
use the asymptotic form of the Hamiltonian to obtain

lim
L→∞

‖(H − ω) Ψκ,ω,L‖H = 0 if ω = κ,

lim
L→−∞

‖(H − ω) Ψκ,ω,L‖H = 0 if ω = κ +
is

4M
.

Hence ω lies in the approximate point spectrum. �

5 WKB estimates

In this section we again assume that (4.4) is satisfied and that for a suitable
constant K > 1 (to be determined later) one of the following two conditions
holds:

(C1) |ω| ≥ K and u ∈ R.

(C2) ω �= 0 and |u| >
K

|ω| .

By choosing K sufficiently large, we can clearly arrange that the potential V
in (2.6) has no zeros. Then the WKB functions ά and ὰ are defined by (3.3).
We choose the normalization constants ć, c̀ such that

lim
u→−∞

eiΩu ά = 1

lim
u→∞

us e−iωu ὰ = 1

}
if Im ω >

s

4M
,

lim
u→−∞

e−iΩu ά = 1

lim
u→∞

u−s eiωu ὰ = 1

}
if Im ω < 0.

The next theorem shows that for large |ω| the fundamental solutions φ́ and φ̀
constructed in the previous section are well-approximated by the WKB solu-
tions. We restrict attention to the physically interesting cases s = 1

2 , 1, 2
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(although the method works for arbitrary s just as well). We let ρ be the
function

ρ(u) =
√

1 + u2

and introduce the constant ρ by

ρ =
{

1 in case (C1),
ρ(K/|ω|) in case (C2).

Note that in both cases, ρ(u) > ρ and |ω|ρ > K.

Theorem 5.1. Let s ∈ {1
2 , 1, 2}. Then there are constants C, K > 0 such

that for all ω and u satisfying (4.4) and either (C1) or (C2), the following
inequalities hold:∣∣∣∣∣

φ́

ά
− 1

∣∣∣∣∣+
∣∣∣∣∣
φ́′

ά′ − 1

∣∣∣∣∣ ≤
4C

|ω| ρ and

∣∣∣∣∣
φ̀

ὰ
− 1

∣∣∣∣∣+
∣∣∣∣∣
φ̀′

ὰ′ − 1

∣∣∣∣∣ ≤
4C

|ω| ρ.

Proof. We only give the estimate for φ̀, because φ́ can be treated similarly
after replacing u by −u. By choosing K sufficiently large, we can arrange
that for n = 1, 2, 3,

|W (u)| ≤ c

ρ3 , |∂nW (u)| ≤ c

ρ3+n
, (5.1)

|V (u)| ≥ |ω|2
4

, |∂nV (u)| ≤ c |ω|
ρ1+n

. (5.2)

Furthermore, it follows from our sign convention (3.5) that for all ω
satisfying (4.4),

Re
√

V ≥ −s

ρ
+ O(ρ−2),

and integrating gives the bound
∣∣∣e−

∫ x
u 2

√
V
∣∣∣ ≤ c̃

(
ρ(x)
ρ(u)

)2s

for all x ≥ u. (5.3)

Using (3.3), (3.9) and (3.12), the functions E(l) defined by

E(l)(u) =
φ(l)(u)
ὰ(u)

(5.4)

satisfy the relations

E(0) ≡ 1

E(l+1)(u) =
∫ ∞

u

W (x)
2
√

V (x)

{
1 − e−2

∫ x
u

√
V
}

E(l)(x) dx.

⎫⎬
⎭ (5.5)
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We begin with the case s = 1. We shall prove inductively that for suffi-
ciently large C there are constants a(l) and b(l) such that for all l ≥ 0 the
following inequalities hold,

∣∣∣E(l)(u) − a(l)
∣∣∣ ≤ b(l)

ρ(u)
with |a(l)| + |b(l)| ≤

(
C

|ω| ρ

)l

. (5.6)

To satisfy these conditions in the case l = 0, we simply set a(0) = 1 and b(0) =
0. Thus assume that (5.6) holds for a given l. Since ρ ≥ 1, (5.6) implies that

|E(l)(u)| ≤ |a(l)| + |b(l)|. (5.7)

The estimates

∣∣∣∣∣
∫ ∞

u

W (x)
2
√

V (x)
E(l)(x) dx

∣∣∣∣∣ ≤
1

|ω|

∫ ∞

u

c

ρ(x)3

(
C

|ω| ρ

)l

dx

≤ c C l

(|ω|ρ)l+1

∫ ∞

−∞

1
1 + x2 dx =

cπ C l

(|ω|ρ)l+1

give us control of the first term in the curly brackets in (5.5). To estimate the
second term in the curly brackets, we first consider the error term in (5.6),

∣∣∣∣∣
∫ ∞

u

W (x)
2
√

V (x)
e−2

∫ x
u

√
V b(l)

ρ(x)
dx

∣∣∣∣∣ ≤
1

|ω|

∫ ∞

u

c

ρ(x)3
c̃

(
ρ(x)
ρ(u)

)2 1
ρ(x)

C l

(|ω|ρ)l
dx

≤ C lcc̃

(|ω|ρ)l+1

∫ ∞

u

1
ρ(x)2

dx ≤ C lπcc̃

(|ω|ρ)l+1 .

For the constant term in (5.6) we can integrate by parts

∫ ∞

u

W (x)
2
√

V (x)
e−2

∫ x
u

√
V a(l) dx = −a(l)

∫ ∞

u

W (x)
4 V (x)

d

dx

(
e−2

∫ x
u

√
V
)

dx

= a(l) W (u)
4 V (u)

+a(l)
∫ ∞

u

(
W (x)
4 V (x)

)′
e−2

∫ x
u

√
V dx

(5.8)
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to get

∣∣∣∣∣
∫ ∞

u

W (x)
2
√

V (x)
e−2

∫ x
u

√
V a(l) dx

∣∣∣∣∣
≤ C l

2|ω|l+2 ρl

c

ρ(u)3
+

C l

(|ω|ρ)l

∫ ∞

u

cc̃

|ω|2 ρ(x)4

(
ρ(x)
ρ(u)

)2

dx

=
C l

2|ω|l+2 ρl

c

ρ(u)3
+

C lcc̃π

|ω|l+2 ρl ρ(u)2
≤ C lc

2(|ω|ρ)l+1 +
C lcc̃π

(|ω|ρ)l+1 .

