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Abstract

For a one-dimensional discrete Schrödinger operator with a weakly
coupled potential given by a strongly mixing dynamical system with
power law decay of correlations, we derive for all energies including the
band edges and the band center a perturbative formula for the Lya-
punov exponent. Under adequate hypothesis, this shows that the Lya-
punov exponent is positive on the whole spectrum. This in turn implies
that the Hausdorff dimension of the spectral measure is zero and that
the associated quantum dynamics grows at most logarithmically in time.

1 Introduction

Let Σ be a topological space and Ω = ΣZ the associated Tychonov product
space. Furthermore let P be a probability measure on Ω which is invari-
ant and ergodic w.r.t. the left shift S : Ω → Ω. Now given a measurable
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real-valued function V on Ω and a coupling constant λ > 0, one can associate
an ergodic family of Jacobi matrices (Hλ,ω)ω∈Ω (also called discrete
Schrödinger operators) each acting on �2(Z):

Hλ,ω|n〉 = |n + 1〉 + λV (Snω)|n〉 + |n − 1〉, (1.1)

where |n〉 is the Dirac notation for the state in �2(Z) localized at site n ∈ Z.
If P = p⊗Z is a product measure of a compactly supported probability mea-
sure p on Σ so that the random variables of the sequence (V (Snω))n∈Z of
potential values are independent, the model exhibits the so-called Anderson
localization, namely the spectrum of Hλ,ω is P-almost surely pure-point with
exponentially localized eigenstates [14], and the induced quantum dynamics
is bounded in time (in the precise sense given below). The question consid-
ered in this work (and many others, see the reviews [5, 9] and references
therein) concerns the spectral properties as well as the quantum dynam-
ics in situations where P is not a product measure so that the random
variables (V (Snω))n∈Z are correlated. This situation typically arises when
the dynamical system (Ω, S,P) is the symbolic dynamics associated to a
(possibly weakly) hyperbolic discrete time dynamics; then Σ is the Markov
partition. If now the correlations of the potential decay sufficiently fast, then
one expects that the model is still in the regime of Anderson localization.
Here we complement on the prior work [1, 4] and prove that this holds at
least in a weak sense when the correlations satisfy a power law decay.

The proof of localization for these models is based on the positivity of the
Lyapunov exponent. This positivity can either be established by Kotani the-
ory [5], a version of Furstenberg’s theorem for correlated random matrices
(work by Avila and Damanik cited in [5]) or by a perturbative calcula-
tion (for small λ) of the Lyapunov exponent. This latter calculation was
first done by Chulaevsky and Spencer [4] by carrying over the argument of
Thouless [18], in a version given by Pastur and Figotin [14], to the case of
correlated potential values. The resulting formula is recalled in Section 2.
Based on this result, Bourgain and Schlag then proved localization [1]. The
only flaw left is that in [4] (and actually already in [14]) not all energies
could be dealt with, but the band center and the band edges were spared
out. Here we show how the techniques of our prior works [16, 17] on anom-
alies and band edges [6, 12] combine with those of [4] to rigorously control
the perturbation theory for the Lyapunov exponent also at these energies.
Instead of repeating the rather complicated proofs of [1], we then adapt
to the case of correlated potentials the elementary and short argument of
[10], showing that positivity of the Lyapunov exponents implies at most
logarithmic growth of quantum dynamics and hence, by Guarneri’s inequal-
ity [8], zero Hausdorff dimension of the spectral measures. Even though
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this is a weaker localization result than pure-point spectrum with exponen-
tial localized eigenfunctions, it proves the behavior which is stable under
perturbation and we hence consider, as argued in [10], that it already cap-
tures the physically relevant effect. In the next section, the results and the
precise hypothesis are described and discussed in detail. The other sections
contain the proofs.

2 Set-up and results

In order to fix terms and notations, we have to begin by reviewing some
basic definitions of symbolic dynamics and strong mixing [3, 13]. Let Σ be a
countable set furnished with the discrete topology. We designate a reference
element 0 ∈ Σ. For any subset I ⊂ Z and ω = (σn)n∈Z ∈ Ω, let us define

πI(ω) = (σ̂n)n∈Z, σ̂n = 0 for n �∈ I, σ̂n = σn for n ∈ I.

For a bounded, measurable function g : Ω → V into a real, normed vector
space (V, ‖.‖), the variation on I is defined by

VarI(g) = sup
πI(ω)=πI(ω′)

‖g(ω) − g(ω′)‖.

Then g is called quasi-local with rate 0 < r < 1 if and only if there exists a
constant C = C(g) such that for any m, n ≥ 1,

Var[−m,n](g) ≤ C(g)rm∧n, m ∧ n = min{m, n}. (2.1)

The set of all quasi-local functions with rate r is denoted by Qr(V).

Next let us state precisely the strong mixing hypothesis used in this
work. For m < n and ak ∈ Σ with m ≤ k ≤ n, the associated cylinder set is
denoted by Am,n = Am,n(am, . . . , an) = {ω = (σk)k∈Z|σk = ak, m ≤ k ≤ n}.
Then the invariant measure P on the shift space (Ω, Z) is said to satisfy a
power law ψ-mixing [2] with exponent α > 0 if there is a constant C > 0
such that for all k < l < m < n and all Ak,l, Am,n, one has

|P(Ak,l ∩ Am,n) − P(Ak,l)P(Am,n)| ≤ CP(Ak,l)P(Am,n)|m − l|−α. (2.2)

Equivalently, for any π[k,l]-measurable function g1 and π[m,n]-measurable
function g2, there holds

|E(g1g2) − E(g1)E(g2)| ≤ CE(|g1|)E(|g2|)|m − l|−α, (2.3)

where k < l < m < n and C are as above. This also implies ergodicity. Exam-
ples when (2.3) holds are given in Remarks 2.3 and 2.4 below, after the
main results are stated. Averages over ω w.r.t. P are denoted by E, or also
by Eω if the dependence on ω is retained in the integrand. Furthermore,
the set of centered quasi-local functions will be denoted by Q0

r(V) = {g ∈
Qr(V)|E(g) = 0}.
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Throughout we suppose that the potential in (1.1) is given by a centered
real-valued quasi-local function V ∈ Q0

r(R). It is well known and verified in
Lemmas 5.4 that (2.3) implies the decay of correlations |E(V (ω)V (Snω))| ≤
C|n|−α for some constant C. For α > 1, one can hence define its (positive)
spectral density DV (k) at k ∈ [0, 2π):

DV (k) =
∑

n∈Z

eıknEω(V (ω)V (Snω)) = lim
N→∞

1
N

Eω

⎛

⎝
∣∣∣∣∣

N−1∑

n=0

eıknV (Snω)

∣∣∣∣∣

2
⎞

⎠ .

