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Abstract

We compute topological one-point functions of the chiral operator
Tr ϕk in the maximally confining phase of U(N) supersymmetric gauge
theory. These one-point functions are polynomials in the equivariant
parameter � and the parameter of instanton expansion q = Λ2N and are
of particular interest from gauge/string theory correspondence, since they
are related to the Gromov–Witten theory of P1. Based on a combina-
torial identity that gives summation formula over Young diagrams of
relevant functions, we find a relation among chiral one-point functions,
which recursively determines the � expansion of the generating function
of one-point functions. Using a result from the operator formalism of the
Gromov–Witten theory, we also present a vacuum expectation value of
the loop operator Tr eitϕ.
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1 Introduction

Recently there is a substantial progress in the instanton calculus of four-
dimensional gauge theories [1–8]. In particular, Nekrasov proposed a par-
tition function ZNek(εi, a�, Λ) that encodes the information of the instanton
counting in four-dimensional gauge theory. In [1], integrations over the
instanton moduli space are evaluated by equivariant localization principle,
where the equivariant parameters (ε1, ε2) of the toric action on C

2 � R
4 can

be identified as those of the spacetime non-commutativity, or physically the
graviphoton background. The fixed points of the toric action are labeled by
the partitions or, in other words, the Young diagrams. Consequently the
non-perturbative partition function and correlation functions are expressed
as summations of the functions on the set of Young diagrams. We can show
that a five-dimensional lift (or “trigonometric” lift) of Nekrasov’s partition
function Z5D

Nek is nothing but the partition function of topological string
(the generating function of Gromov–Witten invariants) Z

(Ks)
top str on a local

toric Calabi–Yau 3-fold KS , where S is an appropriate toric surface [9–13].
The correspondence of Nekrasov’s partition function and the generating
function of the Gromov–Witten invariants of local Calabi–Yau manifold,
Z5D

Nek ≡ Z
(Ks)
top str, is one example of gauge/string correspondence in topologi-

cal theory [14], which is expected from the idea of geometric engineering [15].

In this paper, we explore another example of gauge/string correspondence
which involves the topological one-point functions. In U(N) supersymmetric
gauge theory in four dimensions, there are chiral observables Trϕk, where
ϕ is the (Higgs) scalar field in the adjoint representation. We will present a
result on the computation of the vacuum expectation value of Trϕk in the
U(1) gauge theory or in the maximally confining phase of the U(N) theory,
where the effective low-energy symmetry is reduced to U(1) ⊂ U(N). In [4],
Losev et al. claimed that there is a gauge/string correspondence Tr ϕ2j ⇐⇒
τp(ω), where Tr ϕ2j are generators of the chiral ring and τp(ω) is the p-th
gravitational descendant of the Kähler class ω of P1. Thus it is expected that
the correlation functions of chiral ring elements are related to the Gromov–
Witten invariants of P1 developed by Okounkov and Pandharipande [16,17].

The one-point functions 〈Tr ϕ2j〉 are polynomials in the parameter of
instanton expansion q := Λ2N and the equivariant parameter of the toric
action � = ε1 = −ε2. In the gauge/string correspondence, these parame-
ters play complementary roles. For example, Nekrasov’s partition function
allows the following two kinds of expansions:

ZNek(�, a�, Λ) =
∞∑

k=0

Λ2N ·kZk(�, a�) = exp

(
−

∞∑

r=0

�
2r−2Fr(a�, Λ)

)
. (1.1)
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In gauge theory, we primarily want to sum up the instanton expansion in
Λ, which is achieved for example in the Seiberg-Witten theory. On the
other hand the expansion in � is identified with the genus expansion in the
corresponding (topological) string theory. The genus zero part F0(a�, Λ)
gives the prepotential of the Seiberg–Witten theory and higher order terms
are expected to represent gravitational corrections [1, 11,18–20].

In this paper, we first take the viewpoint of gauge theory and the one-
point functions 〈Tr ϕ2j〉 are defined not for each fixed instanton number
but by summing up all the instanton numbers. We emphasize this point,
since the partition function ZU(1) that appears in the definition of one-point
functions contains the contributions from all the instanton numbers. We
show that the chiral one-point functions 〈Tr ϕ2j〉 satisfy the relation

r∑

j=1

cr
j�

2(r−j)〈Tr ϕ2j〉 =
(2r)!
(r!)2

qr, (1.2)

which is one of the main results in the paper. The coefficients cr
j are

defined by
∏r−1

j=0(x
2 − j2) =

∑r
j=1 cr

jx
2j or a specialization of the elementary

symmetric functions en(x); cr
j = (−1)r−jer−j(12, 22, . . . , (r − 1)2). From the

above linear relations (1.2) among one-point functions, we can compute
the expansion in �

2 of the generating function T (z) of one-point functions
〈Tr ϕ2j〉, order by order. Technically, our proof of the relation (1.2) is based
on combinatorial identities, which we obtain by considering the power sums
of Jucys–Murphy elements in the class algebras of symmetric groups.

Complementary to the above computation is the computation of the
Gromov–Witten invariants in [16, 17] by operator method, which gives all
genus results for each fixed instanton number on the gauge theory side. In
this sense, the operator formalism naturally provides the generating func-
tion of the identities (1.2) for each instanton sector. Summing up all the
instanton numbers, we can calculate the vacuum expectation value of the
loop operator without difficulty. Our final result is

〈Tr eitϕ〉 = I0(2
√

qsh(it�)/�), (1.3)

with sh(z) = ez/2 − e−(z/2) and In(x) being the modified Bessel functions.
It is remarkable that the modified Bessel functions appear frequently in the
computation of the correlation functions of the loop operator [21–24]. In
our case 〈Tr eitϕ〉 = I0(2i

√
qt) when � → 0 and the effect of the equivariant

deformation by � is taken care of simply by renormalizing the parameter t
as it → sh(it�)/�.

The paper is organized as follows. In Section 2, we review the basic tools
in instanton calculus; the ADHM construction of the instanton moduli space
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and localization formula concerning the toric action on the moduli space. In
Section 3, we consider the one-point function 〈Tr ϕ2j〉 and derive (1.2). The
genus expansion of the generating function T (z) is worked out in Section 4.
Computation in the operator formalism and comparison with the Gromov–
Witten theory are made in Section 5. The generating function of the relation
(1.2) is naturally related to the loop operator and we calculate its vacuum
expectation value in Section 6. Finally we prove a crucial combinatorial
formula in Appendix.

It has been argued that the generating function of the Gromov–Witten
invariants of P1 is a tau-function of Toda lattice hierarchy [16, 17]. In this
paper, we have obtained the � expansion of the generating function T (z) of
chiral one-point functions. It is interesting to clarify a relation of this genus
expansion to integrable hierarchy and matrix models. For a recent paper in
this direction, see [25].

