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Abstract

We consider some elementary aspects of the geometry of the space
of probability measures endowed with Wasserstein distance. In such
a setting, we discuss the various terms entering Perelman’s shrinker
entropy and characterize two new monotonic functionals for the volume-
normalized Ricci flow. One is obtained by a rescaling of the curvature
term in the shrinker entropy. The second is associated with a gradient
flow obtained by adding a curvature-drift to Perelman’s backward heat
equation. We show that the resulting Fokker–Planck PDE is the natural
diffusion flow for probability measures absolutely continuous with respect
to the Ricci-evolved Riemannian measure. We also discuss its exponential
trend to equilibrium and its relation with the viscous Hamilton–Jacobi
equation.
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Introduction

The Ricci flow introduced by Hamilton [19] (see [2, 12, 21] for reviews) is a
geometric evolution equation which deforms the metric g of a Riemannian
manifold (Σ, g) in the direction of its Ricci curvature Ric(g). Under suitable
conditions, it provides the natural technique for smoothing and uniformiz-
ing (Σ, g) to specific model geometries. From the perspective of theoretical
physics, the Ricci flow often appears as a real-space renormalization group
flow describing the dynamics of geometrical couplings. Typical examples
are afforded by non-linear σ-model theory [17] or by the averaging of cos-
mological spacetimes [10, 11]. In such a setting, in order to estimate the net
effect of renormalization on the scaling of geometrical parameters, it is often
desirable to establish monotonicity results for the various curvature func-
tionals associated with the flow. This is an extremely non-trivial task and
the recent results by Perelman [36] provide an important unexpected break-
through of vast potential use in geometrical physics. Apparently inspired by
the dilatonic action in string theory, Perelman has introduced [36] the two
functionals:

F [g; f ] .=
∫

Σ
(R(β) + |∇f |2)e−f dμg

and

W [g; fβ, τ ] .=
∫

Σ

[
τ
(
|∇fβ|2 + R(β)

)
+ fβ − 3

] e−fβ

(4πτ(β))3/2 dμg(β)

(see below for notation), depending on the geometry of the Riemannian man-
ifold (Σ, g(β)) undergoing a Ricci flow evolution β → g(β),β ∈ [0, T ), and on
the choice of a probability measure d�(β) = (4πτ(β))−3/2Vol[Σβ]e−fβdΠβ

(dΠβ
.= Vol−1[Σβ]dμg(β) denoting the normalized Riemannian volume

element) associated with a backward diffusion of the function f . The func-
tional F [g; f ] has, as already stressed, the structure of the dilatonic action,
familiar in non-linear σ-model theory and in the statistical mechanics of
extended objects. W [g; fβ, τ ] is basically a scale-invariant generalization of
F [g; f ] associated with the introduction of the scale parameter τ(β), which
controls the localization properties of the measure d�(β). The basic prop-
erty of F [g; f ] and W [g; fβ, τ ] is their weakly monotonic character along
Ricci flow trajectories, a fact that has been put to use by Perelman [36–38]
in his work on the proof of Thurston geometrization conjecture. Such mono-
tonicity properties and a few formal similarities with standard entropies in
statistical mechanics account for the attribute entropic. Further justifica-
tions come from a closer look into the structure of F [g; f ] and W [g; fβ, τ ]. In
this connection, the functional W [g; fβ, τ ] is particularly interesting since, as
is easily checked, it contains a natural combination of the relative entropy
S[d�(β)||dΠβ] associated with the pair of measures (dΠβ, d�(β)), of the
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corresponding entropy generating functional I[d�(β)||dΠβ], and of the
d�(β)-localized curvature average < R(β) >d�(β)

.=
∫
Σ R(β)d�(β). The par-

ticular form of their combination in W [g; fβ, τ ] is strongly suggested by the
theory of logarithmic Sobolev inequalities [18, 36]. Note that < R(β) >d�(β)
enters as a defective parameter, setting the size of scalar curvature over the
region where d�(β) is localized. It is interesting to remark that none of the
constituents of W [g; fβ, τ ] has, by itself, any manifest monotonicity prop-
erty along Ricci flow trajectories, and it is just their overall interaction in
W [g; fβ, τ ] that makes the shrinker entropy monotonic. Various authors
[16, 30–32] have exploited the strategy suggested by Perelman’s construc-
tion and succeeded in specializing or extending W [g; fβ, τ ] to other specific
settings. However, the natural question of the monotonicity of the con-
stituent entropic functionals generating W [g; fβ, τ ] does not seem to have
received particular attention. Such an analysis is relevant to the physical
applications of the Ricci flow and also for a deeper understanding of the
properties of Perelman’s shrinker entropy. In this paper, we discuss such
an issue in connection with the volume-normalized Ricci flow (such a choice
being motivated by our long-standing interest in cosmological applications
of the theory). Our main results are 2-fold. The analysis of the volume-
normalized version of the Hamilton–Perelman flow easily shows that by a
natural renormalization τ(β) �→ τ̃(β) of the scale parameter τ(β) one can
make explicitly monotonic the curvature term τ(β) < R(β) >d�(β) appear-
ing in W [g; fβ, τ ]. In this way, we can connect the growth properties of
scalar curvature to the localization behavior of d�(β). This strategy also
suggests that, by deforming Perelman’s backward diffusion {d�(β)}β<T �→
{dΩ(β)}β<T by adding a suitable drift term, one may also get monotonicity
for the corresponding renormalized relative entropy S[dΩ(β)||dΠβ]. Quite
remarkably, the answer is in the affirmative and the resulting deformation
is provided by a Fokker–Planck (backward) diffusion {dΩt}t≥0, t

.= β∗ − β,
with a drift term generated by the scalar curvature fluctuations. We show
that, in a well-defined sense, this Fokker–Planck process is the natural dif-
fusion along the (volume-normalized) Ricci flow. The analysis of {dΩt}t≥0
shows that we are dealing with a gradient flow generated by a (weakly)
monotonic relative entropy S[dΩt||dΠt]. As an elementary consequence of
such a monotonicity, we prove that if the Ricci curvature is positive then
one gets exponential convergence of {dΩt}t≥0 to dΠt.

Our analysis relies on a remarkable parametrization of diffusion processes
suggested by Otto [34, 35] related to the use of the Wasserstein metric on
measure spaces [40] (see [1] for an in-depth and very informative presenta-
tion of the whole subject). The distance induced by such a metric provides
a way of turning the space of probability measures on a Riemannian mani-
fold into a geodesic space and has recently drawn attention in attempts of
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extending the notion of Ricci curvature to general metric spaces [26, 28, 40,
46]. The preliminary results presented in this paper point to the possibility,
recently advocated also by Lott and Villani, that the use of the geometry of
the space of probability measures and of the associated notions of optimal
transport and Wasserstein metric may also play a significant role in Ricci
flow theory. (Added in the arXive version v3: important developments relat-
ing Wasserstein distance and Ricci flow theory have been recently considered
also by McCann and Topping [29] and useful remarks in this connection are
also discussed in the nice monography [42] by Topping. The enlightening
book by Villani [45] provides a most inspiring analysis of the deep interplay
between optimal transportation theory and Riemannian geometry).

Outline of the paper. We start by recalling a few basic properties of the space
of probability measures on Riemannian manifolds. In Section 1.1 we discuss
the geometry of such a space from the point of view advocated by Otto. In
particular, we analyze the case when a curve of probability measures covers
a fiducial curve of Riemannian metrics. The natural framework for such a
discussion is not a fixed probability space but rather a bundle of probability
measure spaces over the space of Riemannian metrics, where each fiber is
a probability space with a distinguished reference measure (the normalized
Riemannian volume element) metrized by the Wasserstein distance with cost
function determined by the given Riemannian distance function. This is the
situation occurring in the application of the formalism to Ricci flow theory.
To our knowledge, such a general framework is not explicitly discussed in
the existing literature on optimal transportation theory, and thus we pause
a little bit for analyzing it in some detail. In such a setting we explicitly
discuss the properties of gradient flows in the bundle space of probability
measure. We conclude (Section 1.2) this long overview of the probabilistic
formalism by recalling the characterization of Wasserstein distance and its
interplay with the relative entropy and the entropy production functionals.
The connection with the formalism developed by Otto comes by when dis-
cussing the characterization of Wasserstein length of a curve of probability
measures and its geodesic nature. Here we analyze in some depth the exten-
sion of the notion of Wasserstein length of a curve of probability measure to
the case when the curve in question covers a reference curve of Riemannian
metrics. Again, this case does not appear in the standard literature and
needs to be explicitly addressed. In particular, we emphasize that the char-
acterization of Wasserstein geodesics as solution of a Hamilton–Jacobi equa-
tion cannot be trivially extended to this more general case. In our opinion,
this is a basic issue to be solved in order to apply optimal transportation
theory to the Ricci flow. We comment on a possible approach to a strategy
for a solution in the final part of the paper. In Section 2 we discuss the
Perelman coupling for the volume–normalized Ricci flow. Section 2.1 recalls
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a few properties of the shrinker entropy, some really well–known and a few
others not so easily spotted in the existing literature. In particular, by elab-
orating on a remark by Figalli, we explicitly show that the shrinker entropy
is an entropy balance functional basically generated by the time derivative
of the relative entropy associated with Perelman backward heat equation.
In Section 2.2 we prove that there is a natural combination of a scale param-
eter and of the average curvature 〈R〉d� which is weakly–monotonic along
the Ricci flow. This curvature entropy gives rise to a useful d�–averaged
Harnack–type estimate. In Section 3 we introduce the relation between Ricci
flow and Fokker–Planck diffusion. This exploits Otto’s parametrization of a
probability measure by introducing a potential for scalar curvature fluctua-
tions (Section 3.1). Such a potential has a familiar counterpart in the Ricci
flow theory for surfaces, and plays a distinguished role in our analysis. In
particular, we use it for estimating the Wasserstein length of the curve of
normalized Riemannian volume elements along the Ricci flow. In Section
3.2 we exploit the formalism so developed for discussing, under very general
conditions, the evolution of an absolutely continuous curve of probability
measure along the (backward) Ricci flow. In Section 3.3 these results are
used to prove that the Fokker–Planck diffusion is the natural diffusion of a
probability measure along the Ricci flow. In particular, the associated rela-
tive entropy is weakly monotonic and the flow is gradient-like. We also show
that the flow of the associated Radon–Nikodym derivatives (with respect to
the evolving Riemannian measure) is a true gradient flow with respect to
Otto’s inner product. We also emphasize the associated contraction prop-
erties in the corresponding (quadratic) Wasserstein distance and their role
in discussing the trend to equilibrium for the Fokker–Planck diffusion. In
such a setting, one naturally discovers that the associated relative entropy is
displacement-convex. A property, this latter, which is strongly reminiscent
of the characterization of Wasserstein geodesics in the space of probability
measures. This point is discussed by showing that the Fokker–Planck diffu-
sion along the backward Ricci flow can be equivalently rewritten as a viscous
Hamilton–Jacobi equation, where the viscosity parameter is related with the
lower bound of the Ricci curvature. The paper concludes with an appendix
stressing a few basic differences between the Fokker–Planck diffusion and
the Perelman diffusion along the backward Ricci flow.

1 Probability measures on Riemannian manifolds

Throughout this paper, Σ will denote a smooth three-dimensional manifold,
which we assume to be closed and without boundary. We let C∞(Σ, R)
and .= C∞(Σ,⊗2

+ T ∗Σ) be the space of smooth functions and of smooth
definite positive symmetric bilinear forms on Σ, respectively. Diff(Σ) is the
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group of smooth diffeomorphisms of Σ, and Riem(Σ) .= C∞(Σ,⊗2
+T ∗Σ) is

the space of all smooth Riemannian metrics over Σ. The tangent space,
T(Σ,g)Riem(Σ), to Riem(Σ) at (Σ, g) can be naturally identified with the
space of symmetric bilinear forms C∞(Σ,⊗2T ∗Σ) over Σ. It is endowed
with the pre–Hilbertian L2(Σ, g) inner product defined on (Σ, g) by

(W, V )L2(Σ)
.=
∫

Σ
gil gkm Wik Vlm dμg, (1.1)

W , V ∈ C∞(Σ,⊗2 T ∗Σ) being square-summable. The hypothesis of smooth-
ness has been made for simplicity. Results similar to those described below,
can be obtained for finite Hölder or Sobolev differentiability. In such a
framework, let dμg, Vol [Σ]g, and dΠg

.= Vol [Σ]−1
g dμg, respectively, denote

the Riemannian density, the volume, and the corresponding normalized mea-
sure on a Riemannian manifold (Σ, g) ∈ Riem(Σ). In what follows, we
will often refer (rather informally) to the bundle π : Prob(Σ) → Riem(Σ)
of all Borel probability measures on Σ, which are absolutely continuous
with respect to normalized Riemannian volume element dΠg. Each fiber
Prob(Σ, g) .= π−1(Σ, g) is endowed with the topology of weak convergence,
and can be parametrized by the set of all Radon–Nikodym derivatives with
respect to dΠg, i.e.,

Prob(Σ, g) .=
{

N dΠg : N ∈ Cb(Σ, R+),
∫

Σ
N dΠg = 1

}
, (1.2)

where Cb(Σ, R+) is the space of positive bounded measurable functions [15],
(again, we often restrict our analysis to the smooth functions in Cb(Σ, R+)).
To avoid notational prolixity, given a probability measure d� on (Σ, g), we
shall write for simplicity d� ∈ Prob(Σ, g) to actually mean (d�/dΠg) dΠg ∈
Prob(Σ, g). Moreover, for later convenience we shall restrict our attention
to smooth probability measure with finite k-th moments, k ≥ 1, i.e., we
assume (but this is not strictly necessary as long as (Σ, g) is compact) that
the Radon–Nikodym derivative N satisfies

∫
Σ[dg(x, y)]kNdΠg < ∞ for some

(and hence all) x ∈ (Σ, g), where dg(x, y) denotes the Riemannian geodesic
distance in (Σ, g). Typically we set k = 2.

