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Abstract

Placing a set of branes at a Calabi–Yau singularity leads to an N = 1
quiver gauge theory. We analyze F -term deformations of such gauge the-
ories. A generic deformation can be obtained by making the Calabi–Yau
non-commutative. We discuss non-commutative generalizations of well-
known singularities such as the Del Pezzo singularities and the conifold.

We also introduce new techniques for deriving superpotentials, based
on quivers with ghosts and a notion of generalized Seiberg duality. The
curious gauge structure of quivers with ghosts is most naturally described
using the BV formalism. Finally we suggest a new approach to Seiberg
duality by adding fields and ghost-fields whose effects cancel each other.

1 Parameter space of quiver gauge theories

One of the most reliable ways to engineer a gauge theory from string theory is
by placing a set of D-branes in some background geometry. If we require the
gauge theory to be four-dimensional with N = 1 supersymmetry, then up to
dualities one typically has to look at D-branes filling four flat dimensions and
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wrapped on (possibly collapsed) cycles in a Calabi–Yau threefold. Embed-
ding a gauge theory into string theory is relevant for at least two of the main
threads of research: it generates examples of the ADS/CFT correspondence,
and it is a first step towards bottom–up string phenomenology. Apart from
this, the gauge theory is closely tied to the Calabi–Yau geometry, and there
are amusing relations with modern areas of mathematics.

In this article we will focus on the gauge theory one obtains from a set
of N D3-branes located at a Calabi–Yau threefold singularity in type IIb
string theory. The theories one obtains this way are of quiver type, and for
N > 1 are believed to flow to interesting interacting conformal field theories.
For applications to either ADS/CFT or phenomenology, one would like to
understand the possible deformations of the gauge theory.

By ADS/CFT intuition it is tempting to believe that small deformations
of the gauge theory can still be realized after embedding in string theory.
This is particularly clear when the theory is conformal and the deformations
are marginal. Nevertheless, if one examines the quiver gauge theory, the
number of deformations is larger than the number of conventional geometric
deformations of the local Calabi–Yau geometry. So the puzzle is how to
identify the full parameter space of the quiver in string theory.

We will examine a number of well-known Calabi–Yau singularities and
account for all the marginal deformations that can be understood as F -term
data (i.e., superpotential deformations). Some of these deformations can be
understood as conventional complex structure deformations of the Calabi–
Yau, and were previously investigated by the author in [2]. Here we find that
all the remaining deformations of these quiver theories can be understood
as non-commutative deformations of the Calabi–Yau.1 We emphasize that
the four-dimensional gauge theory living on the branes is a conventional
commutative gauge theory.

As in our previous work, in order to uncover the map between the gauge
theory parameter space and the Calabi–Yau parameter space, we will need to
make use of the general technique of exceptional collections. Other approaches
that the author is aware of are not flexible enough to deal with deformations.
Another complication is that in the presence of non-commutative deforma-
tions, the moduli space of the quiver theory for a single D3-brane is not the
Calabi–Yau itself.

Another topic we address here is the effect of certain braiding opera-
tions on the quiver diagram. It is known [4] that a subset of such operations

1In particular we find the missing deformations of [3].
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can be understood as Seiberg duality on the gauge theory. However there are
more general operations (generalized Seiberg dualities) which do not have an
immediate gauge theory interpretation. Building on some unpublished work
with Cachazo, Katz and Vafa [5] we discuss how to deal with the resulting
quivers. The more general quivers one obtains this way can be thought of
as quivers with ghosts, and this leads to a consistent way of manipulating
them. Our point of view here is not that these manipulations can be carried
out in field theory — indeed we do not know how to associate a sensible
gauge theory to a quiver with ghosts — however, it is that these manipu-
lations make sense at the level of F -terms and can be used as a technique
for computing topological data such as superpotentials in physical quiver
gauge theories.

Relations between quivers and non-commutative Calabi–Yau spaces have
previously been pursued in the series of papers [6–9]. Other aspects
of exceptional collections have recently been explored in [10–12]. A word
on notation: when we write superpotentials, the overall trace will
be implicit.

2 Large volume construction of quiver theories

2.1 Topological amplitudes

We are interested in the low energy gauge theory for a set of branes placed
at a Calabi–Yau singularity in type IIb string theory. It is generally believed
that this gauge theory can be described in terms of a basis of “fractional
branes” which depend on the singularity. There is no general proof of this
statement because the conformal field theory is typically not under complete
control, but many cross-checks have been made and the fractional brane
picture holds up rather well.

So we assume that there is a set of boundary states {F1, . . . , Fn}
“localized” at the singularity, with the following properties:

• the RR charge vectors (which describe the coupling to RR fields) form
a basis for the homology lattice of vanishing cycles;

• they all break the same half of the eight supercharges, i.e., they are
mutually BPS;

• they are “irreducible” and other possible branes can be expressed as
bound states of the fractional branes.

For a discussion of the last item, see [13].
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Suppose then we want to describe the world volume theory of some
set of branes. For convenience we will take the case of a D3-brane, which
corresponds to some boundary state Fp on the Calabi–Yau, and let us denote
the RR charge vector by “ch.” Then we can first decompose Fp into the Fi

at the level of homology:

ch(Fp) =
n∑

i=1

ni ch(Fi). (2.1)

The massless fields arising from open string modes are easy to recognize.
From open strings stretching between the |ni| fractional branes of type i one
expects a vector multiplet in the adjoint of U(|ni|). Also, for each “inter-
section” of two fractional branes one expects a chiral multiplet. By “inter-
section” we mean the intersection of the vanishing cycles associated with a
fractional brane according to its charge vector. Even in our case where we
only have even cycles, such intersections should be counted with a sign (as
is also required in order to be consistent with mirror symmetry). Depending
on this sign, one gets a chiral multiplet in the anti-fundamental of Fi and
the fundamental of Fj or reversely.

This minimal amount of data determines the massless field content and
therefore a large part of the low energy theory. This data, as is well known,
can be summarized in a quiver diagram. To fix the parameters in this low
energy gauge theory requires one to compute a finite set of string ampli-
tudes and compare with the corresponding amplitudes of the effective gauge
theory. Thus our main concern is to find a good basis of fractional branes.
Unfortunately except for the case of orbifolds of flat space (i.e., free field
theory) one is unable to do that.

There is a trick however if we restrict ourself to a topological subsec-
tor of the full open string theory. In our setting this is the (open string)
B-model. The matter part of a string vertex operator is composed of a
four-dimensional part and an internal six-dimensional part that lives on the
Calabi–Yau. A certain class of string amplitudes can be computed in the
topologically twisted theory. From the gauge theory point of view, this is
the set of amplitudes that can be calculated just from the F -terms without
using any information from the D-terms.

The beauty of this class of amplitudes is that they do not depend on the
(complexified) Kähler parameters of the Calabi–Yau, since those would only
affect the D-terms. From the point of view of the topological BRST oper-
ator, Kähler deformations are exact. Therefore we can change the Kähler
parameters and go to a point in moduli space where we do know the con-
formal field theory. Such a point is given by the large volume limit, where
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we can use the non-linear sigma model. In this limit, one can describe the
fractional branes as certain exceptional collections of sheaves localized on
the collapsing cycles.2

In the nlσm description, the massless open string modes are counted by
certain cohomology groups, the global Ext groups. Thus, given two sheaves
Fi, Fj localized on collapsing cycles, we should first extend the sheaves to
i∗Fi, i∗Fj on the Calabi–Yau threefold (where i is the embedding of the
collapsing cycles into the Calabi–Yau threefold), and then compute3

Extp(i∗Fi, i∗Fj). (2.2)

The grade p is called the ghost number of a topological vertex operator (it is
however in the matter sector in the full ten-dimensional string theory, which
uses a different ghost number symmetry).

As argued in [13], the correct large volume description of fractional branes
is typically not just a set of sheaves. We should also do some spectral flow on
the boundary conditions, using the U(1) generator of the worldsheet N = 2
algebra. Unless one takes this into account, one finds that the ghost number
of a vertex operator (which is just the charge under this U(1)) may not
have the same value in the large volume limit. In order to account for this,
one embeds the sheaves in the derived category, where the spectral flow we
need to repair the ghost number is interpreted as a shift in the position in
the complex. Changing the vertex operators by spectral flow is strictly not
needed in that the correlation functions in our context are only changed by
a trivial factor, but it is nevertheless useful to keep track of it. Spectral flow
will be indicated with the conventional derived category notation, e.g., F [k]
denotes F with k units of spectral flow applied. The ghost number of

V ∈ Extp(E[q], F [r]) (2.3)

is Ngh = p − q + r. In the following we will assume that the appropriate
shifts have been made in (2.2).

It is a well-known fact that the usual physical vertex operators sit at
ghost number one, but in principle one can have “ghosts”, i.e., BRST coho-
mology classes at ghost numbers different from one. The open string field
theory for the B-model is of Chern–Simons type [14], and the appearance
of many ghosts is quite typical if one quantizes such a theory. As we review
momentarily, operators at ghost number zero are associated with symmetries

2Actually it is clear that this needs to be slightly generalized, for instance condensing
some fields in a quiver obtained from a three-block exceptional collection does not give
rise to another exceptional collection. We will omit such subtleties from the discussion.

3We will often drop the push-forward symbol “i∗” in the remainder of this section, to
simplify notation.
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(boundary ground ring), operators at ghost number minus one with “ghosts
for ghosts” (symmetries among symmetries), etc.

We could also get vertex operators with ghost number p > 1. These are
called the anti-fields. They have the interpretation of obstructions to the
deformations, obstructions for the obstructions and so on. There is a pairing
between vertex operators of ghost number p and ghost number 3 − p given by
the disk two-point function (which evaluates to the Serre duality pairing).
Given a vertex operator of ghost number p > 1, it is more natural for us
to consider its dual under this duality pairing. For instance the dual of a
ghost number p = 2 operator has ghost number p = 1, and thus it can be
interpreted as a deformation. In our context this corresponds to moving the
brane away from the collapsing cycle in the non-compact direction. After
GSO projection, an operator of ghost number p = 1 gives rise to a chiral
field in four dimensions, and its dual operator of ghost number p = 2 gives
rise to the conjugate anti-chiral field. This is also familiar from heterotic
model building on a Calabi–Yau [1].