As final preparation let us recall the definition of the Lyapunov expo-
nent γλ(E) at energy E ∈ C associated to (1.1). If the transfer matrices are
defined by

T E
λ,ω =

(
E − λV (ω) −1

1 0

)
∈ Qr(SL(2, R)), (2.4)

then

γλ(E) = lim
N→∞

1
N

Eω log

(∥∥∥∥∥

N∏

n=1

T E
λ,Snω

∥∥∥∥∥

)
.

The main result of Chulaevsky and Spencer [4] is that for α > 2 and at an
energy E = 2 cos(k) in the spectrum [−2, 2] of the discrete Laplacian away
from the band edges E = −2, 2 and the band center E = 0, one has

γλ(E) = λ2 DV (k)
8 sin2(k)

+ O
(

λ(3α+2)/(α+2)

d(k)

)
. (2.5)

where d(k) denotes the distance of k from 0 mod π
2 . As we need to build up

the whole formalism anyway, the main element of the proof of (2.5) is repro-
duced in Section 6. As indicated, the control of the error terms breaks down
at the band edges and the band center. Our first result provides pertur-
bative formulas for the Lyapunov exponent at these energies, generalizing,
respectively, our prior results for independent potential values [16, 17].

Theorem 2.1. Assume α > 2, DV (0) > 0 and DV (π) > 0 (the latter is only
needed for (i)).

(i) The Lyapunov exponent near the band center E = 0 is given by

γλ(ελ2) = λ2 DV (π)
8

∫ π

0
dθρε(θ)(1 + cos(4θ)) + O(λ(3α+2)/(α+2)), (2.6)

where ρε is a π-periodic smooth probability density.
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(ii) Up to errors of order O(λ(3α+2)/(3α+6)), the Lyapunov exponent near
the upper band edge E = 2 is given by

γλ(2 + ελ4/3) = λ2/3
(

1 − ε

2

∫
dθρε(θ) sin(2θ) +

DV (0)
8

∫
dθρε(θ)(1 + 2 cos(2θ) + cos(4θ))

)
, (2.7)

where ρε is a π-periodic smooth probability density written out explicitly in
Section 8. The same formula holds at the lower band edge E = −2.

The formulas (2.5), (2.6) and (2.7) combined allow to study the Lyapunov
exponents at all energies [−2, 2]. In order to assure positivity for λ > 0, one
first has to check that the spectral density is positive (cf. Remark 2.5 below)
and then prove that the integrals appearing in (2.6) and (2.7) are positive.
This is immediate for (2.6). For (2.7) we could not produce an analytic proof,
but, given the explicit formula (8.1) for ρε, one can readily do a numerical
evaluation.

Nevertheless, the three formulas are not yet sufficient to prove uniform
positivity of the Lyapunov exponent on the whole spectrum for some fixed
small, but positive value of λ. Indeed, for once the non-random spectrum
σ(Hλ,ω) may (and typically will) fill the whole interval [−2 − λ‖V ‖∞, 2 +
λ‖V ‖∞], where ‖V ‖∞ = P − ess sup |V (ω)| (use approximate eigenfunctions
as Weyl sequences in order to show this). For an energy 2 + ελ, ε > 0, the
asymptotics (2.7) then says nothing. However, one can combine the tech-
niques of this work with those of [17] in order to prove, as in the case of
independent potential values [17, Section 8],

γλ(2 + ελη) =
√

ελη + O(λ1−η/4, λ7η/4−1, λ(η/4)(3α+2)/(α+2)), ε > 0, (2.8)

where 4
5 < η < 4

3 is such that the error terms are of lower order than λη/2 (in
particular, η = 1 is allowed for α sufficiently large). Moreover, the formulas
(2.5) and (2.7) do not imply positivity of the Lyapunov exponent at a fixed
λ for all energies in [2 − λ, 2) because the error term in (2.5) explodes as
one approaches the band edge. However, once again one can transpose [17,
Section 8] to the case of a strongly mixing potential:

γλ(2− ελη) = λ2−η DV (0)
8ε

+O(λ4−(5η/2), λ3η/2, λ(1−(η/2))(3α+2)/(α+2)), ε > 0,

(2.9)
where again 4

5 < η < 4
3 has to assure that the error terms are subdominant. A

careful analysis now allows to show (modulo the issues discussed above) that
for λ sufficiently small the Lyapunov exponent is positive on [2 − c, 2 + c] for
c > 0. We do not provide the detailed argument here, but do claim to have
presented all the essential ingredients in order to complete it. Similarly, by
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analyzing the Lyapunov exponent γλ(ελη), 1 ≤ η ≤ 2, using the techniques
of [16, Section 5.1] or [17, Section 5], one can show that the Lyapunov
exponent is positive near the band center for λ sufficiently small.

Let us now assume that uniform positivity of the Lyapunov exponent has
been verified for all energies in the spectrum, either by the above or some
other argument, and then deduce localization estimates from this. One stan-
dard way to quantify the spreading (delocalization) of an initially localized
wave packet |0〉 under the quantum mechanical time evolution e−ıtHλ,ω is to
consider the growth of (time and disorder averaged) moments of the position
operator X on �2(Z):

M q
T =

∫ ∞

0

dt

T
e−(t/T )Eω〈0|eıHλ,ωt|X|qe−ıHλ,ωt|0〉, q > 0. (2.10)

Boundedness of M q
T uniformly in time is called dynamical localization. Log-

arithmic growth in time as obtained in the following theorem is quite close
to that.

Theorem 2.2. Consider an ergodic family of Jacobi matrices (Hλ,ω)ω∈Ω of
the form (1.1) with a quasi-local potential V and an invariant measure P
satisfying (2.3) with α > 0. Suppose that the spectrum is included in an open
interval (E0, E1) on which the Lyapunov exponent is uniformly positive:

γλ(E) ≥ γ0 > 0, E ∈ (E0, E1). (2.11)

Then for any β > 2 there exists a constant C(β, q) such that

M q
T ≤ (log T )qβ + C(β, q). (2.12)

Furthermore, the Hausdorff dimension of the spectral measure of Hλ,ω van-
ishes P-almost surely.