Choosing C > cπ + cc̃π + (c/2 + πcc̃), the induction step is thereby com-
plete, so that (5.6) holds.

We choose K > 4C. Then the inequality |ω|ρ > K implies that K/(|ω|ρ)
< 1

4 , and thus

∣∣∣∣∣
φ̀

ὰ
− 1

∣∣∣∣∣
(5.4)
=

∣∣∣∣∣
( ∞∑

l=0

E(l)

)
− 1

∣∣∣∣∣
(5.5)
≤

∞∑
l=1

|E(l)|
(5.7)
≤

∞∑
l=1

(
|a(l)| + |b(l)|

)

(5.6)
≤

∞∑
l=1

(
C

|ω| ρ

)l

=
C

|ω|ρ − C
≤ 4C

3|ω|ρ.

To treat the derivative of φ̀, we first note that

(φ(l))′

ὰ′ = (E(l))′ ὰ

ὰ′ + E(l).

Differentiating (5.5) and using (3.3), we find that

(E(l+1))′ ὰ

ὰ′ = −
[
1 +

V ′

4V 3/2

]−1 ∫ ∞

u

W (x)√
V (x)

e−2
∫ x

u

√
V E(l)(x) dx.

Using (5.2), one sees that in both cases (C1) and (C2), the square bracket
is uniformly bounded away from zero, and the integral can be estimated
exactly as before. This shows that

∞∑
l=1

∣∣∣∣(E(l+1))′ ὰ

ὰ′

∣∣∣∣
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can be made arbitrarily small by choosing K large enough. Thus∣∣∣∣∣
φ́′

ά′ − 1

∣∣∣∣∣ ≤
4C

3|ω|ρ,

and this concludes the proof of the theorem in the case s = 1.

In the case s = 1
2 , the proof is even easier since we do not need to integrate

by parts in (5.8). Finally, if s = 2, we again consider solutions of (5.5), but
we replace (5.6) by∣∣∣∣∣E(l)(u) − a(l) − b(l)

ρ(u)
− c(l)

ρ(u)2

∣∣∣∣∣ ≤
d(l)

ρ(u)3
(5.9)

and our task is to prove inductively that there are constants C and K such
that for all l and ω satisfying the conditions (C1) or (C2),

|a(l)| + |b(l)| + |c(l)| + |d(l)| ≤
(

C

|ω| ρ

)l

. (5.10)

Once these inequalities are proved, the theorem follows as in the case s = 1.
Again for l = 0, setting a(0) = 1 and b(0) = c(0) = d(0) = 0, there is nothing
to prove. The induction step follows as in the case s = 1; however, we here
need to integrate by parts up to three times. We shall not give all the
details, but merely consider the term involving b(l), which is representative
of all other terms. After integrating by parts twice, we get∫ ∞

u

W (x)
2
√

V (x)
e−2

∫ x
u

√
V b(l)

x
dx

= b(l) W (u)
4 V (u) u

+ b(l)
∫ ∞

u

(
W (x)

4 V (x) x

)′
e−2

∫ x
u

√
V dx

= b(l) W (u)
4 V (u) u

+
b(l)

2
√

V (u)

(
W (x)

4 V (x) x

)′

+ b(l)
∫ ∞

u

(
1

2
√

V (x)

(
W (x)

4 V (x) x

)′
)′

e−2
∫ x

u

√
V dx.

Carrying out the differentiations, we can take absolute values and estimate
term by term using (5.1) and (5.2). Possibly after increasing K, we get the
desired result. �

6 Resolvent estimates for large |ω|

In this section, we assume again that ω is in the range (4.4) and that condi-
tion (C1) holds, so that the WKB estimates of Theorem 5.1 are valid. Our
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goal is to prove the following estimate of the resolvent for large |ω|, which
will play a crucial role in the completeness proof.

Theorem 6.1. For every Ψ ∈ C∞
0 (R)2 and u ∈ R, there are constants K,

C = C(u) > 0 such that for all ω satisfying (4.4),

|(RωΨ)(u)| ≤ C

|ω| .

Proof. Noting that for any ψ ∈ C∞
0 (R),

∫ ∞

−∞
δ(u − v) ψ(v) dv =

∫ ∞

−∞
G(u, v)

(
−∂2

v + V
)
ψ(v),

a short calculation using (4.13) and (4.14) allows us to write the resolvent
for any Ψ ∈ C∞

0 (R)2 as

(RωΨ)(u) =
∫ ∞

−∞
G(u, v) NΨ where N =

(
ω − β 1

α ω

)
.

Thus, since N is linear in ω, the result will hold if we show that for every ψ ∈
C∞

0 (R),

|(Gψ)(u)| ≤ C

|ω|2 . (6.1)

Before giving the proof of (6.1), we collect a few properties of the poten-
tial V for large |ω|. It is obvious from (2.6) that there is a constant m > 0
such that for all ω satisfying (4.4) and u ∈ R,

|V (u)| ≥ |ω|2
4

, |V ′(u)| ≤ m |ω|. (6.2)

Furthermore, writing the potential in the form

V = −ω2 + ωβ + f

(where β and f are independent of ω), its square root can be written as

√
V (u) = ±iω

√
1 − β(u)

ω
− f(u)

ω2 .