Given a set of Vi vertex operators of ghost number one, with Vi ∈ Ext1(Fi,
Fi+1) and assuming Fn+1 = F1, we can define a disk amplitude as

〈
V1(∞)V2(0)V3(1)

∫ y4

1
V4

∫ y5

y4

V5 · · ·
∫ ∞

yn−1

Vn

〉
. (2.4)

In the low energy gauge theory we get the analogous tree level amplitude
to be proportional to a certain coefficient in the superpotential, namely the
coefficient of

Tr
∫

d2θΦ1Φ2Φ3 · · ·Φn. (2.5)

(since we cannot use the Kähler terms and since there is no mass term in
the superpotential, it is impossible to build an n-point Feynman diagram
by contracting lower-point vertices). Thus the amplitudes (2.4) compute
coefficients in the superpotential.

2.2 Ghost number zero operators

Now let us try to understand the role of vertex operators of ghost number
different from one. Suppose again that Vi ∈ Ext1(Fi, Fi+1) and consider O ∈
Ext0(F4, F1). Consider the amplitude

〈V1(∞)V2(0)V3(1)O(y)〉 . (2.6)

Note that since O(y) has ghost number zero, it should not be integrated
over the boundary. Now the amplitude is independent of the position of the
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Figure 1: Ghost number zero operators can be used to relate disk
amplitudes.

ghost number zero operator (since ∂O = {Q, b−1O}). So we can take the
limit y → 1, in which case we get

lim
y→1

V3(1)O(y) = −V ′
3(1) ∈ Ext1(F3, F1). (2.7)

For chiral primaries there are no poles in the OPEs. Alternatively we can
take the limit y → ∞, in which case we have

lim
y→∞

O(y)V1(∞) = V ′
1(∞) ∈ Ext1(F4, F1). (2.8)

Therefore we find
〈
V1(∞)V2(0)V ′

3(1)
〉

+
〈
V ′

1(∞)V2(0)V3(1)
〉

= 0. (2.9)

In other words, the ghost number zero operators generate relations among
the superpotential couplings. Such symmetries in turn guarantee the exis-
tence of flat directions. Namely the superpotential terms Tr(Φ1Φ2Φ′

3
+Φ′

1Φ2Φ3) are invariant under

δΦ′
1 = ΛΦ1, δΦ′

3 = −Φ3Λ. (2.10)

An expectation value for Λ (which we may think of as the four-dimensional
partner of O) has no interpretation in the D-brane system, it is purely a
redundancy of the description. Therefore we should mod out by such sym-
metries. If F1 and F4 correspond to identical boundary conditions, this is
easy to understand; in this case the transformations (2.10) just correspond
to the non-abelian gauge transformations that arise when you have a stack of
identical branes on top of each other. However we will see examples in which
F1 �= F4, and there is a generator in Ext0(F4, F1) but not in Ext0(F1, F4).
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In that case the ghost number zero operators do not generate a reductive
Lie algebra, i.e., a sum of simple and semi-simple algebras, but a parabolic
algebra, and it seems impossible to gauge it and preserve CPT.

Even though we seem to be unable to associate a physical quiver when
we have parabolic symmetries, it will be convenient to associate quiver dia-
grams to such exceptional collections and manipulate them. Any such col-
lection should contain all the information about F -terms. For each parabolic
generator we can introduce a ghost field Λ which is a chiral field except with
the opposite statistics. Because of the unusual statistics the corresponding
arrow in the quiver diagram should be reversed. Similar remarks apply to
operators of ghost number p < 0. These correspond to ghosts-for-ghosts, etc.
Of course cohomology classes of topological ghost number p do not neces-
sarily correspond to cohomology classes of physical ghost number p, since
the ghost number grading in the ten-dimensional string theory is different.
For instance cohomology classes of ghost number zero that live in an adjoint
representation give rise to physical vector multiplets. Our proposal here is
to treat cohomology classes that live in a bifundamental representation as
having the same physical and topological ghost number. We will see this is
a useful perspective, at least at the level of F -terms.

It has been suggested in the literature that bifundamentals obtained from
Ext0 cohomology classes should correspond to tachyons. This is incompatible
with the point of view taken here, since only fields of the right ghost number
can get expectation values. In particular we wish to avoid giving expectation
values to gauge redundancies.

2.3 Review of Seiberg duality and mutations

We have assumed the existence of a set of boundary states {F1, . . . , Fn}
which gets mapped to an exceptional collection in the large volume limit.
However for any given singularity there are infinitely many such collections.
This is actually not completely surprising, because so far we have only really
defined the complex structure of the local singularity, and all collections
contain the same holomorphic information. The existence of many collec-
tions for a given singularity reflects the fact that there are many points
in the Kähler moduli space where the cycles are collapsed to zero size.
If we interpolate between such points, the basis of vanishing cycles may
undergo a Picard–Lefschetz monodromy. The collection {F1, . . . , Fn} comes
with an ordering, and the effect of the monodromy is that a sheaf may
be moved to the left or to the right in the collection. When a sheaf Fi is
moved to the left or to the right, we end up with a new exceptional collection
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Figure 2: A braiding operation on the collection of fractional branes. These
pictures can be interpreted in terms of D6 branes wrapped on Lagrangian
cycles in the mirror [15].

{F1, . . . , LFi−1Fi, Fi−1, Fi+1, . . . , Fn} or {F1, . . . , Fi−1, Fi+1, RFi+1Fi, . . . , Fn},
as indicated in figure 2.

The charge vector of the new sheaf is given by the characteristic Picard–
Lefschetz formula:

ch(Fi) → ch(LFi−1Fi) = ±[ch(Fi) − χ(Fi, Fi−1)ch(Fi−1)]. (2.11)

Such a monodromy arises around a locus in the moduli space where the cen-
tral charge of Fi−1 (i.e., its period) goes to zero. An action on sheaves which
has the effect of (2.11) on the charge vectors is called a mutation or a braid-
ing operation. A mutation turns one exceptional collection into another, and
(up to some “trivial” operations like tensoring the whole collection with a
line bundle) for the cases we consider all exceptional collections may be
related through a sequence of mutations. However a Picard–Lefschetz mon-
odromy is typically a composition of a few mutations; not every individual
mutation may be realized as a monodromy in the Kähler moduli space.

Once we specify both the complex and the Kähler structure of the local
geometry the collection should be uniquely specified. The idea is that an
exceptional collection becomes valid if the corresponding fractional branes
become mutually supersymmetric, i.e., if the periods of the fractional branes
(which depend on the Kähler moduli) line up in the complex plane and have
the same phase. Evidence for this picture has been given in [16, 17]. Now
suppose further that we take a path in moduli space so that the absolute
value of a period of one of the fractional branes goes to zero. Then we expect
to get a new collection related by a Picard–Lefschetz monodromy and hence
a different quiver gauge theory. The gauge theory interpretation of this is
that the gauge coupling associated with the corresponding node blows up,
and we get a new quiver related by Seiberg duality to the old one.

Now we can see why only a subset of mutations appears to be realized
through monodromies in the Kähler moduli space. Suppose we want to do a
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Figure 3: (a) Organizing the nodes before appkying a Seiberg duality. (b)
The quarks Q are replaced by the dual quarks q and the mesons M = QQ̃,
and the gauge group is changed from SU(Nc) to SU(Nf − Nc).

Seiberg duality on node j (see figure 3). Let us organize the quiver so that all
the incoming arrows are all to the left of j, and all the outgoing arrows are
to the right of j. Then one can show [4] that a Seiberg duality corresponds to
a mutation by j of either (1) all the nodes to the left, or (2) all the nodes on
the right.4 If we decide to perform a mutation on only a few of the nodes on
the left or on the right, then we end up with a quiver with ghosts, for which
there does not seem to be a physical interpretation. Nevertheless as we have
explained it is possible at the level of F -terms to make sense out of quivers
with ghosts, and all such quivers are related through mutations which are not
Seiberg dualities. We can therefore view mutations as a “generalized Seiberg
duality.” Since there typically are quivers with ghosts that are very easy to
calculate, then we can use generalized Seiberg dualities as a technique for
deriving ordinary physical quiver gauge theories without ghosts. This will
be explained in Section 4.

2.4 Holomorphic deformations of quiver theories

A quiver gauge theory admits a large number of deformations. Here we are
interested in deformations of the F -terms, i.e., ratios of superpotential cou-
plings that are invariant under field redefinitions. Such deformations should
be given by perturbing the closed string B-model by vertex operators of
ghost number 2. The BRST cohomology at ghost number 2 lives in the
following cohomology groups [18]:

∑

i+j=2

H i(X, ΛjTX) = H0(X, Λ2TX) ⊕ H1(X, TX) ⊕ H2(X, OX), (2.12)

4There may also be nodes which are not connected to node j by an arrow; such nodes
are not changed under a Seiberg duality.
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i.e., tensors of type μij , μi
j̄

or μīj̄ . The interpretation of these deformations
is as follows:

• H1(X, TX) counts classical complex structure deformations of X;
• H0(X, Λ2TX) counts global holomorphic Poisson structures, in other

words, non-commutative deformations (inverse B-fields);
• H2(X, OX) counts “gerbe” deformations obtained by turning on a

B-field with two anti-holomorphic indices.

We will further restrict ourselves to exactly marginal deformations of the
conformal theory living on N D3-branes placed at the singularity. Since
the radial direction away from the singularity has the interpretation of an
energy scale, the scale invariance of the SCFT means that the local geometry
is that of a complex cone over a compact complex surface. Marginal defor-
mations will preserve this structure, and so such deformations correspond
to deformations of the complex surface.5

It must be emphasized that there are plenty of other F -term deformations
that are not of this type, and that can become large either close to the
tip of the cone or very far away. For instance, we could be interested in
adding fractional branes which lead to non-perturbative behavior in the
IR triggering an extremal transition; or we could be interested in adding
relevant or irrelevant terms to the superpotential, such as mass terms for the
adjoints in N = 4 YM theory (i.e., the N = 1∗ and N = 2∗ deformations).
All these cases are captured by the B-model, generically on a generalized
geometry. But here we will restrict ourselves to scale invariant deformations.