1.1 Otto’s parametrization

As suggested by Otto [34] (see also the remarkable paper [35] on which this
section is based and from which I extracted many observations) when dis-
cussing probability diffusion semigroups on a Riemannian manifold (Σ, g) it
can be profitable to consider each fiber Prob(Σ, g) ∈ Prob(Σ) as an infinite-
dimensional manifold locally modeled over the Hilbert space completion of
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the tangent space

TNProb(Σ, g) .=
{

h ∈ Cb(Σ, R),
∫

Σ
h NdΠg = 0

}
, (1.3)

with respect to the inner product defined, at the given Radon–Nikodym
derivative N , by the Dirichlet form

〈ϕ, ζ〉(g,N)
.=
∫

Σ

(
gik ∇kϕ∇iζ

)
N dΠg, (1.4)

for any ϕ, ζ ∈ C∞
0 (Σ, R). (Recently, this matter has been discussed from a

geometric point of view in a series of papers by Lott and Villani, [24, 25, 27]).
Under such an identification, one can represent vectors in TN Prob(Σ, g)
as the solutions of an elliptic problem naturally associated with the given
probability measure N dΠg according to

(h, N) ∈ TNProb(Σ, g) × Prob(Σ, g) �−→ ψ ∈ Cb(Σ, R)/R, (1.5)

where, for any given pair (h, N), the function ψ is formally determined on
the given (Σ, g) by the elliptic PDE

−∇i (N ∇iψ) = h, (1.6)

under the equivalence relation identifying any two such solutions differing
by an additive constant. In general, such a characterization is somewhat
heuristic, at least in the sense that its validity must be checked case by case,
(a particularly clear and deep analysis of the whole topic is discussed in [1]).
As we shall see, it applies in our setting, and it provides a useful framework
for discussing the entropic aspects of the volume-normalized Ricci flow.

There is a further aspect about the geometry of Prob(Σ), which will be
useful to have at our disposal. First, note that the tangent space to the
bundle Prob(Σ) at (g, N dΠg) can be decomposed as

T(g,N dΠg) Prob(Σ) = Tg Riem(Σ) ⊕ TN Prob(Σ, g), (1.7)

a decomposition which, since Riem(Σ) is contractible, extends to the whole
tangent bundle T Prob(Σ). Let Γ : [0, 1]  λ �→ gab(λ) be a smooth curve of
metrics in Riem(Σ), with Vol (Σ, g(λ)) = Vol (Σ, g(λ = 0)) ∀λ ∈ [0, 1]. By
means of the corresponding one-parameter family of normalized volume ele-
ments dΠλ

.= Vol[Σ]−1
g(λ)dμg(λ) ∈ Prob(Σ, g(λ)), the curve Γ naturally lifts

to a corresponding curve in the bundle Prob(Σ),

[0, 1] −→ Prob(Σ)

λ �−→ (gab(λ), dΠλ) .
(1.8)

The tangent vector ∈ T(g(λ),dΠλ) Prob(Σ) to such a curve at any given value
of the parameter λ, say λ = s, can be readily characterized, in analogy with
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(1.6), if we parametrize ∂
∂λdΠλ|λ=s in terms of a potential Θs obtained as

the solution of the elliptic equation

gik(s)∇i (dΠs ∇kΘs) = − ∂

∂λ
dΠλ

∣∣∣∣
λ=s

= −dΠs gik(λ)
∂

∂λ
gik(λ)

∣∣∣∣
λ=s

, (1.9)

where ∇ denotes the covariant derivative with respect to the metric gab(λ).
Since ∂

∂λ gik(λ) ∈ Tg(λ)Riem(Σ), equation (1.9) is formulated in the tangent
space T(g(λ),dΠλ) Prob(Σ) (this is the reason why we have expressed it in
terms of the measure density dΠλ rather than the corresponding Radon–
Nikodym derivative). Note that dΠλ is covariantly constant over the corre-
sponding (Σ, g(λ)),

∇idΠλ = dΠλ gab(λ)∇igab(λ) = 0 (1.10)

(this is equivalent to the familiar formula ∂i ln
√

g(λ) = δc
aΓ

a
ic(λ), where

Γa
ic(λ) are the Christoffel symbols associated with gab(λ)); thus we can

rewrite (1.9) as � Θs = −gik(λ) ∂
∂λ gik(λ)|s, where � .= gik(λ)∇i∇k denotes

the Laplace–Beltrami operator on (Σ, g(λ)).

It must be stressed that the family of potentials Θλ depends on the chosen
curve of metrics λ �→ gab(λ), and not only from the associated Riemannian
measures λ �→ dΠλ. Actually, the dependence from dΠλ can be easily traded
for the action of the diffeomorphisms group Diff(Σ). This follows by observ-
ing that since we have normalized the Riemannian volume elements dΠλ,
we can apply Moser’s theorem (see, e.g., [4, 7.2.3]), according to which, on
a compact manifold Σ admitting two volume forms dμ and dν with

∫
Σ dμ =∫

Σ dν, there exists a diffeomorphism φ : Σ −→ Σ such that φ∗dμ = dν. In
our case, this implies that there exists a λ-dependent diffeomorphism

φλ : (Σ, gab(λ)) −→ (Σ, gab(λ = 0)),

yk �−→ xi = φi
λ(yk, λ)

(1.11)

such that

dΠλ(yk) = J(φλ) dΠλ,=0(xi(yk)), (1.12)

where

J(φλ) .=
∣∣∣∣∂xi(yk, λ)

∂yh

∣∣∣∣ (1.13)

is the Jacobian of φλ. In terms of the diffeomorphism φλ, and of the metric
gik(λ), we can rewrite (1.9) as

gik(s)∇i ∇kΘs = − ∂

∂λ
ln J(φλ)

∣∣∣∣
λ=s

. (1.14)
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Formally, given a solution Φs of (1.9) and any (λ-independent) smooth
function with compact support ζ ∈ C∞

0 (Σ, R), we have

d

dλ

∫
Σλ

ζ(x)dΠλ

∣∣∣∣
s

=
∫

Σs

gik(λ) ∇iζ(x) ∇kΘs dΠs = 〈ζ,Θs〉s , (1.15)

where 〈·, ·〉s is a shorthand notation for 〈·, ·〉(g(s),N=1). According to (1.4),
the relation (1.15) identifies (gik(λ), dΠλ) �−→ ( ∂

∂λgik(λ), Θλ) as the tan-
gent vector to the curve λ → (gik(λ), dΠλ). The family of function Θλ

also plays a fundamental role in characterizing gradient flows in the bundle
Prob(Σ) when, as in our case, the inner product 〈·, ·〉s varies. To discuss this
point, let us consider an absolutely continuous curve of probability measures
[0, 1]  λ �→ d�λ ∈ Prob(Σ), covering the fiducial curve λ �→ dΠλ, i.e., d�λ

is absolutely continuous with respect to dΠλ ∀λ ∈ [0, 1]). Let us denote by
Ψλ the tangent vector to λ �→ d�λ defined, in analogy with (1.9), by the
elliptic PDE

gik(s)∇i (d�s ∇kΨs) = − ∂

∂λ
d�λ

∣∣∣∣
λ=s

. (1.16)

In terms of the associated Radon–Nikodym derivatives d�λ
dΠλ

, connecting the
fiducial curve of reference measures λ �→ dΠλ to the curve λ �→ d�λ, we have
(from the identity ∂

∂λd�λ = ∂
∂λ(d�λ

dΠλ
dΠλ))

(
∂

∂λ
+ ∇iΘλ ∇i

)
d�λ

dΠλ

∣∣∣∣
λ=s

= −∇i

[
d�s

dΠs
∇i(Ψs − Θs)

]
, (1.17)

which is easily seen to be interpretable in the sense

d

dλ

∫
Σ

ζ(x)
(

d�λ

dΠλ

)
dΠλ

∣∣∣∣
λ=s

=
∫

Σ
∇iζ(x) ∇i(Ψs − Θs)

(
d�s

dΠs

)
dΠs

(1.18)

∀ζ(x) ∈ C∞
0 (Σ). Namely, (Ψλ − Θλ) is the tangent vector at λ = s, to the

curve of Radon–Nikodym derivatives [0, 1]  λ �→
(

d�λ
dΠλ

)
∈ Cb(Σ, R+). If we

evaluate the inner product between (Ψλ − Θλ) and a generic tangent vector
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ξ ∈ Td�λ/dΠλ
Prob(Σ, g(λ)), then we get

〈(Ψλ − Θλ), ξ〉d�λ/dΠλ
=
∫

Σλ

[
gik(λ) ∇i(Ψλ − Θλ) ∇kξ

] (d�λ

dΠλ

)
dΠλ

= −
∫

Σλ

ξ ∇i

[
d�λ

dΠλ
gik(λ) ∇k(Ψλ − Θλ)

]
dΠλ

=
∫

Σλ

ξ

[(
∂

∂λ
+ gik(λ) ∇iΘλ ∇k

)
d�λ

dΠλ

]
dΠλ

=
〈(

∂

∂λ
+ gik(λ) ∇iΘλ ∇k

)
d�λ

dΠλ
, ξ

〉
L2(dΠλ)

,

(1.19)

where 〈, 〉L2(dΠλ) denotes the standard L2(dΠλ) inner product on (Σ, g(λ)).
Similarly, if we denote by GradF the gradient of a smooth functional F :
Prob(Σ) −→ R, with respect to the inner product 〈·, ·〉d�λ/dΠλ

, then we
compute

〈GradF , ξ〉 d�λ
dΠλ

=
∫

Σλ

gik(λ)∇i GradF ∇kξ

(
d�λ

dΠλ

)
dΠλ

= −
∫

Σλ

ξ ∇i

[
d�λ

dΠλ
gik(λ) ∇kGradF

]
dΠλ

= −
〈

∇i

[
d�λ

dΠλ
gik(λ) ∇kGradF

]
, ξ

〉
L2(dΠλ)

. (1.20)

Note that in both (1.19) and (1.20), we have explicitly inserted the λ–
dependent metric gik(λ) in order to make it clear that the inner product
〈·, ·〉d�λ/dΠλ

depends from the curve of Riemannian metrics λ �→ gab(λ).

When F is identified with the relative entropy functional [15],

S[d� ‖ dΠg]
.=

⎧⎨
⎩
∫
Σ

d�

dΠg
ln

d�

dΠg
dΠg if d� � dΠg,

∞ otherwise,
(1.21)

where d� � dΠg stands for absolute continuity, the relations (1.19) and
(1.20) allow to characterize a class of flows λ �→ d�λ

dΠλ
which will be important

in what follows. We start computing GradS[d� ‖ dΠg] in such a case. To
this end, let us consider a linearization of d�

dΠg
in the direction of the generic
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vector ξ ∈ Td�/dΠg Prob(Σ, g), i.e.,

d�

dΠg
(ε) .=

d�

dΠg
+ ε ξ, (1.22)

with ξ parametrized a’ la Otto,

ξ = −∇i

[
d�

dΠg
∇iΥ

]
. (1.23)

The corresponding linearization of S[d� ‖ dΠg] in the direction ξ provides

D S[d� ‖ dΠg] ◦ ξ
.=

d

d ε
Sε[d� ‖ dΠg]

∣∣∣∣
ε=0

= −
∫

Σ

(
1 + ln

d�

dΠg

)
∇i

[
d�

dΠg
∇iΥ

]
dΠg

=
∫

Σ
∇i ln

d�

dΠg
∇iΥ dΠg

=
〈

ln
d�

dΠg
, Υ
〉

d�/dΠg

,

(1.24)

which implies that the gradient, with respect to 〈·, ·〉d�\dΠg
, is given by

GradS[d� ‖ dΠg] = ln
d�

dΠg
. (1.25)

With these preliminary remarks along the way, given the flow of reference
Riemannian metrics λ �→ gab(λ), let us consider a curve [0, 1]  λ �→ d�λ

dΠλ
∈

C∞(Σ, R) ∩ Cb(Σ, R+) whose tangent vector (Ψλ − Θλ) is such that

〈(Ψλ − Θλ), ξ〉d�λ/dΠλ
+ 〈GradS[d� ‖ dΠg], ξ〉d�λ/dΠλ

= 0 (1.26)

∀ξ ∈ Td�λ/dΠλ
Prob(Σ, g(λ)). Note that, according to (1.19) and (1.20), such

a condition is equivalent, in the L2(Σ, dΠλ) sense, to the PDE(
∂

∂λ
+ gik(λ) ∇iΘλ ∇k

)
d�λ

dΠλ
= ∇i

[
d�λ

dΠλ
gik(λ) ∇kGradS

]
, (1.27)

where GradS is a shorthand notation for GradS[d� ‖ dΠg]. If we insert in
this latter condition the expression (1.25) for GradS, we get the Fokker–
Planck equation (

∂

∂λ
+ ∇iΘλ ∇i

)
d�λ

dΠλ
= �

(
d�λ

dΠλ

)
. (1.28)

An elementary computation shows that

d

dλ
S[d�λ ‖ dΠλ] = 〈(Ψλ − Θλ), S[d�λ ‖ dΠλ]〉d�λ/dΠλ

. (1.29)
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Thus, if we set ξ = S[d�λ ‖ dΠλ] in (1.26), we get

d

dλ
S[d�λ ‖ dΠλ] = − 〈GradS, GradS〉d�λ/dΠλ

, (1.30)

which implies that (1.26) is the condition for the curve [0, 1]  λ �→ d�λ
dΠλ

∈
C∞(Σ, R) ∩ Cb(Σ, R+) to be the gradient flow of the relative entropy func-
tional S[d�λ ‖ dΠλ], with respect to the λ-varying inner product 〈, 〉d�\dΠg

.
Note that, in the L2(Σ, dΠg)-sense, such a gradient flow condition implies
that the Radon–Nikodym derivative d�λ

dΠλ
evolves according to the Fokker–

Planck diffusion (1.28).