Using our sign convention (3.5) together with the fact that β and f are
bounded functions, we conclude that there is a constant m̃ > 0 such that
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for all ω satisfying (4.4) and u ∈ R,

Re
√

V (u) ≥ −m̃. (6.3)

Using (4.8), we have

(Gψ)(u) =
1

w(φ́, φ̀)

(
φ̀(u)

∫ u

−∞
φ́(v) ψ(v) dv + φ́(u)

∫ ∞

u
φ̀(v) ψ(v) dv

)
.

(6.4)
We first estimate the Wronskian. From (3.3), we have

άὰ =
ćc̀√
V

(6.5)

ά′ =
(

− V ′

4V
+

√
V

)
ά, ὰ′ =

(
− V ′

4V
−

√
V

)
ὰ, (6.6)

so

w(φ́, φ̀) =
φ́′

ά′
φ̀

ὰ
ά′ ὰ − φ́

ά

φ̀′

ὰ′ ά ὰ′ (6.7)

= ćc̀
φ́′

ά′
φ̀

ὰ

(
− V ′

4V 3/2 + 1
)

− ćc̀
φ́

ά

φ̀′

ὰ′

(
− V ′

4V 3/2 − 1
)

. (6.8)

Applying Theorem 5.1, we obtain, possibly after increasing C,
∣∣∣∣∣
w(φ́, φ̀)

2ćc̀
− 1

∣∣∣∣∣ ≤
C

|ω| . (6.9)

Next we consider the second term in the brackets in (6.4). We have

∫ ∞

u
φ̀(v) ψ(v) dv =

∫ ∞

u
φ̀′ φ̀ ψ

φ̀′
dv =

φ̀2 ψ

φ̀′

∣∣∣∣∣
u

−
∫ ∞

u
φ̀

(
φ̀ ψ

φ̀′

)′

dv

=
φ̀2 ψ

φ̀′

∣∣∣∣∣
u

−
∫ ∞

u

φ̀

φ̀′
φ̀ ψ′ +

∫ ∞

u

(
φ̀′′ φ̀

φ̀′2
− 1

)
φ̀ ψ. (6.10)

Squaring the identity

φ̀′

φ̀

(6.6)
=

φ̀′

ὰ′
ὰ

φ̀

(
− V ′

4V
−

√
V

)
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and using the equation φ̀′′ = V φ̀, we find that

φ̀′′φ̀

φ̀′2
= V

φ̀2

φ̀′2
=

(
ὰ′

φ̀′
φ̀

ὰ

)2(
1 − V ′

2V 3/2 +
V ′2

16V 3

)−1

.

Hence
(

φ̀′′ φ̀

φ̀′2
− 1

)
=

⎛
⎝
⎡
⎣
(

ὰ′

φ̀′
φ̀

ὰ

)2

− 1

⎤
⎦+

V ′

2V 3/2 − V ′2

16V 3

⎞
⎠

×
(

1 − V ′

2V 3/2 +
V ′2

16V 3

)−1

, (6.11)

and using Theorem 5.1 together with (6.2), we see that (6.11) is of order
1/|ω|. Now we can estimate (6.10) termwise to obtain∣∣∣∣

∫ ∞

u
φ̀(v) ψ(v) dv

∣∣∣∣ ≤ c(ψ)
|ω| sup

K
|φ̀|,

where K denotes the support of ψ.

The first term in the brackets in (6.4) can be estimated in a similar way.
We thus obtain

|(Gψ)(u)| ≤ c(ψ)
|ω| sup

v∈K

1

|w(φ́, φ̀)|

(
|φ́(v) φ̀(u)|Θ(u − v)+|φ́(u)φ̀(v)|Θ(v − u)

)
.

Now from (3.3) and (6.3), we get in the case v ≥ u,

|φ́(u) φ̀(v)| = |ćc̀| |V (u) V (v)|−1/4e−
∫ v

u Re
√

V

≤ |ćc̀| |V (u) V (v)|−1/4em̃ (v−u) ≤ C |ćc̀|
|ω| ,

where C clearly depends on K. The case u > v can be treated in a similar
way. We finally apply (6.9) and possibly increase K to obtain (6.1). �

7 An integral representation of the propagator

In this section, we shall express a given Ψ ∈ C∞
0 (R)2 in terms of a con-

tour integral of the resolvent. Our method avoids spectral theory and
Hilbert space techniques. Instead, it uses an idea which we learned from
Bachelot [3, Proof of Theorem 2.12] and is based upon the resolvent esti-
mates of Theorem 6.1. The result in this section is in preparation for the
integral representation of the propagator which will be derived in Section 9.
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Figure 1: The contour CR = C1 ∪ C2.

For given R > 0, we consider the two contours C1 and C2 in the complex
ω-plane defined by

C1 = ∂BR(0) ∩ {Im ω < 0}, C2 = ∂BR(0) ∩
{

Im ω >
s

4M

}
,

both taken with positive orientation; see figure 1. We set CR = C1 ∪ C2.
We can now state the following completeness result, valid for any spin s ∈
{1

2 , 1, 2}.

Theorem 7.1. For every Ψ ∈ C∞
0 (R)2 and u ∈ R, we have the

representation

Ψ(u) = − 1
2πi

lim
R→∞

∫
CR

(RωΨ)(u) dω. (7.1)

Proof. Since the length of the contour S1 ∪ S2 := ∂BR(0) \ C stays bounded
for large R (see figure 1),

∣∣∣∣∣
∮

∂BR(0)

dω

ω
−
∫

CR

dω

ω

∣∣∣∣∣ ≤
1
R

∫
S1∪S2

|dω| R→∞−→ 0.