The elementary proof (fitting on 4–5 pages) of (2.12) is almost completely
contained in [10]. It is therefore not reproduced here, but we discuss in detail
in Section 9 the only step that has to be modified. As already indicated in
the introduction, the last statement then follows directly from Guarneri’s
inequality [8].

Now follow remarks on when the hypotheses of the above theorems are
satisfied.

Remark 2.3. The strong mixing condition (2.3) clearly holds if P is the
product measure of some probability measure on Σ, because the functions
g1 and g2 are then independent. The mixing condition also holds if P stems
from a Markov process given by a stochastic kernel having only one invari-
ant measure on a countable set Σ. Then the decay on the r.h.s. of (2.3) is
actually exponential, with rate given by the Perron–Frobenius gap of the
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stochastic kernel. Yet more general, let us consider a hyperbolic dynamical
system (X, T ) (Axiom A) given by a map T : X → X. Then one has a finite
Markov partition Σ, with associated symbolic dynamics (Ω, S) [3], and there
is a wealth of the so-called Gibbs measures associated to Hölder continuous
(i.e., quasi-local) functions which all satisfy (2.3) with an exponential mix-
ing rate [3, Proposition 2.4]. Two standard examples of this type already
cited in [4] are the period doubling map and the Arnold cat maps. More-
over, if the phase space X is a manifold, then any differentiable real func-
tion on this manifold gives rise to a quasi-local potential under the coding
map. For all these examples with exponential ψ-mixing, the error bounds in
(2.5), (2.6) and (2.7) are given by the error bounds of the independent case
[14, 16, 17] multiplied by log2(λ). The error bounds in the independent case
are recovered by sending α → ∞ in (2.5), (2.6), (2.7), (2.8) and (2.9).

Remark 2.4. Concrete examples of dynamical systems (X, T ) having not
an exponential, but only a power law decay in (2.3) have only be ana-
lyzed more recently. Necessarily T is then not uniformly hyperbolic, but
it is supposed to have only a few parabolic points. Such examples can be
constructed even if X is an interval, but the invariant measure then has a
non-normalizable density w.r.t. the Lebesgue measure. It is, however, pos-
sible to construct a symbolic dynamics over a countable alphabet Σ which
then has a shift-invariant probability measure P satisfying the strong mixing
estimates (2.2) and (2.3). Instead of producing a long citation list, we refer
to the references in [7] which contains a proof of (2.3) for several concrete
examples. It is precisely in order to deal with these cases at the verge that
we bothered to work with (2.3) instead of exponential mixing.

Remark 2.5. The positivity of the spectral density DV (k) can for some
examples be checked by an explicit calculation, but there are also further
techniques available in order to verify this [2]. The case of DV (0) is par-
ticularly well studied because of its importance for central limit theorems
[13, 7]. For the Gibbs measures of Remark 2.3 and the examples of Remark
2.4, DV (0) = 0 holds if and only if V = v ◦ S − v is a cocycle given by
another quasi-local function v. By suspension, one can deal similarly with
k = π and actually any rational k

2π .

Remark 2.6. The above results transpose if Z is replaced by N, namely
for Ω = ΣN furnished with the left shift and Hλ,ω acts on �2(N). As the
inverse S−1 of the left shift operator is not defined in that case, one needs
to replace in all proofs functions like g ◦ S−n for n > 0 by (U∗)ng, where U∗

is the L2(ΣN,P)-adjoint operator of U : g �→ g ◦ S.
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3 Anomalies at band center and band edge

Let us begin by recalling that the transfer matrix T E
λ,ω ∈ SL(2, R) given in

(2.4) is elliptic for an energy E = 2 cos(k) ∈ (−2, 2) and λ = 0, and it can
hence, to zeroth order in λ, be transformed into a rotation. More explicitly,

MT E
λ,ωM−1 = Rk

(
1 + λ

V (ω)
sin(k)

(
0 0
1 0

))
, (3.1)

where

Rk =
(

cos(k) − sin(k)
sin(k) cos(k)

)
, M =

1√
sin(k)

(
sin(k) 0

− cos(k) 1

)
.

In the next section we will consider the action of the matrix (3.1) on the
real projective line, which is identified with a circle. To lowest order λ0,
this action induced by (3.1) is then a rotation on the circle. For irrational
k
2π , there is a unique invariant measure given by the Lebesgue measure. For
rational k

2π = p
q at least Birkhoff sums of harmonics of order lower than q

vanish.

At the band center k = π
2 , the square of the transfer matrix (3.1) (note

that M = 1 here) is the unit matrix and one can only control the lowest
order harmonic, which turns out not to be sufficient for the calculation of
the Lyapunov exponent. It is then more convenient to consider directly the
square of the transfer matrix

T ελ2

λ,SωT ελ2

λ,ω = −
(

1 − λ2V (ω)V (Sω) ελ2 − λV (Sω)
−ελ2 + λV (ω) 1

)
+ O(λ3)

= − exp
(

λ

(
0 −V (Snω)

V (ω) 0

)

+
λ2

2

(
−V (ω)V (Sω) 2ε

−2ε VωV (Sω)

)
+ O(λ3)

)
,

(3.2)

and to group the coordinates of ω in pairs and consider Ω̃ = Σ̃Z, where
Σ̃ = Σ × Σ, and furnish it with a probability P̃ naturally induced by P.
Again the suspension (Ω̃, P̃) is a shift space with power law mixing. However,
the matrix (3.2) is now in the form of an anomaly as discussed at the end
of this section.

At a band edge, e.g., E = −2 and k = π, the basis change in (3.1) becomes
singular and one has a Krein collision. Nevertheless, the transfer matrix at
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λ = 0 can be transformed into a non-diagonalizable Jordan normal form:

NT −2+ελ4/3

λ,ω N−1 = −
(

1 + λV (ω) − ελ4/3 1
λV (ω) − ελ4/3 1

)
, N =

(
1 0

−1 1

)
.

Let us further conjugate this matrix by Nλ =
(

λ2/3 0
0 1

)
in order to get

again an anomaly (cf. [17] for a motivation of this conjugation):

NλNT −2+ελ(4/3)

λ,ω N−1N−1
λ = − exp

(
λ1/3

(
0 0

V (ω) 0

)
+λ2/3

(
0 1

−ε 0

)
+O(λ)

)
.