The relation (1.26) is an elementary but important property of the evolu-
tion of the relative entropy functional S[d�λ ‖ dΠλ] along a fiducial curve of
Riemannian metrics λ �→ gab(λ). It is ultimately related to Moser’s theorem.
To disclose the rationale underlying this latter remark, let us recall the well-
known fact that, for a given fixed metric g, the gradient flow (d�λ, dΠg)λ≥0
of S[d�λ ‖ dΠg] is the standard heat flow on (Σ, g) [43–45]. In the same vein,
let us observe that, along a fiducial curve of Riemannian metrics λ �→ gab(λ),
we can write

S[d�λ ‖ dΠλ] =
∫

Σ

d�λ

dΠλ
ln

d�λ

dΠλ
dΠλ

=
∫

Σ

d�λ

dΠλ=0
ln

d�λ

dΠλ=0
dΠλ=0 −

∫
Σ

d�λ

dΠλ=0
ln

dΠλ

dΠλ=0
dΠλ=0

= S[d�λ ‖ dΠλ=0] −
∫

Σ

d�λ

dΠλ=0
ln (J(φλ)) dΠλ=0,

(1.31)

where we have exploited Moser’s theorem in the form (1.12). Thus, the
relative entropy functional S[d�λ ‖ dΠλ] of a diffusion process (d�λ)λ≥=0,
with respect to a λ-varying reference measure (dΠλ)λ≥=0, is the sum of the
relative entropy of (d�λ)λ≥=0 with respect to the fixed Riemannian vol-
ume element dΠλ=0, plus a forcing potential term provided by ln (J(φλ)).
It is well-known that the gradient flows of relative entropies with forcing
potentials typically yield for a Fokker–Planck diffusion [44, 45]. Obvi-
ously, this heuristic explanation must be taken with care, because of the
λ-dependence in the potential term ln (J(φλ)). Nonetheless, it provides a
natural framework for understanding the subtle interplay between the dif-
fusion of probability measure on Riemannian manifolds evolving along a
geometric flow λ �→ (Σ, g(λ)). Indeed, a central theme of this paper is that
Fokker–Planck dynamics has remarkable geometric properties exactly when
the fiducial curve of reference measures λ �→ dΠλ is generated by the (back-
ward) Ricci flow.
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1.2 Relative entropy and the Wasserstein distance

As we have seen above, the relative entropy functional S[d�λ ‖ dΠλ], defined
by (1.21), has a distinguished role in disclosing the interplay between
Riemannian geometric flows and diffusion processes (d�λ)λ≥0. In partic-
ular, the approach to relative equilibrium (d�λ)λ≥0 ⇒ dΠg is often con-
trolled by a logarithmic Sobolev inequality (LSI) [15, 18, 35, 43], that can
be conveniently expressed [15, 35], in terms of S[d�λ ‖ dΠλ], as

LSI(ρ; B) .=
1
2ρ

(I[d� ‖ dΠg] + B) − S[d� ‖ dΠg] ≥ 0, (1.32)

where ρ > 0 and B ≥ 0 are constants depending on the underlying geometry
of (Σ, g), and

I[d� ‖ dΠg]
.=
∫

Σ

∣∣∣∣∇ ln
d�

dΠg

∣∣∣∣
2

d� (1.33)

is the entropy production functional (or Fisher information [15]). In general
we can set B = 0 in (1.32), however, as will become apparent after equation
(2.29) below, the defective form (1.32) has some notational advantages in
our setting. Also, recall that if we assume the Bakry–Emery criterion [3]
Ric(g) − Hess(ln d�

dΠg
) ≥ ρ g, where Hess(◦) denotes the Hessian on (Σ, g),

then LSI(ρ; B) holds on compact Riemannian manifolds without boundary
[5, 8, 9, 15, 31, 39].

In this section, we describe some of the basic properties of S[d�λ ‖ dΠλ],
[1, 35] that we shall need later on. Let us start by recalling that Jensen’s
inequality implies that S[d� ‖ dΠg] ∈ [0, +∞] (this can also be checked
directly by noticing that S[d� ‖ dΠg] can be rewritten [35] as the integral

of the non-negative function d�
dΠg

(
ln d�

dΠg
− 1
)

+ 1). Moreover, as a func-
tion of the probability measures d� and dΠg, the functional S[d� ‖ dΠg] is
convex and lower semicontinuous in the weak topology on Prob(Σ, g), and
S[d� ‖ dΠg] = 0 iff d� = dΠg. It can be characterized [15] by the variational
formula

S[d� ‖ dΠg] = sup
f

{∫
Σ

f d� − ln
∫

Σ
exp[f ] dΠg : f ∈ Cb(Σ; R)

}
. (1.34)

Roughly speaking, S[d� ‖ dΠg] provides the rate functional for the large
deviation principle [15] controlling how deviant is the distribution of d� with
respect to the reference measure dΠg. In particular, one has [15] (Pinsker’s
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inequality)

S[d� ‖ dΠg] ≥ 1
2

‖d� − dΠg‖2
var , (1.35)

where we have introduced the total variation norm on Prob(Σ, g) defined by

‖d� − dΠg‖var
.= sup

‖f‖b≤1

{∣∣∣∣
∫

Σ
fd� −

∫
Σ

fdΠg

∣∣∣∣ : f ∈ Cb(Σ; R)
}

, (1.36)

with ‖f‖b ≤ 1 the uniform norm on Cb(Σ; R). This is a particular (and
elementary) case of transportation inequalities involving S[d� ‖ dΠg] and
the notion of Wasserstein distance between probability measures [1, 44].
Let us recall that for d�1, d�2 ∈ Prob(Σ, g), we define the Wasserstein
distance of order s between d�1 and d�2 as

DW
s (d�1, d�2)

.= inf
π∈H(d�1,d�2)

(∫∫
Σ×Σ

d(x, y)sπ(d�1 d�2)
)1/s

, (1.37)

where H(d�1, d�2) ⊂ Prob((Σ, g) × (Σ, g)) denotes the set of probability
measures on Σ × Σ with marginals d�1 and d�2, i.e., such that π(U × Σ) =
d�1(U) and π(Σ × U) = d�2(U) for any measurable set U ⊂ Σ; (H(d�1,
d�2) is often called the set of couplings between d�1 and d�2). Note
that by Kantorovich–Rubinstein duality, we have that DW

1 (d�1, d�2) =
‖d�1 − d�2‖var. Intuitively, DW

s (d�1, d�2) represents, as we consider all
possible couplings between the measures d�1 and d�2, the minimal cost
needed to transport d�1 into d�2 provided that the cost to transport the
point x into the point y is given by d(x, y)s. The distance DW

s (d�1, d�2)
metrizes Prob(Σ, g), turning it into a geodesic space.

The pair (Prob(Σ, g), DW
2 ) has recently drawn attention [26, 28, 33, 40,

46] as an appropriate setting for extending the notion of Ricci curvature to
general metric spaces. In this connection, a particularly elegant approach
has been introduced in [46], by relating the (K–)convexity of the entropy
functional S[d� ‖ dΠg] to Ricci curvature lower bounds. Explicitly ([46,
Theorem 1]), if γ : [0, 1]  λ → d�λ ∈ Prob(Σ, g) is a (Prob(Σ, g), DW

2 )-
geodesic, (note that, typically, γ is not the linear interpolation of d�λ and
dΠg), then a lower bound on Ric(g) is equivalent to the K-convexity of
S[d�λ ‖ dΠg] along any such geodesic γ, i.e.,

S[d�λ ‖ dΠg] ≤ (1 − λ)S[d�0 ‖ dΠg] + λS[d�1 ‖ dΠg]

− K

2
λ(1 − λ)[DW

2 (d�0, d�1)]2 (1.38)

iff Ric(g) ≥ K, with K ∈ R. Such a result again points to transportation
inequalities [6, 7, 23, 44]. For our purposes, it is sufficient to recall the
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(simpler) bound ([7, case 5 of Theorem 1]) which always holds on compact
Riemannian manifolds

DW
s (d�, dΠg) ≤ 21/2sdiam(Σ, g) S[d� ‖ dΠg]1/2s (1.39)

∀ d� ∈ Prob(Σ, g), and where diam(Σ, g) .= sup{dg(x, y); x, y ∈ (Σ, g)} den-
otes the diameter of (Σ, g). It should be stressed that when, as in our case,
one has a family of Riemannian manifolds λ �→ (Σ, g(λ)), such a Talagrand–
like inequality is effective as long as one has some uniform control on
diam(Σ, g(λ)).

A rather direct connection between Otto’s description of Prob(Σ, g),
discussed in the previous paragraph, and the (quadratic) Wasserstein dis-
tance DW

2 (d�1, d�2) has been stressed by Otto and Villani [35] (see also
[1] for a more general setting) by relating DW

2 (d�1, d�2) to the geodesic
distance associated with the inner product (1.4). This relation has been
analyzed in detail by Lott [25], who has proved the following (see [25, Propo-
sitions 3.3, 4.24]).

Theorem 1.1 (Lott). Let � : [0, 1]  λ �→ d�λ ∈ Prob(Σ, g) be a smooth
curve in Prob(Σ, g) with tangent vector Ψλ, defined for any fixed λ = s by
the elliptic PDE

gik∇i (d�s ∇kΨs) = − ∂

∂λ
d�λ

∣∣∣∣
λ=s

, (1.40)

and such that ∇Ψλ �= 0 ∀λ ∈ [0, 1] (i.e., the curve is immersed). Let 0 =
λ0 ≤ λ1 ≤ · · · ≤ λJ = 1 be a partition of [0, 1], and let

L(�) .= sup
J∈N

sup
0=λ0≤λ1≤···≤λJ=1

J∑
j=1

DW
2 (d�λj−1 , d�λj

) (1.41)

denote the length of the curve � in the Wasserstein space
(
Prob(Σ, g), DW

2
)
.

Then

L(�) =
∫ 1

0

(
〈 Ψλ, Ψλ 〉d�λ

)1/2
dλ

=
∫ 1

0

(∫
Σ

∇iΨλ ∇iΨλ d�λ

)1/2

dλ. (1.42)

Moreover, the curve � is a geodesic in
(
Prob(Σ, g), DW

2
)

if its tangent vector
Ψλ satisfies the Hamilton–Jacobi equation

∂Ψλ

∂λ
+

|∇Ψλ|2
2

= 0, (1.43)

modulo the addition of a spatially–constant function to Ψλ.
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It is important to discuss if the relation (1.42) of Theorem 1.1 still holds
if the metric gab, defining the reference measure and the diffusion operator
(1.40) in Prob(Σ, g), is replaced with a curve of (volume preserving) fiducial
metrics [0, 1]  λ �→ gab(λ), with gab(λ) uniformly bounded above and below
for 0 ≤ λ ≤ 1. The potentially delicate issue concerns the characterization,
along the given fiducial curve of metrics λ �→ gab(λ), of the Wasserstein
distance (the distance associated with the inner product (1.4) extends in
an obvious manner along λ �→ gab(λ)). Indeed, the Wasserstein distance is
usually defined in a fixed Prob(Σ, g) (see (1.37)) with a cost function d( , )2

provided by a fixed metric tensor gab. To characterize its extension to curves
in Prob(Σ), covering λ �→ gab(λ), let us assume, in line with the boundedness
hypotheses on gab(λ), that there are constants C > 0 (typically depending
only on the dimension of (Σ, g(λ))) and M > 0 (depending on a uniform
bound on the geometry of (Σ, g(λ))) such that

e−C M (λj−λk) dλk
(x, y) ≤ dλj

(x, y) ≤ eC M (λj−λk) dλk
(x, y) (1.44)

for any points x and y in Σ, and any λk, λj ∈ [0, 1], with λk < λj (in the Ricci
flow case, (1.44) holds whenever the Ricci curvature Ric(g(λ)) of (Σ, g(λ))
is bounded by M , |Ric(g(λ))| ≤ M , [21]). For any λ ∈ [0, 1], denote by

φλ,λk
: Σλ −→ Σλk

, (1.45)

the diffeomorphism defined by Moser’s theorem (see (1.11)) such that dΠλ =
J(φλ,λk

) dΠλk
, where J(φλ,λk

) is the Jacobian of φλ,λk
. In line with the

above hypotheses on the metric gab(λ), we assume that there are constants
C ′, M ′ > 0 (again depending from a uniform bound on the geometry of
(Σ, g(λ))) such that

e−C′ M ′ (λ−λ̄) J(φλ̄,λk
) ≤ J(φλ,λk

) ≤ eC′ M ′ (λj−λ̄) J(φλ̄,λk
) (1.46)

for any λ̄, λ ∈ [0, 1], with λ̄ < λ (in the Ricci flow case, M ′ typically is an
upper bound to the scalar curvature). Let

φ−1
λk,λ : Σλk

−→ Σλ (1.47)

be the inverse of φλ,λk
. Denote by dΩλj

and dΩλk
, λk < λj , the two probabil-

ity measures belonging to the spaces (Prob(Σλj
)) and (Prob(Σλk

)), respec-
tively. Their pull-backs under the above diffeomorphism, (φ−1

λj ,λ)∗ dΩλj
and

(φ−1
λk,λ)∗ dΩλk

, both belong to the probability space (Prob(Σλ)), and we can
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define their Wasserstein distance at λ according to

DW
2

(
(φ−1

λk,λ)∗ dΩλk
, (φ−1

λj ,λ)∗ dΩλj
; λ
)

.= inf
πλ∈Hλ

(∫∫
Σ×Σ

dλ(x, y)2 πλ

(
(φ−1

λk,λ)∗ dΩλk
, (φ−1

λj ,λ)∗ dΩλj

))1/2

,

(1.48)

where Hλ
.= H((φ−1

λk,λ)∗ dΩλk
, (φ−1

λj ,λ)∗ dΩλj
) is the appropriate space of cou-

plings (see (1.37)) and where dλ( , ) is the Riemannian distance in (Σ, g(λ)).
Since the cost function dλ( , )2 and the Jacobians J(φλ,λk

) are both uni-
formly bounded in λ, (see (1.44),(1.46)), the quadratic Wasserstein distance
DW

2 (λ) defined by (1.48) depends smoothly from λ. In particular, we have

e−C′′ M ′′ (λ−λ̄) DW
2 (λ̄) ≤ DW

2 (λ) ≤ eC′′ M ′′ (λ−λ̄) DW
2 (λ̄), (1.49)

for any λ̄, λ ∈ [0, 1], with λ̄ < λ, and for constants C ′′, M ′′ depending from
the constants in (1.44) and (1.46).