2 ADHM construction and localization formula

For describing the moduli space of instantons, there is a strong tool called
ADHM construction. The instanton moduli space MN,k of U(N) gauge the-
ory on C

2 with instanton number k is constructed by introducing matrices1

B1, B2 ∈ MC(k, k), J ∈ MC(N, k) and I ∈ MC(k, N) on C. Combining these
matrices and coordinates (z1, z2) of C

2, we define an (N + 2k) × 2k matrix

Δ :=

⎛

⎝
J I†

B1 − z1 −B†
2 + z2

B2 − z2 B†
1 − z1

⎞

⎠ . (2.1)

We construct an (N + 2k) × N matrix U , whose column vectors consist of
a basis of the kernel of Δ, i.e., a matrix U that satisfies Δ†U = 0. A U(N)
connection A is defined by A := U †(z)dC2U(z). Then from the self-duality
of A and the normalization condition on U , we obtain ADHM equations,

{
μC := [B1, B2] + IJ = 0,

μR := [B1, B
†
1] + [B2, B

†
2] + II† − J†J = 0.

(2.2)

Elements in μ−1
C

(0) ∩ μ−1
R

(0) give k-instantons of the U(N) gauge theory
on C

2.

1MC(m, n) denotes the set of m × n complex matrices.



INSTANTON CALCULUS 1405

Since ADHM equations (2.2) are invariant under the action

(B1, B2, J, I) �→ (T−1
φ B1Tφ, T−1

φ B2Tφ, JTφ, T−1
φ I), (2.3)

of Tφ = exp(iφ) ∈ U(k), we may consider the quotient

M0
N,k := μ−1

C
(0) ∩ μ−1

R
(0)/U(k), (2.4)

which is isomorphic to the moduli space of k-instantons of the U(N) gauge
theory. However, in general, M0

N,k is singular and we consider a smooth
manifold

Mζ
N,k := μ−1

C
(0) ∩ μ−1

R
(ζ)/U(k),

instead, as a resolution of M0
N,k. We note that there are several view-

points on the manifold Mζ
N,k. Each viewpoint has its own advantages.

Firstly, it can be regarded as the moduli space of instantons on the non-
commutative C

2, where ζ corresponds to the non-commutative parameter,
[z1, z1] = −ζ/2 , [z2, z2] = −ζ/2. One can also regard Mζ

N,k as the moduli
space of framed torsion-free sheaves (E, Φ) on P2, where E is a torsion-free
sheaf of rank N with 〈c2(E), [P2]〉 = k and locally free at a neighborhood of
l∞ (the line at infinity) and Φ is an isomorphism Φ : E|l∞ −→ O⊕N

l∞
, called

framing operator. Finally, if we set the rank N of gauge group to 1, M0
1,k

and Mζ
1,k are isomorphic to the symmetric product Sk(C2) of C

2 and the
Hilbert schemes of points (C2)[k] on C

2, respectively.

In four-dimensional gauge theory with the gauge group U(N), we can
consider the two kinds of toric action:

• ξC2 action on (z1, z2) ∈ C
2 defined by (z1, z2) → (eiε1z1, e

iε2z2).
Physically, this introduces a constant (electro-magnetic) flux on C

2

and makes it non-commutative. This is called “Ω background” of
Nekrasov. In the following, we often put � = ε1 = −ε2 (this is the
self-duality or “Calabi–Yau” condition).

• The action of the maximal torus (eia1 , . . . , eiaN ) ∈ U(1)N on U(N).
In N = 2 supersymmetric gauge theory, the corresponding equivariant
parameters a� are identified as vacuum expectation values of the Higgs
scalar in the vector multiplet.

These toric actions induce the following action of T = U(1)2 × U(1)N on
the instanton moduli space Mζ

N,k, which allows us to employ a powerful tool
of localization formula:

ξ : (B1, B2, I, J) �→ (Tε1B1, Tε2B2, IT−1
a , Tε1Tε2TaJ), (2.5)

where Tεk
:= eiεk ∈ U(1) and Ta := diag (eia1 , . . . , eiaN ) ∈ U(1)N . Let ξ

denote the vector field associated with the toric action. The equivariant
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differential operator dξ := dC2 + dM − ιξ on Ω•(C2 × Mζ
N,k) ⊗ C[g] satisfies

d2
ξ = −Lξ, where Lξ is the Lie derivative associated to the action ξ. We

define A := U †dξU and F := dξ(U †dξU). Mathematically, A defines a con-
nection on a rank N vector bundle E on C

2 × Mζ
N,k, called universal bun-

dle, and F is the curvature of A. This identification was first provided in
topological gauge theory [26, 27]. Since ιξU = 0, we obtain the following
decomposition concerning the direct product C

2 × Mζ
N,k:

A = U †dC2U + U †dMU =: A + C,

F = dC2(U †dC2U) + dC2(U †dMU) + dM(U †dC2U)

+ (dMU †)(dMU) − U †LξU

= Fμνdxμdxν + {λmdzm + ψmdzm} + {(dMU †)(dMU) − U †LξU}
=: F + Ψ + ϕ.

(2.6)

In N = 1 supersymmetric Yang–Mills theory, the components A, F , λmdzm,
ψmdzm and ϕ are identified with the gauge connection, the field strength
(curvature), gaugino, chiral matter field and scalar field, respectively [8].
We can see easily that it is only the scalar ϕ that depends on ξ.

The topological partition function and correlation functions are defined
by the equivariant integration on Mζ

N,k and they are Laurent series in the
equivariant parameters εi and a�. Namely, the correlator 〈O〉 of an operator
O is defined by

〈O〉 :=
1

V Z

∫

M

{∫

C2
O

}
exp(−SN=1), (2.7)

where the action for N = 1 supersymmetric gauge theory SN=1 is defined
by that of N = 2 theory SN=2 perturbed by a superpotential W (Φ). The
correlator 〈O〉 is normalized by the volume V of the non-commutative C

2

and the partition function Z :=
∫
M exp(−SN=1). The integral is over M :=

�kMζ
N,k, that is, when we compute the correlation function, we take a sum

over the instanton number k. Since they are computed by the instanton
calculus that employs the equivariant cohomology and the localization for-
mula for the equivariant integral, let us first review the localization formula
briefly.

