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Abstract

We define topological Landau–Ginzburg models on a world-sheet foam,
that is, on a collection of 2-dimensional surfaces whose boundaries are
sewn together along the edges of a graph. We use the matrix factoriza-
tions in order to formulate the boundary conditions at these edges and
then produce a formula for the correlators. Finally, we present the glu-
ing formulas, which correspond to various ways in which the pieces of a
world-sheet foam can be joined together.
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1 Introduction

It is always easier to define a quantum field theory on a closed manifold:
there is no need to formulate the boundary conditions for the fields in the
path integral. If the boundary exists, then one might limit oneself to the
easiest case of the Neumann boundary conditions. The last decade showed,
however, that the world of boundary conditions may be even more interest-
ing and diverse than the world of the “bulk” QFTs. A bulk 2-dimensional
QFT yields an algebra, boundary conditions are objects of a category, and
all morphisms between two objects form a module over the bulk algebra.
Now it turns out that the existence of a rather general class of boundary
conditions may change the very nature of the world-sheet manifold: instead
of being just a surface with boundary, it may become a “foam,” that is, a
version of a 2-dimensional CW-complex endowed with a complex structure,
if needed.

Although the QFTs themselves do not require the presence of a world-
sheet foam, a foam appeared in the paper [4] as a necessary element in
the categorification of the SU(3) HOMFLY polynomial. The paper [6]
interpreted that part of the categorification as a 2-dimensional topologi-
cal A-model defined on a world-sheet foam. Each 2-dimensional connected
component Σi of the foam carries its own topological σ-model, whose target
space is the complex Grassmannian Grmi,n, while the boundary condition at
an edge of the seam graph is specified by selecting a Lagrangian submanifold
in the cross-product of the Grassmannians assigned to the components Σi

bounding the edge.

The paper [6] described the general setup of a QFT on a world-sheet foam,
using the topological A-models as an illustration. Topological A-models,
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however, are notorious for their complexity even on the usual smooth sur-
faces, and the paper [6] presented neither an accurate description of the
Hilbert spaces corresponding to the seam graph vertices, nor a complete
formula for the partition function.

In this paper, we give a detailed description of a topological Landau–
Ginzburg model on a world-sheet foam. Each component Σi of the foam
carries its own fields φi = φi,1, . . . , φi,mi and its own potential Wi(φi), while
each edge of the seam graph carries a matrix factorization of the sum of
potentials of the bounding components Σi, in the spirit of [3]. We describe
the Hilbert spaces of the vertices of the seam graph and also provide a
formula for the correlators, which generalizes the formulas of Vafa [7] and
Kapustin–Li [3]. Finally, we present the gluing formulas for joining “space-
like” and even “time-like” boundary components of the world-sheet foam.

This paper is closely related to our categorification [5] of the SU(N) HOM-
FLY polynomial. Although we do not use world-sheet foams explicitly in [5],
the construction of the graded vector spaces associated to 3-valent graphs
in [5] is a particular case of the definition of an operator space Hγ related to
a decorated local graph γ, as described in Section 5.2. We refer the reader
to [5] for a detailed discussion of matrix factorizations.

2 A topological LG theory on a world-sheet with a boundary

According to [6], any QFT defined on a 2-dimensional surface with boundary
can be transferred to a world-sheet foam. Hence we begin by reviewing the
topological LG theory T on a surface with boundary, as presented in [2]
(see also references therein). We assume for simplicity that the target space
of T is a flat C

m and there are no gauge fields. Then the bulk theory is
characterized by a (polynomial) super-potential W ∈ C[φ], φ = φ1, . . . , φm,
and we denote this Landau–Ginzburg theory by T = (φ; W ).

2.1 The bulk Lagrangian

The topological LG theory T contains bosonic fields φ and φ as well as the
fermionic fields ηī, θi, ρi

z, and ρi
z̄. The bulk Lagrangian of the theory is

LT =
1
2

(
∂zφ

i ∂z̄φ
ī + ∂zφ

ī ∂z̄φ
i − ρi

z ∂z̄η
ī − ρi

z̄ ∂zη
ī
)

−2i
(
θi

(
∂zρ

i
z̄ − ∂z̄ρ

i
z

)
+ ∂i∂jW ρi

zρ
j
z̄

)

+
1
4

(
∂ī∂j̄W̄ θiη

j̄ − ∂iW ∂īW̄
)

. (2.1)
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Each line in this expression is invariant under the topological BRST trans-
formation Q

δQφi = 0 δQφī = ηī

δQηī = 0 δQθi = ∂iW (2.2)

δQρi
z = ∂zφ

i δQρi
z̄ = ∂īφ

i,

except that the second line generates the boundary Warner term: for a
world-sheet Σ with a boundary ∂Σ the BRST variation of the action is

δQ

∫

Σ
LT =

∫

∂Σ
∂iW (ρi

zdz + ρi
z̄dz̄). (2.3)

Note that if we treat (ρi
z, ρ

i
z̄) as a 1-form on Σ, then the Lagrangian (2.1)

can be written without a reference to the complex structure of the world-
sheet. The only remnant of that complex structure would be the orientation
that it induces on Σ. Let LT̄ denote the Lagrangian (2.1) in which we
conjugated the complex structure or, equivalently, reversed the orientation
of the world-sheet. It is easy to see that this change can be compensated by
switching two signs: the sign of the field θi (that is, θi is a “pseudo-scalar”)
and the sign of the super-potential W . Thus,

L(φ;W ) = L(φ;−W ). (2.4)

2.2 The boundary Wilson line

Kontsevich suggested that the Warner term (2.3) could be compensated by
putting the appropriate Wilson lines at the boundary components of Σ.
This idea was implemented in papers [1–3]. We will follow the approach of
Lazaroiu [2] as the most suitable for our purposes.