With these preliminary remarks along the way, let us assume that the
absolutely continuous curve of probability measures � : [0, 1]  λ �→ d�λ ∈
Prob(Σ), introduced in Theorem 1.1, covers a fiducial curve of metrics λ �→
gab(λ). As above, let 0 = λ0 ≤ λ1 ≤ · · · ≤ λJ = 1 be a partition of [0, 1].
The uniform bound (1.44) implies that we can choose ε > 0 small enough
such that

|dλj
(x, y) − dλj−1(x, y)| ≤ |eC M (λj−λj−1) − 1| dλj−1(x, y), (1.50)

with |eC M (λj−λj−1) − 1| � 1, whenever λj − λj−1 < ε. Let d�λj
∈ Prob

(Σλj
) and d�λj−1 ∈ Prob(Σλj−1) be the pair of probability measures cor-

responding to the values λj and λj−1 of λ. According to (1.48), we can eval-
uate the quadratic Wasserstein distance DW

2
(
d�λj−1 , (φ

−1
λj−1,λ)∗ d�λj

; λj−1
)

between d�λj
∈ Prob(Σλj

) and d�λj−1 ∈ Prob(Σλj−1) at λ = λj−1. Thus,
we define the Wasserstein length of the curve � : [0, 1]  λ �→ d�λ ∈ Prob
(Σ), covering a fiducial curve of metrics λ �→ gab(λ), according to

Lg(λ)(�) .= sup
J∈N

sup
λ0≤λ1≤···≤λJ

J∑
j=1

DW
2

(
d�λj−1 , (φ

−1
λj−1,λj

)∗ d�λj
; λj−1

)
.

(1.51)
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Note that if λj−1 ≤ λ̄ ≤ λj is a refinement of the interval [λj−1, λj ], then
from the triangular inequality for (1.48) and the bound (1.49), we get

DW
2
(
d�λj−1 , (φ

−1
λj−1,λj

)∗ d�λj
; λj−1

)
≤ DW

2
(
d�λj−1 , (φ

−1
λj−1,λ̄

)∗ d�λ̄; λj−1
)

+ DW
2
(
(φ−1

λj−1,λ̄
)∗d�λ̄, (φ−1

λj−1,λj
)∗ d�λj

; λj−1
)

≤ DW
2
(
d�λj−1 , (φ

−1
λj−1,λ̄

)∗ d�λ̄; λj−1
)

+ eC′′ M ′′ (λ̄−λj−1) DW
2
(
d�λ̄, (φ−1

λ̄,λj
)∗ d�λj

; λ̄
)
, (1.52)

which implies that (1.51) is well–behaved under refinements of the partition
0 = λ0 ≤ λ1 ≤ · · · ≤ λJ = 1.

As observed above, the length of the curve � : [0, 1]  λ �→ d�λ ∈ Prob
(Σ), evaluated with respect to the inner product (1.4), extends naturally to
the case when the curve in question covers a fiducial curve of metrics λ �→
gab(λ). It is sufficient to replace |∇ Ψλ|2 in (1.42) with gik(λ) ∇iΨλ ∇kΨλ.
It follows that one can easily adapt the proof of Proposition 3.3 in [25] to
conclude that the length of � with respect to the inner product (1.4) equals
the length in the Wasserstein sense, i.e.,

Lg(λ)(�) =
∫ 1

0

(∫
Σ

gik(λ) ∇iΨλ ∇kΨλ d�λ

)1/2

dλ, (1.53)

which extends the relation (1.42) to the more general case considered here.

It must be noted that a similar extension of the Hamilton–Jacobi con-
dition (1.43) for characterizing Wasserstein geodesics curves λ �→ d�λ, over
a fiducial λ �→ gab(λ), is quite a non-trivial problem which (to the best of
my knowledge) still waits for a solution. We shall comment on this point
in the concluding part of the paper and suggest a possible strategy for
approaching it.

2 Perelman’s coupling for the volume-normalized
Ricci flow

To put the above probabilistic remarks in perspective, we outline Perelman’s
characterization of the dynamics of the coupling between Ricci flow theory
and scale-dependent probability measures [36]. Let us consider the volume
normalized Ricci flow β �→ gab(β), 0 ≤ β < T [12, 19], associated with a
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metric gab on a three-dimensional manifold Σ

∂

∂β
gab(β) = −2Rab(β) +

2
3
gab(β)〈R(β)〉Σβ

,

gab(β = 0) = gab, (2.1)

where Rab(β) denotes the components of the Ricci tensor of gab(β), and

〈R(β)〉Σβ

.=

∫
Σβ

R(β)dμg(β)

[Vol(Σ, gab(β))]
(2.2)

is the averaged scalar curvature with respect to the Riemannian measure
dμg(β) defined by gab(β).
One basic idea in Perelman’s approach [36] is to consider, along the solution
gab(β) of (2.1), a β-dependent mapping

fβ : R −→ C∞(Σβ, R),

β �−→ fβ : Σβ → R, (2.3)

where C∞(Σβ, R) denotes the space of smooth functions on Σβ. In terms of
fβ, one constructs on Σβ the β-dependent measure

d�(β) .= (4πτ(β))−(3/2)e−f(β)dμg(β), (2.4)

where β �−→ τ(β) ∈ R
+ is a scale parameter chosen in such a way as to

normalize d�(β) according to the so-called Perelman’s coupling :∫
Σβ

d�(β) = (4πτ(β))−(3/2)
∫

Σβ

e−f(β)dμg(β) = 1. (2.5)

It is easily verified that (2.5) is preserved in form along the Ricci flow
(2.1), and

d

dβ

[
(4πτ(β))−(3/2)

∫
Σβ

e−f(β)dμg(β)

]
= 0, (2.6)

if the mapping fβ and the scale parameter τ(β) are evolved backward in
time β ∈ (β∗, 0) according to the coupled flows defined by

∂

∂β
fβ = −Δg(β)fβ + ∇ifβ∇ifβ − R(β) +

3
2
τ(β)−1, f(β∗) = f0,

d

dβ
τ(β) =

2
3
〈R(β)〉Σβ(β)τ(β) − 1, τ(β∗) = τ0, (2.7)

where Δg(β) is the Laplacian with respect to the metric gab(β), and f0, τ0
are given (final) data (backward β-evolution is required in order to have a
well-posed parabolic initial value problem for (2.7)).



654 MAURO CARFORA

If we assume that there exist constants (depending on β) C
(1)
β and C

(2)
β ,

|C(·)
β | < ∞, such that

C
(1)
β ≤

∫ β

0
〈R(s)〉Σs ds ≤ C

(2)
β , (2.8)

then backward integration of the τ(β) equation in (2.7) along a given Ricci
flow metric β �−→ g(β), β ∈ [0, T ), provides

τ(t) = e−(2/3)
∫ t
0 〈R(s)〉ds

[
τ0 +

∫ t

0
e(2/3)

∫ ζ
0 〈R(s)〉ds dζ

]
, (2.9)

where for any chosen final scale β∗ ∈ [0, T ), we have set t
.= β∗ − β and τ0.= τ(t = 0). In terms of the adimensional variable t/τ0, we can equivalently

write

τ(t) = τ0 e−(2/3)τ0
∫ t/τ0
0 〈R(s)〉ds

[
1 +

∫ t/τ0

0
e(2/3) τ0

∫ ζ
0 〈R(s)〉ds dζ

]
. (2.10)

Whereas, in terms of the forward β/τ0,

τ(β) = τ0 e(2/3)τ0 ∫ β/τ0

0 〈R(s)〉ds

[
1 −

∫ β/τ0

0
e−(2/3) τ0 ∫ ζ

0 〈R(s)〉ds dζ

]
, (2.11)

where τ0 .= τ(β = 0). Note that the scale parameter τ(t) is non-decreasing
with t, along the backward Ricci flow, i.e., ∂/∂tτ(t) ≥ 0, as long as we have
1 − 2/3〈R(t)〉Σtτ(t) > 0. The geometric flow

∂

∂β
gab(β) = −2Rab(β) +

2
3
gab(β)〈R(β)〉Σβ

, gab(β = 0) = gab,

∂

∂t
ft = Δg(t)ft − ∇ift∇ift + R(t) − 3

2
τ(t)−1, f(t = 0) = f0,

d

dt
τ(t) = 1 − 2

3
〈R(t)〉Σt(t)τ(t), τ(t = 0) = τ0, (2.12)

defined by the forward volume-preserving Ricci flow (2.1), β �→ gab(β), 0 ≤
β ≤ β∗, together with the backward heat and scale equations (2.7), t �→
(ft, τ(t)),t .= β∗ − β, characterizes the Hamilton–Perelman (volume-
normalized) flow describing the coupling between the Ricci flow and the
scale factorization (2.5) of the probability measure d�(t). Note that one
can equivalently consider the system obtained from (2.12) by the pull-back
action, á la DeTurck [14], associated with the family of β-dependent diffeo-
morphisms ϕ : M → M generated by the gradient vector field ∇ fβ. In terms
of the pull-backs g∗

ab
.= (ϕ∗g)ab and f∗ .= (ϕ∗f) of the metric gab(β) and of
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the function fβ, one can write (see, e.g., [30] for the detailed computation
in the case of the standard Ricci flow)

∂

∂β
g∗
ab(β) = −2R∗

ab(β) + 2∇a∇bf
∗ +

2
3
g∗
ab(β)〈R∗(β)〉Σβ

,

∂

∂t
f∗

t = Δg∗(t)f
∗
t + R∗(t) − 3

2
(τ∗(t))−1,

d

dt
τ∗(t) = 1 − 2

3
〈R∗(t)〉Σt(t)τ

∗(t), (2.13)

where all differential operators refer to the pull-back metric g∗
ab.

It must be also stressed that the equations (2.1) and (2.7) are based on
the standard volume preserving Ricci flow and accordingly differ from the
flows η �→ g̃ab(η), η �→ τ̃(η), and η �→ fη, discussed by Perelman [36],

∂

∂η
g̃ab(η) = −2R̃ab(η),

g̃ab(η = 0) = g̃ab, (2.14)

together with

∂

∂η
fη = −Δg̃(η)fη + ∇ifη∇ifη − R̃(η) +

3
2
τ̃(η)−1,

∂

∂η
τ̃(η) = −1. (2.15)

The flows (2.14), (2.15) and the ones defined by (2.7) are related by the
usual η-dependent homothetic rescaling [2, 12, 19], which maps ∂

∂η g̃ab(η) =

−2R̃ab(η) to the volume-normalized Ricci flow (2.1), i.e.,

gab(β(η)) =
[∫

Σ dμg̃(η=0)∫
Σ dμg̃(η)

]2/3

g̃ab(η), (2.16)

β(η) =
∫ η

0

[∫
Σ dμg̃(η=0)∫

Σ dμg̃(s)

]2/3

ds, (2.17)

and

τ(β(η)) =
[∫

Σ dμg̃(η=0)∫
Σ dμg̃(η)

]2/3

τ̃(η). (2.18)

The volume normalization makes particularly clear that, given an initial
value τ0

.= τ(t = 0), the dynamics (2.10) of the scale τ(t) only depends on
the underlying Ricci flow metric β �→ gab(β) and not on the backward evo-
lution of the function ft. Thus, the localization properties of the probability
measure d�(t) (see (2.4)) are controlled by the entropy-like quantity that
one can form with τ(t) and those scalar functionals of ft which have the
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dimension of an inverse square length. The only two such objects, of geo-
metric origin on t �→ (Σ, g(t)), are the d�(t)-expectation values of |∇ft|2 and
of the scalar curvature R(t). This latter observation immediately brings us
to discuss Perelman’s shrinker entropy.

2.1 The shrinker entropy

The remarkable fact is that with (2.14) and (2.15) one can associate Perel-
man’s shrinker entropy W̃ [g̃(η); fη, τ̃(η)], defined by [36]

W̃ [g̃; fη, τ̃ ] .=
∫

Σ

[
τ̃
(
|∇fη|2 + R̃(η)

)
+ fη − 3

] e−fη

(4πτ̃(η))3/2 dμg̃(η). (2.19)

The basic property of W̃ [g̃(η); fη, τ̃ ], and of the related functional F [g̃; f ] .=∫
Σ(R̃(η) +|∇f |2)e−fdμg̃, is that it is monotonically non-decreasing along

(2.15) and it provides a gradient-like structure to the Hamilton–Perelman
Ricci flow (2.12, 2.13) (however, this latter interpretation must be taken
with care in the probabilistic framework discussed here since, as remarked,
the geometric evolution of the metric and of f(η) are backward-conjugated).
Explicitly, one computes (see [22] for a very informative analysis)

d

dη
W̃ =

∫
Σ

2τ̃

∣∣∣∣R̃ic + Hess fη − 1
2τ̃

g̃

∣∣∣∣
2 e−fη

(4πτ̃)3/2 dμg̃, (2.20)

where | · |2 is the squared g̃(η)-norm. Defining λ(g̃, τ̃) .= inffη W [g̃(η); fη],
where the inf is taken over all normalized fη, one shows that inf τ̃>0 λ(g̃, τ̃) is
actually attained and is non-decreasing along the Ricci flow. In particular,
λ(g̃, τ̃) < 0 for small τ̃ , and → 0 as τ̃ ↘ 0, for any g̃ on Σ. This basic prop-
erty allows to probe quite effectively the geometry of (Σ, g̃(η)) by showing
that the only shrinking Ricci flow solitons are the gradient solitons [36].