(3.3)

Resuming, after adequate basis change and possibly regrouping of terms,
one has to study in each of the three situations (3.1), (3.2) and (3.3) families
of random matrices (Tλ,ω)λ≥0,ω∈Ω ∈ Qr(SL(2, R)) of the following form:

Tλ,ω = ±Rk exp(ληP1,ω + λ2ηP2,ω + O(λ3η)), (3.4)

where η > 0, Pj,ω ∈ Qr(sl(2, R)) for j = 1, 2, E(P1,ω) = 0 and the error term
O(λ3η) is uniformly bounded (i.e., the bound is ω-independent). If k = 0, π,
namely at a band center (3.2) and a band edge (3.3), such a family is said to
have an anomaly of second order [16, 17]. In the following sections, we treat
general families of the form (3.4), and then go back to the explicit cases in
Section 8 in order to complete the proof of Theorem 2.1.

4 Phase shift dynamics

The bijective action ST of a matrix T ∈ SL(2, R) on S1
π = R/πZ = [0, π) is

given by

eST (θ) = ± Teθ

‖Teθ‖
, eθ =

(
cos(θ)
sin(θ)

)
, θ ∈ S1

π, (4.1)

with an adequate choice of the sign. This defines a group action, namely
STT ′ = ST ST ′ . In order to shorten notations, we write Sλ,ω = STλ,ω

where
Tλ,ω is of the form (3.4). One thus has Sλ,ω(θ) = θ + k + O(λ).

Given an initial angle θ0, iterating this dynamics by the left shift on Ω
defines a stochastic process θn(ω), also simply denoted by θn below:

θ0(ω) = θ0, θn+1(ω) = Sλ,Snω(θn(ω)). (4.2)

In order to analyze the dynamics in more detail, let us introduce for
j = 1, 2 the trigonometric polynomials

pj,ω(θ) = �m

(
〈v|Pj,ω|eθ〉

〈v|eθ〉

)
, v =

1√
2

(
1
−ı

)
. (4.3)
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One then has (cf. [17] for details)

Sλ,ω(θ) = θ + k +
2∑

j=1

λjηpj,ω(θ) +
1
2
λ2ηp1,ω∂θp1,ω(θ) + O(λ3η). (4.4)

Due to [11], Lemma 3.1 and a telescoping argument, the Lyapunov expo-
nent γ(λ) characterizing the exponential growth of the products of matrices
in the ergodic family (Tλ,Snω)n≥0 is given by

γ(λ) = lim
N→∞

1
N

Eθ0Eω

N−1∑

n=0

log(‖Tλ,Snωeθn(ω)‖), (4.5)

where Eθ0 denotes an average over the initial condition θ0 w.r.t. an arbitrary
continuous probability measure on S1

π. As our interest is perturbation theory
for γ(λ) w.r.t. λ, we shall need the following expansions for the summands
of (4.5) (e.g., [17] contains the algebraic proof):

Lemma 4.1. Set

αj,ω = 〈v|Pj,ω|v〉, βj,ω = 〈v|Pj,ω|v〉, γj,ω = 〈v||Pj,ω|2|v〉.
Then pj,ω(θ) = �m(αj,ω − βj,ωe2ıθ). Furthermore,

log(‖Tλ,ωeθ‖) = �e

⎛

⎝
2∑

j=1

λjηβj,ωe2ıθ +
λ2η

2

(
|β1,ω|2 + γ1,ωe2ıθ − β2

1,ωe4ıθ
)
⎞

⎠

+ O(λ3η). (4.6)

Formula (4.5) and also its perturbative evaluation based on (4.6) hence
leads us to consider sums of the type

ÎN (G) =
1
N

Eω

N−1∑

n=0

G(Snω, θn(ω)), Î(G) = lim
N→∞

ÎN (G), (4.7)

for functions G on Ω × S1
π of the type G(ω, θ) =

∑
j gj(ω)f(θ). More explic-

itly, the above lemma shows that one only needs functions of the form
g(ω)e2ıθ and g(ω)e4ıθ with g ∈ Qr(C). For a π-periodic function f ∈ C(S1

π),
we also introduce

IN (f) =
1
N

E
N−1∑

n=0

f(θn), I(f) = lim
N→∞

IN (f),

This is a Birkhoff sum of the process θn = θn(ω). In the sum (4.7) there
is, moreover, an explicit dependence of G on ω, hence let us use the term
Birkhoff-like sums for the sums Î(G). The defined limits may not exist but
one can work with lim sup and lim inf and all estimates in the next sections
are valid for both.
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5 From Birkhoff-like sums to Birkhoff sums

The aim of this section is, as indicated in the title, to reduce the perturbative
evaluation of the Birkhoff-like sums (4.7) to the evaluation of Birkhoff sums
by invoking the correlation decay (2.3).

Proposition 5.1. Suppose α > 2 and k = 0. Let g ∈ Qr(C) and f ∈ C2(S1
π).

Define G(ω, θ) = g(ω)f(θ). Then

Î(G) = E(g)I(f) + O(λη(α/1+α)). (5.1)

If E(g) = 0, one has the following convergent expression for the next higher
order contribution:

Î(G) = λη
∞∑

j=1

I(fj) + O(λη(2α/2+α)), fj(θ) = Eω(g(Sjω)p1,ω(θ))f ′(θ).

(5.2)

Remark. For k �= 0 equations (5.1) and (5.2) hold as well if on their r.h.s.
one replaces f(θ) and fj(θ) by f̂(θ) = f(θ + 6λ−η/(1+α)k) and f̂j(θ) = fj(θ +
(6λ−η/(1+α) − j)k) respectively. For the proof, none of the lemmata have to
be changed. Only the final argument following them can easily be modified.

The first lemma needed for the proof is mainly contained in [4]. We provide
a few more details of the proof and use the notations of this work.

Lemma 5.2. One has for m, n ≥ 1

Var[−m−n,n+m](θn) ≤ O(rmλη).

Proof. Using equation (4.2),

|θn+1(ω) − θn+1(ω′)| ≤ |Sλ,Snω(θn(ω)) − Sλ,Snω(θn(ω′))|
+ |Sλ,Snω(θn(ω′)) − Sλ,Snω′(θn(ω′))|,

one deduces

|θn+1(ω) − θn+1(ω′)| ≤
(

sup
ω,θ

|S ′
λ,ω(θ)|

)
|θn(ω) − θn(ω′)|

+ sup
θ

|Sλ,Snω(θ) − Sλ,Snω′(θ)|. (5.3)

Using the estimate
∥∥∥∥

x

‖x‖ − x′

‖x′‖

∥∥∥∥ =
∥∥∥∥
x − x′

‖x‖ + x′
(

‖x′‖ − ‖x‖
‖x‖‖x′‖

)∥∥∥∥ ≤ 2
‖x‖‖x − x′‖
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and the definition of Sλ,ω, it follows

‖eSλ,ω(θ) − eSλ,ω′ (θ)‖ ≤ 2
‖Tλ,ωeθ‖

‖Tλ,ω − Tλ,ω′‖

≤ 2
(

sup
ω

‖T−1
λ,ω‖

)
‖Tλ,ω − Tλ,ω′‖.

