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Abstract

Hitchin has shown that the moduli space M of the dimensionally
reduced self-dual Yang–Mills equations has a hyperKähler structure. In
this paper, we first explicitly show the hyperKähler structure, the details
of which is missing in Hitchin’s paper. We show here that M admits three
prequantum line bundles, corresponding to the three symplectic forms.
We use Quillen’s determinant line bundle construction and show that
the Quillen curvatures of these prequantum line bundles are proportional
to each of the symplectic forms mentioned above. The prequantum line
bundles are holomorphic with respect to their respective complex struc-
tures. We show how these prequantum line bundles can be derived from
cocycle line bundles of Chern–Simons gauge theory with complex gauge
group in the case when the moduli space is smooth.
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1 Introduction

Given a symplectic manifold (M, Ω), geometric prequantization is a
construction of a prequantum line bundle L on M, whose curvature is
proportional to the symplectic form. If M admits such a prequantum
line bundle L, then one can associate a Hilbert space, namely, the square
integrable sections of L and a correspondence between functions on M to
operators acting on the Hilbert space such that the Poisson bracket of two
functions corresponds to the commutator of the corresponding operators.
The latter is ensured by the fact that the curvature of the prequantum line
bundle is precisely the symplectic form Ω [29]. Let f ∈ C∞(M). Let Xf be
the vector field defined by Ω(Xf , ·) = −df . Let θ be the symplectic potential
correponding to Ω. Then we can define the operator corresponding to the
function f to be f̂ = −i�[Xf − i/�θ(Xf )] + f . Then if f1, f2 ∈ C∞(M) and
f3 = {f1, f2}, Poisson bracket of the two induced by the symplectic form,
then [f̂1, f̂2] = −i�f̂3. When M has hyperKähler structure, there are three
symplectic structures and hence three Possion brackets and one can often
construct prequantum line bundles for each one of them. This is called
hyperKähler prequantization.

A relevant example in our context would be geometric quantization of
the moduli space of flat connections on a principal G-bundle P on a com-
pact Riemann surface Σ [27, 2]. We describe this in some detail. Let
A be the space of Lie-algebra valued connections on the principal bun-
dle P . Let N be the moduli space of flat connections (i.e., the space of
flat connections modulo the gauge group). The prequantum line bundle is
the the determinant line bundle of the Cauchy–Riemann operator, namely,
L = ∧top(Ker ∂̄A)∗ ⊗ ∧top(Coker ∂̄A). It carries the Quillen metric such that
the canonical unitary connection has a curvature form which coincides with
the natural Kähler form on the moduli space of flat connections on vector
bundles over the Riemann surface of a given rank [20]. To elaborate, on the
affine space of all connections, there is a natural symplectic form, propor-
tional to Tr

∫
Σ α ∧ β, where α, β ∈ TAA = Ω1(M, adP ). It can be shown,

using a moment map construction, that this symplectic form descends to
the moduli space of flat connections. One can show that the determinant
line bundle equipped with the Quillen metric has curvature proportional to
this symplectic form [20].

Inspired by this construction, we constructed a prequantum line bundle
on the moduli space of solutions to the vortex equations [9]. In this paper
we geometrically quantize the hyperKähler structure in the Hitchin system.
We elaborate on this.
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The self-duality equations on a Riemann surface arise from a dimensional
reduction of self-dual Yang–Mills equations from 4 to 2 dimensions [14].
They have been studied extensively in [14]. They are as follows. Let M be
a compact Riemann surface of genus g > 1 and let P be a principal U(n)-
bundle over M . Let A be a unitary connection on P , i.e., A = A(1,0) + A(0,1)

such that A(1,0) = −A(0,1)∗, where ∗ denotes conjugate transpose [12, 18].
Thus we can identify the space of all unitary connections with its (0, 1)-
part, i.e., A(0,1). Let Φ1,0 be a complex Higgs field such that Φ1,0 ∈ H =
Ω1,0(M ; adP ⊗ C).

Note. In [14], this Φ1,0 is written as Φ. But we will be using the present
notation since we will define Φ0,1 as well and our Φ = Φ1,0 + Φ0,1.

The pair (A, Φ1,0) will be said to satisfy the self-duality equations if,

F (A) = −[Φ(1,0), Φ(1,0)∗], (1.1)

d′′
AΦ(1,0) = 0. (1.2)

Here F (A) is the curvature of the connection A. The operator d′′
A is the

(0, 1) part of the extension of the covariant derivative operator to act on
Ω1,0(M, adP ⊗ C). Also Φ(1,0)∗ = φ∗dz̄, where φ∗ is taking conjugate trans-
pose of the matrix of φ. There is a gauge group acting on the space of
(A, Φ) which leave the equations invariant. If g is an U(n) gauge transfor-
mation then (A1, Φ1) and (A2, Φ2) are gauge equivalent if dA2g = gdA1 and
Φ2g = gΦ1 [14, p. 69]. Taking the quotient by the gauge group of the solution
space to (1.1) and (1.2) gives the moduli space of solutions to these equa-
tions and is denoted by M. Hitchin shows that there is a natural metric on
the moduli space M and further proves that the metric is hyperKähler [14].