Let M be a smooth manifold of dimension 2l acted by a compact Lie
group G. The vector field associated to the G-action is denoted by ξ. For
the G-fixed point set Ωp(M)ξ := {σ ∈ Ωp(M)|Lξσ = 0} of p-forms on M , an
element of Ω•(M)ξ ⊗ C[g] is called equivariant differential form associated
to the vector field ξ, where g is the Lie algebra of G. Then we can define
the cohomology Hp

ξ (M), which is called equivariant de Rham cohomology,



INSTANTON CALCULUS 1407

for equivariant differential forms using the differential operator dξ := d − ιξ.
An equivariant differential form μ ∈ Ωp(M)ξ ⊗ C[g] is called equivariantly
exact (resp. closed), if μ is written as dξν using an equivariant form ν ∈
Ωp−1(M)ξ ⊗ C[g] (resp. dξμ = 0). The integral of equivariant forms on M

∫

M
: Ω•(M)ξ ⊗ C[g] −→ C[g] (2.8)

defines a homomorphism and is called equivariant integral. For calculating
the equivariant integral, we can use a very powerful formula of localization
[28,29];

Theorem (Localization formula). If all fixed points of the G-action on
M are isolated, the integral of an equivariantly closed form μ is given by

∫

M
μ = (−2π)l

∑

s∈MG

μ0(s)
det1/2 Lξ(s)

, (2.9)

where Lξ is the homomorphism Lj
ξi

:= ∂ξi/∂xj : TsM −→ TsM , μ0 is the
zero-form part of μ and MG is the G-fixed points set on M .

When the group G is U(1)r, det1/2 Lξ(s) =
∏

i(ki(s) · ε), where (k1(s), . . . ,
kl(s)) ∈ (Zr)l are the weights of the representation of U(1)r at s ∈ MG and ε
is the generator of g. Instanton part Z inst :=

∑∞
k=0 qk

∫
Mζ

k,N
1 of Nekrasov’s

partition function ZNek for N = 2 super Yang–Mills theory can be obtained
by the equivariant integration of “1” on the moduli space M of instantons
on C

2. By the work of Nakajima [30], the fixed points of U(1)2 × U(1)N

action on Mζ
N,k are in one-to-one correspondence with N -tuples of Young

diagrams whose total number of boxes is equal to k. Let PN (k) be the set
of such N -tuples of Young diagrams. Using localization formula, we have
the explicit form of Nekrasov’s partition functions as follows:

Z inst(ε1, ε2,�a; q) =
∞∑

k=0

∑

Y ∈PN (k)

qk

∏N
α,β=1 n

Y
α,β(ε1, ε2,�a)

, (2.10)

where

n
Y
α,β(ε1, ε2,�a) :=

∏

s∈Yα

(−lYβ
(s)ε1 + (aYα(s) + 1)ε2 + aβ − aα)

×
∏

t∈Yβ

((lYα(t) + 1)ε1 − aYβ
(t)ε2 + aβ − aα), (2.11)

lY (s) := νj − i, aY (s) := μi − j for s = (i, j) ∈ Y = (μ1 ≥ μ2 ≥ · · · ) and
Y ∨ = (ν1 ≥ ν2 ≥ · · · ) is the transpose of the Young diagram.
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We can compute the correlation function 〈O〉 using the localization for-
mula, if we can find an extension of the operator O to a ξ-equivariantly
closed form. In the following, we set ε1 = −ε2 = � for simplicity. The action
of U(1) on C

2 is defined by ξC2 := i�(z1∂z1 − z2∂z2 − h.c.). We find the
following forms are invariant under ξC2-action and closed with respect to
dξ

C2 := d − ιξ
C2 , namely they are ξC2-equivariantly closed forms [8],

α(0,0) := 1,

α(2,0) := dz1 ∧ dz2 + i�z1z2,

α(0,2) := dz1 ∧ dz2 − i�z1z2,

α(2,2) := α(2,0) ∧ α(0,2).

(2.12)

In terms of the curvature F on the universal sheaf E over C
2 × Mζ

N,k, we
have the ξ-equivariant extension TrϕJ �→ α(2,2) ∧ Tr FJ . It is equivariantly
closed, since F = dξ(UdξU) is exact. Hence, the equivariant extension of
scalar correlator is given by

〈Tr ϕJ〉 =
1

V Z

∫

M

∫

C2
α(2,2) ∧ Tr FJ exp[−SN=1]. (2.13)

These correlation functions should be regarded as equivariant integral (2.8),
which one can compute by the localization formula. These equivariant inte-
grals are Laurent series in � and a� from which we can obtain the original
correlator (2.7) in the limit � → 0. We note the scalar correlators 〈Tr ϕJ〉
are independent of the superpotential W (ϕ) and the same as N = 2 calcu-
lation [8].

3 One-point function in maximally confining phase

Chiral operators O in supersymmetric field theories are, by definition [31],
annihilated by the fermionic charges Qα̇ of one chirality; [Qα̇,O]± = 0, con-
sidered modulo Qα̇-exact operators; O � O + [Qα̇, Λ]±. From the supersym-
metry algebra in four dimensions, [Qα, Qα̇]+ = σμ

αα̇Pμ, we can see that the
correlation functions of chiral operators are “topological” in the sense that
they are independent of the positions of operators. Especially, topological
one-point functions characterize the vacuum structure (phase) of the theory.

As we have seen in Section 2, the computation of one-point function
〈Tr ϕ2n〉 involves the Chern class Tr F2n of a universal sheaf E on C

2 × M.
Over the instanton moduli space Mζ

N,k we have two vector bundles W and
V of rank N and k, which naturally arise in the ADHM construction.
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The ADHM data are identified as B1, B2 ∈ Hom(V, V ) and J, I† ∈ Hom
(W, V ).2 Roughly speaking, the vector bundle W comes from a local triv-
ialization of the instanton at infinity,3 while V is the bundle of Dirac zero
modes. The fiber of V is the space of (normalizable) solutions to the Dirac
equation in the instanton background. The Riemann–Roch theorem tells us
that the number of Dirac zero modes is just the instanton number k. From
vector bundles E1 on C

2 and E2 on Mζ
N,k, we can construct an (exter-

nal) tensor product bundle E1 � E2 := p∗
1E1 ⊗ p∗

2E2 on C
2 × Mζ

N,k, where
pi denotes the projection to the i-th component. Then as an element of the
equivariant K-cohomology group, the universal sheaf is isomorphic to the
virtual vector bundle [4, 32]:

E � OC2 � W ⊕ (S− − S+) � V, (3.1)

where S± are positive and negative spinor bundles on C
2. Their characters

are
Ch(S+)(t) = 1 + eit(ε1+ε2), Ch(S−)(t) = eitε1 + eitε2 . (3.2)

According to [4,32], at a fixed point of the toric action labeled by N -tuples
of Young diagrams Yα, the Chern character of E is given by

Ch(E)Y (t) =
N∑

α=1

eitaα − (1 − eitε1)(1 − eitε2)

×
N∑

α=1

∑

(k,�)∈Yα

eitaα+itε1(k−1)+itε2(�−1), (3.3)

and we have
Ch(E)(t) =

∑

Y ∈PN (k)

Ch(E)Y (t). (3.4)

The n-th Chern class cn(E) is defined by the expansion

Ch(E)Y (t) =
∞∑

n=0

(it)n

n!
cn(E)Y . (3.5)

Since we identify F as a curvature on the universal bundle E , we have
Tr Fn = cn(E).