Since the equations for fβ or fη have the same scale-invariant structure,
the shrinker entropy and its evolution extend, in an obvious way, to the
volume-normalized Hamilton–Perelman flow (2.7), viz,

W [g; fβ, τ ] .=
∫

Σ

[
τ
(
|∇fβ|2 + R(β)

)
+ fβ − 3

] e−fβ

(4πτ(β))3/2 dμg(β), (2.21)

d

dβ
W =

∫
Σ

2τ

∣∣∣∣Ric + Hess fβ − 1
2τ

g

∣∣∣∣
2 e−fβ

(4πτ)3/2 dμg. (2.22)

What is more interesting to note is that if we introduce the normalized
Riemannian measure

dΠβ
.= Vol [Σβ]−1 dμg(β) (2.23)
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associated with the (volume-preserving) Ricci flow, then the W -functional
(2.21) can be equivalently written as

W [g(β); fβ] .= τ [I[d�(β) ‖ dΠβ] + 〈R(β)〉d�(β)]

− S[d�(β) ‖ dΠβ] + ln[Vol(Σ)(4πτ(β))−(3/2)] − 3, (2.24)

where

〈R(β)〉d�(β)
.=
∫

Σ
R(β)d�(β) (2.25)

is the average scalar curvature with respect to d�(β), and

I[d�(β) ‖ dΠβ] .=
∫

Σ

∣∣∣∣∇ ln
d�(β)
dΠβ

∣∣∣∣
2

d�(β), (2.26)

S[d�(β) ‖ dΠβ] .=
∫

Σ
ln

d�(β)
dΠβ

d�(β), (2.27)

respectively, denote the entropy production functional and the relative
entropy associated with the pair of probability measures (d�(β), dΠβ). Note
that the factor Vol(Σ)(4πτ(β))−(3/2) is generated by the normalization of
fβ e−fβ to the probability measure density d�(β)/dΠβ, and one may equiv-
alently write

S[d�(β) ‖ dΠβ] − ln[Vol(Σ)(4πτ(β))−(3/2)]

= −Vol(Σ)(4πτ(β))−(3/2)
∫

Σ
fβ e−fβ dΠβ. (2.28)

Note also that we can rewrite W [g(β); fβ] in terms of the defective LSI
functional (1.32), i.e.,

W [g(β); fβ] = LSI[(2τ(β))−1; 〈R(β)〉d�(β)] + ln
[

Vol(Σ)
(4πτ(β))3/2

]
− 3. (2.29)

Whereas this is a rather trivial consequence of the fact that the standard
Gaussian logarithmic Sobolev inequality [18, 36] lies at the origin of the
definition (2.19) of W [g(β); fβ], it also indicates that W [g(β); fβ] is not an
entropy, but rather an entropy–balance functional controlling the rate of
variation of S[d�(β) ‖ dΠβ] along the Ricci flow, and hence the localization
properties of d�(β). To prove this latter remark, let us consider, as in the
above analysis, β �−→ gab(β), β ∈ [0, T ), with t

.= β∗ − β, β∗ ∈ [0, T ). In the
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backward direction, along the given volume-normalized Ricci flow, we have

∂

∂t
dΠt =

[
R(t) − 〈R(t)〉Σt

]
dΠt, (2.30)

moreover, Perelman’s condition (2.7) yields the conjugate heat equation

∂

∂t

[
d�(t)
dΠt

]
= Δg(t)

[
d�(t)
dΠt

]
− d�(t)

dΠt
[R(t) − 〈R(t)〉Σt ], (2.31)

where
d�(t)
dΠt

= (4πτ(t))−(3/2)Vol[Σt]e−f(t). (2.32)

Since dΠt is covariantly constant with respect to the Levi–Civita connection
∇ associated with g(t), we can exploit (2.30) and write (2.31) as the (non-
uniformly parabolic) probability diffusion (d�(t))t≥0 PDE,

∂

∂t
d�(t) = Δg(t)(d�(t)), t

.= β∗ − β,

d�(t = 0) = d�0. (2.33)

From (2.30) and (2.33), we get

d

d t
S[d�(t) ‖ dΠt] =

∫
Σ

ln
d�(t)
dΠt

Δg(t) (d�(t)) −
∫

Σ
[R(t) − 〈R(t)〉] d�(t)

= −I[d�(t) ‖ dΠt] − 〈R(t)〉d�(t) + 〈R(t)〉Σt
. (2.34)

On the other hand, according to the evolution (2.12) of the scale parameter
τ(t), we can write

〈R(t)〉Σt
=

3
2

τ−1(t) − 3
2

τ−1(t)
d

dt
τ(t)

=
3
2

τ−1(t) − d

dt
ln

(4π τ(t))3/2

Vol(Σ)
, (2.35)

where, in the last line, we have normalized (4π τ(t))3/2 to Vol(Σ) for dimen-
sional reasons (and we have introduced the factor 4π for later convenience).
Inserting (2.35) in (2.34), we get

d

dt

(
S[d�(t) ‖ dΠt] + ln

(4πτ(t))3/2

Vol(Σ)

)

= −
[
I[d�(t) ‖ dΠt] + 〈R(t)〉d�(t)

]
+

3
2

τ(t)−1

= −(4πτ(t))−(3/2) F [g, f ] +
3
2

τ(t)−1, (2.36)

where

F [g, f ] .=
∫

Σ
(R(t) + |∇f |2)e−f dμg, (2.37)
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is the standard Perelman functional associated with the volume-preserving
flow (2.12). (I wish to thank Alessio Figalli for suggesting that a relation of
this type should hold; the fact that the entropy functional F [g; f ], for the
standard unnormalized Ricci flow is the time-derivative of the entropy-like
quantity

∫
Σ ft e−ft dμg(t) has also been noticed in [30]). The relation (2.36)

characterizes also the shrinker entropy W [g(β); fβ] as the variation, along
the backward Ricci flow, of the functional

G[d�(t), dΠt, τ(t)] .= S[d�(t) ‖ dΠt] + ln
(4πτ(t))3/2

Vol(Σ)
+

3
2

= −Vol(Σ)(4πτ(t))−(3/2)
∫

Σ
ft e−ft dΠt +

3
2
. (2.38)

Indeed, (2.36) can be rewritten as
d

d t
(τ(t)G) = −W [g(β); fβ] − 2

3
〈R(t)〉Σt

τ(t)G. (2.39)

The fact that (2.39) has the same formal structure of the evolution equation
(2.12) of the scale parameter τ(t) further confirms that W [g(β); fβ] con-
trols, via the effective scale τeff(t) .= τ(t)G, the localization properties of the
measure d�(t).

It is important to remark that, according to the relation (2.34), the rela-
tive entropy S[d�(t) ‖ dΠt] is not monotonic along the Hamilton–Perelman
flow. This is related to the fact that the evolution t �→ d�(t)/dΠt, described
by (2.31), is not a gradient flow for S[d�(t) ‖ dΠt]. The deviation from
being gradient-like is due to the presence of the curvature fluctuation term
R(t) − 〈R(t)〉Σt in (2.31) (under d�(t)-expectation, this term yields
〈R(t)〉d�t − 〈R(t)〉Σt). According to the analysis presented in Section 1.1,
a possible strategy for compensating such a fluctuation term is to trade
R(t) − 〈R(t)〉Σt for a (t–dependent) potential, so as to transform the heat
diffusion (d�(t))t≥0 into a Fokker–Planck diffusion. However, before dis-
cussing such a transformation in detail, there is still an elementary but
interesting property of (2.34) that we would like to point out concerning the
role and the monotonicity properties of the d�(t) average 〈R(t)〉d�t of the
scalar curvature.

2.2 A renormalized curvature entropy

To begin with, let us observe that the basic relation (2.36) becomes
particularly simple if we rescale the parameter τ(t) according to

τ̂(t) .= τ0 e−(2/3)τ0
∫ t/τ0
0 〈R(s)〉Σsds =

τ(t)

1 +
∫ t/τ0
0 e(2/3)τ0

∫ ζ
0 〈R(s)〉dsdζ

. (2.40)
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Note that τ̂(t) satisfies

d

dt
τ̂(t) = −2

3
〈R(t)〉Σs τ̂(t). (2.41)

It is easily verified that in terms of τ̂(t) we can rewrite (2.36) as

d

dt

(
S[d�(t) ‖ dΠt] + ln

(4πτ̂(t))3/2

Vol(Σ)

)
= −

[
I[d�(t) ‖ dΠt] + 〈R(t)〉d�(t)

]
.

(2.42)

Since

S[d�(t) ‖ dΠt] + ln
(4πτ̂(t))3/2

Vol(Σ)
=
∫

Σ
d�(t) ln

[(
(4πτ̂(t))3/2

Vol(Σ)

)
d�(t)
dΠt

]

(2.43)

and

∫
Σ

d�(t)

∣∣∣∣∣∇ ln

[(
(4πτ̂(t))3/2

Vol(Σ)

)
d�(t)
dΠt

]∣∣∣∣∣
2

= I[d�(t) ‖ dΠt], (2.44)

it follows that 〈R(t)〉d�(t) represents the obstruction to (d�(t))t≥0 for being
a gradient-like flow. It is indeed the LSI defective parameter 〈R〉d� appear-
ing in the shrinker entropy. One can easily check that 〈R(t)〉d�(t) is not
monotonic along the backward Ricci flow; however τ̂(t) 〈R(t)〉d�(t) turns
out to be weakly monotonic, and we have the following.

Theorem 2.1. For a given Ricci flow metric β �−→ g(β), β ∈ [0, T ), and
for any chosen β∗ ∈ [0, T ), let t �−→ d�(t), and t �−→ τ(t), t

.= β∗ − β, be
the solutions of (2.33) and (2.10) corresponding to the initial data d�0 and
τ0, respectively. Then, along the backward Ricci flow, we have

∂

∂t

[
τ̂(t) 〈R(t)〉d�(t)

]
= −2τ̂(t)

∫
Σ

d�(t) |Ric(t)|2 ≤ 0. (2.45)

In particular,

τ0 e−(2/3)τ0
∫ t/τ0
0 〈R(s)〉Σsds〈R(t)〉d�(t) (2.46)

is non-increasing as a function of t ∈ [0, β∗).
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Proof. Let us recall that along the (volume-normalized) Ricci flow β �→
gik(β), β ∈ (0, T ), we have [12]

∂ R(β)
∂β

= Δg(β)R(β) + 2|R̂ic(β)|2 +
2
3
R(β)(R(β) − 〈R(β)〉Σβ

), (2.47)

where R̂ic denotes the trace-free part Rab − (1/3)gabR of the Ricci tensor.
A direct computation exploiting (2.47) provides

∂

∂t

∫
Σ

d�(t)τ̂(t)R(t) = −2
3
τ̂(t)〈R(t)〉Σt

∫
Σ

d�(t)R(t)

− τ̂(t)
∫

Σ
Δg(t)R(t)d�(t) − 2τ̂(t)

∫
Σ

d�(t)
∣∣∣R̂ic(t)

∣∣∣2

− 2
3
τ̂(t)

∫
Σ

d�(t)R(t) (R(t) − 〈R(t)〉Σt)

+ τ̂(t)
∫

Σ
R(t)Δg(t)(d�(t)). (2.48)

Since
∫
Σ Δg(t)R(t)d�(t) =

∫
Σ R(t)Δg(t)(d�(t)) and |R̂ic|2 + 1/3R(t)2 =

|Ric|2, we get the stated result. �

The monotonicity of (2.46) immediately implies that

〈R(t1)〉d�(t1) ≥ 〈R(t2)〉d�(t2) exp

[
−2

3
τ0

∫ t2\τ0

t1\τ0

〈R(s)〉Σs ds

]
(2.49)

for any t2 ≥ t1. Thus, if 〈R(t1)〉d�(t1) ≤ 0, the measure {d�(t)}t≥t1 will
diffuse in a region of (Σ, g(t)), where R(t) ≤ 0 (regardless of the sign of
the overall average 〈R(t)〉Σt). Since t parametrizes the backward flow, this
remark implies that regions of negative scalar curvature result from the
Ricci flow β-evolution of regions with negative scalar curvature (in other
words localized positive scalar curvature cannot evolve into negative scalar
curvature under the Ricci flow). This is another manifestation of the fact
that the flow prefers positive scalar curvature.

More generally, we can rewrite the evolution equation in Theorem 2.1 as
d

dt

[
τ̂(t) 〈R(t)〉d�(t)

]
= −2τ̂(t)

〈
|Ric(t)|2

〉
d�(t)

, (2.50)

which by factorizing the Ricci tensor in its trace-free and trace part, and by
adding and subtracting the term 2/3τ̃(t)〈R(t)〉2d�(t), yields

d

dt

[
τ̂(t) 〈R(t)〉d�(t)

]
= −2τ̂(t)〈|R̂ic(t)|2〉d�(t)

− 2
3
τ̂(t)

(〈
R2(t)

〉
d�(t) − 〈R(t)〉2d�(t)

)
− 2

3
τ̂(t) 〈R(t)〉2d�(t) . (2.51)
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Since the terms on the right-hand side of this expression are all non-negative,
we get (after dividing and multiplying by τ̂(t) > 0)

d

dt

[
τ̂(t) 〈R(t)〉d�(t)

]
≤ −2

3
τ̂−1(t)

[
τ̂(t) 〈R(t)〉d�(t)

]2
. (2.52)

This integrates to the Harnack-type inequality

〈R(t)〉d�(t) ≤
e(2/3)τ0

∫ t/τ0
0 〈R(s)〉ds 〈R0〉d�0

1 + 2
3τ0 〈R0〉d�0

∫ t/τ0
0 e(2/3)τ0

∫ ζ
0 〈R(s)〉ds dζ

, (2.53)

where 0 ≤ ζ ≤ t and R0
.= R(t = 0). Since 〈R0〉d�0 results from the

β-evolution of R in the regions localized by the measure d�(t), the above
estimate allows, as we have seen above, to compare scalar curvature at dif-
ferent times in different regions along the backward Ricci flow.