This paper is a sequel of the paper [8], where we constructed the prequan-
tum line bundle on M whose curvature is the first symplectic form of [14].
In [8], we had explicitly given this symplectic form , the metric and the
moment map construction (details of which are missing in [14]). But the pre-
quantum line bundle we constructed in [8] is a bit unnatural, since we used

∂ + A
(1,0)
0 + Φ(1,0) which gauge transforms like ḡ(∂ + A

(1,0)
0 + Φ(1,0))ḡ−1. In

this paper, we first rectify this and construct the prequantum bundle on M
corresponding to the first symplectic form using ∂̄ + A

(0,1)
0 + Φ(0,1) which

gauge transforms like g(∂̄ + A
(0,1)
0 + Φ(0,1))g−1 which is more natural to

use. Next, in this paper, we construct the prequantum line bundles on
M corresponding to the other two symplectic forms which give rise to the
hyperKähler structure. We show the metric, the three symplectic forms, the
three complex structures, and the three prequantum lines bundles explicitly.
In the next section we discuss the holomorphicity of the prequantum line
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bundles w.r.t. the three complex structures. In the last section, we show how
the prequantum line bundles are related to cocycle line bundles in Chern–
Simons gauge theory with complex gauge group at least in the case when the
moduli space is smooth. In [28], Witten had quantized one of the symplectic
forms from Chern–Simons gauge theory with complex gauge group. We find
that by introducing a parameter λ we can obtain all three symplectic forms
from this theory — though applications of this as in [11] is still a topic of
research.

Papers which may be of interest in this context are [3, 4, 6, 15, 23, 28].
These papers use algebraic geometry and algebraic topology and may pro-
vide alternative methods to quantizing the hyperKähler system, though ours
is the only paper we have seen in which all three quantizations appear explic-
itly. Our method is very elementary and we explictly construct the prequan-
tum line bundles. The only machinery we use is Quillen’s construction of
the determinant line bundle [20]. It would be interesting to see if there is
any relation between the present quantizations and the ones appearing in
the previous papers.

After writing the paper, the author found Kapustin and Witten’s paper
[17], where they have applied Beilinson and Drinfeld’s quantization of one of
the symplectic forms of the Hitchin system to study the geometric Langlands
program. We should mention that though the metric on the moduli space is
exactly the same their complex structure J is our −K and their K is our J .
In the end of section 2, we will explain the dictionary between the physicists’
notation for the symplectic forms in [17] and our notation. It would be
interesting to see if there is any relevance of all the three quantizations
obtained here to geometric Langlands program.

Geometric prequantization of the moduli spaces of vector bundles (with
fixed determinant) over a Riemann surface can be found in [24]. Some
interesting applications of the determinant line bundles to geometry and
physics can be found in [25, 26].

2 Symplectic and hyperKähler structures

Let the configuration space be defined as C = {(A0,1, Φ1,0)|A0,1 ∈ A, Φ1,0 ∈
H} where A is the space of unitary connections on P , identified with its A(0,1)

part and H = Ω(1,0)(M, adP ⊗ C) is the space of Higgs field. We can extend
the Higgs field Φ(1,0) by its (0, 1) part by defining Φ(0,1) = −Φ(1,0)∗, where ∗
is conjugate transpose. But only the (1, 0) parts belong to H and appear in
the equation (1.1) and (1.2). Unitary connections satisfy A = A(1,0) + A(0,1),
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where A(1,0)∗ = −A(0,1). Thus we can identify the space of unitary con-
nections with its (0, 1) part and the tangent space is also (0, 1) part of
a 1-form Let α(0,1), β(0,1) ∈ TAA = Ω(0,1)(M, adP ⊗ C) such that α(1,0) =
−α(0,1)∗ and β(1,0) = −β(0,1)∗. Let γ(1,0), δ(1,0) ∈ TΦH = Ω(1,0)(M, adP ⊗ C).
Let us extend γ(1,0), δ(1,0) by defining γ(0,1) = −γ(1,0)∗ and δ(0,1) = −δ(1,0)∗.
Thus, α = α(0,1) + α(1,0), β = β(0,1) + β(1,0), γ = γ(0,1) + γ(1,0), and δ =
δ(0,1) + δ(1,0), i.e., α, β, γ, δ ∈ Ω1(M, adP ). Let X, Y be two tangent vec-
tors to the configuration space, given by X = (α(0,1), γ(1,0)), and Y = (β(0,1),

δ(1,0)). As in [8], let us define a metric on the complex configuration space

g(X, Y ) = g((α(0,1), γ(1,0)), (β(0,1), δ(1,0)))

= −
∫

M
Tr(α ∧ ∗1β) − 2 Im

∫

M
Tr(γ(1,0) ∧ ∗2δ

(1,0)tr)

= −2 Im
∫

M
Tr(α(0,1) ∧ β(1,0)) − 2 Im

∫

M
Tr(γ(1,0) ∧ δ(1,0)∗)