The linear space for a LG Wilson line is provided by a matrix factorization
of the super-potential W . According to [3], a matrix factorization of W is
a triple (M, D, W ), where M is a finite-dimensional Z2-graded free C[φ]
module, M = M0 ⊕ M1 (rankM0 = rankM1), while the twisted differential
D is an operator D ∈ End(M), such that deg D = 1 and

D2 = W Id. (2.5)

Simply saying, a matrix factorization is described by a 2n × 2n-dimensional
matrix with polynomial entries

D =
(

0 F
G 0

)
, such that FG = GF = W Id. (2.6)
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Lazaroiu introduces a connection

AT =
(

W Id (ρi
zdz + ρi

z̄dz̄) ∂iF

(ρi
zdz + ρi

z̄dz̄) ∂iG W Id

)
(2.7)

acting on M . Suppose that ∂Σ is a union of disjoint circles:

∂Σ =
⊔
k

Ck. (2.8)

To each circle Ck, we assign a matrix factorization (Mk, Dk, W ) of W . Then
Lazaroiu proves that the path integrand

exp
(∫

Σ
LT

) ∏
k

WCk
, WCk

= S TrMk
Pexp

∮

Ck

A, (2.9)

with the orientation of Ck induced by the orientation of Σ, is invariant under
the topological BRST transformation (2.2).

An orientation of a boundary component Ck can be reversed without
affecting its super-trace, if we replace the associated matrix factorization
(Mk, Dk, W ) with its dual. First, observe that the matrix factorizations can
be tensored:

(M1, D1, W1) ⊗ (M2, D2, W2) = (M1 ⊗ M2, D1 + D2, W1 + W2) . (2.10)

Then we define the dual matrix factorization as

(M, D, W )∗ = (M∗, D∗,−W ) , (2.11)

where the module M∗ is the dual of M over C[φ] and

D∗ =
(

0 G∗

−F ∗ 0

)
, (2.12)

where F ∗ and G∗ are the dual maps (transposed matrices) of F and G.

Choice (2.12) guarantees that the natural pairing map M∗ ⊗ M
f−→ C[φ]

satisfies the property fD = 0 and thus “commutes” with D.

2.3 Boundary operators

In order to simplify our notations, whenever we work with multiple matrix
factorizations, we will denote all their twisted differentials by D, if it is clear
on which particular module that D is acting. Also, let [·, ·]s denote the
super-commutator:

[A, B]s = AB − (−1)deg A deg B BA. (2.13)

The super-traces of (2.9) have an obvious generalization. Let t ∈ [0, 1]
parameterize a boundary circle C. The values 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1
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split C into n segments. We can assign any matrix factorizations (Mj , Dj , W )
to the segments [tj−1, tj ]. To each value tj we assign an operator Oj ∈
Hom(Mj , Mj+1), which super-commutes with the twisted differential D:
[D, Oj ]s = 0. Then the Wilson line contribution WC can be replaced in
the integrand (2.9) by

WC = STrM1

(
Pexp

∫

[t0,t1]
A

)
O1 · · ·

(
Pexp

∫

[tn−1,tn]
A

)
On, (2.14)

while still maintaining the BRST invariance.

Following [3], let us give a more precise description of the space of the
operators Oj . For two matrix factorizations (M0, D0, W ) and (M1, D1, W )
consider the Z2-graded module Hom(M0, M1) of C[φ]-linear maps between
the modules. Define a differential d on this module by

dO = [D, O]s , (2.15)

where O ∈ Hom(M0, M1). It turns out that d2 = 0, and d describes the
BRST action on Hom(M0, M1). The space HP of operators at the junction
P of two segments carrying the modules M0 and M1 can be presented as

HP = Ext(M0, M1) =
ker d

im d
. (2.16)

An equivalent presentation of the operator space comes from the dual
matrix factorization. Namely, consider the tensor product of matrix factor-
izations

(M1, D1, W ) ⊗ (M0, D0, W )∗ = (M1 ⊗ M0
∗, D, 0) ,

D = D1 + D0
∗. (2.17)

Since D2 = 0, we can take

HP =
ker D

im D
, (2.18)

because the cohomology of D is canonically isomorphic to Ext(M1, M0) in
view of the canonical isomorphism

Hom(M0, M1) = M1 ⊗ M0
∗, (2.19)

and the fact that d corresponds to D.
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3 A topological LG theory on a world-sheet foam

3.1 The world-sheet foam

Let us recall the definition of a world-sheet foam given in [6]. Let Γ be a
graph such that every vertex has adjacent edges. Γ is allowed to contain
disjoint circles. A cycle on Γ is defined to be either a disjoint circle or a
cyclicly ordered finite sequence of edges, such that the beginning of the next
edge corresponds to the end of the previous edge. Let Σ be an orientable
and possibly disconnected smooth 2-dimensional surface, its boundary ∂Σ
being a union of disjoint circles. A world-sheet foam (Σ, Γ) is a union Γ ∪ Σ,
in which the boundary circles of Σ are glued to some cycles on Γ in such a
way that every edge of Γ is glued to at least one circle of ∂Σ.

Defining a topological LG theory on a world-sheet foam (Σ, Γ) involves
three steps: first, we assign bulk theories to oriented connected components
of Σ; second, we assign appropriate boundary condition to the oriented seam
edges; third, we choose the operators at the seam vertices. The first two
steps comprise a decoration of the world-sheet foam.

3.2 Bulk theories on the 2-dimensional connected components

The first step is simple. Suppose that the 2-dimensional surface Σ is a union
of NΣ disjoint components Σ =

⊔NΣ
i=1 Σi. Then to every oriented component

Σi, we assign its own topological LG theory Ti = (φi; Wi) with its own target
space C

mi , bosonic fields φi, fermionic fields, and a super-potential Wi in
such a way that if Σi and Σ̄i represent the same component of Σ with
opposite orientations, then Σ̄i should be assigned the conjugated theory T̄i.

3.3 Boundary conditions at the seam graph edges

Next, we have to formulate the boundary conditions at the seam edges, which
would be compatible with the BRST-invariance of the actions of Landau–
Ginzburg theories sitting on the adjacent surfaces Σi. According to [6],
these boundary conditions are just particular cases of an ordinary boundary
condition for a Landau–Ginzburg theory defined on a smooth surface with
a boundary.