This implies

sup
θ

|Sλ,Snω(θ) − Sλ,Snω′(θ)| ≤ C1λ
η‖Qλ,Snω − Qλ,Snω′‖, (5.4)

where C1 is a constant and Tλ,ω = 1 + ληQλ,ω for a matrix-valued function
Qλ,ω that is analytic in λη and uniformly quasi-local for small λ (i.e., the
constant and rate is λ-independent). Furthermore, one has

sup
ω,θ

|S ′
λ,ω(θ)| ≤ 1 + C2λ

η

for λ sufficiently small and some constant C2. Applying this and (5.4) to
(5.3) one gets

VarI(θn+1) ≤ (1 + C2λ
η)VarI(θn) + C1λ

ηVarI(Qλ,Snω).

Iterating this estimate and using VarI(θ0) = 0, it follows that

Var[−m−n,n+m](θn) ≤
n∑

j=1

(1 + C2λ
η)j−1C1λ

ηVar[−m−n,n+m](Qλ,Sn−jω)

≤ C1λ
ηC3r

m+1
∞∑

j=0

(1 + C2λ
η)jrj = O(ληrm)

for λ sufficiently small. �

In order to state the next two lemmata, we introduce the following nota-
tion extending (4.7):

Îm
N (G) =

1
N

E
N−1∑

n=0

G(Sm+nω, θn(ω)), Îm(G) = lim
N→∞

Im
N (G).

Lemma 5.3. Let g1, g2 ∈ Qr(C) and f ∈ C1(S1
π). Furthermore let k ≥ l ≥ 0

and m ≥ 1. Then

Eω(g1(S3m+k+nω)g2(S3m+l+nω)f(θn(ω)))

= E(f(θn))E(g1 ◦ Sk−lg2) + O(m−α), (5.5)

uniformly in k, l and n. This implies, for G(ω, θ) = g1(Skω)g2(Slω)f(θ),

Î3m(G) = E((g1 ◦ Sk−l)g2)I(f) + O(m−α). (5.6)
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Proof. By Lemma 5.2 and because f is Lipshitz-continuous, one has
uniformly in n

∣∣f (θn(ω)) − f
(
θn(π[−m−n,n+m](ω))

)∣∣ ≤ O(ληrm).

As g1 and g2 are quasi-local and therefore bounded, one also deduces uni-
formly in k, n and l

|g1(Sk+n+3mω)g2(Sl+n+3mω) − ((g1 ◦ Sk)(g2 ◦ Sl)) ◦ Sn+3m

◦ π[n+2m,n+k+4m](ω)| ≤ O(rm).

Let us denote the two functions inside the modulus by g and ĝ, respectively.
Similarly denote f ◦ θn ◦ π[−n−m,n+m] by f̂ . Now consider E(g(f ◦ θn)). As
the functions f and g are bounded, it follows from the estimates above and
(2.3) that with errors of order O = O(m−α) ≥ O(rm) ≥ O(ληrm) (for big m
and small λ) in each step we get

E(gf(θn)) = E(ĝf(θn)) + O = E(ĝf̂) + O = E(ĝ)E(f̂) + O
= E(g)E(f(θn)) + O.

This finishes the proof. �

Replacing g2(S3m+n+lω) by g2(Sl+nω) for 0 ≤ l ≤ k, one can modify the
argument by grouping g2 and f together. This gives the following

Lemma 5.4. Let g1, g2 ∈ Qr(C) and let f ∈ C1(S1
π). Then one has for 0 ≤

l ≤ k and m ≥ 1

Eω

(
g1(S3m+n+kω)g2(Sl+nω)f(θn(ω))

)
= E(g1)Eω

(
g2(Sl+n(ω))f(θn(ω))

)

+ O(m−α),

uniformly in l, k and n. This implies for G(ω, θ) = g1(S3m+kω)g2(Slω)f(θ)

Î(G) = E(g1)Î(g2(Slω)f(θ)) + O(m−α), (5.7)

and leads, for f = 1 and l = 0, to

E(g1(S3m+k(ω))g2(ω)) = E(g1)E(g2) + O(m−α). (5.8)
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Proof of Proposition 5.1. By Taylor expansions and p1,Sn+jω(θn+j) =
p1,Sn+jω(θn) + O(jλη), one finds

f(θn+6m) = f(θn) + λη
6m−1∑

j=0

p1,Sn+jω(θn)f ′(θn) + O(m2λ2η).

Therefore multiplying with g ◦ S6m+n and averaging over ω and n gives

Î(G) = Î6m(G) + λη
6m−1∑

j=0

Î(Gj) + O(m2λ2η),

where Gj(ω, θ) = g(S6mω)p1,Sjω(θ)f ′(θ). As p1,ω(θ) is a trigonometric poly-
nomial in θ, Lemma 5.3 can be applied to each summand in order to obtain

Î6m(G) = E(g)I(f) + O(m−α).

Because the functions Gj are uniformly bounded, one has λη
∑6m−1

j=0 Î(Gj) =

O(mλη). Using m = λ−η 1
1+α now proves the first part.

Now let E(g) = 0. Again because p1,ω is a trigonometric polynomial,
Lemma 5.3 gives, for j ≥ 3m and fj as defined in (5.2),

Î(Gj) = I
(
Eω(g(S6m−jω)p1,ω)f ′) + O(m−α) = I(f6m−j) + O(m−α).

Using Lemma 5.4, one obtains for j < 3m

Î(Gj) = E(g)Îj(p1,ωf ′(θ)) + O(m−α) = O(m−α).

All together, one has

Î(G) = λη
6m−1∑

j=3m

I(f6m−j) + O(m2λ2η, ληm1−α, m−α).

Because (5.8) gives
∞∑

j=3m+1

|fj(θ)| =
∞∑

j=3m+1

|Eω(g(Sjω)p1,ω(θ))f ′(θ)| ≤ C

∞∑

j=3m+1

j−α

= O(m1−α),

one therefore deduces

Î(G) = λη
∞∑

j=1

I(fj) + O(m2λ2η, ληm1−α, m−α).