= 2 Im
∫

M
Tr(α(0,1) ∧ β(0,1)∗) − 2 Im

∫

M
Tr(γ(1,0) ∧ δ(1,0)∗). (2.1)

Here ∗1 denotes the Hodge star taking dx forms to dy forms and dy forms
to −dx forms (i.e., ∗1(ηdz) = −iηdz and ∗1(η̄dz̄) = iη̄dz̄) and ∗2 denotes
the operation (another Hodge star) such that ∗2(ηdz) = η̄dz̄ and ∗2(η̄dz̄) =
−ηdz. To get the metric in its final form, we have used the fact that

2 Im
∫

M
Tr(α(0,1) ∧ β(1,0)) =

1
i

∫

M
Tr

[
α(0,1) ∧ β(1,0) − α(0,1) ∧ β(1,0)

]

=
1
i

∫

M
Tr

[
α(0,1) ∧ β(1,0)−(−α(0,1)tr)∧ (−β(1,0)tr)

]

= −i
∫

M
Tr

[
α(0,1) ∧ β(1,0) − α(1,0) ∧ β(0,1)

]

=
∫

M
Tr(α ∧ ∗1β).

Note that the metric can also be expanded and written in the form

g(X, Y ) = i
[∫

M
Tr(α0,1 ∧β1,0 −α1,0 ∧β0,1) −

∫

M
Tr(γ1,0 ∧ δ0,1 + γ0,1 ∧ δ1,0)

]

We check that this coincides with the metric on the moduli space M given
by [14, p. 79, p. 88]. On T(A,Φ)C = TAA × TΦH which is Ω(0,1)(M, adP ⊗
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C) × Ω(1,0)(M, adP ⊗ C), Hitchin defines a metric g1 such that

g1((α(0,1), γ(1,0)), (α(0,1), γ(1,0))) = 2i
∫

M
Tr(α(0,1)∗ ∧ α(0,1))

+ 2i
∫

M
Tr(γ(1,0) ∧ γ(1,0)∗).

∗ denotes conjugate transpose as usual. Let γ(1,0) = cdz, where c is a
matrix. On T(A,Φ)C, our metric

g((α, γ(1,0)), (α, γ(1,0)))

= −
∫

M
Tr(α ∧ ∗1α) − 2 Im

∫

M
Tr(γ(1,0) ∧ ∗2γ

(1,0)tr)

= −
∫

M
Tr

[
(α(1,0) + α(0,1)) ∧ (−iα(1,0) + iα(0,1))

]
− 2 Im

∫

M
Tr(cdz ∧ c∗dz̄)

= 2i
∫

M
Tr(α(0,1) ∧ α(1,0)) − 2 Im

∫

M
(−2i)Tr(cc∗)dx ∧ dy

= −2i
∫

M
Tr(α(0,1) ∧ α(0,1)∗) + 4

∫

M
Re(Tr(cc∗))dx ∧ dy

= 2i
∫

M
Tr(α(0,1)∗ ∧ α(0,1)) + 2i

∫

M
(−2i)Tr(cc∗)dx ∧ dy

= 2i
∫

M
Tr(α(0,1)∗ ∧ α(0,1)) + 2i

∫

M
Tr(cc∗)dz ∧ dz̄

= 2i
∫

M
Tr(α(0,1)∗ ∧ α(0,1)) + 2i

∫

M
Tr(γ(1,0) ∧ γ(1,0)∗),

where we have used the fact that α(1,0) = −α(0,1)∗ and that Tr(cc∗) is real.
Thus we get the same metric as Hitchin does.

To give the complex structures of the hyperKähler structure explicitly,
(which is missing in [14]), let us define three almost complex structures
acting on the tangent space to the configuration space, i.e. acting on T =
Ω(0,1)(M, adP ⊗ C) × Ω(1,0)(M, adP ⊗ C),

I =
[
i 0
0 i

]

,

J =
[

0 i∗̃2
i∗̃2 0

]

,

K =
[

0 −∗̃2
−∗̃2 0

]

,

where ∗̃2(α) = ∗2α
tr is such that ∗̃2(iα) = −i∗̃2α.
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Note. A more detailed description of the three complex structures is given
in the section (4), where we discuss holomorphicity of the prequantum line
bundles. There we give it in physicists’ notation commensurate with [17].

These three complex structures satisfy the quarternionic algebra of matri-
ces acting on T = Ω(0,1)(M, adP ⊗ C) × Ω(1,0)(M, adP ⊗ C):

I2 = J 2 = K2 = −1,

IJ = −J I = K,

J K = −KJ = I,

KI = −IK = J .

We define three symplectic forms as follows:

Ω(X, Y ) = g(X, IY ),

Q1(X, Y ) = g(X, J Y ),

Q3(X, Y ) = g(X, KY )

Let X = (α(0,1), γ(1,0)), Y = (β(0,1), δ(1,0)) be two tangent vectors belong-
ing to T .