Let us orient an edge e of Γ and let Ie be the set of indices i, such that
e bounds Σi. We orient all Σi (i ∈ Ie) in such a way that their orientations



TOPOLOGICAL LANDAU–GINZBURG MODELS 241

are compatible with the orientation of e. If P is an inner point of e, then
a small neighborhood of P looks like a union of upper half-planes H

+
i ⊂ C

glued along the common real line, the point P being the origin of that real
line. If H

+ is a “standard” upper half-plane, then we can identify all H
+
i

analytically (preserving orientation) with it. Thus, if every H
+
i carries a

QFT Ti with the Lagrangian LTi , then formulating a boundary condition
for them at e is equivalent to formulating it for the combined theory Te with
the Lagrangian LTe =

∑
i∈Ie

LTi . In case of the topological LG theories, this
means that to every seam edge e we assign the theory

Te = (φe; We) , where φe = (φ | i ∈ Ie), We =
∑
i∈Ie

Wi. (3.1)

Then to every oriented edge e of the seam graph Γ, we associate a matrix
factorization (Me, De, We) in such a way that if two oriented edges e and e∗

represent the same edge with opposite orientations, then (Me∗ , De∗ , We∗) =
(Me, De, We)

∗. Also, we assign to e the Lazaroiu connection Ae = ATe . If the
matrix factorization (Me, De, We) does not factor into a tensor product of
matrix factorizations of individual super-potentials Wi, then the boundaries
of the components Σi cannot be “unglued” at the edge e.

It is important to note that the construction of a matrix factorization
associated to a seam edge must be local. It may happen that because of
the global structure of the world-sheet foam (Σ, Γ), some of the strips that
bound an edge e come from the same world-sheet component Σi. In this
case, we first treat their theories Ti as different, that is, they share the same
dimension of the target space mi and the same super-potential Wi, yet their
target spaces and fields are considered distinct. After we pick a matrix
factorization (Me, De, We), we impose a condition that the fields coming
from the different strips of the same world-sheet component are the same.

3.4 Operators at the seam graph vertices

Let v be a seam graph vertex and let Iv be the set of seam edges, which
are adjacent to v. We orient these edges away from v and then consider the
factorization

(Mv, Dv, Wv) =
⊗

e∈Iv

(Me, De, We) . (3.2)

Obviously,

Mv =
⊗

e∈Iv

Me, Wv = 0, (3.3)

the latter equation following from the fact that for every component Σi

attached to v there are two (or, more generally, an even number of) bounding
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edges, which are attached to v in such a way that Σi contributes an equal
number of Wi and −Wi to Wv.

Since Wv = 0, then D2
v = 0 and we can consider its cohomology

Hv =
ker Dv

im Dv
. (3.4)

The space Hv is Z2-graded: Hv = H0
v ⊕ H1

v . Dv plays the role of the BRST
operator at v, so we take Hv as the space of operators at the vertex v. In
other words, to every vertex v, we associate an element

Ov ∈ ker Dv, (3.5)

and the BRST-invariance of the path integral will guarantee that the corre-
lators depend on Ov only modulo imDv.

3.5 Wilson network

For a world-sheet foam (Σ, Γ), the analog of the Wilson lines at the boundary
components of the world-sheet Σ is the Wilson network formed by the seam
graph Γ. Its contribution is a generalization of the super-trace (2.14) and it
is expressed through multiple contractions between the pairs of dual modules
in a big tensor product

(⊗
v∈V

Mv

)
⊗

(⊗
e∈E

(Me ⊗ Me
∗)

)
, (3.6)

where V and E are the sets of all vertices and of all edges of Γ. If we
substitute the formulas (3.3) for Mv, then all the elementary modules Me

and Me
∗ can be grouped in pairs of mutually dual modules: Me (or Me

∗)
coming from Me ⊗ Me

∗, while the dual module Me
∗ (or Me) coming from

the tensor product expression (3.3) for Mv, where v is the beginning (or the
end point) of the oriented edge e. Performing contractions within each pair,
we get the map

(⊗
v∈V

Mv

)
⊗

(⊗
e∈E

Me ⊗ Me
∗
)

fΓ−−−→ C[φΣ], (3.7)

where

φΣ = φ1, . . . ,φNΣ
, (3.8)

and NΣ is the number of connected components Σi of Σ. If we consider
the Lazaroiu connection holonomy along an edge e to be the element of
Me ⊗ Me

∗, then the Wilson network contribution WΓ can be expressed as
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the contraction map (3.7) applied to the tensor product of all the Lazaroiu
holonomies and all the vertex operators Ov:

WΓ = fΓ

((⊗
v∈V

Ov

)
⊗

(⊗
e∈E

Pexp
∫

e
Ae

))
(3.9)

Clearly, this expression is a generalization of the super-trace (2.14), if we
assume that the seam graph Γ in the latter case consists of a disjoint union
of cycles formed by the seam edges [tj−1, tj ].

3.6 Operators at the internal points of the seam edges

The network structure of the boundary Wilson lines of the world-sheet foam
forces us to always include the seam vertex operators in any correlator on
(Σ, Γ). Moreover, note that the operator spaces Hv generally do not contain
canonical elements, so there is no special choice for Ov.

In addition to the required operators at the seam vertices, the correlators
may also include the optional operators at the internal points of the seam
edges e and at the internal points of the world-sheet components Σi.

Let P be an internal point of a seam edge e. In order to describe its
space of local operators, we can simply declare it to be a new seam vertex,
thus breaking the edge e into two consecutive edges. Then the space of the
operators can be presented either in the form (2.16) or in the form (2.18),
in which we substitute M0 = M1 = Me. Note that the space Ext(Me, Me)
has a canonical element, which is the identity map.

3.7 Jacobi algebra and the local operators of the bulk

The description of the operator spaces for the internal points of the compo-
nents Σi comes from the topological LG theories on closed surfaces. Namely,
for a topological LG theory (φ; W )

HP =
C[φ]
∂W

, (3.10)

where ∂W is the ideal of C[φ] generated by the first partial derivatives
∂iW (indeed, HP must be the cohomology of the BRST operator acting
according to (2.2) on the algebra of the fields). The C[φ]-module HP has
an algebra structure and is called the Jacobi algebra of W , so we will also
denote it as JW .
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The operator product expansion arguments show that for any world-sheet
foam component Σi, whose boundary passes through a seam vertex v, the
operator space Hv must be a module over the Jacobi algebras JWi . The
space Hv by its definition (3.4) is already a module over C[φi], so we have
to check that if Ov ∈ ker Dv, then

(
∂Wi

∂φi,j

)
Ov ∈ im Dv. (3.11)

The proof is based on a general relation

{∂jD, D} = ∂jW, (3.12)

which follows from Equation (2.5) by taking the derivative ∂j of both sides.
Now let e0 be an adjacent edge of v, which is a part of the boundary
∂Σi. Suppose that all edges, which are adjacent to v, go out of v. Then
Dv =

∑
e∈Iv

De. Since {De, De0} = 0 for all e 
= e0, then Equation (3.12)
implies that

{∂jDe, Dv} = {∂jDe, De} = ∂jWe = ∂jWi, (3.13)

the latter equality following from the last Equation of (3.1). Thus

∂jWe Ov = {∂jDe, Dv} Ov = (∂jDe) Dv Ov + Dv (∂jDe) Ov. (3.14)

Since Ov ∈ ker Dv, then the first term in the r.h.s. of this formula is zero.
The second term belongs to im Dv, and this proves our assertion.