In the following, we consider U(1) theory (N = 1) and we put ϕcl = a = 0
for simplicity. The fixed points are labeled by a single Young diagram Y

2In the description of ADHM construction in terms of D-branes in type IIB theory, V
and W are the Chan–Paton bundles for D(−1)-branes and D3-branes, respectively.

3The moduli space Mζ
N,k is defined by the quotient by the gauge transformations that

fix the “framing” at infinity.
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and the contribution to the character is

Ch(E)Y = 1 − (1 − eitε1)(1 − eitε2)
∑

(m,�)∈Y

eitε1(m−1)+itε2(�−1). (3.6)

It is known that the moduli space of instantons M1,k for U(1) case is nothing
but the Hilbert scheme of k-points on C

2, (C2)[k] and that there is a natural
vector bundle V on (C2)[k] of rank k, called tautological vector bundle. One
can show that the (equivariant) character of V is the same as the vector
bundle V [30, 33]:

Ch(V) =
∑

|Y |=k

∑

(m,�)∈Y

eitε1(m−1)+itε2(�−1). (3.7)

Putting ε1 = −ε2 = � and comparing (3.5) and (3.6), we find Trϕ2n
Y =

c2n(E)Y , (n > 0), is given by:

Tr ϕ2n
Y = �

2n
∑

(k,�)∈Y

[(k − � + 1)2n + (k − � − 1)2n − 2(k − �)2n]

= �
2n

n−1∑

m=0

2
(

2n

2m

) ∑

∈Y

c( )2m, (3.8)

where c( ) := (� − k) is the content at = (k, �). On the other hand, com-
puting geometric series, we have

∑

(k,�)∈Y

(1 − eiε1)(1 − eiε2)ei(k−1)ε1+i(�−1)ε2

=
d∑

�=1

μ�∑

k=1

(1 − eiε1)(1 − eiε2)ei(k−1)ε1+i(�−1)ε2

=
d∑

�=1

(ei(ε1μ�+ε2�) − ei(ε1μ�+ε2(�−1)) − eiε2� + eε2(�−1)),

(3.9)

where d is the number of rows of Y and μ� is the number of boxes in the
�-th row. Hence, we obtain another expression of (3.8):

Tr ϕ2n
Y = �

2n
d∑

�=1

[(μ� − (� − 1))2n − (μ� − �)2n − (� − 1)2n + �2n], (3.10)

which we often find in the literature.
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The partition function of U(1) gauge theory is

ZU(1) =
∞∑

k=0

∑

|Y |=k

1∏
∈Y (�h( ))2

qk, (3.11)

where h( ) is the hook length at and q = Λ2 is the parameter of instanton
expansion. The weight μ(Y )2 =

∏
∈Y (h( ))−2 defining ZU(1) is called the

Plancherel measure on the space of (random) partitions. The Plancherel
measure is regarded as a discretization of the Vandermonde measure on
random matrix. It is a classical result in representation theory that

∏

∈Y

1
h( )

=
dim SY

k!
, (3.12)

where SY is the irreducible representation of the symmetric group labeled
by a Young diagram Y . By the Plancherel formula

∑
|Y |=k(dimSY )2 = k!,

we obtain
∑

|Y |=k

∏

∈Y

h( )−2 =
1
k!

. (3.13)

Hence, we find that the summation over the instanton number k in (3.11)
is organized into a simple form [4]:

ZU(1) = exp
( q

�2

)
. (3.14)

The correlation functions of our interest are

〈Tr ϕ2n〉 =
1

ZU(1)

∞∑

k=1

∑

|Y |=k

Tr ϕ2n
Y

�2k
∏

∈Y h( )2
qk. (3.15)

Substituting formula (3.8), we have

〈Tr ϕ2n〉 exp
( q

�2

)
= 2

n−1∑

m=0

(
2n

2m

) ∞∑

k=1

Sm(k)�2(n−k)qk, (3.16)

where we have introduced

Sn(k) :=
∑

|Y |=k

∑
∈Y c( )2n

∏
∈Y h( )2

. (3.17)

Thus the computation of 〈Tr ϕ2n〉 is equivalent to giving summation formula
for Sn(k) over Young diagrams. For example, a “trivial” formula S0(k) =
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1/(k − 1)! implies 〈Tr ϕ2〉 = 2q. Looking at the instanton expansion of lower
degree explicitly, we find

(6q2 + 2�
2q)e

q

�2 =
∞∑

k=1

(2S0(k) + 12S2(k))�4−2kqk,

(20q3 + 30�
2q2 + 2�

4q)e
q

�2 =
∞∑

k=1

(2S0(k) + 30S2(k)

+ 30S4(k))�6−2kqk, (3.18)

(70q4 + 280�
2q3 + 126�

4q2 + 2�
6q)e

q

�2 =
∞∑

k=1

(2S0(k) + 56S2(k)

+ 140S4(k) + 56S6(k))�8−2kqk.

In Appendix, we prove the following formula:

n∑

j=1

cn
j Sj(k) =

(2n)!
((n + 1)!)2

1
(k − n − 1)!

, (3.19)

where cn
j are defined by4

P2n(x) := xn · xn =
n−1∏

j=0

(x2 − j2) =
n∑

j=1

cn
j x2j . (3.20)

We note that in terms of a specialization of the elementary symmetric func-
tions er(x), the coefficient cn

j is given by

cn
j = (−1)n−jen−j(12, 22, · · · , (n − 1)2). (3.21)

The formula implies, for example,

S2(k) =
1
2

1
(k − 2)!

, S4(k) =
1
2

1
(k − 2)!

+
2
3

1
(k − 3)!

,

S6(k) =
1
2

1
(k − 2)!

+
10
3

1
(k − 3)!

+
5
4

1
(k − 4)!

, (3.22)

and we find an agreement with (3.18).