Ω((α(0,1), γ(1,0)), (β(0,1), δ(1,0)))

= g((α(0,1), γ(1,0)), (iβ(0,1), iδ(1,0)))

= 2 Im
∫

M
Tr(α(0,1) ∧ (iβ(0,1))∗) − 2 Im

∫

M
Tr(γ(1,0) ∧ (iδ(1,0))∗)

= 2Re
∫

M
Tr(α(0,1) ∧ β(1,0)) − 2 Im

∫

M
Tr((i)γ(0,1) ∧ (δ(0,1))

=
∫

M
Tr(α ∧ β) − 2Re

∫

M
Tr(γ(1,0) ∧ δ(0,1))

=
∫

M
Tr(α ∧ β) −

∫

M
Tr(γ ∧ δ),

where we have used the fact that

2Re
∫

M
Tr(α(0,1) ∧ β(1,0)) =

∫

M
Tr(α ∧ β)

which follows from the fact that
∫

M
Tr(α(0,1) ∧ β(1,0)) =

∫

M
Tr

[
(−α(0,1)tr) ∧ (−β(1,0)tr)

]

=
∫

M
Tr(α(1,0) ∧ β(0,1)). (2.2)



826 RUKMINI DEY

Following the ideas in [14], we had shown in [8] by a moment map con-
struction that this form descends to a symplectic form on the moduli space
M. (The explicit construction of this form is missing in [14]). The first equa-
tion, i.e., equation (1.1) gives the moment map for this symplectic form.

Q1(X, Y ) = g(X, J Y ) = g((α(0,1), γ(1,0)), (i∗̃2δ
(1,0), i∗̃2β

(0,1)))

= g((α(0,1), γ(1,0)), (−iδ(0,1), iβ(1,0)))

= −2Re
∫

M
Tr(α(0,1) ∧ δ(1,0)) − 2Re

∫

M
Tr(γ(1,0) ∧ β(0,1))

= −
[∫

M
Tr(α ∧ δ) +

∫

M
Tr(γ ∧ β)

]

,

Q2(X, Y ) = g(X, KY ) = g((α(0,1), γ(1,0)), (−∗̃2δ
(1,0),−∗̃2β

(0,1)))

= g((α(0,1), γ(1,0)), (δ(0,1),−β(1,0)))

= −2 Im
∫

M
Tr(α(0,1) ∧ δ(1,0)) − 2 Im

∫

M
Tr(γ(1,0) ∧ β(0,1))

=
∫

M
Tr(α ∧ δ̃ + γ̃ ∧ β),

where δ̃ = i (δ(1,0) − δ(0,1)) and γ̃ = i (γ(1,0) − γ(0,1)). Next, following [14,
p. 90], we define a symplectic form

Q(X, Y ) = 2Tr
∫

M
(δ(1,0) ∧ α(0,1) − γ(1,0) ∧ β(0,1)) = (Q1 + iQ2)(X, Y ).

In [14], Hitchin shows that this form Q descends as a symplectic form to
the moduli space of solution of the self-duality equations. He proves this
using a moment map construction, i.e., the second equation, equation (1.2),
gives the moment map for this symplectic form. (Note that the factor of two
does not alter the moment map construction). Using his method, it can be
shown that the metric g descends to the moduli space M and is hyperKähler
and the three symplectic forms are exactly Ω,Q1,Q2.

2.1 Exactness of forms Q1 and Q2

In this section, we first establish a link between the notation in [17, p. 40–44]
and our notation. We will take the example of Q1 and Q2 and explain the
notation.

In the Kapustin Witten notation, Φ = φzdz + φz̄dz̄ = Φ1,0 + Φ0,1 and let
X = (α, γ), Y = (β, δ). We will denote by ω1 their ωK and by ω2 their ωJ .
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Their J is our −K and their K is our J , their ωI is (−1/2π)Ω and we will
just now show that their ωJ is (1/2π)Q2 and ωK is (−1/2π)Q1.

ω1(X, Y ) =
i

2π

∫

M
i(dz ∧ dz̄)Tr

[
(δφz̄ ⊗ δAz − δAz ⊗ δφz̄)

− (δφz ⊗ δAz̄ − δAz̄ ⊗ δφz)
]
(X, Y )

=
−1
2π

[∫

M
Tr(−γ0,1 ∧ β1,0 − α1,0 ∧ δ0,1)

− Tr(γ1,0 ∧ β0,1 + α0,1 ∧ δ1,0)
]

=
1
2π

∫

M
Tr(γ ∧ β + α ∧ δ)

=
−1
2π

Q1(X, Y ).

Similarly,

ω2(X, Y ) =
1
2π

∫

M
i(dz ∧ dz̄)Tr

[
(δφz̄ ∧ δAz) + (δφz ∧ δAz̄)

]
(X, Y )

=
1
2π

∫

M
i(dz ∧ dz̄)Tr

[
(δφz̄ ⊗ δAz − δAz ⊗ δφz̄)

+ (δφz ⊗ δAz̄ − δAz̄ ⊗ δφz)
]
(X, Y )

=
i

2π

∫

M
Tr

[

(−γ0,1 ∧β1,0 −α1,0 ∧ δ0,1) + γ1,0 ∧β0,1 + α0,1 ∧ δ1,0)
]

=
1
2π

Q2(X, Y ).