3.8 Topological Landau–Ginzburg path integral

Finally, we combine all the data into the path integral, which represents the
correlator of the operators Ov at the seam graph vertices and the operators
OP at the internal points of Σ. The exponential part of the integrand is
simply exp (

∑
i LTi), whereas the operators OP and the Wilson network

contribution WΓ provide the pre-exponential factors:
〈 ∏

P∈P
OP

∏
v∈V

Ov

〉

(Σ,Γ)

=
∫

exp

(∑
i

LTi

)

(∏
P

OP

)
WΓ DφΣDηΣDθΣDρΣ, (3.15)

where (field)Σ means all fields of the given type from all the components Σi.
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3.9 An example of a topological LG theory on a world-sheet foam

Let us now consider a specific example of a topological LG theory which can
be put on a world-sheet foam. In other words, we are going to present a set of
topological LG theories Ti = (φi; Wi) and some matrix factorizations of the
sums of their super-potentials which do not factor into the tensor products
of matrix factorizations of the individual super-potentials Wi. This example
is inspired by the construction of [4], and following [8] we suggest that it is
the mirror image of the world-sheet foam theory presented in [6]. Also the
constructions of our paper [5] are based on a particular case of the matrix
factorizations described here.

Let us fix a positive integer N and a complex parameter a. Following [8],
for 1 ≤ i ≤ N − 1 we consider the polynomial

cm(φm; t) = 1 +
m∑

j=1

φm,j tj , φm = (φm,j | 1 ≤ j ≤ m) (3.16)

and the expansion of its logarithm in power series of t:

ln cm(φm; t) =
∞∑

j=1

cm,j(φm) tj . (3.17)

Then we set

Wm(φm) = (−1)N+1 cm,N+1(φm) − a φm,1, (3.18)

thus defining the topological LG theory Tm = (φm; Wm) with the target
space C

m. Its Jacobi algebra coincides with the quantum cohomology alge-
bra of the complex Grassmannian Grm,N .

The matrix factorizations that we are going to use belong to a special
class sometimes called the “Koszul factorizations”. Here is the general con-
struction. Suppose that a super-potential W (φ) factors over C[φ]

W = p q, p, q ∈ C[φ]. (3.19)

Then there exists a (1|1)-dimensional matrix factorization of W with the
twisted differential

D =
(

0 q
p 0

)
. (3.20)

We denote this matrix factorization by (p; q). If W (φ) can be presented as
a sum of products

W =
n∑

j=1

pj qj , p,q ∈ C[φ], (3.21)
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then there is a (2n−1|2n−1)-dimensional factorization of W

(p;q) =
n⊗

j=1

(pj ; qj). (3.22)

Now we come back to the potentials (3.18). For a list of integer numbers
m such that ∑

i

mi = N, (3.23)

we are going to construct a Koszul matrix factorization of the super-potential

Wm =
∑

i

Wmi (3.24)

by presenting it in the form (3.21). Consider the polynomial WN (p̃) as
defined by Equations (3.16) to (3.18), in which the variables φ are replaced
by the variables p̃ = (pj | 1 ≤ j ≤ N). The equation

∏
i

cmi(φmi
; t) = 1 +

N∑
j=1

pj(φ) tj (3.25)

defines p̃ as polynomial functions of all variables φ = (φmi
| i). In particular,

p1 =
∑

i

φmi,1, (3.26)

and it is easy to verify that

Wm(φ) = WN (p̃(φ)). (3.27)

Consider again the polynomial WN (p̃). If we assign degrees to the vari-
ables p̃ as deg pj = j, then WN is a homogeneous polynomial of degree
N + 1. Therefore each monomial of WN (p) is proportional to at least one
variable p = (pj | 1 ≤ j ≤ (N + 1)/2) and we can present WN as a sum of
products

WN (p̃) =
∑

1≤j≤(N+1)/2

pj rj(p̃). (3.28)

If we recall that Equation (3.25) turns p̃ into the polynomials of φ, and if
we define the new polynomials q(φ) as

qj(φ) = rj(p̃(φ)), (3.29)

then, according to Equation (3.27),

Wm(φ) =
∑

1≤j≤(N+1)/2

pj(φ) qj(φ), (3.30)
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and the super-potential Wm has a matrix factorization (p;q). Although the
presentation of WN as a sum of products (3.28) is not unique, all these pre-
sentations lead to isomorphic Koszul matrix factorizations. We expect them
to be the mirror images of the special Lagrangian submanifolds introduced
in [4] and [6]: a Lagrangian submanifold of the cross-product of the com-
plex Grassmannians Grmi,N is defined by the condition that the subspaces
C

mi ⊂ C
N provide an orthogonal decomposition of C

N .

It is interesting to note a resemblance between these topological LG theo-
ries and the representation theory of SU(N). If V denotes the fundamental
N -dimensional representation of SU(N), then the critical points of a super-
potential Wm correspond to the weights of the fundamental representation∧m V , a matrix factorization (p;q) corresponds to the invariant element
in the tensor product

⊗
i

∧mi V and for a local graph γ the dimension of
the space Hγ equals the result of the contraction of the Clebsch–Gordan
tensors placed at its vertices. This correspondence is at the heart of the
categorification construction of [5].