3 Ricci flow and Fokker–Planck diffusion on Prob(Σ)

According to (2.30) and (2.34), the curvature fluctuation term R(t) −
〈R(t)〉Σt drives the dynamics of the Riemannian measure dΠt and obstructs
the gradient-like nature of Perelman’s diffusion (d�(t))t≥0. Such a behavior
is in line with the geometric properties of Otto’s parametrization of diffusion
processes, along a fiducial curve of metrics, discussed in Section 1.1. In this
connection, let us recall that the curve in the space of Riemannian metrics

Riem(Σ) −→ Riem(Σ),

(Σ, g) �−→ (Σ, g(β)), (3.1)

defined by the Ricci flow (2.1), is natural in the geometrical sense, since
it is Diff(Σ)–equivariant and always admits a solution β �→ (Σ, g(β)) in
a maximal interval 0 ≤ β ≤ T0 for some T0 ≤ ∞ (if such a T0 is finite,
the flow necessarily develops [19] a curvature singularity as β ↗ T0, i.e.,
limβ↗T0 [supx∈Σ |Rm(x, β)|] = ∞, where Rm(β) .= (Rl

ijk(β)) is the Riemann
tensor of (Σ, g(β))). Such a geometrical naturality is the basic reason why,
as we shall see, the Ricci flow provides a natural class of fiducial curve
of metrics along which Otto’s parametrization turns out to be particularly
effective.

3.1 A potential for scalar curvature fluctuations

Let us start by observing that the curve of Riemannian measures t �→ dΠt

can be formally considered as the lift to the bundle Prob(Σ) of the curve
in Riem(Σ) defined by the backward Ricci flow [0, β∗]  t �→ gab(t). In this
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way, one characterizes a fiducial curve of reference measures in the bundle
Prob(Σ), and for each t ∈ [0, β∗] we can naturally describe the corresponding
fiber of Prob(Σ) over gab(t), as

Prob(Σt)
.= Prob(Σ, g(t)) =

{
N dΠt : N ∈ Cb(Σ, R+),

∫
Σ

N dΠt = 1
}

.

(3.2)
To fully exploit such a description we need to characterize the tangent vector
to the fiducial curve t → dΠt. Let us consider a generic value of the para-
meter t, say t = s. Since

∫
Σt

∂/∂tdΠt|t=s = 0, we have that ∂/∂tdΠt|t=s ∈
TdΠtProb(Σ). According to (1.6) and in analogy with (1.9), we parametrize
∂/∂tdΠt|t=s in terms of a scalar curvature-fluctuations potential Φs obtained
as the solution of the elliptic equation

gik(s)∇i (dΠs ∇kΦs) = − ∂

∂t
dΠt

∣∣∣∣
t=s

, (3.3)

where ∂/∂t dΠt|t=s is given by (2.30) for each given t = s, i.e. (again exploit-
ing the covariant constancy of dΠt),

Δg(s)Φs = − (R(s) − 〈R(s)〉) . (3.4)

Formally, given a solution Φs of (3.4) and any (t-independent) smooth
function with compact support ζ ∈ C∞

0 (Σ, R), we can write

d

dt

∫
Σt

ζdΠt =
∫

Σt

ζ
∂

∂t
dΠt =

∫
Σt

∇iζ ∇iΦt dΠt = 〈ζ,Φt〉dΠt
. (3.5)

According to (1.4), the relation (3.5) identifies dΠt �−→ Φt as the tangent
vector to the curve t → dΠt and defines the curvature (fluctuation) potential
in which a probability density, evolving along a Ricci flow manifold, diffuses.

Since
∫
Σ dΠs (R(s) − 〈R(s)〉) = 0 and∫

Σt

(R(t) − 〈R(t)〉Σt)Φt dΠt =
∫

Σt

|∇ Φt|2 dΠt, (3.6)

we get that, as long as the (volume-normalized) Ricci flow exists, equation
(3.4) admits a solution unique up to constants. The L2((Σ, dΠs), R) norm
of (R(s) − 〈R(s)〉) is given by

〈
R2(s)

〉
− 〈R(s)〉2, thus Φs is in the Sobolev

space H2((Σ, dΠs), R) if the mean square fluctuations in the scalar curvature
are bounded. More generally, we know (see, e.g., [12]) that if β �→ gab(β) is a
solution of the Ricci flow equation (for which the weak maximum principle
holds), then bounds on the curvature (and its derivatives) of the initial
metric induce a priori bounds on all derivatives |∇mR(x, s)| for a sufficiently
short time. Thus, for any given t = s for which the Ricci flow is non-singular,
we can assume that (R(s) − 〈R(s)〉) is C∞(Σ, R), and by elliptic regularity
we get that Φs ∈ C∞(Σ, R). Along the same lines, we also have
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Lemma 3.1. For any Φt ∈ C3(Σ, R) solution of (3.4), the following relation
holds:∫

Σt

|Hess Φt|2 dΠt +
∫

Σt

Rik(t) ∇iΦt∇kΦt dΠt = 〈R(t)2〉Σt − 〈R(t)〉2Σt
.

(3.7)

If the Ricci curvature of (Σt, g(t)) is positive, then
∫

Σt

|∇ Φt|2 dΠt ≤ 2
3

〈R(t)2〉Σt − 〈R(t)〉2Σt

Kt
, (3.8)

where Kt > 0 is the lower bound of Ric(t). Moreover, if Lg(t)(dΠt) denotes
the (quadratic) Wasserstein length of the curve t �→ dΠt, then we have

Lg(t)(dΠt) ≤
√

2
3

∫ β∗

0

(
〈R(t)2〉Σt − 〈R(t)〉2Σt

Kt

)1/2

dt. (3.9)

Proof. These results are elementary consequences of the Ricci commutation
relation ∇j∇i∇j f −∇i∇j∇j f = Rij∇j f , valid for any f ∈ C3(Σ, R). In
particular, for Φt ∈ C3(Σ, R), consider the expression 2∇iΦt∇iΔg(t)Φt. The
Bochner–Weitzenböck formula provides

2∇iΦt∇iΔg(t)Φt = Δg(t) |∇Φt|2 − 2 |Hess Φt|2 − 2Rik(t) ∇iΦt∇kΦt, (3.10)

pointwise. Thus

−
∫

Σt

|Hess Φt|2 dΠt −
∫

Σt

Rik(t) ∇iΦt∇kΦt dΠt

=
∫

Σt

∇iΦt∇iΔg(t)Φt dΠt =
∫

Σt

(R(t) − 〈R(t)〉Σt)Δg(t)Φt dΠt

= −
(
〈R(t)2〉Σt − 〈R(t)〉2Σt

)
, (3.11)

where we have integrated by parts and exploited (3.4). Since∫
Σt

|Hess Φt|2 dΠt ≥ 1
3

∫
Σt

∣∣Δg(t) Φt

∣∣2 dΠt =
1
3
(〈R2〉Σt − 〈R〉2Σt

), (3.12)

we get from (3.7)

2
3
(
〈R(t)2〉Σt − 〈R(t)〉2Σt

)
≥
∫

Σt

Rik(t) ∇iΦt∇kΦt dΠt, (3.13)

which, if the Ricci curvature has a positive lower bound Kt, yields (3.8).
Note that, since positive Ricci curvature is preserved along the Ricci flow,
the bound (3.8) holds for every t. If Lg(t)(dΠt) is the (quadratic) Wasserstein
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length of the curve t �→ dΠt, defined according to (1.51), then the identifi-
cation (1.53) and the bound (3.8) imply that

Lg(t)(dΠt) =
∫ β∗

0

(∫
Σt

|∇ Φt|2 dΠt

)1/2

dt

≤
√

2
3

∫ β∗

0

(
〈R(t)2〉Σt − 〈R(t)〉2Σt

Kt

)1/2

dt, (3.14)

as stated. �

Note that equation (3.4) has a familiar counterpart in the Ricci flow theory
for surfaces [20] (see also [12]). It arises also in Kähler geometry, where
it provides the relation between the Kähler Ricci potential and the scalar
curvature. Moreover, if we consider a gradient Ricci soliton Ric(g(t)) =
Hess Ψt, i.e., a fixed point of the flow obtained by quotienting the space of
metrics under diffeomorphisms and scalings, then clearly Φt

.= −Ψt. In the
general case (viz, when (Σ, g) is neither Kähler or a gradient soliton) we
can still obtain a geometrical characterization of Φs. We start by deriving
an asymptotic expression for Φs valid in local geodesic coordinates (LGC),
{xi}LGC, at any given fixed point p ∈ Σs. Let us denote by r(x) .= d(p, x) the
Lipschitz function providing the distance from p to x. For x /∈ Cut(p), the
cut locus of p, we set xj = r uj , with uj coordinates on the unit sphere S

2 ⊂
TpΣs. The pull-back of the Riemannian measure dΠs under the exponential
mapping expp : TpΣs → Σs provides the familiar asymptotics in geodesic
polar coordinates

exp∗
p(dΠs)

dΠEucl.
=

LGC
1 − 1

6
Rik(p) xixk − 1

12
∇j Rik(p) xixkxj + O(r4), (3.15)

where dΠEucl. is the standard Euclidean volume element in polar coordinates
in TpΣs, and Rik(p) are the components of the Ricci tensor at p. Thus, if
we take the (Euclidean) Hessian of the function 6(exp∗

p(dΠs)/dΠEucl.) +
1/3〈R〉Σs r2, we get

∂2

∂xi∂xk

[
6
(

exp∗
p(dΠs)

dΠEucl.

)
+

1
3

〈R〉Σs r2
]

=
LGC

=
1
3

〈R〉Σs
δik − Rik(p) − 1

2
∇j Rik(p) xj + O(r2), (3.16)

and by tracing

ΔEuc

[
6
(

exp∗
p(dΠs)

dΠEucl.

)
+

1
3
〈R(s)〉Σs r2

]∣∣∣∣
p

=
LGC

〈R〉Σs
− R(p), (3.17)
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where ΔEuc denotes the standard Euclidean Laplacian. Hence, in local geo-
desic coordinates we can write

Φs(xh) =
LGC

[
6
(

exp∗
p(dΠs)

dΠEucl.

)
+

1
3
〈R(s)〉Σs d(p, x)2

]

= 6 −
(

Rik(p) − 1
3
〈R(s)〉Σsδik

)
xixk − 1

2
∇j Rik(p) xixkxj + O(r4).

(3.18)

Note that from this latter asymptotics we can formally compute

(Hess Φs)ik(xh) =
LGC

−Rik(p) +
1
3
〈R(s)〉Σsδik + O(r), (3.19)

which shows that, around any given point p, the convexity properties of Φs

are related to the sign of the Ricci curvature. In particular, we have

Lemma 3.2. Let Φs be a smooth solution of (3.4) along a Ricci flow with
uniformly bounded curvature operator on Σ × [0, β∗]; then

Hess Φs ≥ −Ric(g(s)) +
1
3
〈R(s)〉Σs g(s) (3.20)

in the barrier sense.

Proof. Let Bs(p, r) ⊂ (Σs, g(s)) be a geodesic ball of radius r centered at
the generic point p ∈ Σs. For any ε > 0, let us define

Φ(ε)
s (u, d(p, x))

.= 6 −
[
Rics(u, u)|p − 1

3
〈R〉Σs

+ ε
(〈

R2〉
Σs

− 〈R〉2Σs

)1/2
]

d2(p, x).

(3.21)

Away from the cut locus, the function Φ(ε)
s (u, d(p, x)) is smooth and such

that Φ(ε)
s (u, d(p, x))|p = Φs(p). From the asymptotic expression of Φs(xh)

in Bs(p, r), we compute

Φs(xh) − Φ(ε)
s (u, r)

≥ −1
2

|∇u Rics(u, u)|p| r3 + ε
(〈

R2〉
Σs

− 〈R〉2Σs

)1/2
r2 + O(r4). (3.22)

Assume that ∇u Rics(u, u)|p �= 0 (otherwise move to the next non-vanishing
higher order term in the asymptotics). Along a smooth Ricci flow with
uniformly bounded curvature operator on Σ × [0, β∗], the derivatives |∇(k)
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Ric(g)|, k ≥ 1, are bounded ([21, Theorem 13.1]). Thus, we can assume that
the O(r4) terms in (3.22) are uniform in r, and we can define

0 < r(ε) .= 2ε

(〈
R2
〉
Σs

− 〈R〉2Σs

)1/2

|∇u Rics(u, u)|p|
, (3.23)

to the effect that

Φs(xh) ≥ Φ(ε)
s (u, r) (3.24)

for 0 < r < r(ε). Finally,

Hess Φ(ε)
s (u, d(p, x))|p = −Rics(u, u)|p +

1
3
〈R(s)〉Σsgs(u, u)

− ε
(〈

R2〉
Σs

− 〈R〉2Σs

)1/2
gs(u, u). (3.25)

Thus, for r sufficiently small, Φ(ε)
s (u, d(p, x)) is a lower-barrier function for

Φs(x). Since the base point p ∈ Σs is arbitrary, it follows that Hess Φs(x) ≥
−Ric(s) + 1/3〈R(s)〉Σsg(s) in the barrier sense. �

Note that if the Ricci curvature of (Σβ, g(β)) is bounded below, i.e., if there
is a Kβ ∈ R such that Rik(β)uiuk ≥ Kβ giku

iuk ∀u : Σβ → TΣβ, then the
above lemma implies that

2Rik − 1
3

〈R(β)〉Σβ gik + (Hess Φβ)ik ≥ Kβ gik, (3.26)

a relation that will be useful in discussing the approach to equilibrium for
the Fokker–Planck dynamics associated with the Ricci flow.

3.2 Ricci flow evolution of probability measures

There is a useful consequence of the above parametrization of the curva-
ture fluctuations which immediately shows why Fokker–Planck diffusion is
natural when we consider the evolution of a probability measure along the
fiducial dΠt.