Finally choosing m = λ− 2η
α+2 concludes the proof. �
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6 Oscillatory sums away from band center and edges

As already explained in Section 4, for the calculation of the Lyapunov
exponent one needs to evaluate the Birkhoff-like sums of functions of the
type G(ω, θ) = g(ω)e2ıjθ, j = 1, 2. This is done in Proposition 6.1 below for
energies away from the band center and band edge. By applying it to the
terms appearing when (4.6) is replaced in (4.5), this result allows to complete
the proof of formula (2.5). As the straight-forward algebraic calculations are
carried out in detail e.g., in [4, 11] and we present a similar calculation for
the band edge in Section 8, we skip the details.

Proposition 6.1. Let α > 2. Suppose that the lowest order rotation phase
k in the dynamics (4.4) satisfies d(k) = dist

(
k mod π

2 , 0
)

> 0. Consider
Gj(ω, θ) = g(ω)e2ıjθ with j = 1, 2 and g ∈ Qr(R). Then

Î(Gj) = O
(

λη(α/1+α)

d(k)

)
.

If, moreover, E(g) = 0,

Î(G1) = λη
∞∑

j=1

Eω

(
g(Sjω)β1,ω

)
+ O

(
λη(2α/2+α)

d(k)

)
. (6.1)

Proof. ([4, 11, 14]). The dynamics and the definition of the Birkhoff sums
imply IN (e2ıjθ) = e2ıjkIN (e2ıjθ) + O(N−1, λη). This implies I(e2ıjθ) =
O(d(k)−1λη). Therefore the modifications of (5.1) and (5.2) in Proposition
5.1 mentioned in the remark are irrelevant. The bound (5.1) thus implies the
first statement. The formula (6.1) now follows after a short calculation from
(5.2), the identity p1,ω(θ) = �m(α1,ω − β1,ωe2ıθ) and the first statement. �

7 Fokker–Planck operator for drift-diffusion

We now focus on energies for which the rotation angle k in (4.4) satisfies k
mod π

2 = 0 so that the argument of Proposition 6.1 does not apply in order
to calculate the Birkhoff sum I(e2ıθ). For this purpose, let us introduce the
bilinear form

〈g1, g2〉Ω = Eω(g1(ω)g2(ω)) + 2
∞∑

m=1

Eω(g1(ω)g2(Snω)), g1, g2 ∈ Q0
r(R),

which by (5.8) is well-defined. Note that DV (0) = 〈V, V 〉Ω. Let us use the
notation pj(ω, θ) = pj,ω(θ) and p′

j = ∂θpj . Then expressions like 〈p1, p
′
1〉Ω are

functions of θ on S1
π.
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Proposition 7.1. Let the family Tλ,ω be as in (3.4) with k = 0, and F ∈
C3(S1

π). For f ∈ C1(S1
π) given by

f = 〈p1, p1〉ΩF ′′ +
(
〈p1, p

′
1〉Ω + 2E(p2,ω)

)
F ′, (7.1)

one then has for α > 2

I(f) = O(λη(α−2/α+2)).

Proof. By a Taylor expansion, one has with errors of order O = O(λ3η)

F (Sλ,ω(θ)) = F (θ) +
2∑

k=1

λkηpk,ω(θ)F ′(θ)

+ λ2η 1
2
[F ′(θ)p1,ω(θ)p′

1,ω(θ) + p2
1,ω(θ)F ′′(θ)] + O.

We now use this for θ = θn and average over n. Because p1,ω is centered and
a polynomial, one can apply equation (5.2) of Proposition 5.1 to the term
with power λη and (5.1) to the other terms. This gives

I(F ) = I(F ) +
1
2
λ2η(I(〈p1, p

′
1〉ΩF ′) + I(〈p1, p1〉ΩF ′′)

+ 2I(Eω(p2,ω)F ′)) + O

with errors of order O = O(λη(3α+2/α+2)). As the functional I is linear,
resolving this equation for I(f) gives the desired result. �

This proposition shows that we can control error terms on Brikhoff sums
for a function f , if f is in the image of the operator L on functions on S1

π

given by

L = (p∂θ + q)∂θ, p = 〈p1, p1〉Ω, q = 〈p1, p
′
1〉Ω + 2E(p2,ω). (7.2)

As one needs to calculate Birkhoff sums I(f) perturbatively, we are looking
for some class of functions where limλ→0 I(f) exists. For f in the image
under L of C3(S1

π), this limit is 0. Thus, if this map is given by the scalar
product with some L2-function ρ, one has ρ ∈ Ran(L)⊥ = Ker(L∗), where
the formal adjoint is given by

L∗ = ∂θ(∂θp − q).

L∗ is a forward Kolmogorov or Fokker–Planck operator describing the drift-
diffusion dynamics of the process θn on S1

π, and L is the associated backward
Kolmogorov operator [15]. It will be shown that in the situations considered
here, Ker(L∗) is spanned by a smooth, L1-normalized function ρ. Further-
more, the following theorem shows that f ∈ Ker(L∗)⊥ ∩ C2(S1

π) turns out
to be sufficient for finding a solution F ∈ C3(S1

π) of the differential equation
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(7.1) so that Proposition 7.1 actually applies. Even though contained in [17],
let us give the proof for the sake of completeness.

Theorem 7.2. Suppose that p(θ̂) = 0 for at most one angle θ̂ ∈ S1
π.

Furthermore suppose q(θ̂) �= 0 in that case. Then the Fokker–Planck oper-
ator L∗ has a unique groundstate ρ ∈ C∞(S1

π), which is non-negative and
normalized. Furthermore, for f ∈ C2(S1

π), one has

I(f) =
∫ π

0
dθρ(θ)f(θ) + O(λη(α−2/α+2)).

Proof. Integrating the equation L∗ρ = 0 once gives

(p∂θ + (∂θp) − q)ρ = C, (7.3)

where C is some real constant. As I(f + c) = c + I(f) for c = 〈ρ, f〉, we
may assume

∫ π
0 dθρ(θ)f(θ) = 0 once we found the normalized solution of

(7.3). Proposition 7.1 then gives the bound on I(f) if one finds a solution
G ∈ C2(S1

π) of

(p∂θ + q)G = f,

∫ π

0
dθG(θ) = 0. (7.4)

First let us consider the case p > 0. Then there is no singularity and L∗ is
elliptic. The groundstate ρ and the function G can be calculated. For some
θ̃ set

w(θ) =
∫ θ

θ̃
dξ

q(ξ)
p(ξ)

, W (θ) =
∫ θ

θ̃
dξ

ew(ξ)

p(ξ)
f(ξ), W̃ (θ) =

∫ θ

θ̃
dξe−w(ξ).