4 Formulas for the correlators

4.1 Correlators on a closed surface

The formula for the correlator of a topological LG theory on a closed surface
was derived by Vafa in [7]. Let us define a “Frobenius trace” map C[φ] TrW−−−→
C by the formula

TrW (O) =
1

(2πi)m

∮
O(φ) dφ1 · · · dφm

∂1W · · · ∂mW
, (4.1)

where the variables φ are integrated over the contours which encircle all
critical points of W . Let P be a finite set of punctures (marked points) on
a closed surface Σ of genus g. Then, according to [7], the correlator of the
operators OP ∈ C[φ] placed at the punctures P ∈ P, is

〈 ∏
P∈P

OP

〉

Σ

= TrW

(
(det ∂i∂jW )g

∏
P∈P

OP (φ)

)
. (4.2)

This formula indicates that the Frobenius trace (4.1) computes the correlator
of the operators on a sphere S2, while the factors det ∂i∂jW represent the
“effective contributions” of the handles: if we imagine that Σ is a sphere
with g tori attached to it by thin tubes, then these tori can be equivalently
replaced by the operators det ∂i∂jW placed at the points where the tubes
join the sphere.
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An important property of the trace (4.1) is that it annihilates the ideal
∂W : for any O ∈ C[φ]

TrW (∂iW O) = 0. (4.3)

This is consistent with the fact that the space of local operators is the
quotient (3.10).

4.2 Correlators on a surface with a boundary

Suppose that a boundary of the world-sheet Σ of genus g is a union of
disjoint circles (2.8), each circle Ck is split into nk segments ek,l, a matrix
factorization (Mk,l, Dk,l, W ) is assigned to each segment and an operator
Ok,l is placed at the junction of the segments ek,l and ek,l+1. We also place
some operators OP , P ∈ P at the internal points of Σ. In order to write a
simple expression for the resulting correlator, we have to introduce a general
notation. For a matrix factorization (M, D, W ), Kapustin and Li [3] define
an operator ∂D∧ ∈ End(M) by the formula

∂D∧ =
1
m!

∑
σ∈Sm

(−1)sign(σ)∂σ(1)D · · · ∂σ(m)D, (4.4)

where Sm is the symmetric group of m elements, m being the dimension of
the target space of the topological LG theory (φ; W ). Now to a circle Ck,
which is a part of the boundary ∂Σ, we associate an element OCk

∈ C[φ]
defined by the formula

OCk
= STrM1 ∂D∧

k,1 Ok,1 · · ·Ok,nk
. (4.5)

Note the similarity between the expressions (4.5) and (2.14): the former
is obtained from the latter by replacing all holonomies with the identity
operators except the first one, which is replaced by ∂D∧

k,1.

Kapustin and Li [3] derived the formula for the correlator of the boundary
and bulk operators:〈 ∏

P∈P
OP

∏
k,l

Ok,l

〉

Σ

= TrW

(
(det ∂i∂jW )g

∏
P∈P

OP (φ)
∏
k

OCk

)
. (4.6)

By comparing this formula with Equation (4.2), we see that the factors
OCk

represent the boundary state operators corresponding to the boundary
components Ck: the correlator does not change if Ck is contracted to a point
and the operator OCk

is placed at that point.

Following [3], let us verify directly (without using the path integral argu-
ments) that the correlator formula (4.6) satisfies two properties related to
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the BRST invariance. First of all, if one of the boundary operators Ok,l is

BRST-exact (Ok,l =
[
D, O′

k,l

]
s
), then the correlator (4.6) is zero, since we

can move the operator D around the super-trace expression (4.5): all the
operators O commute with D, while {∂jD, D} = ∂jW and a term propor-
tional to a derivative ∂jW is annihilated by the Frobenius trace.

Second, we could insert the operator ∂D∧ at any place in the product of
the operators Ok,1 · · ·Ok,nk

in Equation (4.5): the r.h.s. of Equation (4.6)
would not change. Indeed, if for some value of l

Ok,l =
[
∂jD, O′

k,l

]
s , while

[
D, O′

k,l

]
s = 0, (4.7)

then the r.h.s. of Equation (4.6) is zero (take the derivative ∂j of the second
Equation of (4.7) and use the already established fact that D-commutators
annihilate the r.h.s. of Equation (4.6)).

4.3 Correlators on a world-sheet foam

Now we consider a correlator on a world-sheet foam (Σ, Γ). First, we present
a formula and then comment on its derivation.

We define an operator OΓ ∈ C[φΣ] which is the analog of OCk
from Equa-

tion (4.5) and which represents the boundary state operator contribution of
the Wilson network. For each connected component Ci,j of the boundary
∂Σi, we choose a seam edge among the edges to which Ci,j is glued, and we
denote that edge as ei,j . Then we introduce the operators (4.4)

∂D∧
i,j ∈ End(Mei,j ), ∂D∧

i,j =
∑

σ∈Smi

(−1)sign(σ)∂φi,σ(1)Dei,j

· · · ∂φi,σ(m)Dei,j , (4.8)

where φi,1, . . . , φi,mi are the bosonic fields of the topological LG theory
(φi; Wi) assigned to the connected component Σi of Σ.

To every seam edge e we assign an operator

Oe =
∏

(i,j): e=ei,j

∂D∧
i,j (4.9)

(if e = ei,j for more than one combination (i, j), then we choose any order
of the operators in the product (4.9); if e never appears as i, j, then the
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corresponding operator Oe is the identity). Then, similar to Equation (3.9),
we define

OΓ = fΓ

(( ⊗
v∈V

Ov

)
⊗

( ⊗
e∈E

Oe

))
(4.10)

and the correlator (3.15) is expressed as
〈 ∏

P∈P
OP

∏
v∈V

Ov

〉

(Σ,Γ)

= TrΣ

(
OΓ

∏
P∈P

OP

NΣ∏
i=1

(det ∂j∂kWi)g(Σi)

)
, (4.11)

where

TrΣ : C[φΣ] −→ C, TrΣ = TrW1 · · ·TrWNΣ
(4.12)

(cf. Equation (4.6)).

Now let us comment on the derivation of this correlator formula. Note
that the original Vafa’s formula (4.2) was derived in the assumption that
the critical points of the super-potential W are non-degenerate. Then the
BRST-invariance of the theory guarantees that the correlator is a sum of the
contributions of the individual critical points and at each point the super-
potential W can be replaced by its quadratic part.

Kapustin and Li derived their formula under the same assumption,
although it is harder to justify in their case: W can be perturbed in order
to make its critical points non-degenerate, but it is not clear, whether its
matrix factorizations can be deformed together with it.