As a consequence,
1

2πi
lim

R→∞

∫
CR

dω

ω
= 1. (7.2)

Since our contours (omitting the end points) lie in the resolvent set of H
(see Theorem 4.3), we know that for every ω ∈ CR,

Ψ = Rω (H − ω)Ψ.
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Dividing by ω and integrating over CR, we can apply (7.2) to obtain

Ψ(u) =
1

2πi
lim

R→∞

∫
CR

dω

ω
(Rω (H − ω)Ψ)(u).

= − 1
2πi

lim
R→∞

∫
CR

{
(RωΨ)(u) − 1

ω
(Rω HΨ)(u)

}
dω.

But the second term in the curly brackets vanishes in the limit, because
using Theorem 6.1 and the fact that HΨ ∈ C∞

0 , we have∣∣∣∣
∫

CR

(Rω HΨ)(u)
dω

ω

∣∣∣∣ ≤
∫

CR

C

|ω|
|dω|
|ω| ≤ 2πC

R
.

Thus (7.1) holds. �

Our next objective is to derive an integral representation for the solution
of the Cauchy problem. We consider the solution Ψ(t, u) = (φ, i∂tφ) of the
separated Teukolsky equation (2.3) for initial data Ψ0 ∈ C∞

0 (R)2. The diffi-
culty is that (RωΨ0)(u) only decays in ω like 1/ω and thus we cannot take
the limit R → ∞ in (7.1) using the Lebesgue dominated convergence theo-
rem, nor can we commute differentiation with the limit. To remedy this, we
derive a finite Laurent expansion of (RωΨ0)(u).

Lemma 7.2. For every n ∈ N and ω in the resolvent set of H,

(RωΨ0)(u) = − Ψ0(u)
ω

− (HΨ0)(u)
ω2 − · · · − (HnΨ0)(u)

ωn
+

1
ωn

(RωHnΨ0)(u).

(7.3)
In particular, for n = 3 we have for large |ω| the expansion

(RωΨ0)(u) = −Ψ0(u)
ω + i

− iΨ0(u) + (HΨ0)(u)
(ω + i)2

− −Ψ0(u) + 2i(HΨ0)(u) + (H2Ψ0)(u)
(ω + i)3

+ O
(

1
|ω|4

)
. (7.4)

Proof. Dividing the equation Rω(H − ω) = 11 by ω gives

RωΨ0 = −Ψ0

ω
+

1
ω

RωHΨ0,

and since HΨ0 is again in C∞
0 , we can iterate this formula to get (7.3).

Equation (7.4) follows from (7.3) using the Taylor expansions

1
ω

=
1

ω + i

1
(1 − i/(ω + i))

=
1

ω + i
+

i

(ω + i)2
− 1

(ω + i)3
+ O(|ω|−4),

1
ω2 =

1
(ω + i)2

+
2i

(ω + i)3
+ O(|ω|−4). �
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Figure 2: The contour CR = C1 ∪ C2.

For the application to the Cauchy problem, it is more convenient to deform
the contour CR to the contour CR = C1 ∪ C2 as shown in Figure 2. This con-
tour deformation is immediately justified from the analyticity of the resol-
vent in the respective regions.

Theorem 7.3. For any spin s ∈ {1
2 , 1, 2}, the solution of the Cauchy prob-

lem for the separated Teukolsky equation (2.3) with initial data Ψ0 = (φ, ∂tφ)
|t=0 ∈ C∞

0 (R)2 has the following representation:

Ψ(t, u) = − 1
2πi

lim
R→∞

∫
CR

e−iωt(RωΨ0)(u) dω. (7.5)

Proof. Let us first verify that the limit R → ∞ in (7.5) exists. To this end,
we first note that inserting the ‘counter terms’ ck/(ω + i)k does not change
the integral in the limit R → ∞,

lim
R→∞

∫
CR

e−iωt(RωΨ0)(u)dω = lim
R→∞

∫
CR

e−iωt

(
(RωΨ0)(u) −

3∑
k=1

ck(u)
(ω + i)k

)
dω.

(7.6)
This is easily verified using the Cauchy integral formula for the closed con-
tour CR ∪ S1 ∪ S2 together with the fact that the integral over the con-
tours S1 and S2 vanishes as R → ∞ due to the O(|ω|−1)-decay of the counter
terms. By choosing the coefficients ck as in (7.4), we can arrange that the
integrand decays like |ω|−4. Thus we can apply Lebesgue’s dominated con-
vergence theorem to see that the limit R → ∞ exists.

Setting t = 0, it follows from Theorem 7.1 that Ψ satisfies the correct
initial conditions. To see that Ψ is a solution of the Teukolsky equation, we
apply the operator (i∂t − H) to (7.6). Since taking the time derivative of the
integrand gives a factor of −iω, whereas the WKB-estimates of Theorem 5.1
show that the spatial derivatives of (RωΨ0)(u) scale like powers of ω, we see
that the partial derivatives of the integrand on the right side of (7.6) can
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all be dominated by a constant times |ω|−2. Hence we can interchange the
differentiations with the limit and the integration to obtain

(i∂t − H) lim
R→∞

∫
CR

e−iωt(RωΨ0)(u)dω

= − lim
R→∞

∫
CR

e−iωt(H − ω)

(
(RωΨ0)(u) −

3∑
k=1

ck(u)
(ω + i)k

)
dω.

If the operator H acts on the factors ck(u), the resulting expressions are
exactly of the form as considered after (7.6) and vanish in the limit. If ω
multiplies c2 or c3, the resulting terms again vanish in the limit. Hence,
using that c1 = −Ψ0(u), we obtain

(i∂t − H) lim
R→∞

∫
CR

e−iωt(RωΨ0)(u)dω

= − lim
R→∞

∫
CR

e−iωt

(
Ψ0(u) − ω

Ψ0(u)
(ω + i)

)
dω

= − lim
R→∞

∫
CR

e−iωt

(
iΨ0(u)
(ω + i)

)
dω = 0,

where we again used the argument after (7.6). �

8 Contour deformations onto the real line

The objective of this section is to move that part of the contour, which
in Theorem 7.1 lies in the lower half plane, onto the real line. Since by
Theorem 3.1, φ́ is holomorphic in a neighborhood of the real line, our task
is to analyze for any given ω0 ∈ R the Jost solutions φ̀ for ω in the set

Cε(ω0) = {|ω − ω0| < ε and Im ω < 0}

and consider their limiting behavior as ω → ω0. We distinguish the cases
ω0 = 0 and ω0 �= 0.