4The functions xn and xn are natural power functions in the calculus of difference.
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In general, based on the combinatorial formula (3.19), we can derive the
following relation among topological one-point functions valid in the maxi-
mally confining phase:

r∑

j=1

cr
j�

2(r−j)〈Tr ϕ2j〉 =
(2r)!
(r!)2

qr. (3.23)

In other words, the linear combination on the left hand side with extra terms
of the coefficients cr

j is a “good” combination without quantum corrections.
Before embarking a proof of (3.23), let us take a look at some examples first.
From (3.18) it is easy to find that5

〈Tr ϕ2〉 = 2q,

〈Tr (ϕ4 − �
2ϕ2)〉 = 6q2,

〈Tr (ϕ6 − 5�
2ϕ4 + 4�

4ϕ2)〉 = 20q3,

〈Tr (ϕ8 − 14�
2ϕ6 + 49�

4ϕ4 − 36�
6ϕ2)〉 = 70q4,

(3.24)

and we recognize the coefficients cr
j in the linear combinations of 〈Tr ϕ2n〉.

For the proof of (3.23), we first plug formula (3.8) into the definition
(3.15) of 〈Tr ϕ2j〉 to obtain

r∑

j=1

cr
j�

2(r−j)〈Tr ϕ2j〉ZU(1)

= �
2r

∞∑

k=1

∑

|Y |=k

( q

�2

)k
r∑

j=1

cr
j

∑
∈Y (c( ) + 1)2j − 2(c( ))2j + (c( ) − 1)2j

∏
∈Y h( )2

= �
2r

∞∑

k=1

∑

|Y |=k

( q

�2

)k
∑

∈Y [P2r(c( ) + 1) − 2P2r(c( )) + P2r(c( ) − 1)]∏
∈Y h( )2

= 2r(2r − 1)�2r
∞∑

k=1

∑

|Y |=k

( q

�2

)k
∑

∈Y

∏r−2
j=0(c( )2 − j2)

∏
∈Y h( )2

,

(3.25)

where in the last line we have used the following relation satisfied by P2n(x):6

Δ2P2n(x) := P2n(x + 1) − 2P2n(x) + P2n(x − 1) = 2n(2n − 1)P2n−2(x).
(3.26)

5These one-point functions in the limit � → 0 were computed in [8].
6This formula is a discrete version of d2

dx2 x2n = 2n(2n − 1)x2n−2.
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Finally as is shown in Appendix, formula (3.19) is equivalent to

∑

|Y |=k

∑
∈Y

∏r−2
j=0(c( )2 − j2)

∏
∈Y h( )2

=
(2(r − 1))!

(r!)2
1

(k − r)!
, (3.27)

which allows us to factorize the partition function ZU(1) as follows:
r∑

j=1

cr
j�

2(r−j)〈Tr ϕ2j〉ZU(1) =
(2r)!
(r!)2

qr
∞∑

k=1

1
(k − r)!

( q

�2

)k−r

=
(2r)!
(r!)2

qr exp
( q

�2

)
. (3.28)

Dividing both sides by the partition function ZU(1), we obtain (3.23).

4 Genus expansion

From the relation (3.23) derived in Section 3, we can compute the expansion
of the generating function

T (z) :=
〈

Tr
1

z − ϕ

〉
=

∞∑

n=0

z−n−1〈Tr ϕn〉, (4.1)

in �
2 iteratively. The expansion should be compared with the genus expan-

sion of topological strings and/or matrix models. Recall that the coefficients
cr
j are defined by

r−1∏

j=0

(x2 − j2) =
r∑

j=1

cr
jx

2j . (4.2)

We find

cr
r = 1, cr

r−1 = −
r−1∑

j=0

j2 = −1
6
r(r − 1)(2r − 1). (4.3)

Substituting these to the relation (3.23), we obtain

〈Tr ϕ2r〉 =
(2r)!
(r!)2

qr +
�

2

6
r(r − 1)(2r − 1)

(2r − 2)!
((r − 1)!)2

qr−1 + O(�4)

=
(2r)!
(r!)2

qr +
�

2

12
(2r)!

(r − 1)!(r − 2)!
qr−1 + O(�4). (4.4)

Hence

T (z) =
∞∑

n=0

z−2n−1 (2n)!
(n!)2

qn +
∞∑

n=2

z−2n−1 �
2

12
(2n)!

(n − 1)!(n − 2)!
qn−1 + O(�4).

(4.5)
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We note that the Taylor expansion

1√
1 − 4x

=
∞∑

n=0

(2n)!
(n!)2

xn, |x| <
1
4
, (4.6)

implies

T (z) =
1

z
√

1 − (4q/z2)
=

1√
z2 − 4q

, � → 0. (4.7)

Combining the expansion (4.6) and its derivatives, we find

24x(x + 1)
(1 − 4x)7/2 =

∞∑

n=2

(2n)!
(n − 1)!(n − 2)!

xn−1, (4.8)

which implies the generating function T (z) up to genus one:

T (z) =
1√

z2 − 4q
+ �

2 2q(q + z2)
(z2 − 4q)7/2 + O(�4)

=
1√

z2 − 4q

(
1 + �

2 2q(q + z2)
(z2 − 4q)3

+ O(�4)
)

. (4.9)

Similarly, the relation (3.23) implies the genus two part of 〈Tr ϕ2r〉 is

�
4(cr

r−1c
r−1
r−2 − cr

r−2)
(2r − 4)!

((r − 2)!)2
qr−2. (4.10)

From the definition of cj
r, we find

cr
r−1c

r−1
r−2 =

1
36

r(r − 1)(2r − 1)(r − 2)(r − 1)(2r − 3), (4.11)

and

cr
r−2 =

r−2∑

i=1

r−1∑

j=i+1

i2j2 = cr
r−1c

r−1
r−2 − 1

6

r−2∑

i=1

i3(i + 1)(2i + 1)

= cr
r−1c

r−1
r−2 − 1

360
r(5r − 11)(r − 1)(r − 2)(2r − 1)(2r − 3). (4.12)

Hence, the genus two part of the generating function T (z) is given by

�
4

1440
z−5

∞∑

n=3

(5n − 11)
(2n)!

(n − 2)!(n − 3)!

( q

z2

)n−2
. (4.13)

From the Taylor expansion (4.8) which we have used for genus one part, we
further obtain

2880x(27x3 + 118x2 + 37x + 1)
(1 − 4x)13/2 =

∞∑

n=3

(5n − 11)
(2n)!

(n − 2)!(n − 3)!
xn−2.