The main class of examples that we consider in detail are the Del Pezzo
singularities. Recall that a Del Pezzo surface is either a P2 blown up at
k points (often denoted Bk) or P1 × P1 (often denoted as F0). On such a
surface h2(X, OX) = h(0,2) = 0 so we do not get any gerbe deformations.
On Bk we naively expect 2k complex structure parameters (describing the
position of k points on P2) and 10 − k NC deformations (since Λ2TX is
isomorphic to the line bundle of cubic homogeneous polynomials that vanish
at the points that get blown up). Finally the group PGl(3,C) of holomorphic
co-ordinate redefinitions kills eight of these parameters, so in total we expect
k + 2 deformations for Bk. Similarly for F0 there are three deformations.
This agrees with the allowed number of deformations that one can read off
from the quiver diagram, as one can check easily.

5For B1 and B2 it appears that some of the operators we use to deform the super-
potential do not have R-charge exactly equal to 2. This is related to the fact that the
parameter that simply rescales the complex variables is not exactly the radial direction in
the Calabi–Yau metric in these examples. We thank Sergio Benvenuti for pointing this out.
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3 Non-commutative singularities and deformations
of superpotentials

3.1 Non-commutative deformations

First we need to discuss some basic properties of non-commutative algebraic
geometry. See [19] for a more rigorous review. The first case we will consider
is C3/Z3 which has a collapsed P2. Suppose we have a brane that wraps
P2 and suppose we turn on a B-field with purely holomorphic indices. We
will extend the inverse B-field to the Calabi–Yau threefold by making it
independent of the radial co-ordinate of the Calabi–Yau and its complex
partner. Then we effectively only need to specify it on P2, where θij ∼
(B−1)ij is a section of Λ2TP2 . This bundle has many holomorphic sections
which we can use to deform the sigma model. The general effect of turning on
θij is to deform the left- and right-moving N = 2 algebra on the worldsheet
so that the left- and right-moving complex structures are no longer equal [20,
21]. Geometrically this situation can be described using generalized complex
geometry [22, 23]. For the purposes of this paper we are interested in the
effect of turning on θij on open strings. Then we expect the co-ordinates on
P2 to become non-commutative according to

[xi, xj ] = θij(x). (3.1)

Here xi, xj are local co-ordinates; e.g., in the patch z3 �= 0 they are of the
form (z3)−1z1, (z3)−1z2. If θij is holomorphic than this is a type of complex
structure deformation and should make an appearance in the superpotential.

It will be convenient to express the commutation relations in projective
co-ordinates rather than local co-ordinates. It is known that a generic NC
structure on P2 can be put in the form [24]

αz1z2 + βz2z1 + γz2
3 = 0

αz2z3 + βz3z2 + γz2
1 = 0

αz3z1 + βz1z3 + γz2
2 = 0 (3.2)

which is known as an “elliptic algebra” or a “Sklyanin algebra.” These equa-
tions are familiar from the F -term equations for the Leigh–Strassler deforma-
tions of N = 4 Yang–Mills theory [25], which is indeed known to be related
to non-commutative deformations [6]. In fact the Leigh–Strassler deforma-
tions are invariant under the trihedral group Δ27,6 and when we orbifold by
a Z3 subgroup to get C3/Z3 the Leigh–Strassler deformations descend to the
NC deformations of the quotient. Nevertheless it will be useful to proceed

6We would like to thank Sergio Benvenuti for pointing this out to us.
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with our point of view because it can easily be extended to non-orbifold
singularities.

When writing homogeneous equations in non-commutative co-ordinates,
one can assign an integer grade to a co-ordinate depending on which position
in a monomial it appears. In this subsection, we will denote a co-ordinate
in the first position as Ai and a co-ordinate in the second position as Bi. It
will be evident shortly why this is a useful thing to do.

Then we may rewrite the previous equations (3.2) as
⎛

⎜⎝
βA2 αA1 γA3

γA1 βA3 αA2

αA3 γA2 βA1

⎞

⎟⎠ ·

⎛

⎝
B1

B2

B3

⎞

⎠ ≡ fijkA
iBj = 0. (3.3)

These equations determine a variety in P2
A × P2

B which one can think of as
the graph of a linear isomorphism of a certain elliptic curve. The elliptic
curve is given by Ai ∈ P2

A det(fijkA
i) = 0, which gives

αβγ((A1)3 + (A2)3 + (A3)3) − (α3 + β3 + γ3)A1A2A3 = 0. (3.4)

If Ai lies on this elliptic curve, the matrix fijkA
i has rank 2, so it has a one-

dimensonal kernel spanned by some vector Bi
A ∈ P2

B. Note that Bi
A must lie

on the elliptic curve det(fijkB
j) = 0, i.e.,

αβγ((B1)3 + (B2)3 + (B3)3) − (α3 + β3 + γ3)B1B2B3 = 0 (3.5)

Therefore, fijk determines an automorphism of the elliptic curve, given by

σ(Ai) = Bi
A. (3.6)

To abbreviate the notation, we will often write σ(Ai) = (Aσ)i.

The elliptic curve and the automorphism (which can be thought of as
translating by some point η on the curve) completely characterize the NC
structure on P2. Clearly we have for any point p on the elliptic curve (3.4)

fijkp
i(pσ)j = 0. (3.7)

Thus intuitively the NC structure degenerates along the elliptic curve we
have discussed, and we can think of this curve as an embedded commu-
tative curve. The more precise statement is that the twisted homogeneous
co-ordinate ring of the curve is equivalent to a commutative ring, in that it
has the same modules [19].

It is possible to give a more explicit parametrization of pσ for general p
by uniformizing the elliptic curve using θ-functions. See [26] for details.
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3.2 The projective plane

For P2 we will take the customary exceptional collection

1.O(0) 2. T (−1) 3. O(1). (3.8)

The maps are given by

X12 = Ai∂i X23 = 〈•, Bj∂j〉 X13 = Ckz
k. (3.9)

Here we have written the NC deformation of the identification Λ2TX ⊗
O(2) ∼ O(1) as 〈∂i, ∂j〉 = gijkz

k for some tensor gijk. In the commutative
case, fijk = εijk, but in the non-commutative one needs some care in defin-
ing the bundles and this relation will be continuously deformed. Since zi∂i is
a trivial tangent vector, we have gijkz

jzk = gijkz
izk = 0, hence gijk = fijk.

From the composition of maps one finds the expected superpotential

W = fijkA
iBjCk. (3.10)

We can rewrite this as

W = λ1εijkA
iBjCk + λ2sijkA

iBjCk

+ λ3(A1B1C1 + A2B2C2 + A3B3C3) (3.11)

where sijk = |εijk| is a symmetric tensor. As mentioned before these are just
the Leigh–Strassler deformations of N = 4 Yang–Mills orbifolded by Z3. A
deformation by λ2 is called the β-deformation [27,28].

To find the moduli space we should solve the F- and D-term equations. Let
us just consider the case of a single D3-brane. We can be brief because the
F -term equations for Ck were already discussed in the previous subsection.
The result of that discussion was that for generic values of the NC parame-
ters the set of solutions is just the embedded commutative curve in P2. If we
also consider VEVs for Ck then we can also move the D3-brane in the radial
direction and the moduli space is just the cone over the elliptic curve. For a
larger number of D3-branes one obtains a much more interesting structure
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however, for instance for special discrete values of the NC parameters new
branches seem to open up where the branes form some fuzzy geometry [29].
Such structure should appear when the automorphism σ is of finite order. In
the context of mass deformations of N = 4 Yang–Mills theory (N = 1∗) this
was first investigated in [30], and in the context of marginal deformations
this was investigated in [7, 31,32].

The fact that the superpotential is built on fijk is actually not too
surprising. Even though the PGl(3,C) symmetry of the P2 is broken, there
is still a quantum group symmetry that uniquely fixes the superpotential.
The tensor fijk corresponds to the quantum determinant 3 ⊗ 3 ⊗ 3 → C.

3.3 The projective plane, revisited

If we take the exceptional collection {O(0), T (−1),O(1)} and move T (−1)
one spot to the right, we get the exceptional collection

1. O(0) 3.O(1) 2.O(2) (3.12)

where O(2) = RO(1)T (−1). Let us try to understand the quiver directly from
this collection.

In order to describe a D3 brane, we consider the resolution

O(0)[−2] → O(1)2[−1] → O(2)[0] → Op. (3.13)

Taking into account the shifts in the derived category (spectral flow), we get

Hom(O(0),O(1)) → Ngh = 0 − (−2) + (−1) = +1

Hom(O(1),O(2)) → Ngh = 0 − (−1) + 0 = +1

Hom(O(0),O(2))∗ → Ngh = 3 − (0 − (−2) + 0) = +1. (3.14)

Therefore the bifundamentals all come from BRST cohomology classes at
ghost number one, as required. The associated quiver diagram is drawn in
figure 4(b). We have the maps

X13 = Aiz
i X32 = Biz

i X12 = Cijz
izj . (3.15)

Here we defined C∗
ij = Cij to have nine components, whereas O(2H) has only

six generators. We can account for the difference by adding three Lagrange
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Figure 4: (a) Quiver diagram associated to the exceptional collection (3.8).
(b) Dual quiver diagram, obtained from (a) by Seiberg duality on node 3.

multiplier fields Z1, Z2, Z3 and adding the following mass terms to the super-
potential:

Wmass = fijkC
ijZk. (3.16)

Then we have the following non-commutative generalization of the usual
superpotential:

W = AiBjC
ij + fijkC

ijZk. (3.17)

If desired one can explicitly integrate out massive fields. If we solve for
C21, C31 and C32, we obtain

W = (βA1B1 − γA3B2)C11 + (βA1B2 − αA2B1)C12

+ (−αA1B3 + βA3B1)C13 + (βA2B2 − γA1B3)C22

+ (βA2B3 − αA3B2)C23 + (βA3B3 − γA2B1)C33. (3.18)

If there is a quantum group symmetry, the superpotential is again the unique
one obtained from picking the singlet in the tensor product of representations
3 ⊗ 3 ⊗ 6.