We begin with the first case ω0 = 0. Qualitatively, if u � |ω|−1, the
solution φ̀ is well-approximated by the WKB solution (see Theorem 5.1). If
on the other hand u � |ω|−1, the solution should be close to the solution
of the Schrödinger equation for ω = 0. In order to match the asymptotics
through the intermediate region, we need a separate argument based on
classical Whittaker functions.
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Lemma 8.1. Let φ̀ be the Jost functions constructed in Theorem 3.3 for
ω ∈ Cε(0). After suitable rescaling, the limit ω → 0 exists,

lim
Cε(0)
ω→0

ωs+σφ̀ = φ̀0, (8.1)

where

σ =
1
2

(√
1 + 4s2 + 4λ − 1

)
. (8.2)

The limit function φ̀0 is a solution of the Schrödinger equation (2.5) for
ω = 0 and has the asymptotics

lim
r→∞

(
rσ φ̀0

)
=

(−4)−σ/4Γ(2σ + 2)
(2i)sΓ(σ + 1 − s)

. (8.3)

Proof. In order to avoid the difficulties associated with the term proportional
to u−2 log u in the potential (3.2), it is easier to work in the coordinate r.
Introducing the function

ψ(r) =
√

Δ R(r) =
√

Δ
r

φ(r), (8.4)

we can write the Schrödinger equation (2.5) as

− d2

dr2 ψ(r) + V(r) ψ(r) = 0, (8.5)

where the new potential V has the following asymptotics near infinity:

V(r) = −ω2 − 2
isω + Mω2

r
+

s2 + λ − 2iMsω − 12M2ω2

r2 + O(r−3).

(8.6)

We first consider equation (8.5) where we simply drop the error term
in (8.6). Then this modified equation can be solved exactly using Whittaker
functions [1, Chapter 13, pp. 505–508]. The two fundamental solutions
are Mκ,μ(z) and Wκ,μ(z), where the parameters are given by

κ = s − 2iωM, μ =
1
2

√
1 + 4s2 + 4λ − 8iMsω − 48M2ω2, z = 2iωrz.

The function φ̀ clearly is a linear combination of Mκ,μ(z) and Wκ,μ(z). Com-
paring the asymptotics for large |z| [1, (13.5.1) and (13.5.2)] with the asymp-
totics of φ̀ (3.15), we can determine the coefficients of this linear combination
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to obtain for the function ψ̀ =
√

Δφ̀/r

ψ̀ = (2iω)−s+2iMω Wκ,μ(z).

Using the asymptotics for small z [1, (13.5.6)], we find that again after
dropping the error term in (8.6), ψ̀ behaves for small |ω| as follows:

ψ̀ = ω−s−σr−σ (−4)−σ/4Γ(2σ + 2)
(2i)sΓ(σ + 1 − s)

with σ as in (8.2). This function satisfies (8.1) and (8.3).

It remains to prove that the error term in (8.6) does not destroy (8.1)
and (8.3). We first note that for r > K/|ω| (with K as in Theorem 5.1), the
WKB estimates of Section 5 apply and show that φ̀ is well-approximated by
the above Whittaker functions. Let us next show that for some δ > 0, we
can control the solution on the interval |ω|−1+δ ≤ r ≤ K|ω|−1. To this end,
we introduce (similar to [11, Section 6]) the matrix

A =
(

Mκ,μ(2iωr) Wκ,μ(2iωr)
∂rMκ,μ(2iωr) ∂rWκ,μ(2iωr)

)

and the function

Φ = A−1
(

ψ(r)
ψ′(r)

)
.

Then Φ satisfies the equation

Φ′ = A−1
(

0 0
O(r−3) 0

)
A Φ.

Again using the asymptotic formulas [1, (13.1.32), (13.1.33), (13.5.1), (13.5.2)],
one finds that | det A| ≥ |ω|/c, and we obtain the inequality

|Φ|′ ≤ ρ |Φ| where ρ :=
c

|ω|r3 ‖A‖2.

Applying Gronwall’s inequalities

|Φ(r2)| ≤ |Φ(r1)| exp
(∫ r1

r0

ρ

)
,

|Φ(r2) − Φ(r1)| ≤ |Φ(r1)| exp
(∫ r1

r0

ρ

)∫ r1

r0

ρ,
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we can easily control Φ provided that the integral of ρ becomes arbitrarily
small for small |ω|. To see this, we first note that the Whittaker functions are
bounded near z = 0 by c |z|1/2−μ and so ‖A‖2 ≤ c2|z|1−2μ (see [1, (13.5.5)
and (13.5.6)]). Thus

∫ K|ω|−1

|ω|−1+δ

ρ(r)dr ≤ c3

|ω|2μ

∫ K|ω|−1

|ω|−1+δ

dr

r2+2μ
≤ c3

|ω|2μ

1
1 + 2μ

|ω|(1−δ)(1+2μ),

and choosing δ < (1 + 2μ)−1, the right side converges to zero as ω → 0.