(4.14)
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In summary, the generating function up to genus two is

T (z) =
1√

z2 − 4q

(
1 + �

2 2q(q + z2)
(z2 − 4q)3

+�
4 2q(27q3 + 118q2z2 + 37qz4 + z6)

(z2 − 4q)6
+ O(�6)

)
. (4.15)

5 Computations in operator formalism

Due to the correspondence of Young diagrams (or Maya diagrams) and
fermion Fock states with neutral charge, operator formalism is very pow-
erful for computations of summations over functions on the set of Young
diagrams. Let us introduce a pair of charged (NS) free fermions

ψ(z) =
∑

r∈Z+(1/2)

ψrz
−r−(1/2), ψ∗(z) =

∑

s∈Z+(1/2)

ψ∗
sz

−s−(1/2), (5.1)

with the anti-commutation relation

{ψr, ψ
∗
s} = δr+s,0, r, s ∈ Z +

1
2
. (5.2)

The Fock vacuum |0〉 is defined by

ψr|0〉 = ψ∗
s |0〉 = 0, r, s > 0. (5.3)

Using the Young/Maya diagram correspondence, for each partition λ, we
have a state |λ〉 in the charge zero sector of the fermion Fock space, which
is given by

|λ〉 =
∞∏

i=1

ψi−λi−(1/2)‖0〉〉, (5.4)

with
ψ∗

s‖0〉〉 = 0, ∀s. (5.5)
Recall the standard bosonization rule

J(z) =: ψ(z)ψ∗(z) :=
∑

n∈Z

Jnz−n−1, Jn =
∑

r∈Z+ 1
2

: ψrψ
∗
n−r :,

J(z) = i∂φ(z), ψ(z) =: eiφ(z) :, ψ∗(z) =: e−iφ(z) :, (5.6)

where : : means the normal ordering. Now a crucial point is the following
formula:

exp
(

J−1

�

)
|0〉 =

∞∑

k=0

1
�k

∑

|λ|=k

1∏
∈λ h( )

|λ〉, (5.7)

which is equation (5.29) of [5]. In the language of symmetric functions, the
corresponding formula is given in [34].
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It is instructive to compute J−1|0〉, J2
−1|0〉, J3

−1|0〉, J4
−1|0〉, . . ., iteratively.

One can recognize that the action of

J−1 = ψ−1/2ψ
∗
−1/2 + ψ−3/2ψ

∗
1/2 + ψ−5/2ψ

∗
3/2 + ψ−7/2ψ

∗
5/2 + · · ·

− ψ∗
−3/2ψ1/2 − ψ∗

−5/2ψ3/2 − ψ∗
−7/2ψ5/2 + · · · , (5.8)

on the fermion Fock states is to move “black ball” to the right by one unit
whenever possible, if the vacuum is identified as the Maya diagram whose
negative positions are completely filled with “black balls”. The combina-
torics of this procedure gives

Jk
−1|0〉 =

∑

|λ|=k

k!∏
∈λ h( )

|λ〉 =
∑

|λ|=k

(dimSλ)|λ〉 . (5.9)

It is easy to compute

〈0|eJ1/�eJ−1/�|0〉 = 〈0|e[J1,J−1]/�2 |0〉 = e1/�2
=

∞∑

k=0

1
�2kk!

. (5.10)

On the other hand,

〈0|eJ1/�eJ−1/�|0〉 =
∑

μ,λ

〈μ| 1
�|μ| ∏

∈μ h( )
· 1

�|λ| ∏
∈λ h( )

|λ〉

=
∑

λ

1
�2|λ| ∏

∈λ h( )2
, (5.11)

where we have used 〈μ|λ〉 = δμ,λ. Comparing the coefficients of �
−2k of both

sides, we recover the identity (3.13). Recall that what we want to compute is
Sn(k) defined by (3.17). Let us introduce the generating function of Sn(k):

Ch[k](z) :=
∑

|λ|=k

∑
∈λ exp(zc( ))∏

∈λ h( )2
=

∞∑

n=0

z2n

(2n)!
Sn(k), (5.12)

where we have used the fact that c( ) is odd under the transpose of the
Young diagram. This generating function gives the Chern character of
the tautological vector bundle over (C2)[k] considered in [33]. The sum in
the numerator is

∑

∈λ

exp(zc( )) =
d(λ)∑

j=1

λj∑

i=1

ez(i−j) =
d(λ)∑

j=1

ez(λj−j+(1/2)) − ez(−j+(1/2))

ez/2 − e−z/2 . (5.13)

Following Okounkov and Pandharipande [16,17], we consider the operator

En(z) :=
∑

r∈Z+(1/2)

ez(r−(n/2))En−r,r, (5.14)
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where Er,s :=: ψrψ
∗
s : is the standard basis of gl(∞) acting on the fermion

Fock space.7 We can see that En(z) satisfies the commutation relation

[En(z), Em(w)] = sh(nw − mz)En+m(z + w) + δn+m,0
sh n(z + w)
sh (z + w)

, (5.15)

where sh(z) := ez/2 − e−z/2. We have En(0) = Jn, with Jn being the modes
of the standard U(1) current of fermions. We also find an important relation

E0(z)|λ〉 =
∞∑

i=1

(ez(λi−i+(1/2)) − ez((1/2)−i))|λ〉

=
d(λ)∑

i=1

(ez(λi−i+(1/2)) − ez((1/2)−i))|λ〉

= sh(z)
∑

∈λ

exp(zc( ))|λ〉. (5.16)

The second term comes from E0(z)‖0〉〉 = −(sh(z))−1‖0〉〉, which can be cal-
culated directly from the definition of ‖0〉〉 or the consistency E0(z)|0〉 = 0.
By formula (5.9), the generating function of Sn(k) is expressed in operator
formalism as follows:

(k!)2sh(z)Ch[k](z) = 〈0|Jk
1 E0(z)Jk

−1|0〉. (5.17)

The right hand side can be computed by the commutation relation (5.15),
which implies

Jk
1 E0(z) =

k∑

�=0

(
k

�

)
sh�(z)E�(z)Jk−�

1 . (5.18)

We also use

Jn
1 Jk

−1|0〉 =
k!

(k − n)!
Jk−n

−1 |0〉 (n ≤ k), (5.19)

which is derived from ezJ1ewJ−1 |0〉 = e[zJ1,wJ−1]ewJ−1ezJ1 |0〉 = ezwewJ−1 |0〉.
By these formulae, we obtain

〈0|Jk
1 E0(z)Jk

−1|0〉 =
k∑

�=0

(
k

�

)
sh�(z)〈0|E�(z)

k!
�!

J �
−1|0〉 = (k!)2

k∑

�=1

sh(z)2�−1

(�!)2(k − �)!
.

(5.20)

7Originally the definition in [16, 17] has the constant term δn,0
sh(z) , which eliminates the

central extension term in the commutation relation (5.15). Note also that our convention
of the anti-commutation relation (5.2) is different from the original one in [16, 17], where
the right hand side is δr,s.
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The contribution from � = 0 is simply zero because 〈0|E0(z)|0〉 = 0. Thus
we find8

Ch[k](z) =
k∑

�=1

sh(z)2�−2

(�!)2(k − �)!
. (5.21)

We note that the constant term of (5.21) gives

Ch[k](0) =
1

(k − 1)!
, (5.22)

which is consistent with

S0(k) =
k

k!
, (5.23)

derived from (3.13). We have computed the Taylor expansion of Ch[k](z)
for each fixed k and found exact agreements with the results of formula
(3.19) proved in Appendix. Note that formula (3.19) rather gives Sn(k) as
a function of k for each fixed n.