Now as in [17, p. 44], Q1 = δθ1, where

θ1 = −i
∫

M
i(dz ∧ dz̄)Tr(φz̄δAz − φzδAz̄) = −

∫

M
Tr(Φ ∧ δA)

such that θ1(α, γ) = −
∫
M Tr(Φ ∧ α).

Similarly, Q2 = δθ2, where θ2 =
∫
M i(dz ∧ dz̄)Tr(φz̄δAz + φzδAz̄) such

that θ2(α, γ) =
∫
M Tr(Φ1,0 ∧ α0,1 − Φ0,1 ∧ α1,0).

Now θ1 and θ2 both descend as 1-forms on the moduli space M since they
are gauge invariant. Recall Φ, Φ̃, α transform by the adjoint representation
of U(n) (unlike A) and keeps the 1-forms θ1 and θ2 gauge invariant (since
we are taking trace).

Thus Q1 and Q2 are both exact.
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3 Prequantum line bundles

In this section, we review Quillen’s determinant line bundle of Cauchy–
Riemann operators which will enable us to construct prequantum line bun-
dles corresponding to the hyperKähler structure in the Hitchin system.

First, let us note that a connection A on a principal bundle induces a
connection on any associated vector bundle E. We will denote this con-
nection also by A, since the same “ Lie-algebra valued 1-form” A (mod-
ulo representations) gives a covariant derivative operator enabling you to
take derivatives of sections of E [19, p. 348]. A very clear description
of the determinant line bundle can be found in [5, 20]. Here we men-
tion the formula for the Quillen curvature of the determinant line bun-
dle ∧top(Ker ∂̄A)∗ ⊗ ∧top(Coker ∂̄A) = det(∂̄A), where ∂̄A = ∂̄ + A(0,1) , given
the canonical unitary connection ∇Q, induced by the Quillen metric [20].
Recall that the affine space A (notation as in [20]) is an infinite-dimensional
Kähler manifold. Here each connection is identified with its (0, 1) part.
Since the total connection is unitary (i.e., of the form A = A(1,0) + A(0,1),
where A(1,0) = −A(0,1)∗) this identification is easy. In fact, for every A ∈ A,
T ′

A(A) = Ω0,1(M, adP ⊗ C) and the corresponding Kähler form is given by

F (α, β) = 2Re
∫

M
Tr(α(0,1) ∧ β(0,1)∗) = −2Re

∫

M
Tr(α(0,1) ∧ β(1,0)),

where α(0,1), β(0,1) ∈ Ω0,1(M, adP ⊗ C), and β(1,0) = −β(0,1)∗. It is skew
symmetric, if you interchange α(0,1) = Ad z̄ and β(0,1) = Bdz̄ (follows from
the fact that Im(Tr(AB∗)) = −Im(Tr(BA∗)) for matrices A and B, using
once again dz̄ ∧ dz is imaginary). Let α = α(0,1) + α(1,0), β = β(0,1) + β(1,0).
It is clear from the fact that α(1,0) = −α(0,1)∗ and β(1,0) = −β(0,1)∗ we have

F (α, β) = −
∫

M
Tr(α ∧ β).

(see for instance [15, p. 358]). Let ∇Q be the connection induced from the
Quillen metric and F(∇Q) be the Quillen curvature. Then one has,

F(∇Q) =
i

2π
F

3.1 Quantization of the moduli space M

In this section, we will show that for each of the symplectic forms Ω, Q1 and
Q2 there are prequantum line bundles P, E , N whose respective curvatures
are these symplectic forms.
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First, we note that to the connection A we can add any one form and still
obtain a derivative operator.

On the principal bundle P on the Riemann surface, we can define new
connections, A ± Φ = A(0,1) + A(1,0) ± Φ(0,1) ± Φ(1,0) and A ∓ Φ̃ = A(0,1) +
A(1,0) ± iΦ(0,1) ∓ iΦ(1,0), where Φ̃ = i(Φ(1,0) − Φ(0,1)), i.e., Φ̃(0,1) = −iΦ(0,1)

and Φ̃(1,0) = iΦ(1,0). (Note that, as usual, Φ(1,0)∗ = −Φ(0,1) and Φ̃(1,0)∗ =
−Φ̃(0,1)).

Definitions

Let us denote by L = det(∂̄ + A0,1) a determinant bundle on A.

Let R = det(∂̄ + A
(0,1)
0 + Φ(0,1)), where A0 is a connection whose gauge

equivalence class is fixed, i.e. A0 is allowed to change only in the gauge
direction.

Let P = L−2 ⊗ R2 denote a line bundle over C = A × H.

(This combination will give the prequantum line bundle corresponding
to Ω). Let us define E± = det(∂̄ + A(0,1) ± Φ(0,1)) on the affine space B± =
{A(0,1) ± Φ(0,1)|A(0,1) ∈ A, Φ(0,1)∗ = −Φ(1,0) ∈ H} which is isomorphic to
C = {A(0,1) ∈ A} × {Φ(1,0) ∈ H} = A × H.