Let us briefly check that this result agrees with the previous section. If we
perform a Seiberg duality on node 3 we should reproduce the Z3 symmetric
quiver. Thus we replace AiBj by the meson fields Mij , add the dual quarks
Ãi, B̃j and modify the superpotential:

Wdual = MijC
ij + fijkC

ijZk + B̃iÃjMij . (3.19)

After integrating out Mij , C
ij , we obtain

Wdual = −fijkB̃
iÃjZk (3.20)

which is, up to some simple field redefinitions, identical to the superpotential
we obtained earlier.
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3.4 P1 × P1

We take the customary collection

1.O(0, 0) 2.O(0, 1) 4.O(1, 1).
3.O(1, 0) (3.21)

The quiver diagram is drawn in figure 5. A look at the standard quiver
diagram reveals a three-dimensional space of marginal deformations of the
superpotential modulo field redefinitions. This agrees with the geometry:
there is a nine-dimensional space of Poisson deformations. Subtracting the
six-dimensional space of co-ordinate redefinitions leaves three parameters.

Constructing the superpotential is relatively easy. The discussion closely
mirrors the case of P2. Let us denote the co-ordinates on the “left” P1 by
zα and the co-ordinates on the “right” P1 by wβ̇. Then we may define a
non-commutative structure through the equations

0 = w1z1 + αz1w1 + δz2w2

0 = w2z1 + βz1w2 + γz2w1

0 = w1z2 + βz2w1 + γz1w2

0 = w2z2 + δz1w1 + αz2w2. (3.22)

We can write this as
⎛

⎜⎜⎝

w1 0 αz1 δz2

w2 0 γz2 βz1

0 w1 βz2 γz1

0 w2 δz1 αz2

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝

z1

z2

w1

w2

⎞

⎟⎟⎠ = 0. (3.23)

Figure 5: (a) Quiver associated with the collection (3.21). (b) Quiver
obtained from (a) by Seiberg duality on node 2.
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The determinant of the matrix is an equation of bidegree (2,2) which is an
elliptic curve in P1 × P1. This is the embedded commutative curve where
the Poisson structure degenerates. For every point on this curve, the matrix
has a unique eigenvector, which determines a point in P1 × P1. The set of
points obtained this way also forms an elliptic curve, and the correspondence
point → eigenvector again yields an automorphism of the elliptic curve which
we denote by σ.

Now we use this to calculate the superpotential. The Ext generators are
given by

X13 = Aαzα X12 = Cα̇wα̇

X34 = Bα̇wα̇ X24 = Dαzα

X14 = Eαβ̇zαwβ̇.

(3.24)

The superpotential is then

W = (C1D1 + αA1B1 + δA2B2)E11

+ (C2D1 + βA1B2 + γA2B1)E12

+ (C1D2 + βA2B1 + γA1B2)E21

+ (C2D2 + δA1B1 + αA2B2)E22. (3.25)

It is clear that the NC relations (3.22) translate directly into superpoten-
tial terms. The earlier discussion therefore implies that the moduli space is
simply the (cone over the) embedded commutative elliptic curve.

Before closing this section let us discuss the quiver one obtains from a
Seiberg duality on node 2. The quiver is drawn in figure 5(b) and the super-
potential is given by

Wdual = λ1(A1B1C2D2 − A1B2C2D1 + A2B2C1D1 − A2B1C1D2)

+ λ2(A1B1C2D2 + A1B2C2D1 − A1B2C1D2 − A2B1C2D1

+ A2B2C1D1 + A2B1C1D2 − A1B2C1D2 − A2B1C2D1)

+ λ3(A1B1C2D2 + A1B2C2D1 + A2B2C1D1 + A2B1C1D2)

+ λ4(A1B1C1D1 + A2B2C2D2) (3.26)

with

α = −λ1 + λ2 + λ3 γ = −2λ2

β = λ1 + λ2 + λ3 δ = λ4.
(3.27)
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This quiver is related to the conifold singularity by a Z2 orbifold. Thus for
our next example we turn to the conifold.

The NC deformations break the PGl(2,C) × PGl(2,C) symmetry of the
complex structure. However at least for a subset of the NC parameters there
should still be a quantum group symmetry.

3.5 The conifold

The surface P1 × P1 can be embedded in P3 through the Segre embedding.
Namely if we define xαβ̇ = zαwβ̇ then the image of P1 × P1 is given by the
quadric surface x11x22 − x12x21 = 0 ∈ P3. If we regard this as an equation
in affine four-space then we do not get the cone over P1 × P1 but a double
cover of it. This is of course the well-known conifold singularity. To recover
the cone over P1 × P1, we have to perform a Z2 orbifold of the conifold,
given by xαβ̇ → −xαβ̇ . We can use the Z2 orbifolding to obtain the quiver
diagram 5(b) from the conifold quiver, or conversely we can recover the
conifold quiver from 5(b) by modding out by the Z2 quantum symmetry,
which identifies the fields Ai = Ci and Bj = Dj . The resulting quiver is
drawn in figure 6.

The space of marginal deformations of the superpotential has already been
examined [27], and it was found that there exists a three-parameter family
of deformations, just as we found for the quadric. In fact, we can use the
fact that the quivers are related by a Z2 quotient to map the deformations
into each other. Thus we get the following superpotential for the conifold
quiver:

Wconifold = 2λ1(A1B1A2B2 − A1B2A2B1)

+ 2λ2(A1B1A2B2 + A1B2A2B1 − A1B2A1B2 − A2B1A2B1)

+ 2λ3(A1B1A2B2 + A1B2A2B1)

+ λ4(A1B1A1B1 + A2B2A2B2). (3.28)

The same idea can now be used to obtain the NC structures on the coni-
fold. Again we define xαβ̇ = zαwβ̇ except that zα, wβ̇ no longer commute

Figure 6: The well-known conifold quiver, a Z2 quotient of figure 5(b).
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but instead satisfy (3.22). This will lead to a deformation of the seven equa-
tions x11x22 − x12x21 = 0 and xαβ̇xγδ̇ − xγδ̇xαβ̇ = 0. Using a Gröbner basis
computation we find the following relations:

0 = α
(
γ2 − β2) x21̇x12̇ + γ

(
δ2 − α2) x21̇x21̇ + β

(
α2 − δ2) x22̇x11̇

+ δ
(
β2 − γ2) x22̇x22̇

0 = δ
(
β2 − γ2) x21̇x11̇ + β

(
α2 − δ2) x21̇x22̇ + γ

(
δ2 − α2) x22̇x12̇

+ α
(
γ2 − β2) x22̇x21̇

0 = −δx12̇x11̇ + βx12̇x22̇ − αx22̇x12̇ + γx22̇x21̇

0 = −βx11̇x22̇ + γx12̇x12̇ − γx21̇x21̇ + βx22̇x11̇

0 = −δx11̇x21̇ + γx12̇x22̇ − αx21̇x22̇ + βx22̇x21̇

0 = δ
(
γ2 − β2) x11̇x12̇ + α

(
β2 − γ2) x12̇x22̇ + γ

(
α2 − δ2) x21̇x22̇

+ β
(
δ2 − α2) x22̇x12̇

0 = δ
(
β2 − γ2) x11̇x11̇ + α

(
γ2 − β2) x12̇x21̇ + γ

(
δ2 − α2) x21̇x21̇

+ β
(
α2 − δ2) x22̇x11̇. (3.29)

Alternatively one could start with a non-commutative structure on C4,
perform an NC small resolution of the conifold, and use the method of [33]
to derive the superpotential. This is algebraically more complicated, so we
chose to exploit the relation to P1 × P1.

For the quadric (and hence, through our earlier remark, for the conifold)
mathematicians have developed the following picture [19]: we start with
the four-dimensional Sklyanin algebra, which defines a non-commutative
structure on C4:

x0x1 − x1x0 = α1(x2x3 + x3x2)

x0x2 − x2x0 = α2(x3x1 + x1x3)

x0x3 − x3x0 = α3(x1x2 + x2x1)

x2x3 − x3x2 = x0x1 + x1x0

x3x1 − x1x3 = x0x2 + x2x0

x1x2 − x2x1 = x0x3 + x3x0

(3.30)

where the αi are parameters satisfying α1 + α2 + α3 + α1α2α3 = 0. The cen-
ter of this algebra is generated by two quadratic Casimir elements

C1 = x2
0 + J1x

2
1 + J2x

2
2 + J3x

2
3, C2 = x2

1 + x2
2 + x2

3. (3.31)
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The Ji can be determined in terms of the αi. This defines a three-parameter
family of NC structures on the conifold C1 + λC2 = 0. If desired, one can do
a co-ordinate transformation so that the conifold is written in the standard
form and all the parameters appear in the Sklyanin algebra. To get the
NC structures on the cone over the quadric we should simply quotient by
xi → −xi. The locus C1 = C2 = 0 is the embedded commutative locus, a
cone over the elliptic curve in the quadric. If we put a single D3-brane at
the singularity, then this commutative locus is generically the moduli space
of the gauge theory. Presumably {xi, αi, λ} and our variables {xαβ̇ , α, β, γ, δ}
are related through co-ordinate redefinitions.

It is also interesting to consider the non-commutative analog of the coni-
fold transition [34–36]. To this end one puts M fractional D3-branes and one
ordinary D3-brane at the conifold. This yields the same quiver theory except
that the gauge group is U(M + 1) × U(1). In the IR this is effectively an
SU(M + 1) gauge theory with two quarks and two anti-quarks. Therefore
we expect that the Affleck–Dine–Seiberg superpotential gets generated and
our total superpotential is

Wtotal = Wconifold + (M − 1)

(
2Λ3M+1

det(AαBβ̇)

)1/M−1

. (3.32)

Now how can we find the deformation of the equations that define the NC
conifold? Note that the NC conifold is not (a component) of the moduli space
of this theory, since the D3-brane can only move on the locus where the NC
structure degenerates. On the other hand, it is not hard to guess what it must
be. To get a consistent equation, we can only deform C1 + λC2 = 0 by adding
other Casimirs of the Sklyanin algebra.7 Moreover, instanton corrections
come with a positive power of Λ, so by dimension counting it must multiply
a Casimir of degree less than two (the couplings λi are dimensionless). Then
the deformation should be of the form

C1 + λC2 = a(Λ3M+1)1/M1. (3.33)

The power of Λ is the same as in [34]. Since the coefficient a is non-zero in
the commutative limit, it should be non-zero in the non-commutative case
also. Note that all the equations are invariant under xi → −xi, so we also
expect a transition when we put fractional branes at the non-commutative
collapsed P1 × P1 singularity.