On the remaining interval r < |ω|−1+δ, we write the Schrödinger equa-
tion (8.5) as

(
−∂2

r + ω2 − s2 + λ

r2

)
ψ

=
[
O(r−3) +

(
−2

isω + Mω2

r
− 2iMsω + 12M2ω2

r2

)
Θ(|ω|−1+δ − r)

]
ψ,

where we used the Heaviside function to truncate the potential in the region
which is of no relevance here. Treating the operator on the left as the
free operator, its solutions are given by Hankel functions (see [12, 16]).
A short calculation shows that the square bracket satisfies the condition
that ‖r[· · · ]‖L1 is bounded uniformly in |ω|. This is precisely the condi-
tion which ensures the existence of the Jost solutions (see [12, Proof of
Lemma 3.6]) and again gives us control of the error terms. Furthermore,
one sees that in the region 1 � r < |ω|−1+δ, the fundamental solutions are
well-approximated by the Hankel functions, which in turn are a limiting
case of our above Whittaker solutions. This shows that the solution ψ̀ of
the untruncated equation (8.5) and (8.6) has a limit as ω → 0, and that the
asymptotics of the limit is the same as that of the Whittaker solutions. This
justifies dropping the error term in (8.6). �

Combining the last lemma with a convexity argument, we next show that
Green’s function has a limit at ω = 0.

Lemma 8.2. For Green’s function G(u, v), (4.8) of the Schrödinger equa-
tion (2.5), the limit

lim
Cε(0)
ω→0

G(u, v)

exists and is finite.
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Proof. Using (8.1) and (8.3), Green’s function (4.8) has a limit at ω = 0,

lim
Cε(0)
ω→0

G(u, v) =
1

w(φ́, φ̀0)
×
{

φ́(u)φ̀0(v) if v ≥ u,

φ̀0(u)φ́(v) if v < u,

provided that the Wronskian on the right side does not vanish. In order to
show that this Wronskian is indeed non-zero, let us assume on the contrary
that φ́ is a multiple of φ̀0. Note that for ω = 0, the potential V in (2.6) is
real and positive. Hence we can repeat the convexity argument in the proof
of Lemma 4.1 to get a contradiction, where now we use that φ0 tends to
zero at infinity according to (8.3). �

We next consider the case ω0 �= 0. We first show that φ̀ has a well-defined
limit as ω → ω0.

Lemma 8.3. The following limit exists for any real ω0 �= 0 and every u ∈ R,

lim
Cε(ω0)
ω→ω0

φ̀(u) = φ̀0(u).

The limiting function φ̀0 is again a solution of the Schrödinger equation (2.5)
with the asymptotics (3.15).

Proof. We cannot introduce φ̀0 directly via the iteration scheme (5.5)
because for real ω the factor exp(−2

∫ x
u

√
V ) is for large x increasing poly-

nomially like (x − u)2s. In order to bypass this problem, we introduce a
convergence generating factor; namely, we set for ω = ω0

E(0) ≡ 1

E(l+1)(u) = limδ↘0
∫∞
u e−δx W (x)

2
√

V (x)

{
1 − e−2

∫ x
u

√
V
}

E(l)(x)dx,

⎫⎪⎬
⎪⎭ (8.7)

and define φ̀0 by

φ̀0(u) =
∞∑
l=1

E(l)(u)ὰ(u). (8.8)

Let us verify that this iteration scheme is well-defined and defines a solution
of the Schrödinger equation (2.5). To this end, in (8.7), we substitute the
identity

e−2
∫ x

u

√
V =

(
1

−2
√

V

d

dx

)p

e−2
∫ x

u

√
V ,



TEUKOLSKY EQUATION FOR HIGHER SPIN 103

where, as in the proof of Theorem 5.1, we choose p = 0, 1, 3 depending on
whether s = 1

2 , 1 or 2, respectively. After integrating by parts p times,
the resulting integrands are dominated by c/x2, and thus we can take the
limit δ ↘ 0 using Lebesgue’s dominated convergence theorem. The respec-
tive estimates (5.6), (5.7) and (5.9), (5.10) for s = 1 or s = 2 clearly remain
valid for this modified iteration scheme, showing that the series (8.8) con-
verges absolutely, uniformly for sufficiently large u.

In order to compute the u derivative of E(l+1), we integrate by parts,
take the limit δ ↘ 0, and can then compute the derivative. After this, we
can re-insert the convergence generating factor and re-integrate by parts.
This shows that in the formula for E(l+1) we may interchange differen-
tiation with taking the limit δ ↘ 0. Exactly as above, one verifies that
the series

∑∞
l=0(E

(l))′ converges again absolutely, uniformly for sufficiently
large u. Hence (8.8) may be differentiated termwise, thereby showing that φ̀0
is indeed a solution of (2.5).

Finally, to show continuity as Cε(ω0) � ω → ω0, we first note that because
of the continuous dependence of the solutions of ODEs on both initial data
and parameters on compact sets, it suffices to show continuity of φ̀(u) for
u > u1 for any sufficiently large u1. Again using the above integration-by-
parts method, one sees that, each of the E(l)(u) is continuous as Cε(ω0) �
ω → ω0. Since for sufficiently large u1, the series converges absolutely, uni-
formly in ω ∈ Cε(ω0) ∪ {0}, we can take the termwise limit ω → ω0. �

From this lemma, it will follow immediately that the Green’s function
converges,

lim
Cε(ω0)
ω→ω0

G(u, v) =
1

w(φ́, φ̀0)
×
{

φ́(u)φ̀0(v) if v ≥ u,

φ̀0(u)φ́(v) if v < u,
(8.9)

once we have shown that the Wronskian w(φ́, φ̀0) is non-zero at ω0. This is
done in the next lemma.

Lemma 8.4. For any ω0 �= 0, the Wronskian w(φ́, φ̀0) �= 0.

Proof. Assume that w(φ́, φ̀0) = 0. We choose a function η ∈ C∞
0 ([−1, 1]).