Lemma 3.3. For any curve of probability measures (0, β∗)  t �→ dΩt ∈
Prob(Σ), absolutely continuous with respect to dΠt, the following identity
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holds along the backward volume-normalized Ricci flow:
d

dt
S [dΩt ‖ dΠt] = −I [dΩt ‖ dΠt]

+
∫

Σt

ln
dΩt

dΠt

[
∂

∂t
dΩt − Δg(t) dΩt + ∇i (dΩt∇iΦt)

]
,

(3.27)

where

S [dΩt ‖ dΠt]
.=
∫

Σt

dΩt ln
dΩt

dΠt
(3.28)

and

I [dΩt ‖ dΠt]
.=
∫

Σt

dΩt ∇i ln
dΩt

dΠt
∇i ln

dΩt

dΠt
, (3.29)

respectively, denote the relative entropy of dΩt with respect to dΠt and the
associated entropy generating functional. Moreover, one computes

d

dt
I [dΩt ‖ dΠt] =

∫
Σt

dΩt

[∣∣∣∣∇ ln
dΩt

dΠt

∣∣∣∣
2

+ 2∇i ln
dΩt

dΠt
∇i

]{
∂

∂t
ln

dΩt

dΠt

−Δg(t) ln
dΩt

dΠt
+
∣∣∣∣∇ ln

dΩt

dΠt

∣∣∣∣
2

− ∇iΦt∇i ln
dΩt

dΠt

}

+
∫

Σt

dΩt

[
−2Rik(t) +

2
3

〈R(t)〉Σt
gik(t)

]
∇i ln

dΩt

dΠt
∇k

× ln
dΩt

dΠt
− 2

∫
Σt

dΩt

[
Rik(t) + (Hess Φt)

ik
]
∇i ln

dΩt

dΠt
∇k

× ln
dΩt

dΠt
− 2

∫
Σt

dΩt

∣∣∣∣Hess
(

ln
dΩt

dΠt

)∣∣∣∣
2

. (3.30)

Proof. Since by hypothesis dΩt is a probability measure absolutely contin-
uous with respect to dΠt, its total mass is preserved along the (backward)
volume-normalized Ricci flow. By factorizing dΩt in terms of dΠt and by
exploiting Otto’s parametrization (3.4), we get

0 =
d

dt

∫
Σt

dΩt =
∫

Σt

dΠt
∂

∂t

(
dΩt

dΠt

)
+
∫

Σt

dΠt ∇iΦt∇i

(
dΩt

dΠt

)

=
∫

Σt

dΩt
∂

∂t
ln
(

dΩt

dΠt

)
+
∫

Σt

dΩt ∇iΦt∇i ln
(

dΩt

dΠt

)

=
d

dt

∫
Σt

dΩt ln
(

dΩt

dΠt

)
−
∫

Σt

ln
(

dΩt

dΠt

)
∂

∂t
(dΩt)

+
∫

Σt

dΩt ∇iΦt∇i ln
(

dΩt

dΠt

)
. (3.31)
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Integration by parts provides the identity∫
Σt

ln
dΩt

dΠt

[
Δg(t) dΩt − ∇i (dΩt∇iΦt)

]

= −
∫

Σt

dΩt ∇i ln
dΩt

dΠt
∇i ln

dΩt

dΠt
+
∫

Σt

dΩt ∇iΦt∇i ln
(

dΩt

dΠt

)
, (3.32)

which we rearrange as∫
Σt

dΩt ∇iΦt∇i ln
(

dΩt

dΠt

)
= I [dΩt ‖ dΠt]

+
∫

Σt

ln
dΩt

dΠt

[
Δg(t) dΩt − ∇i (dΩt∇iΦt)

]
. (3.33)

By inserting (3.33) in (3.31) we get (3.27). The proof of (3.30) is a lengthy
routine computation which can be performed along the following steps:

d

dt
I[dΩt ‖ dΠt] =

d

dt

∫
Σt

dΩt gik(t)∇i ln
dΩt

dΠt
∇k ln

dΩt

dΠt

=
d

dt

∫
Σt

dΠt

(
dΩt

dΠt

)−1

gik(t)∇i
dΩt

dΠt
∇k

dΩt

dΠt

=
∫

Σt

dΩt

∣∣∣∣∇ ln
dΩt

dΠt

∣∣∣∣
2{

R(t) − 〈R(t)〉Σt
+

∂

∂t
ln

dΩt

dΠt

}

+
∫

Σt

dΩt

[
−2Rik(t) +

2
3

〈R(t)〉Σt
gik(t)

]
∇i ln

dΩt

dΠt
∇k ln

dΩt

dΠt

+ 2
∫

Σt

dΩt gik(t)∇i ln
dΩt

dΠt
∇k

∂

∂t
ln

dΩt

dΠt
. (3.34)

The structure of (3.27) suggests to add and subtract, to the ∂/∂t ln dΩt/dΠt

terms in the above expression, the quantity

Δg(t) ln
dΩt

dΠt
+
∣∣∣∣∇ ln

dΩt

dΠt

∣∣∣∣
2

− ∇iΦt∇i ln
dΩt

dΠt
, (3.35)

which is the rewriting in terms of ln dΩt
dΠt

of the generator of the Fokker–
Planck operator

∂

∂t
dΩt − Δg(t)dΩt + ∇i(dΩt∇iΦt), (3.36)

appearing in (3.27). Applying the Bochner–Weitzenböck formula

2∇i ln
dΩt

dΠt
∇iΔg(t) ln

dΩt

dΠt
= Δg(t)

∣∣∣∣∇ ln
dΩt

dΠt

∣∣∣∣
2

− 2
∣∣∣∣Hess ln

dΩt

dΠt

∣∣∣∣
2

− 2Rik(t) ∇i ln
dΩt

dΠt
∇k ln

dΩt

dΠt
, (3.37)
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and the identities∫
Σt

dΩt

∣∣∣∣∇ ln
dΩt

dΠt

∣∣∣∣
2

Δg(t) ln
dΩt

dΠt
+
∫

Σt

dΩt

∣∣∣∣∇ ln
dΩt

dΠt

∣∣∣∣
4

−
∫

Σt

dΩt Δg(t)

∣∣∣∣∇ ln
dΩt

dΠt

∣∣∣∣
2

+ 2
∫

Σt

dΩt ∇i ln
dΩt

dΠt
∇i

∣∣∣∣∇ ln
dΩt

dΠt

∣∣∣∣
2

= 0,

(3.38)

∇i ln
dΩt

dΠt
∇i

(
∇kΦt∇k ln

dΩt

dΠt

)
− 1

2
∇kΦt∇k

∣∣∣∣∇ ln
dΩt

dΠt

∣∣∣∣
2

= ∇i ln
dΩt

dΠt
∇k ln

dΩt

dΠt
(Hess Φt)ik (3.39)

(the former obtained by iterated integrations by parts and the latter by
direct computation [35]), one eventually gets the stated result. �

3.3 Fokker–Planck diffusion along the Ricci flow

From Lemma 3.3, we immediately get the following.

Theorem 3.4. The Fokker–Planck diffusion (dΩt)t≥0 generated along the
backward, volume-preserving Ricci flow by

∂

∂t
(dΩt) = Δg(t)dΩt − ∇i (dΩt∇iΦt) (3.40)

has the following properties:

(i) It is a gradient-like flow for the relative entropy functional S[dΩt ‖ dΠt], i.e.,

d

dt

∫
Σt

dΩt ln
dΩt

dΠt
= −

∫
Σt

d Ωt∇i ln
(

dΩt

dΠt

)
∇i ln

(
dΩt

dΠt

)
. (3.41)

(ii) The corresponding evolution for the Radon–Nikodym derivative
dΩt/dΠt,

∂

∂t

dΩt

dΠt
= Δg(t)

dΩt

dΠt
− ∇iΦt∇i

dΩt

dΠt
(3.42)

is the gradient flow (in the L2(Σ, dΠt) sense) of S[dΩt ‖ dΠt] with respect to
the inner product 〈·, ·〉dΩt\dΠt

defined by (1.4).

(iii) The associated entropy production functional I[dΩt ‖ dΠt] satisfies the
differential inequality

d

dt
I[dΩt ‖ dΠt] ≤ −2 Kt I[dΩt ‖ dΠt], (3.43)

where Kt ∈ R is the (t-dependent) lower bound of the Ricci curvature.
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(iv) If along the given Ricci flow β �→ gab(β) the diameter stays uniformly
bounded, i.e., supβ≥0 {diam (Σ, g(β))} .= diam < ∞, then

S[dΩt ‖ dΠt] ≥ 1
2

[
DW

2 (dΩt, dΠt)
diam

]4

, (3.44)

and the quadratic Wasserstein distance DW
2 (dΩt, dΠt) is weakly monotoni-

cally decreasing along the backward Ricci flow.

Proof. (i) The first part of the theorem, and in particular the gradient-like
nature of (dΩt)t≥0, is a direct computational consequence of Lemma 3.3.

(ii) It is easily verified that the absolutely continuous curve t �→ dΩt solution
of (3.40) induces the evolution (3.42) on the associated Radon–Nikodym
derivatives (dΩt

dΠt
)t≥0. The proof that this is a gradient flow with respect to

the inner product 〈·, ·〉dΩt\dΠt
follows from the analysis in Section 1.1, (see

equation (1.28)). In particular, if we denote by Ψt ∈ Cb(Σ, R)/R the tangent
vector to (dΩt)t≥0, i.e., the solution, for each given t = s, of the elliptic PDE

∂

∂t
dΩt

∣∣∣∣
t=s

= −gik(s)∇i(dΩt ∇kΨs), (3.45)

then according to (1.17) and (1.18), the tangent vector to the curve of
Radon–Nikodym derivatives (dΩt

dΠt
)t≥0, at the given value of t, is provided

by (Ψt − Φt). The gradient flow condition with respect to the inner product
(1.4) takes the form (1.26), i.e.,

〈(Ψt − Φt), ξ〉dΩt/dΠt
+ 〈GradS[dΩt ‖ dΠt], ξ〉dΩt/dΠt

= 0 (3.46)

∀ξ ∈ TdΩt/dΠt
Prob(Σt), which is equivalent, in the L2(Σ, dΠt) sense, to

(3.42). Note that by comparing (3.45) with (3.40), one gets the relation
∇i(Ψt − Φt) = −∇i ln

(
dΩt
dΠt

)
. Thus, we can equivalently rewrite the entropy

production functional as the Otto norm of the vector (Ψt − Φt), i.e.,

I [dΩt ‖ dΠt] =
∫

Σt

|∇(Ψt − Φt)|2
dΩt

dΠt
dΠt. (3.47)

(iii) From Lemma 3.3 we have

d

dt
I[dΩt ‖ dΠt] =

∫
Σt

dΩt

[
−2Rik(t) +

2
3
〈R(t)〉Σtg

ik(t)
]

∇i ln
dΩt

dΠt
∇k ln

dΩt

dΠt

− 2
∫

Σt

dΩt

[
Rik(t) + (Hess Φt)ik

]
∇i ln

dΩt

dΠt
∇k ln

dΩt

dΠt

− 2
∫

Σt

dΩt

∣∣∣∣Hess
(

ln
dΩt

dΠt

)∣∣∣∣
2

, (3.48)

which, according to Lemma 3.2 and (3.26), directly yields (3.43).
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(iv) As long as the diameter diam(Σ, g(β)) of (Σ, g(β)) remains uniformly
bounded along the given Ricci flow, we have the Talagrand-like inequality
(1.39) from which (3.44) immediately follows. Note that for a Ricci flow with
uniformly bounded Ricci curvature |Ric(β)| ≤ M , we have the elementary
bound for diam(Σ, g(β)) (see [41] and also [21]):

diam(Σ, g(0))e−2M β ≤ diam (Σ, g(β)) ≤ diamΣ, g(0))e2M β (3.49)

(the factor 2 is due to the volume normalization of the flow). Recently,
Topping [41] has obtained an improved control on diam(Σ, g(β)) in terms of
suitable averages of the scalar curvature. �

In its simplest form, the rate of convergence of a solution of

∂

∂t

dΩt

dΠt
= Δg(t)

dΩt

dΠt
− ∇iΦt∇i

dΩt

dΠt
,

dΩt

dΠt
|t=0 =

dΩ0

dΠ0

(3.50)

to the stationary state dΠt is governed by a curvature condition which is
naturally suggested by the structure of equation (3.48) and which, according
to lemma 3.2, is equivalent to the positivity of the Ricci tensor. Note that,
according to the characterization (3.4) of the potential Φt, also (dΠt)t≥0
solves the Fokker–Planck equation (3.40) (with the initial datum dΠ0) along
the backward Ricci flow. If (dΩt)t≥0 is a solution of (3.40) then we call
(dΩt, dΠt)t≥0 a conjugated Fokker–Planck pair along the backward Ricci
flow. Taking into account this elementary observation, we get the following
result.

Lemma 3.5. Let β → gab(β), β ∈ [0,∞), be a given Ricci flow metric start-
ing on a manifold (Σ, g) of positive Ricci curvature, and let (dΩt, dΠt)t≥0 be
the conjugated Fokker–Planck pair, solution of the Fokker–Planck equation
(3.40). Then, along the backward Ricci flow, the entropy functional S[dΩt ‖
dΠt] decreases exponentially fast according to

S[dΩt ‖ dΠt] ≤ S[dΩ0 ‖ dΠ0]e−(2/3)λinf t, (3.51)

where 1
3λinf

.= infβ≥0{Kβ > 0 : Ric(β) ≥ Kβ g(β)}. Moreover, the Talagrand
inequality

S[dΩt ‖ dΠt] ≥ λinf

6
[DW

2 (dΩt, dΠt)]2 (3.52)

holds, and S[dΩt ‖ dΠt] is a convex function along the backward Ricci flow.