Let E = E+ ⊗ (E−)−1 (We take this combination because it will give the
prequantum line corresponding to Q1).

Similarly let us define N± = det(∂̄ + A(0,1) ± iΦ(0,1)) on the affine space
V± = {A(0,1) ± iΦ(0,1)|A(0,1) ∈ A, Φ(0,1)∗ = −Φ(1,0) ∈ H} which is isomorphic
to C = A × H.

Let N = N+ ⊗ (N−)−1 (Once, again this will be the prequantum line
bundle corresponding to Q2).

Lemma 3.1. P, E± and N± are well-defined line bundles over M ⊂ C/G,
where G is the gauge group.

Proof. Let us consider the Cauchy–Riemann operator D = ∂̄ + A(0,1) +
Φ(0,1) which appears in E+. All the other cases are analogous. Under gauge
transformation D = ∂̄ + A(0,1) + Φ(0,1) → Dg = g(∂̄ + A(0,1) + Φ(0,1))g−1,
since it is the (0, 1) part of the connection operator d + A + Φ which trans-
forms in the same way. We can show that the operators D and Dg have
isomorphic kernel and cokernel and their corresponding Laplacians have
the same spectrum and the eigenspaces are of the same dimension. Let
Δ denote the Laplacian corresponding to D and Δg that corresponding to
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Dg.The Laplacian is Δ = D̃D, where D̃ = ∂ + A(1,0) + Φ(1,0), where recall
A(1,0)∗ = −A(0,1) and Φ(1,0)∗ = −Φ(0,1). Note that D̃ → D̃g = gD̃g−1 under
gauge transformation since it is the (1, 0) part of the connection operator
d + A + Φ which transforms in the same way. Thus Δg = gΔg−1. Thus the
isomorphism of eigenspaces of Δ and Δg is s → gs. We describe here how
to define the line bundle on the moduli space. Let Ka(Δ) is the direct sum
of eigenspaces of the operator Δ of eigenvalues < a, over the open subset
Ua = {A(0,1) + Φ(0,1)|a /∈ Spec Δ} of the affine space B+. The determinant
line bundle is defined using the exact sequence

0 −→ Ker D −→ Ka(Δ) −→ D(Ka(Δ)) −→ Coker D −→ 0

Thus one identifies detD = ∧top(Ker D)∗ ⊗ ∧top(Coker D) with ∧top(Ka

(Δ))∗ ⊗ ∧top(D(Ka(Δ))) (see [5] for more details) and there is an isomor-
phism of the fibers as D → Dg. Thus one can identify

∧top(Ka(Δ))∗ ⊗ ∧top(D(Ka(Δ))) ≡ ∧top(Ka(Δg))∗ ⊗ ∧top(D(Ka(Δg))).

By extending this definition from Ua to V a = {(A(0,1), Φ(1,0))|a /∈ Spec Δ},
an open subset of C, we can define the fiber over the quotient space V a/G
to be the equivalence class of this fiber. Covering C by open sets of the type
V a enables us to define it on C/G. Then we restrict it to the moduli space
M ⊂ C/G.

Similarly one can deal with the other terms in E , P and N . �

3.2 Curvatures and symplectic forms

Recall, α ∈ Ω1(M, adP ) has the decomposition α = α(1,0) + α(0,1), where
α(1,0) = −α(0,1)∗ . Similar decomposition holds for β, γ, δ ∈ Ω1(M, adP ).

Let p = (A, Φ) ∈ S, where S is the space of solutions to Hitchin equations
(1.1) and (1.2). Let X, Y ∈ T[p]M. We write X = (α, γ) and Y = (β, δ),
where α(0,1), β(0,1) ∈ TA(A(0,1)) = Ω(0,1)(M, adP ⊗ C) and γ(1,0), δ(1,0) ∈
TΦH = Ω(1,0)(M, adP ⊗ C). Since T[p]M can be identified with a subspace
in TpS orthogonal to TpOp (the tangent space to the gauge orbit) then X, Y
can be said to satisfy (a) X, Y ∈ TpS i.e., they satisfy linearization of (1.1)
and (1.2) and (b) X, Y are orthogonal to TpOp, the tangent space to the
gauge orbit.

Let FL−2 , FR2 , denote the Quillen curvatures of the determinant line
bundles L−2, R2, respectively. Then, by the Quillen formula in the previous
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section,

FL−2((α, γ), (β, δ)) = −2FL((α, γ), (β, δ))

= −2
i
π

Re Tr
∫

M
(α(0,1) ∧ β(0,1)∗)

=
i
π

Tr
∫

M
α ∧ β

(Since there is no Φ-term in L, γ and δ donot contribute).