For any ε < ω0/2, we set

ηε(ω) = η

(
ω − ω0

ε

)

and introduce the function

R(t, u) =
1

r(u)

∫
R

dωe−iωtηε(ω)φω(u), (8.10)
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where φω(u) is the Jost solution φ́. These Jost solutions have the following
asymptotics:

φω(u) ∼ esu/4M eiωu as u → −∞,

φω(u) ∼ c1(ω)us e−iωu + c2(ω)u−s eiωu as u → ∞,

where c1 and c2 depend smoothly on ω and c2(ω0) = 0. Thus for any δ > 0,
we can choose ε such that

|c2(ω)| ≤ δ ∀ω ∈ Bε(ω0).

Differentiating (8.10) and using that φω are solutions of the Schrödinger
equation (2.5), one easily verifies that R(t, u) is a solution of the Teukolsky
equation (2.1) (with the angular dependence separated out). Near the event
horizon, R(t, u) has the following asymptotics:

R(t, u) ∼ esu/4M

r

∫
R

dωe−iωtηε(ω)eiωu =
esu/4M

r
η̂ε(t − u), (8.11)

where η̂ε denotes the Fourier transform of ηε. Similarly, near infinity,

R(t, u) ∼ us

r
(ĉ1ηε)(t + u) +

u−s

r
(ĉ2ηε)(t − u). (8.12)

Being the Fourier transform of a smooth function supported in Bε(ω0), the
functions η̂, ĉ1ηε and ĉ2ηε all have rapid decay on the scale ε−1, i.e.,

sup
x

|x|n (|η̂ε| + |ĉ1ηε| + |ĉ2ηε|) (x) ≤ cn

εn
.

Furthermore, the function (ĉ2ηε) is pointwise small,

|(ĉ2ηε)(t − u)| ≤
∣∣∣∣
∫

R

dω e−iω(t−u) c2(ω)ηε(ω)
∣∣∣∣ ≤ δ‖ηε‖L1 ;

similarly, all its derivatives are pointwise small. The formulas (8.11) and
(8.12) are valid near u = −∞ and u = ∞, respectively. Since ω is in a com-
pact set, the error terms in the asymptotics are bounded uniformly in time.

The asymptotics (8.11) and (8.12) contradict the conservation of phys-
ical energy. Namely, for large negative times, (8.11) describes a wave of
positive energy coming from the event horizon. However, for large posi-
tive times, the contribution of (8.11) as well as the first summand in (8.12)
decay rapidly in time, whereas the energy of the second summand in (8.12),
which describes a wave moving to infinity, can be made arbitrarily small by
choosing δ small. �
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We remark that if the above energy argument is made more quantitative,
it even yields that ∣∣∣∣c1

c2

∣∣∣∣ ≤ 1.

This is in complete agreement with the numerical result Z ≤ 1 in the case
a/M = 0 obtained in [19, p. 658ff], keeping in mind that, after a time reflec-
tion, the quantities Zin and Zout as introduced in [19] are multiples of our
coefficients c2 and c1, respectively.

Using Lemmas 8.2 and 8.4, for every ω0 ∈ R, we can introduce the func-
tion Rω0 as the limit of the integral kernel of the resolvent from the lower
half plane; namely,

Rω0(u, v) := lim
Cε(ω0)
ω→ω0

Rω(u, v).

In Theorem 7.3 we can take the limit R → ∞ and deform the lower con-
tour C1 onto the real axis, the upper contour C2 onto the line Imω = s

2M ,
to obtain the following integral representation, valid for all t ∈ R.

Theorem 8.5. For any spin s ∈ {1
2 , 1, 2}, the solution of the Cauchy prob-

lem for the separated Teukolsky equation (2.3) with initial data Ψ0 = (φ, ∂tφ)
|t=0 ∈ C∞

0 (R)2 can be written as

Ψ(t, u) = − 1
2πi

∫
IR

e−iωt

(
(RωΨ0)(u) +

Ψ0(u)
ω + i

)
dω

+
1

2πi

∫
IR+(is/2M)

e−iωt

(
(RωΨ0)(u) +

Ψ0(u)
ω + i

)
dω,

where both integrals are L1-convergent.

Proof. As shown in the proof of Theorem 7.3, inserting the term Ψ0(u)/
(ω + i) into the integrand in (7.5) does not change the value of the limit.
According to (7.3), the resulting integrand is bounded near infinity by C/|ω|2,
and hence we can take the limit R → ∞ in the Lebesgue sense. �

9 Proof of decay

We now prove our main theorem.

Proof of Theorem 1.1. As discussed in the introduction, the conservation of
energy implies that the solution Φ of the Cauchy problem (1.1), and (1.2) is
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bounded in L2
loc, uniformly in time. Differentiating the Teukolsky equation

with respect to t, one sees that the derivatives ∂n
t Φ are also solutions and

are thus also bounded in L2
loc. Since the spatial part of the Teukolsky equa-

tion (1.1) is uniformly elliptic away from the event horizon, we conclude
that all spatial derivatives of Φ are bounded in L2

loc. Using the Sobolev
embedding H2,2

loc ↪→ L∞
loc, we conclude that Φ can be bounded in L∞

loc, uni-
formly in time, by a Sobolev norm of the initial data, i.e., for any compact
set K ⊂ (r1,∞) × S2,

sup
K

|Φ(t)| ≤ c ‖(Φ0, Φ1)‖H2,2 , (9.1)

where c depends only on K and the support of the initial data.

Decomposing the initial data into spin-weighted spherical harmonics [14],

(Φ0, Φ1)(r, ϑ, ϕ) =
∞∑
l=s

ls∑
m=−l

Ylm(ϑ, ϕ)(Φl,m
0 , Φl,m

1 )(r, ϑ, ϕ),

the Sobolev norm decomposes into a sum over the angular momentum
modes,

‖(Φ0, Φ1)‖2
H2,2 =

∑
l,m

∥∥∥sYlm(Φl,m
0 , Φl,m

1 )
∥∥∥2

H2,2
.