(7.5)
Then

ρ = C1
ew

p
(C2W̃ + 1), G = e−w(W + C3), (7.6)

where C2 is fixed by the condition that ρ is π-periodic and C1 > 0 is a
normalization constant. This fixes C = C1C2 in (7.3). G is a solution of the
first equation of (7.4) and for C �= 0 the constant C3 is fixed by the condition
that G is π-periodic. Furthermore one has

0 =
∫

ρf =
∫

ρ(p∂θ + q)G = −
∫

G(∂θp − q)ρ = −C

∫
G(θ). (7.7)

Thus G is a solution of (7.4). If C = 0 ⇔ C2 = 0, then w is π-periodic as
well as W which follows from

∫
ρf = 0. Therefore G is π-periodic and C3 is

chosen such that the integral in (7.4) vanishes.

Now let p(θ̂) = 0 for exactly one θ̂ ∈ S1
π and for sake of concreteness let

q(θ̂) > 0 which implies q̃(θ̂) > 0. Then choose θ̃ ∈ (θ̂, θ̂ + π) in the first equa-
tion of (7.5), θ̃ = θ̂ in the second one and θ̃ = θ̂ + π in the third one. As
limθ↓θ̂ ew(θ) = 0 and limθ↑θ̂+π ew(θ) = ∞ in this case, w, W and W̃ are well
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defined for θ ∈ (θ̂, θ̂ + π). Using de l’Hospital’s rule, one can prove by induc-
tion (see [17] for details) that

ρ = C
ew

p
W̃ , G = e−wW

can both be continued to a smooth (even at θ̂) and π-periodic function.
C > 0 is again a normalization constant and hence equation (7.7) shows
that G solves (7.4). �

Before applying this result in order to prove Theorem 2.1, let us present
another derivation of the equation L∗ρ = 0, albeit a formal one, which
shows that ρ is the lowest order approximation for the asymptotic invariant
measure of the process θn. Expanding the function SN

λ,ω = Sλ,SN−1ω ◦ · · · ◦
Sλ,Sω ◦ Sλ,ω shows that the coefficients of

SN
λ,ω(θ) = θ + ληp̂N

ω (θ) +
1
2
λ2η q̂N

ω (θ) + O(λ3η)

are

p̂N
ω =

N−1∑

n=0

p1,Snω, q̂N
ω =

N−1∑

n=0

⎛

⎝p1,Snω +
n−1∑

j=0

p1,Sjω

⎞

⎠ p′
1,Snω + 2

N−1∑

n=0

p2,Snω.

An invariant measure νλ,N for N steps of the dynamics θn on S1
π satisfies

∫ π

0
νλ,N (dθ)f(θ) = E

∫ π

0
νλ,N (dθ)f(SN

λ,SN−1ω(θ)), f ∈ C(S1
π). (7.8)

Supposing νλ,N (dθ) = ρλ,N (θ)dθ = ρN (θ)dθ + o(λ0), (7.8) leads to

L∗
NρN = 0, L∗

N = ∂θ(∂θE((p̂N
1,ω)2) − E(q̂N

ω )).

Using the stationarity of P and the definitions of p̂N
ω and q̂N

ω , one deduces

lim
N→∞

1
N

E((p̂N
1,ω)2) = p, lim

N→∞

1
N

E(q̂N
ω ) = q,

where the convergences are uniform in θ. This shows that 1
N L∗

N → L∗ weakly
for N → ∞.

8 Application to the band center and band edge

This section contains the proof of Theorem 2.1. Let us first consider item
(i), that is the band center. As described in Section 3 we have to work
with the probability space Ω̃ = (Σ × Σ)Z which is isomorphic to Ω by the
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pairing isomorphism P. Using this isomorphism and the potential V , which
is defined on Ω, let us define the two random variables on Ω̃

vω̃ = V (P−1(ω̃)) = V (ω), uω̃ = V (SP−1(ω̃)) = V (Sω).

Then according to equation (3.2) the family of matrices we have to consider
is given by

Tλ,ω̃ = − exp
[
λ

(
0 −uω̃

vω̃ 0

)
+

λ2

2

(
−uω̃vω̃ 2ε
−2ε uω̃vω̃

)
+ O(λ3)

]
.

In this situation one has α1,ω̃ = ı(vω̃ + uω̃)/2, β1,ω̃ = ı(uω̃ − vω̃)/2, α2,ω̃ =
−ıε and β2,ω̃ = −1

2uω̃vω̃. Using Lemma 4.1 and 〈v − u, v − u〉Ω̃ = 2DV (π)
and 〈v + u, v + u〉Ω̃ = 2DV (0), one obtains that the polynomials (7.2) are
explicitly given by

p(θ) =
1
2
DV (0) +

1
2
DV (π) cos2(2θ), q(θ) = −1

2
DV (π) sin(4θ) − ε.

By assumption on V , one has p > 0 uniformly on S1
π. By Theorem 7.2 there

is thus a smooth, positive and L1-normalized groundstate ρε for the operator
L∗ (which can readily be written out). Furthermore, one checks γ1,ω̃ = (v2

ω̃ −
u2

ω̃)/2. Then equation (4.6), Theorem 4.2 and Proposition 5.1 combined with
some algebra leads to (2.6) for γλ(ελ2) = 1

2γ(λ).

Now let us prove Theorem 2.1(ii). Hence let Tλ,ω = NλNT −2+ελ2

λ,ω N−1N−1
λ

be the anomaly given in (3.3). As α1,ω = ıV (ω)/2, β1,ω = −ıV (ω)/2, α2,ω =
−ı(ε + 1)/2 and β2,ω = ı(ε − 1)/2, one deduces, using 〈V, V 〉Ω = DV (0),

p(θ) = DV (0) cos4(θ), q(θ) = −ε − 1 + (1 − ε) cos(2θ)

− 2DV (0) cos3(θ) sin(θ).