Kapustin and Li derived the correlator for the disk world-sheet. This is
sufficient in order to establish the boundary state operator corresponding
to the boundary. Then their general formula would follow from Vafa’s for-
mula (4.2). We use the same approach. Namely, it would be sufficient to
derive Equation (4.11) under the assumption that the surface Σ is a union
of disjoint disks. Then the computation of the path integral (3.15) that
leads to Equation (4.11) is exactly the same as in [3]. The only minor nov-
elty is that it may happen that a seam edge e is assigned to two (or more)
different disks Σi and Σj (i 
= j). Then it bears their operators ∂D∧

i and
∂D∧

j (we left only one index in their notation, since Σi and Σj have only
one boundary component). The path integration over the fermionic fields
leaves the derivatives ∂φi,k

De (1 ≤ k ≤ mi) and ∂φj,l
De (1 ≤ l ≤ mj), which

enter in expressions (4.8), intermixed. However, they can still be pulled
apart into the operators ∂D∧

i and ∂D∧
j , because ∂φi,k

De and ∂φj,l
De anti-

commute up to a BRST-closed operator. Indeed, since the super-potential
We is a sum (3.1) of the individual super-potentials, each depending on its
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own set of fields, then ∂φi,k
∂φj,l

We = 0. Hence, if we apply ∂φi,k
∂φj,l

to both
sides of the relation D2

e = We, then we find that

{∂φi,k
De, ∂φj,l

De} = −{De, ∂φi,k
∂φj,l

De}. (4.13)

5 Gluing formulas

5.1 Gluing of a 2-dimensional world-sheet

The gluing property of the correlators is an important feature of general
QFTs and of topological theories, in particular. Let us quickly review the
gluing rules of a 2-dimensional topological QFT.

For a point P ∈ Σ, let γP denote the intersection between Σ and a small
sphere centered at P . We will call γP the local space section of P . In
the context of a string theory, γP is simply called a string. If P is an
internal point of Σ, then γP is a circle (closed string), and if P is a point
at the boundary ∂Σ, then γP is a segment (half-circle, or open string). The
endpoints of the segment come from the intersection of the small sphere
and the boundary ∂Σ, so they are “decorated” with the TQFT boundary
conditions at ∂Σ. If P is a point at the junction of two different boundary
conditions, then the decorations at its endpoints are also different. The
segment is oriented, its orientation being induced by the orientation of Σ.
For a decorated local space section γ, we define its dual γ∗ to be the same
as γ but with the opposite orientation. Obviously, a circle is self-dual.

The space of the TQFT states corresponding to γP coincides with the
space HP of the local operators that can be inserted at P .

Suppose that for two points P1, P2 ∈ Σ, their decorated local space section
are dual to each other: γ∗

1 = γ2. Then the spaces H1 and H2 are also dual. In
order to define the duality pairing between them, we consider the world-sheet
S(1,2) = U1#U2 constructed by gluing together the small neighborhoods U1
and U2 of P1 and P2 over the boundaries γ1 ∼ γ2 identified with opposite
orientations. If γ1 is a circle, then S(1,2) is a 2-sphere, and if γ1 is a segment,
then S(1,2) is a disk. The pairing is defined by the correlator on S(1,2):

(O1, O2) = 〈O1 O2〉S(1,2)
, O1 ∈ H1, O2 ∈ H2. (5.1)

As a result, there is a canonical dual element

I1,2 ∈ H∗
1 ⊗ H∗

2 , (5.2)
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defined by the relation

(I1,2, O1 ⊗ O2) = (O1, O2). (5.3)

We will need the inverse element

I−1
1,2 ∈ H1 ⊗ H2. (5.4)

Let us cut the small neighborhoods U1 and U2 from the world-sheet Σ and
glue (that is, identify) the boundaries γ1 and γ2 of the cuts in such a way
that their orientations are opposite. Denote the resulting oriented manifold
as Σ′, then according to the gluing property of a TQFT,

〈 ∏
P∈P

OP

〉

Σ′

=

〈
I−1
1,2

∏
P∈P

OP

〉

Σ

. (5.5)

A more “pedestrian” way to formulate the same property is to introduce a
basis of operators Oj ∈ H1 and a dual basis O∗

j ∈ H2 so that (Oj , O
∗
j′) = δj,j′ .

Then
〈 ∏

P∈P
OP

〉

Σ′

=
∑

j

〈
Oj O∗

j

∏
P∈P

OP

〉

Σ

. (5.6)

5.2 Complete space gluing

Let us check how the general gluing formula (5.5) works for a topological
LG theory on a world-sheet foam.

Let P be a point on a world-sheet foam (Σ, Γ). We call its local space
section a local graph and denote it as γP . If P is an internal point of Σ, then
γP is a circle. If P is an internal point of a seam edge e, then γP is a graph
with two vertices connected by multiple edges, each edge corresponding to a
strip of a component Σi attached to e. If P is a seam vertex v, then γP is a
graph, whose vertices correspond to the seam edges adjacent to v and whose
edges correspond to the strips of the components Σi, which pass through
v. In fact, the vertex-edge and edge-surface correspondence between γP
and (Σ, Γ) works for all three types of points P . The orientation of the
components Σi induces the orientation of the corresponding edges of γP .
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A small neighborhood UP of P in (Σ, Γ) can be restored from its local graph
γP , because UP is the cone of γP :

UP = CγP . (5.7)

Generally speaking, a local graph γ is just a graph. A decorated local
graph means the following. To an oriented edge ε of γ, we assign a topolog-
ical LG theory (φε; Wε) in such a way that if ε and ε∗ represent the same
edge with opposite orientations, then they are assigned the conjugated the-
ories. To a vertex ν of γ we associate a matrix factorization (Mν , Dν , Wν),
such that

Wν =
∑
ε∈Υν

Wε, (5.8)

where Υν is the set of edges of γ, which are attached to ν (we assume that
they are oriented away from ν).