FR2((α, γ), (β, δ)) = 2FR((α, γ), (β, δ))

= 2
i
π

Re
∫

M
Tr(γ(0,1) ∧ δ(0,1)∗)

= −2
i
π

Re
∫

M
Tr(γ(0,1) ∧ δ(1,0))

= −2
i
π

Re
∫

M
Tr((−γ(0,1)tr) ∧ (−δ(1,0)tr)))

= −2
i
π

Re
∫

M
Tr(γ(1,0) ∧ δ(0,1))

= 2
i
π

Re
∫

M
Tr(γ(1,0) ∧ δ(1,0)∗)

= − i
π

∫

M
Tr(γ ∧ δ).

Note. γ(0,1) and δ(0,1)∗ contributes because of the term Φ(0,1) in the
C-R operator in R. α, β do not contribute to this curvature because in
the definition of R the gauge equivalence class of A0 is fixed.

It is easy to check that the curvature of P is

FL−2 + FR2 =
i
π

Ω.

The line bundles E± are determinant of C-R operators of connections
A(0,1) ± Φ(0,1). Hence, by the formula is the previous section, in the Quillen
curvature of E± terms like α ± γ and β ± δ will appear.

The Quillen curvature of E± is

FE±((α, γ), (β, δ)) =
−i
2π

(∫

M
Tr[(α ± γ) ∧ (β ± δ)]

)

=
−i
2π

(∫

M
Tr[α ∧ β ± γ ∧ β ± α ∧ δ + γ ∧ δ]

)
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Thus curvature of E = E+ ⊗ (E−)−1 is

(FE+ − FE−)((α, γ), (β, δ)) =
−i
π

∫

M
Tr(α ∧ δ + γ ∧ β) =

i
π

Q1((α, γ), (β, δ))

Define γ̃ = iγ(1,0) − iγ(0,1). Similarly define δ̃.

N± are determinant lines of Cauchy–Riemann operators of connections
A(0,1) ∓ Φ̃(0,1). Thus by the formula of the Quillen curvature, we will have
terms like α ∓ γ̃ and β ∓ δ̃. The Quillen curvature of N± is

FN±((α, γ), (β, δ)) =
−i
2π

(∫

M
Tr[(α ∓ γ̃) ∧ (β ∓ δ̃)]

)

=
−i
2π

∫

M
Tr[α ∧ β ∓ γ̃ ∧ β ∓ α ∧ δ̃ + γ̃ ∧ δ̃])

The Quillen curvature of the line bundle N = N+ ⊗ (N−)−1 is

(FN+ − FN−)((α, γ), (β, δ)) =
i
π

∫

M
Tr(α ∧ δ̃ + γ̃ ∧ β) =

i
π

Q2((α, γ), (β, δ))

Thus we have proved the following theorem.

Theorem 3.2. The moduli space of solutions M admits three prequantum
line bundles P, E and N such that their Quillen curvatures are respectively
the three sympletic forms, (i/π)Ω, (i/π)Q1 and (i/π)Q2 which correspond to
the hyperKähler structure in M.

4 Holomorphicity and Polarization

Proposition 4.1. P−1 is a I-holomorphic, E−1 is a J -holomorphic and
N −1 is a K-holomorphic prequatum line bundle with curvature −(i/π)Ω,
−(i/π)Q1 and −(i/π)Q2, respectively.

Proof. Recall that

I(α(0,1)) = iα(0,1),

I(γ(1,0)) = iγ(1,0),

I(α(1,0)) = −iα(1,0),

I(γ(0,1)) = −iγ(0,1).

Thus w.r.t. I, A(0,1) is holomorphic and Φ(0,1) is anti holomorphic. Thus
L is holomorphic and R is anti-holomorphic, by the same argument as in [20].
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But P−1 = L2 ⊗ R−2 has the A(0,1)-term as it is and the Φ(0,1)-term in the
inverse bundle. Thus P−1 is I-holomorphic.

Secondly,

J (α(0,1)) = −iγ(0,1),

J (γ(1,0)) = iα(1,0),

J (α(1,0)) = iγ(1,0),

J (γ(0,1)) = −iα(0,1).

Thus w.r.t. J , the A(0,1) − Φ(0,1)-term is holomorphic and the A(0,1) +
Φ(0,1)-term is anti-holomorphic. Thus E−1 = E−1

+ ⊗ E− is holomorphic since
the anti-holomorphic term comes in the inverse.

Thirdly,

K(α(0,1)) = γ(0,1),

K(γ(1,0)) = −α(1,0),

K(α(1,0)) = γ(1,0),

K(γ(0,1)) = −α(0,1).

Thus w.r.t. K, the A(0,1) + iΦ(0,1)-term is anti-holomorphic and theA(0,1)

− iΦ(0,1)-term is holomorphic. Thus N −1 = N −1
+ ⊗ N− is holomorphic. �

4.1 Polarization

Since the symplectic forms are all Kähler, we can take square integrable
I-holomorphic sections of P−1, J -holomorphic sections of E−1 and
K-holomorphic sections of N −1 as our Hilbert spaces. But we are still not
guaranteed finite dimensional Hilbert spaces.