Since the series converges absolutely, for any ε > 0, there is an integer l0
such that ∑

l>l0

l∑
m=−l

∥∥∥sYlm(Φl,m
0 , Φl,m

1 )
∥∥∥2

H2,2
≤ ε.

Hence in view of (9.1), the contribution of the large angular momentum
modes to |Φ| can be made pointwise small, uniformly in time.

For the remaining finite number of angular momentum modes, we use the
integral representation of Theorem 8.5. The integral on the real line tends
to zero as t → −∞ by virtue of the Riemann–Lebesgue lemma. The integral
on the line Imω = s

2M can be bounded by a constant times exp( st
2M ) and

thus tends to zero exponentially fast as t → −∞. �

10 General remarks

We first discuss the case s = 1
2 of the massless Dirac equation. At first sight,

it might seem paradoxical that in this case, the solution of the Cauchy prob-
lem has two different integral representations, one being the representation
obtained in [9] where the ω-integral runs over the real axis, the other being
that given in Theorem 8.5, where ω is integrated over two lines in the com-
plex plane. This, however, is no contradiction, as one can understand as
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follows. In [9] the massless Dirac equation is considered as a first-order sys-
tem. The Teukolsky equation, on the other hand, is a second-order equation
for a single component of the Dirac system. It is obtained from the Dirac
equation by multiplying with a particular first-order operator. The trans-
formation from the Dirac equation to the Teukolsky equation completely
changes the spectrum of the involved operators. Whereas the Hamiltonian
of the Dirac system is self-adjoint and thus has a purely real spectrum, the
Hamiltonian of the Teukolsky system has non-real essential spectrum (see
Proposition 4.4). The differences in the integral representations reflect these
differences in the spectra of the corresponding Hamiltonians.

It is important to note that the differences in the spectral representations
do not imply different long-time dynamics. To explain this better, let us
consider the integral representation of Theorem 8.5 in the limit t → +∞.
In this limit, the exponential factor e−iωt in the second integral grows
exponentially in time, suggesting that Ψ(t, u) should also increase in time.
However, this reasoning is not valid because, as explained in the introduc-
tion, by considering the time-reflected Teukolsky equation for −s and using
the Teukolsky–Starobinsky identities, we conclude that Ψ(t, u) indeed also
decays as t → +∞. Another way of seeing why the naive reasoning is not
valid is to consider the asymptotics near u = +∞. Then the fundamen-
tal solutions φ̀(u) appearing in the resolvent of the second integral, decay
exponentially as u → ∞. This leads to an exponential damping of an outgo-
ing wave moving towards infinity, which just compensates the exponential
increase of the factor e−iωt. This argument illustrates how Theorem 8.5
describes the correct dynamics in the asymptotic limit of wave packets near
spatial infinity.

We end the paper by discussing to which extent our arguments carry over
to the Kerr metric. The first complication in Kerr is that the separation
constant λ depends now on ω, and thus the sum of all angular momentum
modes must be carried along at each step, and this would require additional
estimates to control the infinite sum. Apart from this additional compli-
cation, our arguments in Sections 2 to 7 continue to hold. In Section 8,
the considerations before Lemma 8.4 could also be extended, provided that
the sum over the angular momentum modes can be controlled. However, the
energy argument of Lemma 8.4 no longer works in the Kerr geometry due
to the presence of the ergosphere, where the physical energy density need
not be positive. The numerics carried out by Press and Teukolsky [19] indi-
cate that even in the Kerr geometry, the Wronskian w(φ́, φ̀0) has no zeros
on the real line. A possible strategy to make this rigorous would be to
replace our above energy argument by a causality argument in the spirit
of [12, Section 7]. However, this would make it necessary to analytically
extend the resolvent across the real line. In principle, this could be achieved
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by estimating the higher ω-derivatives of φ̀ similar to [12, Lemma 3.4]. How-
ever, this approach seems to be technically very demanding.

A The energy density of gravitational waves

The Bel–Robinson tensor Qijkl is defined in terms of the Riemann ten-
sor Rijkl by (see [17])

Qijkl = Ra
ibk Raj

b
l + ∗Ra

ibk
∗Raj

b
l,

where ∗R is the dual of the Riemann tensor given by

∗Rij
kl :=

1
2
εijabRabkl,

and ε is the totally anti-symmetric tensor. Here we are concerned with
perturbations of the Schwarzschild metric. We denote the perturbations of
the Riemann tensor by ΔR,

ΔRijkl = Rijkl − (RS)ijkl,

where RS denotes the Riemann tensor in the Schwarzschild geometry. In
the Teukolsky framework, ΔR describes linear perturbations which are non-
spherical, meaning that they are orthogonal to RS in L2(S2). Hence Egv as
defined by (1.4) can be rewritten as

Egv =
∫

t=const

(
ΔRa0

b0 ΔRa0
b
0 + ∗ΔRa0

b0
∗ ΔRa0

b
0

)
dμ. (A.1)

This expression is quadratic in ΔR. Furthermore, we see from (1.4) that Egv
differs from E, (1.3), only by the constant energy of the Schwarzschild met-
ric, and therefore Egv is conserved due to the fact that the Bel–Robinson
tensor is divergence-free [17].

It remains to show positivity of the integrand in (A.1). Using that the
metric is diagonal and that the Riemann tensor is anti-symmetric in its first
two and last two indices, we have

ΔRa0
b0 ΔRa0

b
0 = g00

3∑
α,β=1

gααgββ ΔRα0β0ΔRα0β0,

which is obviously non-negative because g00 > 0 and gαα, gββ < 0. Since
the dual of the Riemann tensor has the same symmetry properties, the last
summand in (A.1) is likewise non-negative.
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