For a decorated local graph γ consider the matrix factorization
(Mγ , Dγ , Wγ), which is the tensor product of all the matrix factorizations of
its vertices

(Mγ , Dγ , Wγ) =
⊗

ν

(Mν , Dν , Wν) . (5.9)

Obviously

Wγ = 0, (5.10)

so D2
γ = 0 and we denote its cohomology as

Hγ =
ker Dγ

im Dγ
. (5.11)

If a world-sheet foam (Σ, Γ) is decorated, then for any P ∈ (Σ, Γ) its local
graph γP is also decorated: a topological LG theory of an edge ε is the
theory of the corresponding component Σi and a matrix factorization of a
vertex ν is the matrix factorization of the corresponding seam edge, if it
is oriented away from P , or the conjugated matrix factorization otherwise.
Then it is easy to see that

HγP
= HP , (5.12)

that is, the space of operators at a point P is determined by its decorated
local graph γP .
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For a decorated local graph γ, we define its dual graph γ∗ to be the same
graph as γ, except that it is decorated with the conjugate topological LG
theories and with the dual matrix factorizations.

Consider a suspension Σγ of a local graph γ: by definition, it is
constructed by gluing together the cones Cγ and Cγ∗ along their common
boundary γ. Σγ has a structure of a world-sheet foam: its seam graph
consists of two vertices v1 and v2, which are the vertices of the cones, the
suspensions of the vertices of γ form the edges that connect v1 and v2, and
the 2-dimensional components Σi are the suspensions of the edges of γ.
Obviously, γv1

= γ and γv2
= γ∗.

If a local graph γ is decorated, then a topological LG theory is defined on
its suspension Σγ. The correlators of this theory provide the paring between
the spaces Hγ and Hγ∗

(O, O′) =
〈
O O′〉

Σγ
. (5.13)

This pairing determines an inverse canonical element I−1
γ,γ∗ ∈ Hγ ⊗ Hγ∗ .

Suppose that for two points P1, P2 ∈ (Σ, Γ) their local graphs are dual:
γ∗

1 = γ2. Then we can cut their small neighborhoods from the world-sheet
foam (Σ, Γ) and glue the cut borders together, thus forming a new world-
sheet foam (Σ′, Γ′). If a topological LG theory is defined on (Σ′, Γ′), then
it induces a topological LG theory on (Σ, Γ) and the correlators of both
theories are related by the gluing formula〈 ∏

P∈P ′

OP

∏
v∈V ′

Ov

〉

(Σ′,Γ′)

=

〈
I−1
1,2

∏
P∈P ′

OP

∏
v∈V ′

Ov

〉

(Σ,Γ)

, (5.14)

where P ′ and V ′ are the punctures and seam vertices of (Σ′, Γ′). Thus the
gluing property of a topological LG theory on a world-sheet foam is very
similar to the gluing property (5.5) on a usual world-sheet.

5.3 A topological LG theory on a world-sheet foam as a 2-category

The graph structure of world-sheet foam local space sections permits more
complicated types of gluing than those described in the previous section,
when two dual local space sections are glued together. These new types
of gluing can be arranged into the mathematical structure known as a
2-category.

The usual 1-category structure of a TQFT on a 2-dimensional world-sheet
comes from the composition property of transition amplitudes. Consider a
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world-sheet Σ with a finite puncture set P and two special punctures P1 and
P2 with local graphs γ1, γ2. If we choose the operators at the punctures of
P, then the correlator on Σ defines a transition amplitude

Hγ1

A[γ1,γ∗
2 ]−−−−−→ Hγ∗

2
(5.15)

by the formula

Iγ∗
2 ,γ2

(A[γ1, γ
∗
2 ](O1), O2) =

〈
O1O2

∏
P∈P

OP

〉

Σ

for any

O1 ∈ Hγ1
, O2 ∈ Hγ2

. (5.16)

Let Σ12 denote the result of cutting small neighborhoods of P1 and P2 from
Σ12. If we have another surface Σ′ with special punctures P3 and P4 such
that γ∗

2 = γ3, then we can glue the boundary components γ2 and γ3 of Σ12
and Σ′

34 together to form a new world-sheet with boundary Σ′′
14. The tran-

sition amplitude of Σ′′ is given by the composition of transition amplitudes

A[γ1, γ
∗
4 ] = A[γ3, γ

∗
4 ] A[γ1, γ

∗
2 ], (5.17)

and this formula corresponds to the gluing formula (5.5) formulated for P2
and P3.

The composition property (5.17) extends verbatim to the world-sheet
foams. In the foam case, however, there is an important generalization.
Namely, the surface or the world-sheet foam Σ12 presented a cobordism
between two closed space section (be it 1-manifolds or graphs). Now we are
going to consider cobordisms between the spaces that have boundaries.

Let us take a local graph γ and make cuts across some of its edges, so that
γ splits into two disconnected partial local graphs α1 and α2: γ = α1#α2.
The partial local graphs have special univalent vertices at the cuts: we call
them boundary vertices, and their adjacent edges are called legs. We think
of the boundary vertices as the boundary of a partial local graph.

The partial local graphs inherit the decorations of γ, except that their
boundary vertices are not assigned matrix factorizations. To a decorated
partial local graph α, we associate a matrix factorization (Mα, Dα, Wα)
which is the tensor product of all the matrix factorizations of its non-
boundary vertices. However this time instead of Equation (5.10), we have

Wα =
∑
ε∈Lα

Wε, (5.18)

where Lα is the set of legs of α, and we assume that the legs are oriented
away from the boundary vertices.
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Let φα = (φε | ε ∈ Lα) be the list of all variables of the legs of a partial
local graph α, and let Rα = C[φα] be their polynomial ring. Obviously,

Rα =
⊗
ε∈Lα

C[φε]. (5.19)

Since the super-potential Wα of Equation (5.18) depends only on the “exter-
nal” variables φα, from now on we will consider (Mα, Dα, Wα) to be a matrix
factorization over the ring Rα. However this poses a problem: if we ignore
the “internal” variables of α, then the module Mα is infinite-dimensional as a
module over Rα. Indeed, the multiplication by the powers of an internal vari-
able now produces an infinite sequence of linearly independent elements of
Mα. In order to resolve this problem, we can contract Mα homotopically to
a finite-dimensional Rα-module. Here is the relevant definition: two matrix
factorizations (Mi, Di, W ), i = 1, 2 are considered homotopically equivalent
over the polynomial ring R � W , if there exist two R-linear maps f12, f21

M1
f12−−−→ M2

f21−−−→ M1 (5.20)

commuting with the twisted differential D, such that the compositions
f21f12 ∈ EndR(M1) and f12f21 ∈ EndR(M2) are BRST-equivalent to the
identity maps. We showed in [5] that under some mild assumptions an
infinite rank matrix factorization is homotopically equivalent to a finite
rank one.