5 Cherns–Simons gauge theory with complexified gauge
group

We introduce here the Chern–Simons gauge theory with complexified gauge
group since flat connections on a principal bundle with complexified gauge
group are essentially solutions of self-duality equations, as we shall elaborate
below. In [28], Witten had explored this — quantizing one of the symplectic
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forms. By introducing a parameter λ we wish to get all three the symplectic
forms and all the prequantum line bundles from the Chern–Simons cocycle
line bundles using the method of [21].

We take up the case of an SU(2) principal bundle P and denote by P c

when the group is complexified, i.e., SL(2, C). Then any flat connection on
P c is (upto gauge transformation) is a sl(2, C) connection of the form

Bλ = A + λΦ(1,0) +
1
λ

Φ(1,0)∗ = A + λΦ(1,0) − 1
λ

Φ(0,1),

where |λ|2 = 1. This is because Bλ is of the form A + iΨ, where A and Ψ are
unitary. This decomposition is always possible since adP c = adP + i adP.
Papers which use similar decomposition are [10, 7]. (Note Ψ is unitary
since |λ|2 = 1 and Φ = Φ1,0 + Φ0,1 is unitary). Flatness of Bλ for all λ ∈ S1

is equivalent to the fact that (A, Φ(1,0)) satisfy the self-duality equations
(which is easy to check). Thus the moduli space of connections Bλ which
are flat for all λ is the moduli space of Hitchin systems, namely M.

We consider now the Chern–Simons integral

Z =
∫

DA exp(ikCS(A))

where

CS(A) =
1
4π

∫

N
Tr

(

A ∧ dA +
2
3
A ∧ A ∧ A

)

.

Here N is a 3-manifold such that ∂N = M, where M is our original compact
Riemann surface.

In what follows we will take A = Bλ which is an extension of the sl(2, C)
connection Bλ mentioned before on M to N . g̃ is an extenstion of the
SL(2, C) gauge transformation to N . As in [21] we define the Chern–Simons
cocycle to be

Θ(Bλ, g) = exp i(CS(Bλ
g̃) − CS(Bλ))

with which we define a line bundle on M (which is identified with flat Bλ

connections as mentioned before) in what follows.

Lλ = M ×Θ C,

where there is a quotient by means of the equivalence relation:

(Bλ, z) ≡ (Bg
λ, Θ(Bλ, g)z).

As in [21], the curvature of this line bundle can be computed to be

Fλ(α̃, β̃) =
i

2π
Tr

∫

M
α̃ ∧ β̃
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where

α̃ = α1,0 + α0,1 + λγ1,0 − 1
λ

γ0,1,

β̃ = β1,0 + β0,1 + λδ1,0 − 1
λ

δ0,1.

Thus, Fλ = i/2π(ω1 + λω2 + 1/λω3), where ω1(X, Y ) = Ω(X, Y ) =
∫
M

Tr(α ∧ β − γ ∧ δ), ω2(X, Y ) =
∫
M Tr(α0,1 ∧ δ1,0 + γ1,0 ∧ β0,1), ω3(X, Y ) =

−
∫
M Tr(α1,0 ∧ δ0,1 + γ0,1 ∧ β1,0). Thus we obtain a whole S1 worth of line

bundles whose curvatures are parametrised by λ.

To construct the prequantum line bundles P, E and N from this family
Lλ we note that if λ = ±i, Fλ = i/2π(Ω ∓ iQ1) and if λ = ±1, Fλ = i/2π
(Ω ∓ iQ2).

Thus τ = Li ⊗ L−i has curvature (i/π)Ω. Thus τ and P have the same
curvature. We say can that the Chern classes of these two line bundles are
same as well when H2(M, Z) has no torsion. When the associated bundle
V to P in [14] is of rank 2 and degree odd , the Hitchin moduli space M is
smooth and H2(M, Z) has no torsion [16]. Since at least in this situation
the Chern class cannot be torsion, curvature will determine the Chern class,
this line bundle τ is topologically equivalent to P.

Also, L2
i ⊗ τ−1 has curvature (1/π)Q1 which is exact and thus since the

moduli space has no torison the Chern class is zero and hence the bundle is
trivial. Since the curvature of E is (i/π)Q1 it is also trivial. Since these are
trivial bundles, they are isomorphic and one can put i-times the connection
on L2

i ⊗ τ−1 to get the connection on E .

Similarly, L2
1 ⊗ τ−1 has curvature (1/π)Q2 which is exact and thus since

the moduli space has no torsion the Chern class is zero and hence the bundle
is trivial. N has curvature (i/π)Q2 and hence it is also trivial. Since these are
trivial bundles they are isomorphic and one can put i-times the connection
on L2

1 ⊗ τ−1 to get the connection on N .

Thus it is possible to get the prequantum line bundles from these cocycle
line bundles Lλ in the special case when the moduli space is smooth. In
general, the moduli space is an orbifold, and perhaps, there could be torsion
in H2(M, Z). Then it is not clear that having the same curvature would
imply the lines bundles are topologically isomorphic.

Further work. It would be interesting to see if these cocycle line bun-
dles Lλ can be used to get some topological or geometrical invariants of
3-manifolds, as in perhaps [11].
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