By assumption on V one has p(θ) > 0 for θ �∈ π
2 , and as q(π

2 ) = −2 �= 0,
there is a unique groundstate ρε ∈ C∞(S1

π) by Theorem 7.2. Explicitly, one
obtains

ρε(θ) = C

∫ θ

−(π/2)
dξ

cos2(ξ)
cos6(θ)

× exp
(

2
3DV (0)

(tan3(ξ) − tan3(θ) + 3ε tan(ξ) − 3ε tan(θ))
)

, (8.1)

where C is some normalization constant. Furthermore, one checks γ1,ω =
V (ω)2/2 and hence (4.6), Proposition 5.1 and Theorem 7.2 imply (2.7).
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9 Bound on the quantum dynamics

As already said above, the proof of Theorem 2.2 follows exactly the proof
of [10], Theorem 1 given in Sections 3 and 4 therein, except that the proof
of [10], Lemma 4 has to be refined in order to deal with strong mixing
(2.3) instead of independent potential values V (Snω). The conclusion of
the following lemma is hence exactly the same as of [10], Lemma 4 and we
thereby consider the proof of Theorem 2.2 to be complete.

Let us set U = {E ∈ C|E0 ≤ �e(E) ≤ E1, |�m(E)| ≤ 1}. Furthermore intro-
duce the transfer matrices over several sites:

T E
λ,ω(k, m) =

k−1∏

n=m

T E
λ,Snω, k > m,

Furthermore, T E
λ,ω(k, m) = (T E

λ,ω(m, k))−1 for k < m and T E
λ,ω(m, m) = 1.

Lemma 9.1. Let E ∈ U and N ∈ N. Then there is a constant Ĉ such that
the set

Ω̂N (E) =
{

ω ∈ Ω
∣∣∣∣ max
0≤n≤N

‖T E
λ,ω(n, 1)‖2 ≥ eĈN1/2

}

satisfies

P(Ω̂N (E)) ≥ 1 − e−ĈN1/2
.

Proof. For sake of notational simplicity, we will drop the index λ on the
transfer matrices T E

λ,ω. Let us fix E ∈ U and N ∈ N and then split N into
N
N3

pieces of length N3 = N0 + N1 + 2N2. For j = 0, . . . , N
N3

, we consider the
following events:

Ω0
j =

{
ω ∈ Ω

∣∣∣‖T E
ω (jN3 + N0, jN3)‖ ≤ e1/2γ0N0

}
,

Ω1
j =

{
ω ∈ Ω

∣∣∣‖T E
π[jN3−N2,N3j+N0+N2](ω)(jN3 + N0, jN3)‖ ≤ e2/3γ0N0

}
,

Ω2
j =

{
ω ∈ Ω

∣∣∣‖T E
ω (jN3 + N0, jN3)‖ ≤ e3/4γ0N0

}
.

First we note that uniformly in ω and for some γ1 > 0

‖T E
ω (n, m)‖ ≤ eγ1|n−m|.

Therefore the hypothesis (2.11) implies as in the proof of [10], Lemma 3
that, for E ∈ U and N0 ∈ N, we have

P(Ω2
j ) ≤ 1 − p0 < 1, p0 > 0. (9.1)
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To shorten notations let us define πj = π[jN3−N2,jN3+N0+N2] and T E
ω,j = T E

ω

(N3j + N0, N3j). Using the quasi-locality of g(ω) = T E
ω we get

∥∥∥T E
ω,j − T E

πj(ω),j

∥∥∥

=

∥∥∥∥∥∥

jN3+N0−1∑

l=jN3

⎛

⎝
l−1∏

k=jN3

T E
Skω

⎞

⎠
[
T E

Slω − T E
Slπj(ω)

] (
jN3+N0−1∏

k=l+1

T E
Skπj(ω)

)∥∥∥∥∥∥

≤ N0

(
sup

ω
(T E

ω )
)N0−1

CrN2 ,

where C = C(g) as in (2.1). Now choosing N2 = cN0 for an adequate con-
stant c, it follows that

‖T E
ω,j − T E

πj(ω),j‖ ≤ e1/2γoN0 .

Therefore for ω ∈ Ω0
j

‖T E
πj(ω),j‖ ≤ ‖T E

ω,j‖ + e1/2γ0N0 ≤ 2e1/2γ0N0 ≤ e2/3γ0N0

for N0 large enough, implying Ω0
j ⊂ Ω1

j . By a similar calculation, one obtains
the second inclusion of

Ω0
j ⊂ Ω1

j ⊂ Ω2
j . (9.2)

By (9.1) this implies

P(Ω1
j ) ≤ P(Ω2

j ) ≤ 1 − p0.

Now clearly Ω1
j is πj = π[jN3−N2,jN3+N0+N2)]-measurable. Therefore the

strong mixing condition (2.2) implies that P(Ω1
0 ∩ Ω1

1) ≤ P(Ω1
0)P(Ω1

1)(1 +
CN−α

1 ) ≤ (1 − p0)2(1 + CN−α
1 ). At the next step, one obtains P(Ω1

0 ∩ Ω1
1 ∩

Ω1
2) ≤ (1 − p0)3(1 + CN−α

1 )2. Iteration and (9.2) therefore give

P

⎛

⎝
⋂

j=0,...,N/N3

Ω0
j

⎞

⎠ ≤ P

⎛

⎝
⋂

j=0,...,N/N3

Ω1
j

⎞

⎠ ≤
(
(1 − p0)(1 + CN−α

1 )
)N/N3 .

Now let us choose N1 sufficiently large such that 1 − p1 = (1 − p0)
(1 + CN−α

1 ) < 1. Then

P
({

ω ∈ Ω
∣∣∣∣ max
0≤j≤N/N3

‖T E
ω (jN3 + N0, jN3)‖2 ≤ eγ0N0

})
≤ (1 − p1)N/N3 .

Furthermore T E
ω (jN3 + N0, jN3) = T E

ω (jN3 + N0, 1)T E
ω (jN3, 1)−1. As A =

BC implies either ‖B‖ ≥ ‖A‖1/2 or ‖C‖ ≥ ‖A‖1/2 for arbitrary matrices,
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and ‖A−1‖ = ‖A‖ for A ∈ SL(2, C), it therefore follows that

P
({

ω ∈ Ω
∣∣∣∣ max
0≤j≤N/N3

max
{∥∥T E

ω (jN3, 1)
∥∥2

,
∥∥T E

ω (jN3 + N0, 1)
∥∥2

}

≥ e1/2γ0N0
})

is greater or equal than 1 − (1 − p1)N/N3 . Choosing N0 = cN1/2 with ade-
quate c concludes the proof. �
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