If a decorated local graph is split: γ = α1#α2, then according to
Equation (5.9)

Mγ = Mα1
⊗R Mα2

, R = Rα1
= Rα2

, (5.21)

and we used the notation ⊗R in order to emphasize that the tensor product
is taken over the polynomial ring of all leg variables of α1 (or, equivalently,
α2). If we replace the R-modules Mα1

and Mα2
in Equation (5.21) by their

finite-dimensional homotopic equivalents, then the module Mγ will change,
but its D cohomology Hγ will stay the same. Therefore we will use the
same notation Mα for the whole homotopy equivalence class of Rα-modules
related to a decorated partial local graph α.

Let (Σ, Γ) be a decorated world-sheet foam with a puncture set P. Let us
pick a vertex v ∈ V with a local graph γ and denote V ′ = V \{v}. A choice
of the operators at the punctures of P and at the vertices of V ′ determines
an element A[γ] ∈ Hγ∗ by the formula

Iγ,γ∗(O, A[γ]) =

〈
O

∏
P∈P

OP

∏
v′∈V ′

Ov′

〉

(Σ,Γ)

for any O ∈ Hγ . (5.22)
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Suppose that γ splits: γ = α1#α2. Then, in view of Equation (5.21),

Mγ∗ = Mα∗
1
⊗R Mα∗

2
= HomR(Mα1

, Mα∗
2
), (5.23)

and hence

Hγ∗ = Ext(Mα1
, Mα∗

2
) (5.24)

(cf. definition (2.16)). The latter isomorphism allows us to translate the
element A[γ] of Equation (5.22) into a transition amplitude A[α1, α

∗
2] ∈

Ext(Mα1
, Mα∗

2
). This transition amplitude is the analog of the amplitude

(5.15): A[γ1, γ
∗
2 ] describes the transition between two closed space sections,

while A[α1, α
∗
2] describes the transition between two space sections with

boundary.

The distinction between the open and closed-space transitions has a topo-
logical and an algebraic manifestation. Topologically, if we cut small neigh-
borhoods of the punctures P1 and P2, then the remainder (Σ, Γ)12 has two
disconnected boundary components: the “in” space γ1 and the “out” space
γ2. The foam topology is more complicated. If we cut out a small neigh-
borhood of the seam vertex v, then the boundary of the remainder (Σ, Γ)v

is obviously the local graph γ. If we cut γ just into α1 and α2, then these
partial local graphs would have common points. However, since we think of
α1 and α2 as space sections corresponding to different values of “time”, we
would like them to be completely separated. Therefore, rather than slicing
the edges that connect α1 and α2, we cut out finite length segments from
them. These segments form the time-like section. Thus the boundary of
(Σ, Γ)v consists of three, rather than two, pieces: two “space-like” ones (the
“in” space α1 and the “out” space α∗

2) as well as the time-like section. The
algebraic consequence of the presence of a time-like section in the bound-
ary of (Σ, Γ)v is that the “in” and “out” spaces of states are not just linear
spaces over C, but rather R-modules, and the transition amplitude A[α1, α

∗
2]

is R-linear.

Since the world-sheet foam of the open space transition (Σ, Γ)v has two
types of boundary, the corresponding transition amplitude A[α1, α

∗
2] satisfies

two gluing relations. First of all, there is the gluing associated to the com-
position of transitions, which is similar to Equation (5.17). Consider two
world-sheet foams (Σj , Γj) (j = 1, 2) with marked seam vertices vj . Sup-
pose that their local graphs γj can be split γj = αj#α′

j in such a way that
α∗

2 = α′
1. Then we can glue (Σ1, Γ1)v1 and (Σ2, Γ2)v2 along these matching

partial local graphs. Its resulting transition amplitude A[α1, α
∗
2] should be

the composition of the elementary ones:

A[α1, α
∗
2] = A[α2, (α

′
2)

∗] A[α1, (α
′
1)

∗]. (5.25)
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One can also glue the world-sheet foams along the time-like sections. Let
us describe the corresponding cutting of a world-sheet foam(Σ, Γ). Suppose
that it has two marked vertices vj (j = 1, 2), whose local graphs γj are split:
γj = α′

j#α′′
j , and both γ1 and γ2 have m slice points. Let pj,k (1 ≤ k ≤ m)

denote the points at which the legs of α′
j and α′′

j are joined. Suppose that for
all k, the points p1,k and p2,k belong to the same connected component Σi(k)
of Σ, and we can choose non-intersecting curves ck which lie on Σi(k) and
join the points p1,k and p2,k. Finally, suppose that if we make the cuts along
all curves ck, then (Σ, Γ)v1,v2 splits into two disconnected pieces (Σ, Γ)′

v1,v2
,

(Σ, Γ)′′
v1,v2

in such a way that (Σ, Γ)′
v1,v2

is bound by α′
1, α′

2 and the curves
ck, while (Σ, Γ)′′

v1,v2
is bound by α′′

1, α′′
2 and the curves ck. Then (Σ, Γ)′

v1,v2

and (Σ, Γ)′′
v1,v2

produce their own transition amplitudes A[α′
1, (α

′
2)

∗] and
A[α′′

1, (α
′′
2)

∗]. Their tensor product

Mα′
1
⊗R Mα′′

1

A[α′
1,(α′

2)∗]⊗RA[α′′
1 ,(α′′

2 )∗]−−−−−−−−−−−−−−−−→ M(α′
2)∗ ⊗R M(α′′

2 )∗ (5.26)

commutes with the twisted differential D and therefore, in view of (5.21), it
defines a map from Hγ1

to Hγ∗
2
. Thus the gluing of two world-sheet foams

(Σ, Γ)′
v1,v2

and (Σ, Γ)′′
v1,v2

along their time-like sections produces the formula

A[γ1, γ
∗
2 ] = A[α′

1, (α
′
2)

∗] ⊗R A[α′′
1, (α

′′
2)

∗], (5.27)

relating two open-space transition amplitudes to one closed-space transition
amplitude. In this gluing formula, the usual compositions (5.17) and (5.25)
are replaced by the tensor product over an appropriate ring.
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