6 Loop operator

In this section,9 let us consider the vacuum expectation value of the loop
operator

〈Tr eitϕ〉 =
∞∑

n=0

(it)n

n!
〈Tr ϕn〉. (6.1)

Note that the loop operator is related to the resolvent operator simply by
the Laplace transformation:

T (z) =
〈

Tr
1

z − ϕ

〉
=

∫ ∞

0
dle−lz〈Tr elϕ〉. (6.2)

Plugging (3.15) with (3.8) into (6.1), we find the loop operator 〈Tr eitϕ〉
can be expressed as (z = it�)

〈Tr eitϕ〉 − 1 =
1

ZU(1)

∞∑

k=1

[ q

�2

]k

×
∑

|Y |=k

∑
∈Y (ez(c( )+1) + ez(c( )−1) − 2ez(c( )))∏

∈Y (h( ))2
,

(6.3)

8From the Lascoux–Thibon formula used in Appendix, we see that Ch[k](z) =
∑k

m=1 φ(1m)(z) 1
(k−m)! .

9We thank Amihay Hanany and Hiroyuki Ochiai for sharing the ideas that led us to
make the following computations.
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which can further be put into

〈Tr eitϕ〉 − 1 =
1

ZU(1)

∞∑

k=1

[ q

�2

]k
sh2(z)Ch[k](z), (6.4)

using the function Ch[k](z) defined in (5.12). Since we have already evalu-
ated Ch[k](z), let us plug the final expression of Ch[k](z) in (5.21) into (6.4):

〈Tr eitϕ〉 − 1 =
1

ZU(1)

∞∑

k=1

k∑

�=1

[ q

�2

]k sh(z)2�

(�!)2(k − �)!

=
1

ZU(1)

∞∑

�=1

∞∑

k=�

[ q

�2

]k sh(z)2�

(�!)2(k − �)!
, (6.5)

where in the last equation we have exchanged the k summation and the �
summation. If we perform the k summation first,

∞∑

k=�

1
(k − �)!

[ q

�2

]k
=

∞∑

k=0

1
k!

[ q

�2

]k+�
= ZU(1)

[ q

�2

]�
, (6.6)

we find finally the loop operator is given as

〈Tr eitϕ〉 = 1 +
∞∑

�=1

1
(�!)2

[ q

�2 sh2(z)
]�

= I0(2
√

q sh(it�)/�), (6.7)

with In(x) being the modified Bessel functions. It is interesting that we can
perform the instanton sum of the loop operator in a closed form and obtain
the exact result (6.7) in the parameter �.

Finally we can also obtain an exact result on T (z) from (6.7). The Laplace
transformation (6.2) implies

T (z) =
∞∑

n=0

1
(n!)2

( q

�2

)n
∫ ∞

0
dle−lz sh2n(l�)

=
∞∑

n=0

(2n)!
(n!)2

( q

�2

)n
n∑

m=−n

(−1)n−m

(n − m)!(n + m)!
1

z − m�
. (6.8)

By computing the residue at z = m�(−n ≤ m ≤ n), we have the partial
fraction expansion10

n∏

m=−n

1
z − m�

= �
−2n

n∑

m=−n

(−1)n−m

(n − m)!(n + m)!
1

z − m�
, (6.9)

10We note that the same formula has been used in the proof of (A.3).
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which gives

T (z) =
∞∑

n=0

(2n)!
(n!)2

qn
n∏

m=−n

1
z − m�

=
∞∑

n=0

(2n)!
(n!)2

qnz−2n−1
n∏

m=1

∞∑

k=0

(
m�

z

)2k

.

(6.10)
This is a rather simple answer to the � dependent of T (z), which is consistent
with the � expansion (up to genus two) presented in Section 4.
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Appendix A Proof of the combinatorial identity

The aim of this appendix is to give a proof to the following theorem.

Theorem A.1.
∑

λ�k

∑
x∈λ

∏r−1
i=0 (c(x)2 − i2)∏
x∈λ h(x)2

=
(2r)!

((r + 1)!)2
·
∏r

i=0(k − i)
k!

, (A.1)

where λ runs over all partitions of k, i.e., the Young diagrams with k boxes.

We put

Sr(k) =
∑

λ�k

∑
x∈λ c(x)2r

∏
x∈λ h(x)2

, Tr(k) =
∑

λ�k

∑
x∈λ

∏r−1
i=0 (c(x)2 − i2)∏
x∈λ h(x)2

,

and denote by ei and hi the i-th elementary and complete symmetric poly-
nomial, respectively. Then we have

Tr(k) =
r∑

p=1

(−1)r−per−p(12, 22, . . . , (r − 1)2)Sp(k).
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Since the matrices

((−1)j−iej−i(x1, . . . , xj))0≤i,j≤N and (hj−i(x1, . . . , xi+1))0≤i,j≤N

are inverses to each other, we see that

Sr(k) =
r∑

p=1

hr−p(12, 22, . . . , p2)Tp(k).

Thus the identity (A.1) is equivalent to

Sr(k) =
r∑

p=1

hr−p(12, 22, . . . , p2)
(2p)!

((p + 1)!)2
kp+1

k!
, (A.2)

where kp+1 denotes the falling factorial

kp+1 = k(k − 1) · · · (k − p).

We prove the identity (A.2) by using the Jucys–Murphy elements Li (1 ≤
i ≤ k) in the group ring C[Sk] of the symmetric group Sk and the Lascoux–
Thibon formula for them. The Jucys–Murphy elements [36, 38] are defined
to be the sum of transpositions

Li = (1, i) + (2, i) + · · · + (i − 1, i).

Note that L1 = 0, but it is convenient to include this case. A key property
of Jucys–Murphy elements is the following.

Proposition A.2. 1. The Jucys–Murphy elements L1, . . . , Lk are
commutative.

2. On the irreducible representation Sλ of Sk corresponding to a partition
λ, the operators L1, . . . , Lk are simultaneously diagonalizable and the
eigenvalues of Li are the contents {c(x) : x ∈ λ} of λ.

Proposition A.3. Let f(z) be a polynomial. Then the quantity

k!
∑

λ�k

∑
x∈λ f(c(x))∏
x∈λ h(x)2

is equal to the coefficient of the identity element in f(L1) + · · · + f(Lk).