7We expect that the Sklyanin algebra itself cannot be deformed by non-perturbative
corrections, however we have not proven this statement.
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3.6 Blow-ups of P2

One can only blow-up commutative points [19], i.e., the points must lie on
the elliptic curve where the NC structure degenerates. We will discuss a
three-block exceptional collection on Del Pezzo 3 as our main representative
of the higher Del Pezzos. As was shown in [2] the calculations up to Del
Pezzo 6 are all extremely similar to this case.

A simple three-block exceptional collection of line bundles is given by

1. O 2. O(H − E1) 5. O(H)
3. O(H − E2) 6. O(2H − E1 − E2 − E3).
4. O(H − E3)

(3.34)

The exceptional curves E1, E2 and E3 are obtained by blowing up the points
p, q and r. A basis for the linear sections can be constructed as follows:

X12 = Aiz
i X25 = 1 X26 = εijk(qσ)i(rσ)jzk

X13 = Biz
i X35 = 1 X36 = εijk(rσ)i(pσ)jzk

X14 = Ciz
i X45 = 1 X46 = εijk(pσ)i(qσ)jzk

X15 = Diz
i

(3.35)

Note that for X12, X13, X14 we also added a generator which does not van-
ish at p, q, r respectively. We can kill these generators by adding Lagrange
multiplier fields V1, V2, V3 and mass terms

piAiV1 + qiBiV2 + riCiV3 (3.36)

to the superpotential. We could of course work directly with the massless
generators, but the reason for doing it this way is that we can write the
superpotential in a much more symmetric form.

Figure 7: Quiver for Del Pezzo 3 associated to the exceptional collection
(3.34).
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Finally we need the quadratic generators X16, which are of course more
tricky. Sections of O(2H − E1 − E2 − E3) are of the form aijz

izj , subject
to the three conditions

aijp
i(pσ)j = 0, aijq

i(qσ)j = 0, aijr
i(rσ)j = 0. (3.37)

A simple way to proceed is as follows. First we add the additional sections
of O(2H) that do not vanish at p, q, r. We introduce the following nine
quadratic sections

X16 = Eijz
izj (3.38)

and add three Lagrange multipliers Z1, Z2, Z3 and a mass term fijkE
ijZk

to get six massless fields. Then we introduce three additional fields Y1, Y2, Y3
and add more mass terms to kill the sections that do not vanish at p, q, r.
So in total we have

Wmass = piAiV1 + qiBiV2 + riCiV3 + fijkE
ijZk

+ p̄ip̄
σ
j EijY1 + q̄iq̄

σ
j EijY2 + r̄ir̄

σ
j EijY3. (3.39)

Now it is straightforward to find the following superpotential:

W = Wmass + A12iX25D
i
51 + B13iX35D

i
51 + C14iX45D

i
51

+ εijk(qσ)i(rσ)jA12mX26E
mk
61 + εijk(rσ)i(pσ)jB13mX36E

mk
61

+ εijk(pσ)i(qσ)jC14mX46E
mk
61 . (3.40)

In the commutative case we should set fijk = εijk, set the automorphism
σ equal to the identity and integrate out the massive fields. In this case
one reproduces calculations previously performed in [2], which are known to
yield the expected superpotential.

By turning on an expectation value for X26, X36 or X46 we get quiver
theories for Del Pezzos with fewer blow-ups.

3.7 Abelian orbifolds

Consider the orbifold C3/Zk where the co-ordinates of C3 are taken to have
weights (w1, w2, w3) under the action of Zk (with w1 + w2 + w3 = k). In
order to derive the quiver gauge theory the simplest method is of course
to use the projection methods of [37]. This is more powerful than the large
volume description since we also get information about the D-terms. Never-
theless it will be useful to consider the large volume limit. Non-commutative
deformations can be described in this framework, and it provides some
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insights that should apply more generally to toric singularities and their
deformations. For recent progress in the toric case see [38–40].

For k > 3 the orbifold C3/Zk contains multiple vanishing four-cycles and
we need multiple blow-ups in order to completely resolve the singularity.
After a single blow-up we get a finite size P2

(w1,w2,w3) which typically has
orbifold singularities, and further blow-ups are needed to remove these
singularities. Nevertheless the weighted projective space P2

(w1,w2,w3) already
has nice sets of exceptional collections that we can use to construct the
quiver gauge theory, as we will now review [2,41].

There are two canonical exceptional collections that are dual to
each other. The first is a collection of invertible sheaves {R1, . . . , Rk} =
{O(0), . . . ,O(k)} which is called the bosonic basis. The non-zero coho-
mology groups are Hom(Ri, Rj) which is generated by the polynomials of
total degree j − i in the co-ordinates zi. The compositions of these maps
are the obvious ones. The number of generators can be read off from the
coefficient of hj−i of the bosonic generating function (the Hilbert series of
P2

(w1,w2,w3))

χ = (1 − hw1)−1(1 − hw2)−1(1 − hw3)−1. (3.41)

Although this exceptional collection is very simple it does not lead to
physical quiver diagrams for k > 3. One could in principle use mutations
to get a physical collection as explained in the section. However it is easier to
use the other canonical basis which leads directly to the expected
orbifold quiver.

The second collection is called the fermionic basis {S1, . . . , Sk}. The exact
definition of the Si is a little murkier but they are roughly of the form
ΛmT ⊗ O(n). However it is easy to say what the cohomology groups are:
the non-zero ones are Hom(Si, Sj) which are generated by contractions with
tangent vectors ı∂i

of total degree −(j − i).8 The number of generators can
be read of from a fermionic generating function which is just the inverse
of (3.41):

χ−1 = (1 − hw1)(1 − hw2)(1 − hw3). (3.42)

The fermionic basis can be obtained from the bosonic basis (up to
tensoring by an invertible sheaf) by the mutations {S1, . . . , Sk} =
{Lk−1Rk, L

k−2Rk−1, . . . , R1}. The collections are dual in the sense that
χ(Ri, Sj) = δij .

8This is dual to wedging with the differentials dzi.
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Figure 8: The Z5 symmetric quiver of C3/Z5.

For generic (w1, w2, w3) the orbifold C3/Zk admits only one NC
deformation:

xy = qyx, yz = qzy, zx = qxz. (3.43)
The commutatation relations of ı∂i

can be deduced for instance from the
fact that the fermionic basis is dual to the bosonic basis [42]:

ı∂xı∂y = −q ı∂y ı∂x , ı∂y ı∂z = −q ı∂z ı∂y , ı∂z ı∂x = −q ı∂xı∂z . (3.44)

Using these relations, one finds a deformation of the orbifold theory. It is
the same as the β-deformation. Let us consider as an example the orb-
ifold C3/Z5, the extension to other cases being straightforward. We find the
superpotential

W = (Y01X12 − qX01Y12)Z20 + (Y12X23 − qX12Y23)Z31

+ (Y23X34 − qX23Y34)Z42 + (Y34X40 − qX34Y40)Z03

+ (Y40X01 − qX40Y01)Z14. (3.45)

For special (w1, w2, w3) there may exist additional deformations. We expect
that if the non-commutative deformations are written as fijkz

izj = 0 then
the superpotential is of the form W = fijkX

iY jZk, where X, Y, Z are the
projected adjoint fields of the parent N = 4 theory.

4 Quivers with ghosts and generalized Seiberg dualities

One of the problems with simple exceptional collections is that they typi-
cally contain ghosts. Recall that when we build quiver diagrams out of a set
of fractional branes, we must ensure that all the bifundamental fields cor-
respond to vertex operators at ghost number one (in the derived category
sense). If some of the bifundamentals have the wrong ghost number, we do
not seem to be able to construct a sensible gauge theory.
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Nevertheless we will show that one can consistently manipulate such quiv-
ers at the level of F -terms. As we discussed in Section 2, the idea is to say
that every cohomology class of ghost number p < 2 on the Calabi–Yau gives
rise to a chiral field in four dimensions with physical ghost number p.

The main objective here is to understand how the quiver theories for
different exceptional collections are related. In order to do this we will first
discuss the quiver for a brane/anti-brane pair.9 Basically the massless open
strings between such a pair gives rise to a set of fields and ghost fields which
cancel each other precisely. The field/ghost field pairs can then be used to
rearrange the degrees of freedom in a quiver to a dual quiver.

Along the way we will also get a new perspective on Seiberg duality.

4.1 The brane/anti-brane quiver

Let us first consider a brane/anti-brane pair in isolation. Such a pair can be
regarded as a complicated description of “nothing.”10 After that we will add
such pairs of “nothing” to our quiver theories and use them to rearrange the
degrees of freedom. The rearranged quiver will be the Seiberg dual theory
of the original quiver.

Consider two identical copies of a brane, F1 and F2. Then the mass-
less spectrum is as follows: we have two ghost number zero operators Ext0

(F1, F1) and Ext0(F2, F2) which are just the identity map. These correspond
to the two U(1) vector multiplets for each brane. We also have a generator
from Ext0(F1, F2) and another from Ext0(F2, F1). These correspond to the
W± bosons, and altogether we therefore have a U(2) vector multiplet.

Now we can apply one unit of spectral flow to one of the branes in order
to turn it into an anti-brane (see figure 9). There are basically two choices,
we can shift F1 up or down with respect to F2. We will shift F1 to F1[−1].
The effect of this is to shift the ghost numbers of the open strings stretching
between the two branes: the open string stretching from F1 to F2 will now
have ghost number Ngh = +1, and the string stretching from F2 to F1 will
have ghost number Ngh = −1. In summary:

Ngh = 1 : X2̄2

Ngh = 0 : Λ2, Λ2̄

Ngh = −1 : Υ22̄.

(4.1)

9The idea of adding an anti-brane has also been considered in [43]. However our treat-
ment of the open string modes will be rather different

10Other examples of systems without physical excitations are the bcβγ quartets in
two-dimensional CFT.
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Figure 9: Quiver diagram for the brane/anti-brane system.