Proof. Since the positivity condition on the Ricci tensor is preserved by the
Ricci flow and yields long time existence [19], we have Ric(β) ≥ Kβ g(β),
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Kβ ≥ c > 0 along the flow. According to (3.26), such positivity implies the
condition

2Ric(β) − 1
3
〈R(β)〉Σβ

g(β) + Hess Φβ ≥ λinf

3
g(β), (3.53)

on the curvature terms entering (3.48). It follows that

d

dt
I[dΩt ‖ dΠt] ≤ −2

3
λinf I[dΩt ‖ dΠt], (3.54)

which implies that the entropy dissipation functional I [dΩt ‖ dΠt] decreases
exponentially fast according to

I[dΩs ‖ dΠs] ≤ I[dΩt ‖ dΠt]e−(2/3)λinf(s−t), (3.55)

for any (s − t) ≥ 0. Let teq (this may be finite or infinite) be the value of t for
which dΩt attains equilibrium (i.e., dΩt = dΠt for t ≥ teq). If we integrate
(3.55) over s from t to teq,
∫ teq

t
I[dΩs ‖ dΠs] ds ≤ 3

2λinf

(
1 − e−(2/3)λinf(teq−t)

)
I[dΩt ‖ dΠt], (3.56)

and take into account that I[dΩs ‖ dΠs] = − d
dsS[dΩs ‖ dΠs], together with

S[dΩteq ‖ dΠteq ]
.= 0, and

(
1 − e−(2/3)λinf (teq−t)

)
≤ 1, we get

S[dΩt ‖ dΠt] ≤ 3
2λinf

I[dΩt ‖ dΠt]. (3.57)

Since the time t is arbitrary, this establishes that a logarithmic Sobolev
inequality, of constant λinf , holds for the diffusion process {dΩt}t≥0. By
inserting (3.57) in (3.41) we immediately get the exponential trend to equi-
librium (3.51). Since (dΩt, dΠt)t≥0 is a conjugated Fokker–Planck pair,
according to [35], the validity of the logarithmic Sobolev inequality on
(Σ, g(t)) implies the Talagrand inequality and hence (3.52) follows. The
convexity of S[dΩt ‖ dΠt] is a direct consequence of (3.54) and (3.57) above.
Explicitly, from (3.54) and I[dΩs ‖ dΠs] = − d

dsS[dΩs ‖ dΠs], we get

d2

dt2
S[dΩt ‖ dΠt] ≥

(
2
3
λinf

)2

S[dΩt ‖ dΠt], (3.58)

which by Talagrand inequality (3.52) yields

d2

dt2
S[dΩt ‖ dΠt] ≥ 1

4

(
2
3
λinf

)3

[DW
2 (dΩt, dΠt)]2, (3.59)

and S[dΩt ‖ dΠt] is t-displacement convex along the Ricci flow. �
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Note that if we introduce the adimensional variable η
.= 1

3λinf t then (3.59)
can be equivalently rewritten as

d2

dη2 S[dΩt ‖ dΠt] ≥ 2
3
λinf [DW

2 (dΩt, dΠt)]2, (3.60)

which is equivalent to Sturm’s K-convexity [46] of S[dΩt ‖ dΠt] (for K =
1
3λinf) (see (1.38)). The point here is that, typically, the K-convexity of
a relative entropy functional holds along the Wasserstein geodesics of the
metrized probability space (Prob(Σ, g), DW

2 ( , )). In particular, it was con-
jectured to hold for Riemannian manifolds with non-negative Ricci curvature
by Otto and Villani [35] (in the case K = 0, the conjecture has been proven
in [13] whereas in the general case (for any K ∈ R) in [46]). These remarks
suggest that the Fokker–Planck diffusion {dΩt}t≥0 is strictly connected with
Wasserstein geodesics in the bundle Prob(Σ). To discuss to what extent
this is the case, let us recall that, at any given t, the tangent vector to the
curve of Radon–Nikodym derivatives t �→ dΩt

dΠt
, is provided by − ln

(
dΩt
dΠt

)
(see

(3.47)). In analogy with the characterization of the parameter τ characteriz-
ing Perelman’s diffusion (d�(t))t≥0, let μ0 denote the (squared) length scale
over which the probability measure dΩt=0 is concentrated. Roughly speak-
ing, (4πμ0)3/2 is the typical volume of a domain B ⊂ whose dΩ0-measure is
not exponentially small and yields for full measure if slightly blown up. Let
us consider the adimensional parameter

ε
.=

λinf

3
(4πμ0)2/3, (3.61)

and let us ε-rescale the vector − ln
(

dΩt
dΠt

)
according to

uε(ε t) .= −2ε ln
(

dΩt

dΠt

)
. (3.62)

From equation (3.42) it easily follows that (uε(ε t))t≥0 evolves according to
the viscous Hamilton–Jacobi equation [44, 45]

∂uε

∂t
+

|uε|2
2

= ε
(
Δg(t)uε − ∇iΦt∇iuε

)
, (3.63)

with (a smooth) initial datum uε(x, t = 0) = Uε(x), x ∈ Σ. When the
parameter ε defined by (3.62) is small, one may discuss the solution of (3.63)
by the so–called vanishing viscosity method. Qualitatively, this implies that
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when ε → 0, the rescaled vector uε approaches the Hopf–Lax solution

inf
y∈Σ

[
Uε(y) +

1
2t

dt(x, y)2
]

, t > 0, x ∈ Σ, (3.64)

of the Hamilton–Jacobi equation

∂uε

∂t
+

|uε|2
2

= 0

uε(x, t = 0) = Uε(x).
(3.65)

This is admittedly rather vague since, in our setting, the distance dt(x, y)
varies with t, along the backward Ricci flow, and the viscosity solutions
must take this dependence into account. However, for ε � 1, i.e., if the
probability measure dΩt is initially concentrated on a set which is small
with respect to the radius of curvature of (Σ, g(t = 0)), the Fokker–Planck
diffusion (dΩt)t≥0 behaves, for t sufficiently small, as if occurring in the fixed
probability space Prob(Σ, g(t = 0)), with a shadow of the Ricci flow still
present through the forcing potential Φt=0. In such a case, the viscosity
interpretation of (3.64) is more justified and, according to Theorem 1.1
(see (1.43)) one can reach the conclusion that (dΩt)t≥0, for t small enough,
approximates a geodesic in the Wasserstein space (Prob(Σ, g(0)), DW

2 ( , )).
From a more geometrical point of view, one is here approximating the curve
t �→ dΩt

dΠt
with the push-forward of dΩt

dΠt

∣∣∣
t=0

under the action of the semigroup

defined by the infinitesimal generator −1
2 |∇Uε|2 (where the norm is taken

with respect to (Σ, g(t = 0))). It is a known fact that, whenever one moves
a measure density through the push-forward action of the exponential of a
smooth function, one gets a geodesic in the appropriate Wasserstein space,
(again, I wish to thank A. Figalli for useful remarks in this connection).

What is missing in such an approximation argument is the explicit role
of the backward Ricci flow. In this connection, the basic step to take is
the characterization of Wasserstein geodesics not just in a fixed probabil-
ity space (Prob(Σ, g), DW

2 ( , )), but rather in the bundle Prob(Σ) over the
space of Riemannian metrics Riem(Σ). Roughly speaking, we expect that
the Hamilton–Jacobi condition (1.43) of Theorem 1.1 is an approximation
to a more general geodesic equation in Prob(Σ), more or less like straight
lines approximate geodesics in Riemannian geometry. Correspondingly, the
Hopf–Lax representation will be an approximation to the exponential map-
ping in Prob(Σ). These remarks are strongly supported by the fact that,
as we have seen above, the natural diffusion process along the backward
Ricci flow is the viscous Hamilton–Jacobi equation (3.63), where the viscos-
ity parameter ε is naturally characterized by the lower bound of the Ricci
curvature. Here, we see a recurring theme in the Fokker–Planck dynam-
ics of the conjugated pair (dΩt, dΠt)t≥0 along the (backward) Ricci flow:
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(i) the Ricci curvature controls the geodesic convexity for the corresponding
relative entropy; (ii) it parametrizes the viscosity solutions of the Hamilton–
Jacobi equation associated with the Fokker–Planck diffusion; (iii) it natu-
rally affects the logarithmic Sobolev inequalities controlling the Wasserstein
distance between (dΩt, dΠt)t≥0. Points of contact between diffusion, geo-
desic convexity, Hamilton–Jacobi theory, and LSI are well known (see, e.g.,
[44, 45] for a discussion and relevant references), however here their relation
seem to come to full circle. In our opinion, this is a serious indication of the
existence of deeper connections between the geometry of optimal transport
and Ricci flow theory. In particular, such connections point to the possibil-
ity of adopting the geometry optimal transportation for extending the Ricci
flow to metric spaces more general than Riemannian manifolds.

Appendix A. Comparison with Perelman’s heat flow

It is worthwhile to compare the Fokker–Planck diffusion (3.40) with
Perelman’s flow (2.7). If we apply Lemma 3.3 to (d�(t))t≥0, we immediately
get the following.

Lemma A.1. For a given Ricci flow metric β �−→ g(β), β ∈ [0, T ), and
for any chosen β∗ ∈ [0, T ), let t �−→ d�(t), t

.= β∗ − β, be a solution of the
parabolic PDE (2.33). Then, the relative entropy functional

S[d�(t) ‖ dΠt]
.=
∫

Σt

d�(t) ln
d�(t)
dΠt

(A.1)

varies along the fiducial flow t �−→ dΠt according to

d

dt

∫
Σt

d�(t) ln
d�(t)
dΠt

= −I[d�(t) ‖ dΠt] −
∫

Σt

∇i d�(t)
dΠt

∇iΦt dΠt. (A.2)

Note in particular that S[d�(t) ‖ dΠt], as compared to S[dΩt ‖ dΠt], is
not weakly monotonic. The term responsible for such a lack of monotonicity
(and of the fact that (2.33) is not the gradient flow of S[d�(t) ‖ dΠt]) is the
scalar product

〈
Φt,

d�(t)
dΠt

〉
dΠt

. If we replace d�(t) with dΩt, this is basi-

cally the drift term driving Fokker–Planck diffusion in (3.40). Such a term
describes also how the measure d�(t) localizes the fluctuations in the scalar
curvature along the Ricci flow.

Lemma A.2. For a given Ricci flow metric β �−→ g(β), β ∈ [0, T ), and
for any chosen β∗ ∈ [0, T ), let t �−→ d�(t), t

.= β∗ − β, be a solution of
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the parabolic equation (2.33) corresponding to the initial datum d�0 =
(d�0/dΠβ∗)dΠβ∗. Then

〈
Φt,

d�(t)
dΠt

〉
dΠt

=
∫

Σ
d�(t)(R(t) − 〈R(t)〉), (A.3)

and

d

dt

〈
Φt,

d�(t)
dΠt

〉
dΠt

= − 2
∫

Σ
d�(t)

(∣∣∣R̂ic(t)
∣∣∣2 − 〈

∣∣∣R̂ic(t)
∣∣∣2〉Σt

)

− 2
3

∫
Σ

d�(t)R(t)[R(t) − 〈R(t)〉Σt ]

− 1
3
[〈R(t)2〉Σt − 〈R(t)〉2Σt

].

(A.4)

Proof. Relation (A.3) follows from (3.4) by a straightforward integration by
parts:
〈

Φt,
d�(t)
dΠt

〉
dΠt

=
∫

Σ
dΠt∇i

(
d�(t)
dΠt

)
∇iΦt =

∫
Σ

∇i(d�(t))∇iΦt

=
∫

Σ
∇i(d�(t)∇iΦt) −

∫
Σ

d�(t)ΔΦt

=
∫

Σ
d�(t)(R(t) − 〈R(t)〉).

(A.5)

The evolution equation for scalar curvature (2.47) provides

d

dβ
〈R(β)〉Σβ

= 2〈
∣∣∣R̂ic(β)

∣∣∣2〉Σβ
− 1

3

(
〈R(β)2〉Σβ

− 〈R(β)〉2Σβ

)
. (A.6)

From these latter relations (2.47) and (A.3), one directly computes

d

dt

〈
Φt,

d�(t)
dΠt

〉
dΠt

=
∫

Σ
R(t)Δ(d�(t)) +

∫
Σ

d�(t)
∂

∂t
R(t) − d

dt
〈R(t)〉

= −2
∫

Σ
d�(t)

(∣∣∣R̂ic(t)
∣∣∣2 − 〈

∣∣∣R̂ic(t)
∣∣∣2〉Σt

)

− 2
3

∫
Σ

d�(t)R(t)[R(t) − 〈R(t)〉Σt ]

− 1
3
[〈R(t)2〉Σt − 〈R(t)〉2Σt

], (A.7)

which provides the stated result (A.4). �
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Note in particular that if we choose for (2.33) the initial datum d�(t =
0) = dΠβ∗ , we get

d

dt

〈
Φt,

d�(t)
dΠt

〉
dΠt

∣∣∣∣∣
t=0

= −
(
〈R(β∗)2〉Σβ∗ − 〈R(β∗)〉2Σβ∗

)
, (A.8)

which again shows the role that mean square fluctuations in scalar curvature
have in controlling the concentration mechanism of the measure d�(t). We
can trace here the difference between the standard Perelman flow charac-
terizing the backward diffusion of d�(t) and the Fokker–Planck diffusion of
dΩt. The former feels curvature fluctuations in a more indirect way as a
forcing effect deforming the trajectory of d�(t) in Prob(Σ). Such a forc-
ing behavior is made manifest by the fact that the evolution of d�(t) is
not the gradient flow of the associated relative entropy and, according to
Lemma A.1, the failure of being gradient is exactly provided by the term〈
Φt,

d�(t)
dΠt

〉
dΠt

. Conversely, the diffusion (dΩt)t≥0 has the curvature fluc-

tuations taken care of by turning the forcing term
〈
Φt,

d�(t)
dΠt

〉
dΠt

into the

drift term
〈
Φt,

dΩt
dΠt

〉
dΠt

which renormalizes Perelman’s {d�(t)}t≥0 into the

Fokker–Planck diffusion {dΩt}t≥0.
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of the referee have been extremely helpful in improving the presentation.
Research supported in part by PRIN Grant #2004012375–002.

References

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in metric spaces
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