Proof. Since f(L1) + · · · + f(Lk) is symmetric in L1, . . . , Lk, we see that
f(L1) + · · · + f(Lk) acts on Sλ as the scalar multiplication by

∑
x∈λ f(c(x)).

Hence, the trace of the operator f(L1) + · · · + f(Lk) on Sλ is equal to
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fλ
∑

x∈λ f(c(x)), where fλ is the dimension of Sλ. Since the left regular
representation of Sk on C[Sk] is decomposed as

C[Sk] ∼=
⊕

λ�k

(Sλ)⊕fλ
,

the trace of f(L1) + · · · + f(Lk) on C[Sk] is given by
∑

λ�k

(fλ)2
∑

x∈λ

f(c(x)) = (k!)2
∑

λ�k

∑
x∈λ f(c(x))∏
x∈λ h(x)2

,

because fλ = k!/
∏

x∈λ h(x).

On the other hand, the trace of the operator g ∈ Sk on C[Sk] is equal to
k! if g is the identity element and 0 otherwise. Hence, we see that

k!
∑

λ�k

∑
x∈λ f(c(x))∏
x∈λ h(x)2

is the coefficient of the identity element in f(L1) + · · · + f(Lk). �

Now we recall the Lascoux–Thibon formula, which expresses the power-
sums of Jucys–Murphy elements as linear combinations of the class sums
Cμ. For a partition μ, we denote by Cμ the sum of all permutations with
cycle type μ and put zμ =

∏
i≥1 imimi!, where mi is the multiplicity of i

in μ.

Theorem A.4 (Lascoux–Thibon [37, §4]). Given a partition κ of m, we
define a formal power series φκ(t) =

∑
r≥0 φκ,rt

r/r! by substituting q = et in

(1 − q−1)m−1

m!zκ

∏
i(q

κi − 1)
q − 1

.

Then we have

Lr
1 + · · · + Lr

k =
r+1∑

m=1

∑

κ�m
l(κ)≤r−m+2

φκ,r

zκ∪(1k−m)

(k − m)!
Cκ∪(1k−m).

Corollary A.5. If r ≥ 1, then the coefficient of the identity element in
L2r

1 + · · · + L2r
k is given by
r∑

p=1

2p

((p + 1)!)2
kp+1

∑

r1+···+rp=r
r1,...,rp>0

(
2r

2r1, 2r2, . . . , 2rp

)
,

where the inner sum is taken over all p-tuples of positive integers (r1, . . . , rp)
with r1 + · · · + rp = r, and

( 2r
2r1,2r2,...,2rp

)
is the multinomial coefficient.
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Proof. We consider the coefficient of C(1k) in the Lascoux–Thibon formula.
If κ = (1), then φ(1) = 1 and φ(1),r = 0 for r ≥ 1. If κ = (1m) with m ≥ 2,
then

φ(1m)(t) =
1

(m!)2
(et − 2 + e−t)m−1,

and

φ(1m),2r =
2m−1

(m!)2
∑

r1+···+rm−1=r
r1,...,rm−1>0

(
2r

2r1, 2r2, . . . , 2rm−1

)
,

where the sum is taken over all (m − 1)-tuples of positive integers (r1, . . . ,
rm−1) with r1 + · · · + rm−1 = r. �

Now the proof of (A.2) is completed by showing the following lemma.

Lemma A.6. If r ≥ p, then we have

2p

(2p)!

∑

r1+···+rp=r
r1,...,rp>0

(
2r

2r1, 2r2, . . . , 2rp

)
= hr−p(12, 22, . . . , p2). (A.3)

Proof. First we simplify the summation on the left hand side of (A.3).
We put

Mp(r) =
∑

r1+···+rp=r
r1,...,rp≥0

(
2r

2r1, . . . , 2rp

)
,

Np(r) =
∑

r1+···+rp=r
r1,...,rp>0

(
2r

2r1, . . . , 2rp

)
.

(We define M0(r) = N0(r) = 0.) It follows from the multinomial theorem
that

∑

(ε1,...,εp)∈{1,−1}p

(ε1x1 + · · · + εxp)2r

=
∑

r1,...,rp

(
2r

r1, . . . , rp

)
(xr1

1 + (−x1)r1) · · · (xrp
p + (−x1)rp),

where the sum is taken over all p-tuples (r1, . . . , rp) of non-negative integers
with r1 + · · · + rp = r. Substituting x1 = · · · = xp = 1, we obtain

Mp(r) =
1
2p

p∑

i=0

(
p

i

)
(p − 2i)2r.
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By applying the principle of inclusion–exclusion, we have

Np(r) =
p∑

j=0

(−1)j

(
p

j

)
Mp−j(r)

=
1
2p

⎛

⎝
�p/2�∑

k=0

[
k∑

i=0

22i

(
p

2i

)(
p − 2i

k − i

)]
((p − 2k)2r + (−p + 2k)2r)

−
�(p−1)/2�∑

k=0

[
k∑

i=0

22i+1
(

p

2i + 1

)(
p − 2i − 1

k − i

)]

×((p − 2k − 1)2r + (−p + 2k + 1)2r)

⎞

⎠.

By using the Chu–Vandermonde formula (see e.g., [35, Cor. 2.2.3]), we see
that

if 0 ≤ 2k ≤ 2p,
k∑

i=0

22i

(
p

2i

)(
p − 2i

k − i

)
=

pk

k!

k∑

i=0

(p − k)iki

i!(i − 1/2)i
=

(
2p

2k

)
,

if 0 ≤ 2k + 1 ≤ 2p,
k∑

i=0

22i+1
(

p

2i + 1

)(
p − 2i − 1

k − i

)
=

2pk+1

k!

k∑

i=0

(p − k − 1)iki

i!(i + 1/2)i

=
(

2p

2k + 1

)
.

Therefore, we conclude that

Np(r) =
2
2p

p∑

i=1

(−1)p−i

(
2p

p − i

)
i2r.

Now we are in position to complete the proof of (A.3) by using generating
functions. The generating function of the right hand sides is

∞∑

r=p

2p

(2p)!
Np(r)zr−p =

∞∑

r=p

2
(2p)!

(
p∑

i=1

(−1)p−i

(
2p

p − i

)
i2r

)
zr−p

=
p∑

i=1

(−1)p−i 2i2p

(p − i)!(p + i)!
1

1 − i2z
.
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By considering the partial fraction expansion, we see that

p∑

i=1

(−1)p−i 2i2p

(p − i)!(p + i)!
1

1 − i2z
=

p∏

i=1

1
1 − i2z

,

which is the generating function
∑∞

r=p hr−p(12, . . . , p2)zr−p. This completes
the proof of (A.3). �
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