The ghost number zero fields generate the following symmetries:

δX2̄2 = Λ2̄X2̄2 − X2̄2Λ2, δΥ22̄ = Λ2Υ22̄ − Υ22̄Λ2̄. (4.2)

Moreover the ghost number minus one field generates a redundancy:

δΛ2 = Λ22̄X2̄2, δΛ2̄ = X2̄2Λ22̄. (4.3)

We can write all this in a more compact form using the BV formalism
(for reviews see [56, 57]). We introduce the anti-fields, {X∗

22̄, Λ
∗
2, Λ∗

2̄, Υ
∗
2̄2},

of ghost numbers {2, 3, 3, 4} respectively, and the following bracket:

{A, B} =
∑

i

∂RA

∂Xi

∂LB

∂X∗
i

− ∂RA

∂X∗
i

∂LB

∂Xi
. (4.4)

Here ∂R, ∂L denote right and left differentiation. Then we can define an
extended superpotential which is a function of all the fields and anti-fields,
such that gauge transformations are generated by W itself

δA = {W, A}. (4.5)

If we pick the following superpotential:

W = X∗
22̄(Λ2̄X2̄2 − X2̄2Λ2) + Υ∗

2̄2(Λ2Υ22̄ − Υ22̄Λ2̄)

+ Λ∗
2Υ22̄X2̄2 + Λ∗

2̄X2̄2Υ22̄ (4.6)

defined on the extended phase space of the B-model, then we reproduce
gauge variations (4.2), (4.3). Moreover with this superpotential the BV mas-
ter equation is satisfied

{W, W} = 0 (4.7)

which just says that the superpotential itself is gauge invariant.

The superpotential (4.6) may presumably be derived more systematically
along the following lines. We start with the quiver for two ordinary branes,
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which has a U(2) gauge symmetry. The extended superpotential in this case
is simply

W = 1
2Λc∗ΛaΛb fab

c (4.8)

where fab
c are the structure constants of U(2), Λa are the ghost number

zero generators of the gauge symmetry (recall they are anti-commuting)
and Λc∗ the corresponding anti-ghosts. The identity {W, W} = 0 reduces to
the Jacobi identity. Now we apply one unit of spectral flow to the second
brane. This shifts the ghost numbers of suitable linear combinations of the
Λa. There are some sign conventions which we have not completely figured
out, but with some suitable signs this procedure should turn (4.8) into (4.6).

For the brane/anti-brane quiver, one cannot construct any gauge invariant
operators out of the ghost number one field, so the moduli space consists just
of a single point. If we turn on a VEV for the Ngh = +1 mode, all the degrees
of freedom cancel pairwise, and the only state left is the vacuum [55]. The
ghost number +1 field cancels with the anti-symmetric combination Λ2 =
−Λ2̄, and the ghost number −1 field cancels with the symmetric combination
Λ2 = +Λ2̄. In the extended superpotential, this is manifested as quadratic
terms for the fields after we turn on a VEV. This is our model of “nothing.”

Shortly after this paper appeared, it was suggested that in the full ten-
dimensional string theory we should interpret topological anti-branes not as
ordinary anti-branes but as “ghost-branes.” The world volume theory of N
branes and M ghost-branes in the full ten-dimensional string theory should
be N = 1 SUSY Yang–Mills theory with the supergroup U(N |M) as gauge
group [58]. Due to cancellations in gauge invariant correlation functions,
this would give the same answers as in U(N − M) Yang–Mills theory. This
is indeed very reminiscent of the structure we have found here. However
there is still a puzzle. From the supergroup point of view the ghost number
one field X2̄2 should be the internal part of the vertex operator for an off-
diagonal gauge field of the supergroup. It seems more natural however to
say that it gives rise to a physical chiral field in four dimensions. As we will
see this will be quite crucial for us because X2̄2 is going to give rise to some
of the magnetic quarks of the Seiberg dual theory, which are chiral fields. It
would be interesting to elucidate this issue.

4.2 The mechanism behind Seiberg duality

Our discussion of the topological brane/anti-brane system puts us in a posi-
tion to give a proof of Seiberg duality at the level of F -terms. Consider
SUSY QCD as in figure 10(a), and add Nf − Nc brane/ghost-brane pairs.
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Figure 10: (a) Quiver for SUSY QCD with Nc colors and Nf flavors.
(b) Quiver obtained by adding Nf − Nc brane/ghost-brane pairs to (a).
(c) Seiberg dual obtained by merging nodes 1 and 2.

The quiver in 10(b) has the following fields:

Ngh = 1 : X12, X23, X32̄, X2̄2;
Ngh = 0 : Λ2, Λ2̄, Λ12̄;
Ngh = −1 : Υ22̄.

(4.9)

Here we are taking nodes 1 and 3 to be non-dynamical, so we have not
included ghost number zero fields for them. We also introduce the anti-
fields. By turning on a VEV for X2̄2 we go back to the original quiver, and
by turning on a VEV for X12 we go to the Seiberg dual.

As in the previous subsection, we can obtain the extended superpotential
for figure 10(b), which turns out to be:

W = X2̄2X23X32̄ + X∗
32Υ22̄X

∗
2̄3 + X∗

21(−X12Λ2 + Λ12̄X2̄2) + X∗
32Λ2X23

− X∗
2̄3X32̄Λ2̄ + X∗

22̄(Λ2̄X2̄2 − X2̄2Λ2) + Λ∗
2̄1(−Λ12̄Λ2̄ + X12Υ22̄)

+ Υ∗
2̄2(Λ2Υ22̄ − Υ22̄Λ2̄) + Λ∗

2Υ22̄X2̄2 + Λ∗
2̄X2̄2Υ22̄ + Wgauge (4.10)

where Wgauge generates non-abelian gauge transformations, similar to (4.8).
If we set all the anti-fields to zero, then we are left over with the following
expression:

W = X2̄2X23X32̄. (4.11)

This will of course descend to the Seiberg dual superpotential.

Let us do some quick counting. Suppose we want to go back to the orig-
inal quiver by turning on VEVs for X2̄2. Since δX2̄2 = Λ2̄X2̄2 − X2̄2Λ2 is a
matrix equation with Nf (Nf − Nc) independent entries, this means there are
N2

f + (Nf − Nc)2 − Nf (Nf − Nc) = N2
f + N2

c − NfNc unbroken generators
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in Λ2 and Λ2̄. Furthermore since δΛ2 = Υ22̄X2̄2, δΛ2̄ = X2̄2Υ22̄, the Υ22̄ pair
up with an additional Nf (Nf − Nc) generators in Λ2 and Λ2̄, leaving just
N2

c generators, associated with node 2 in the original quiver diagram. Fur-
thermore, because of δX12 = Λ12̄X2̄2, the Nf (Nf − Nc) generators in Λ12̄
pair up with an equal number of the X12, leaving us just with the NfNc

generators in X12 as in the original quiver diagram. Similarly, turning on
X2̄2 yields a mass term for X23 and X32̄, and the massless survivors are
precisely the original fields.

Instead we could turn on X12, which takes us to the Seiberg dual. The
2N2

f degrees of freedom in Λ1, Λ2 are broken to the diagonal N2
f , in the pro-

cess of which the N2
f degrees of freedom in X12 get eaten. Also because

of δΛ12̄ = X12Υ22̄, the Nf (Nf − Nc) degrees of freedom in Λ12̄ pair up
with the Nf (Nf − Nc) degrees of freedom in Υ22̄. This leaves us with the
Seiberg dual.

The manipulation just performed gives an equivalence at the level of F -
terms. It cannot clearly be extended to the full theory because Seiberg dual-
ity is not an exact duality. Nevertheless this gives a new perspective on how
the degrees of freedom in two dual theories are related.

It is tempting to interpret the extended quiver 10(b) as U(Nf |Nf − Nc)
SUSY gauge theory with Nf quarks and Nf anti-quarks. However from this
supergroup point of view the magnetic quark fields X2̄2 should correspond
to off-diagonal vector superfields of the supergroup. This point remains to
be clarified.

4.3 Superpotentials via quivers with ghosts

As we reviewed in Section 2, given an exceptional collection of sheaves which
generate the derived category (i.e., “fractional branes”), one may obtain
another set by applying an operation known as a “mutation”. While the
information contained in any of the exceptional collections is equivalent, it
is frequently much easier to extract from one collection than from another.
Thus one would like a simple set of rules to obtain to transform this informa-
tion under mutation. So far such a set of rules is known only for exceptional
collections that are related by Seiberg duality. Here we discuss a set of rules
that is meant to apply for arbitrary mutations, which one may view as
“generalized Seiberg dualities.” Using this set of rules in principle makes
the computations of the superpotential much more systematic. For instance
for the Del Pezzo singularities we can take the exceptional collection

O(0),O(H),O(2H),OE1 , . . . ,OEn . (4.12)
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to write down a quiver and superpotential. Clearly this is essentially the
same computation for all the Del Pezzo surfaces.

In the following we will start with unphysical but simple to understand
quivers which have bifundamental ghosts; such ghosts will be indicated with
colored arrows. The game is then to apply mutations to get rid of the colored
lines, and end up with a physical quiver.

In order to carry out this procedure we would like a method for deriving
the superpotential of the mutated quiver from the original one, without
having to do any new calculations with the mutated fractional branes.
We saw that for two quivers related by Seiberg duality there is a well-defined
method for writing down an intermediate quiver and an extended superpo-
tential by adding brane/anti-brane pairs. We can do the same thing for
quivers that are related by a general mutation. We first illustrate the issues
in a well-known example based on P1 × P1. Then we show how it applies to
exceptional collections of the form (4.12) for the Del Pezzo surfaces. Along
the way, we will see that quantities which only depend on holomorphic data,
such as the a-anomaly and the number of dibaryons, can be correctly recov-
ered from quivers with ghosts.

4.4 The quadric: mutation, a-maximization, dibaryons

Our favourite example of a quiver with ghosts is based on the following
exceptional collection on P1 × P1 :

1. O(−2,−1) 2. O(−1,−1) 4. O(0, 0)
3. O(−1, 0) (4.13)

on P1 × P1. The role of the Ext0 in this quiver was explained to us by
Sheldon Katz as part of a project [5]. Similar observations since then were
made independently in [44–46]. For simplicity, we only consider the commu-
tative case in this subsection.

The physical fields are given by

X12 = Aαzα X24 = Bαβ̇zαwβ̇

X13 = Cαβ̇zαwβ̇ X34 = Dαzα

X14 = Eαγβ̇zαzγwβ̇

(4.14)

After taking spectral flow into account, these correspond to vertex operators
of ghost number one. However we also have cohomology classes of ghost



742 M. WIJNHOLT

number zero:

X23 = Fβ̇wβ̇. (4.15)

These are indicated in red in the quiver diagram. The gauge groups are
all U(N).

Applying the familiar rules, we get the superpotential

W = (AαBγβ̇ + Cαβ̇Dγ)Eαγβ̇ . (4.16)

The ghosts generate the following symmetry:

δCαβ̇ = −AαFβ̇, δBαβ̇ = Fβ̇Dα (4.17)

which leaves the superpotential invariant. Since as we discussed this is a
redundancy, then in order to get the correct moduli space we should mod
out by all the gauge groups associated to the nodes as well as the symmetries
parametrized by F .

Now we would like to obtain a quiver without ghosts by applying a gener-
alized Seiberg duality, i.e., a mutation. In this case we would like to replace

F(1) → RF(2)F(1) = O(0,−1). (4.18)

At the level of Chern characters we have

ch(O(0,−1)) = −[ch(F(1)) − 2 ch(F(2))] (4.19)

according to the Picard–Lefschetz formula. So we need two copies of F(2)
and one copy of F(1) to make O(0,−1). We first we do an intermediate
step by adding brane and anti-brane versions of F(2) = O(−1,−1) to get an
extended quiver diagram.

2̄. O(−1,−1)[−2] 2. O(−1,−1)2[−1]
⊕ → ⊕ → 4. O(0, 0)[0].

1. O(−2,−1)[−2] 3. O(−1, 0)[−1]
(4.20)

Since the gauge group associated to node 2 has been enhanced from U(N)
to U(2N), there are now effectively twice as many fields corresponding to
arrows going into or out of node 2. We will label this explicitly by introducing
an index i = 1, 2 which keeps track of which of the two nodes with label
2 a field is connected to. In addition we have new fields associated with
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the node 2̄:

X2̄3 = F̃β̇wβ̇, X2̄4 = B̃αβ̇zαwβ̇, X2̄2 = U (4.21)

as well as extra ghosts
X12̄ = Ãαzα. (4.22)

The quiver is drawn in figure 12(a). The new superpotential is

W = (Ai
αBi

γβ̇
+ Cαβ̇Dγ)Eαγβ̇ + U iBi

αβ̇
B̃αβ̇ + F̃β̇DαB̃αβ̇ . (4.23)

The symmetries are now given by

δCαβ̇ = −Ai
αF i

β̇
δBi

αβ̇
= F i

β̇
Dα δF̃β̇ = −U iF i

β̇

δCαβ̇ = ÃαF̃β̇ δB̃αβ̇ = −Eαγβ̇Ãγ δAi
α = ÃαU i.

(4.24)

The idea behind these equations is hopefully clear. For every composition
of maps we get either a superpotential term or a symmetry. When we add
the anti-branes the compositions that go through node 2 are the same as
the compositions that go through 2̄. The only possible difference is in inter-
pretation: when we replace 2 by 2̄, a superpotential term may give another
superpotential term or it may give a symmetry. Hence Ai

αBi
γβ̇

Eαγβ̇ gives

δB̃αβ̇ = −Eαγβ̇Ãγ . Similarly a symmetry may give another symmetry or it
may give a superpotential term. Hence δCαβ̇ = −Ai

αF i
β̇

gives δCαβ̇ = ÃαF̃β̇

and δBi
αβ̇

= F i
β̇
Dα gives F̃β̇DαB̃αβ̇ . Finally for every field that goes through

node 2 there is a new composition involving its tilde version and the field U .
This gives the superpotential terms U iBi

αβ̇
B̃αβ̇ and the symmetries δF̃β̇ =

−U iF i
β̇
, δAi

α = ÃαU i.

There is one additional field which is indicated in red in the quiver dia-
gram. Namely apart from X2̄2 which has ghost number one, we also have
X22̄ which has ghost number minus one. Its action on all the fields is some-
what complicated and is best understood by writing the superpotential as a
function of all the fields and anti-fields, as in the section on Seiberg duality.
However we will only need the action on the ghost number zero fields, which
is given by

δF i
β̇

= Xi
22̄F̃β̇, δÃα = Ai

αXi
22̄. (4.25)

The next step is to Higgs down to the desired quiver. To this end one
turns on expectation values for all the A-fields. Then nodes 1 and 2, which
are connected through the A-fields, collapse to the single node associated
to O(0,−1). The 4N2 vector multiplets that disappear became massive
by eating the 4N2 chiral fields Ai

α.
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Figure 11: Quiver associated to the exceptional collections (4.13). The ghost
fields are indicated by a colored arrow.

When we give an expectation value to Ai
α, the two ghost number −1 fields

Xi
22̄ cancel with the two ghost number zero fields Ãα. Moreover there is a

mass term for E and B, as a result of which six of the E’s and six of the
Bs become massive and are removed from the low energy spectrum. The
remaining massless Bs can be parametrized by introducing two fields Bβ̇

and setting

Ai
αBi

γβ̇
= Bβ̇εαγ ⇔ Bi

γβ̇
= (Ai

α)−1Bβ̇εαγ . (4.26)

Then after integrating out the massive degrees of freedom, we are left with
the superpotential

W = U i(Ai
α)−1Bβ̇εαγB̃γβ̇ + F̃β̇DαB̃αβ̇ . (4.27)

Up to a field redefinition of the U i, this is exactly the expected superpoten-
tial for figure 12(b). Finally, the C-fields are killed precisely by the symme-
try generated by F i

β̇
. Thus we have obtained the correct quiver theory for

figure 12(b) by starting with figure 11 and applying a generalized Seiberg
duality. This is in agreement with the idea that the F -term information in
any quiver obtained from an exceptional collection is equivalent and can be
related through generalized Seiberg dualities, or mutations.

We warn the reader that the remainder of this subsection is rather for-
mal since we have not defined a physical theory associated to a quiver with

Figure 12: (a) Same quiver as in figure 11 but with brane/anti-brane pair
added. (b) Quiver obtained from (a) by condensing the links between nodes 1
and 2. This is the same quiver as in figure 5(b).
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ghosts. Nevertheless it indicates that some of the mathematics used for com-
puting F -term quantities in physical quivers can be extended to quivers with
ghosts.

R-charges and NSVZ beta-function. For a physical quiver obtained from
putting D3-branes at a singularity, the theory flows to N = 4 Yang–Mills
theory in the IR for generic VEVs, but at the origin of moduli space we
expect an interesting N = 1 CFT. One may try to compute the R-charges of
the fields in the IR by setting the numerator of the NSVZ beta functions for
the gauge couplings to zero. Typically one does not find enough constraints,
and one employs the strategy of a-maximization to find the correct R-charges
as well as the value of the a-anomaly in the IR. Here we will try a similar
procedure for the quiver with ghosts of figure 11. For Seiberg dual theories
the gauge invariant chiral operators should be identical. Here we also expect
to find the correct value of a as well as the correct R-charges for gauge
invariant chiral operators when compared with a physical quiver for P1 ×
P1, such as in figure 12(b). By gauge invariance we mean both the gauge
invariance associated to the nodes as well as the parabolic symmetries.

The numerator of the NSVZ beta function is

βi = 3C2(G) −
∑

charged chirals

(1 − 2γi)T (Ri). (4.28)

For SU(N) the second Casimir is C2(G) = N and the index of the fun-
damental representation is T = 1/2. Moreover at the conformal point the
superconformal algebra relates the R-charge and the dimension of an oper-
ator as Δ = 1 + γ = 3R/2. By the symmetry of the quiver and superpoten-
tial we expect that RX12 = RX34 and RX13 = RX24 . Because of the symme-
tries δX13 = −X12X23, δX24 = X23X34 we also get R13 = R12 + R23, R24 =
R23 + R34. Finally because of this symmetry we know that the Yukawa cou-
plings must be identical, and we expect they have dimension zero.

We still need to specify how to include the contributions from the fields
of ghost number zero to the beta function. One can think of X23 as giving
a contribution to the chiral fields, but because of its ghost number it has
opposite statistics, and thus the loop integral which calculates its contribu-
tion to the beta function has the same magnitude but the opposite sign from
a normal chiral field.

For node 1 one finds

3N − 1
2(2N(3 − 2ΔX12) + 6N2(3 − 2ΔX41) + 4N(3 − 2ΔX13)) = 0 (4.29)

and by symmetry we get the same equation for node 4. Since the super-
potential has R-charge 2 we can solve for R41 in R41 + R12 + R24 = R41 +
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R12 + R13 = 2 and substitute. This gives

R13 + 2R12 = 1. (4.30)

Next we consider nodes 2 and 3 (which will give identical equations):

3N − 1
2(2N(3 − 2Δ12) + 4N(3 − 2Δ24) − 2N(3 − 2Δ23)) = 0. (4.31)

Note we have reversed the sign in the contribution for the ghost. Using
the previous equations R13 = R12 + R23 and R13 + 2R12 = 1, we find that
(4.31) vanishes identically and imposes no new constraint. So we have a
one-parameter family of allowed R-charges, parametrized say by R12.

We can compute the ’t Hooft anomaly Trace(R). We get

4N2 + 4N2(R12 − 1) + 8N2(−2R12) + 6N2(R12) − 2N2(−3R12) (4.32)

which sums up to zero exactly. The first 4N2 is the contribution of the
gauginos associated with the four nodes.

Next we will use the proposal by Intriligator and Wecht [47] and maximise
the a-anomaly. This yields R12 = 1

2 . We then have the following table for
the R-charges:

X12 X34 X13 X24 X41 X23
1
2

1
2 0 0 3

2 −1
2

(4.33)

Again we are not bothered by the fact that some of the R-charges in this
table are zero or negative. The only criterion is that the gauge invariant oper-
ators (the baryons and mesons) have positive R-charge and dimension, and
this includes invariance under the parabolic symmetry. Moreover, plugging
into the a-anomaly, we get

a =
3
32

(3Tr(R3) − Tr(R)) =
27N2

32
(4.34)

which is exactly the right answer.

Dibaryon counting. Another check on the R-charges comes from counting
dibaryons [48–54]. There should be a 1–1 correspondence between dibaryons
of R-charge 2dN/8 and curves of degree d on P1 × P1.

Denote by H1 and H2 the homology classes for the left and right P1

respectively. The degree of a curve is given by intersecting its class with
2H1 + 2H2 using the relations H2

1 = H2
2 = 0 and H1 · H2 = 1. The lowest

degree rational curves are given by an equation aαzα = 0 or bβ̇wβ̇ = 0 and
have homology class H2 or H1 and degree 2. The moduli space of such curves
is given by P1.
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Similarly on the quiver side the dibaryons we can write down have R-
charge at least N/2. We can construct baryonic operators of R-charge N/2
as follows. There is one set which we can make out of X12 or X34. Recall
however from our discussion of the moduli space that ∂W/∂X41 = 0 implies
X12 ∼ X34, so we can forget about X34 because it will not give any new
operators. Then we can make dibaryons out of A1, A2 of the schematic form

(A1)s(A2)N−s (4.35)

for 0 ≤ s ≤ N . This matches with the fact that a D3-brane wrapped on
H2 � S1 behaves as an electric particle on the moduli space of the curve H2,
which is P1 with N units of magnetic flux. Quantizing this moduli space,
we find the N + 1 sections of O(N) [48]. These dibaryons do indeed have
charge N/2.

Similarly one can construct eight operators that are invariant under the
parabolic symmetry and of ghost number one of the form X12X24 + X13X34.
From the superpotential we get six relations between them, so there are two
independent such operators. Then just as with A1, A2 we can construct N +
1 dibaryons out of them with R-charge N/2. These presumably correspond to
the states obtained from quantizing the moduli space of D3-branes wrapped
on P1

� S1 where the P1 has homology class H1.

It might be interesting to check some more curves of higher degrees.

4.5 Del Pezzo 3

Let us consider the case of Del Pezzo 3. As before we will encode the NC
structure through the tensor fijk. We choose the following strong exceptional
collection (see figure 13)

1. O(0) 2. O(H) 3. O(2H) 4. OE1

5. OE2

6. OE3

(4.36)

Figure 13: Quiver diagram for (4.36).
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Figure 14: (a) Quiver for (4.42), obtained from figure 13 by adding “anti-
branes.” (b) Mutated quiver diagram, which is physical (has no red lines).

The quiver is drawn in Figure 14(a). We will denote the maps as follows:

X12 = Aiz
i X3,456 = Di resEi

X23 = Biz
i X2,456 = E∗

i resEi

X13 = C∗
ijz

izj X1,456 = F ∗
i resEi

(4.37)

Here resEi means “restriction to Ei,” and as usual we will kill three of the
nine components of (C∗

ij)
∗ = Cij by adding Lagrange multipliers Zk and the

mass terms fijkC
ijZk. Assuming the Ei are exceptional curves obtained from

blowing up the points p, q, r respectively, we find the following superpotential

W = WP2 + (pσ)iBiD1E
1 + (qσ)iBiD2E

2 + (rσ)iBiD3E
3 (4.38)

with

WP2 = AiBjC
ij + fijkC

ijZk. (4.39)

Moreover the Fi correspond to ghosts, so we get the following relations:

δE1 = piF1Ai δCij = −pi(pσ)jD1F1

δE2 = qiF2Ai δCij = −qi(qσ)jD2F2

δE3 = riF3Ai δCij = −ri(rσ)jD3F3

(4.40)

As one can check, the superpotential is indeed invariant under these sym-
metries. Clearly one can write down a very similar quiver theory for any
of the Del Pezzo surfaces.

Next we would like to do get rid of the ghosts by applying mutations.
In the present case it can be accomplished by shifting O(2H) to the right.
Then we get a new sheaf F̃(3) = O(2H − E1 − E2 − E3). The charge vectors
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are related by

ch(F̃(3)) = ch(O(2H)) −
3∑

i=1

ch(OEi). (4.41)

In order to obtain the superpotential for the dual quiver, we first construct
the intermediate quiver by adding the antibranes OEi [0]:

O(2H)[0]
O(0)[−2] → O(H)[−1] → ⊕ →

⊕3
i=1 OEi [1].⊕3

i=1 OEi [0]
(4.42)

The resulting quiver is drawn in figure 14(b). We have the additional maps

X456,1 = F̃i X4̄4 = U1

X2,456 = Ẽi X5̄5 = U2

X3,456 = D̃i X6̄6 = U3 (4.43)

The composition of maps can be easily read off from the sheaves. However
our main point is that even if one did not know the sheaves, it would still
be straightforward to read the compositions of maps of the extended quiver
from the original quiver, and hence find the extended superpotential and
symmetries. Clearly there is a correspondence

Di ↔ D̃i, Ei ↔ Ẽi, Fi ↔ F̃i. (4.44)

The new superpotential is

W = WP2 + (pσ)iBiD1E
1 + (qσ)iBiD2E

2

+ (rσ)iBiD3E
3 + Ẽ1U1E1 + Ẽ2U2E2 + Ẽ3U3E3

+ piAiẼ1F̃1 + qiAiẼ2F̃2 + riAiẼ3F̃3 (4.45)

and the new symmetries are

δE1 = piF1Ai δCij = −pi(pσ)jD1F1 δF̃1 = −U1F1

δE2 = qiF2Ai δCij = −qi(qσ)jD2F2 δF̃2 = −U2F2

δE3 = riF3Ai δCij = −ri(rσ)jD3F3 δF̃3 = −U3F̄3 (4.46)

and

δD1 = D̃1U1 δẼ1 = −(pσ)iBiD̃1 δCij = pi(pσ)jD̃1F̃1

δD2 = D̃2U2 δẼ2 = −(qσ)iBiD̃2 δCij = qi(qσ)jD̃2F̃2

δD3 = D̃3U3 δẼ3 = −(rσ)iBiD̃3 δCij = ri(rσ)jD̃3F̃3. (4.47)
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As in the previous example all this information can be easily lifted from the
original quiver diagram:

• The superpotential term (pσ)iBiD1E
1, gives rise to the symmetry

δẼ1 = −(pσ)iBiD̃1.
• The symmetry δCij = −pi(pσ)jD1F1 yields the new symmetry δCij =

pi(pσ)jD̃1F̃1.
• The symmetry δE1 = piF1Ai gives rise to the superpotential term

piAiẼ1F̃1.
• For the new compositions, we add to the superpotential the cubic term

Ẽ1U1E1, and we add the symmetries δF̃1 = −U1F1, δD1 = D̃1U1.

Finally there are X44̄, X55̄, X66̄ of ghost number minus one which param-
etrize certain redundancies among the shift symmetries. They are drawn
in red.

To get the mutated quiver, we turn on VEVs for D1, D2, D3. The precise
expectation value is not important, so we will just set 〈Di〉 = 1. Then the
ghost number zero fields D̃i cancel with the ghost number −1 fields. When
turning on the Di, we get quadratic terms for Bi and Ei, so we should solve
for their equations of motion and substitute back. All in all then we are left
with the quiver diagram in figure 14(b), with superpotential

W = fijkC
ijZk + piAiẼ1F̃1 + qiAiẼ2F̃2 + riAiẼ3F̃3

− A1Ẽ1U1(m11C11 + m12C12 + m13C13)

− A1Ẽ2U2(m21C11 + m22C12 + m23C13)

− A1Ẽ3U3(m31C11 + m32C12 + m33C13)

− A2Ẽ1U1(m11C21 + m12C22 + m13C23)

− A2Ẽ2U2(m21C21 + m22C22 + m23C23)

− A2Ẽ3U3(m31C21 + m32C22 + m33C23)

− A3Ẽ1U1(m11C31 + m12C32 + m13C33)

− A3Ẽ2U2(m21C31 + m22C32 + m23C33)

− A3Ẽ3U3(m31C31 + m32C32 + m33C33). (4.48)

Here

mij =

⎛

⎝
pσ
1 pσ

2 pσ
3

qσ
1 qσ

2 qσ
3

rσ
1 rσ

2 rσ
3

⎞

⎠

ij

(4.49)

and mij is its inverse. Recall that pσ is defined to be the unique vector in
the kernel of fijkp

i, and similarly for qσ, rσ.
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This superpotential is still invariant under the remnant symmetry

δCij = −pi(pσ)jF1 δF̃1 = −U1F1

δCij = −qi(qσ)jF2 δF̃2 = −U2F2

δCij = −ri(rσ)jF3 δF̃3 = −U3F3 (4.50)

which kills three components of Cij . Once again we can take care of this by
adding three Lagrange multipliers and the mass terms

p̄ip̄
σ
j CijY1 + q̄iq̄

σ
j CijY2 + r̄ir̄

σ
j CijY3 (4.51)

to the superpotential (4.48). The total superpotential, given by (4.48) plus
(4.51), is then our final answer for the physical quiver given in figure 14(b).

We can go one step further and do an additional mutation, to get the
exceptional collection (3.34) we studied previously. This mutation actu-
ally yields a Seiberg duality on node 2, which was to be expected because
we are now mapping a physical ghost-free quiver into another physical
quiver. To carry out the Seiberg duality, we introduce the meson fields
Li = AiẼ1, Mi = AiẼ2, Ni = AiẼ3 and the dual quarks ai, hi. We also mod-
ify the superpotential to

W = fijkC
ijZk + p̄ip̄

σ
j CijY1 + q̄iq̄

σ
j CijY2 + r̄ir̄

σ
j CijY3

+ piLiF̃1 + qiMiF̃2 + riNiF̃3 + h1a
iLi + h2a

iMi + h3a
iNi

− L1U1(m11C11 + m12C12 + m13C13)

− M1U2(m21C11 + m22C12 + m23C13)

− N1U3(m31C11 + m32C12 + m33C13)

− L2U1(m11C21 + m12C22 + m13C23)

− M2U2(m21C21 + m22C22 + m23C23)

− N2U3(m31C21 + m32C22 + m33C23)

− L3U1(m11C31 + m12C32 + m13C33)

− M3U2(m21C31 + m22C32 + m23C33)

− N3U3(m31C31 + m32C32 + m33C33). (4.52)

After some simple field redefinitions this superpotential coincides exactly
with the superpotential we obtained previously (3.40).
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