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Abstract

It has been conjectured recently that the field theory limit of the topo-
logical string partition functions, including all higher genus contributions,
for the family of CY3-folds giving rise to N = 2 4D SU(N) gauge theory
via geometric engineering can be obtained from gauge instanton calculus.
We verify this surprising conjecture by calculating the partition functions
for such local CYs using diagrammatic techniques inspired by geomet-
ric transitions. Determining the Gopakumar–Vafa invariants for these
geometries to all orders in the fiber wrappings allows us to take the field
theory limit.

1 Introduction

Topological string theory has received much attention recently due to its
implications for large N dualities in the physical string theory [1]. The
amplitudes of the topological string theory not only have mathematical
significance as generating functions of Gromov–Witten invariants but also
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compute coefficients of certain F-terms in the physical 4d theory. Much
progress has been made toward their calculation for local toric CY3-folds in
the past year [2–5].

In this paper, we will compute the topological string partition function
F =

∑
Fgg

2g−2
s for local Calabi–Yau 3-folds which are resolved An singular-

ities fibered over P
1. These geometries are used to geometrically engineer

N = 2 D = 4 SU(N) theories [6–9]. Our interest in these theories stems
from the following recent developments in instanton calculus [10–12]. The
problem of computing the gauge instanton coefficients Fk was reduced to
the solution of certain integrals over the (reduced) instanton moduli space
in [13–18]. These integrals prove difficult to solve for k ≥ 2. Nekrasov [10]
performs a deformation of the integrand which allows their evaluation. The
deformed integrals are then assembled into a generating function, the expres-
sion for which is computed in [10–12], and the Fk can be extracted from this
expression. The surprising conjecture in [10] is that this generating func-
tion itself has an interpretation: it represents the field theory limit of the
topological string partition function on the local CY which geometrically
engineers the gauge theory. The deformation parameter here plays the role
of the string coupling. Inspired by the form of this expression, [10] also con-
tains a conjecture about the form of the full string partition function, before
taking the field theory limit. It is these two conjectures, the interpretation
of the generating function and the form of the full string partition function,
which we wish to investigate, and which we verify, the latter for a certain
choice of fibration of the geometry, in this paper.

Specifically, the form of the topological string partition function conjec-
tured in [10] is

ZNekrasov :=
∑

R1,...,N

ϕlR1+···+lRN

N∏

l,n=1

∞∏

i,j=1

sinh[β(aln + �(µl,i − µn,i + j − i))/2]
sinh[β(aln + �(j − i))/2]

.

(1.1)

This turns out to be the topological string partition function of the dis-
tinguished fibration of resolved AN−1 over P

1 which is an orbifold of the
resolved conifold. The expression we obtain in this paper for this case is

Ẑ =
∑

R1,...,N

ϕl1+···+lN

∏N
i=1 WRi(q)

2

∏
1≤i<j≤N

∏
k(1 − qkQi · · ·Qj−1)2Ck(Ri,RT

j )
, (1.2)

where ϕ is a combination of Kähler parameters. We demonstrate the equiv-
alence of these two expressions in Section 5 of this paper.

The technique we use to calculate the string partition function is inspired
by [2]. There, it is shown how to pass to an open string geometry dual



SU(N) GEOMETRIES 3

to the closed geometry, on which the partition function can be calculated
using Chern–Simons theory. In [4], diagrammatic rules are extracted from
this procedure for a subclass of geometries which allow the calculation to
proceed without knowledge of the open string geometry. These rules have
been completed and given a physical interpretation in the recent paper [5].

To perform the calculation of the string partition function in the case
at hand, a further hurdle must be overcome. The expression obtained by
[10–12] and the one conjectured by [10] translate into topological string
theory expressions which are an expansion in wrappings of the base P

1 but
exact in fiber wrappings. We show how to obtain these exact results by
making an assumption about the form of an expression which enters in the
Chern–Simons calculation, generalizing an approach utilized in [19].

The plan of the paper is as follows. In Section 2, we briefly review how
N = 2 SU(N) gauge theories in D = 4 are engineered in string theory. Sec-
tion 3 explains the diagrammatic techniques we employ to perform our cal-
culation, and their origins. In Section 4, we introduce the final ingredient of
our calculation which allows the determining of the integral invariants to all
orders in fiber wrappings, perform the calculation for SU(3) geometries in
detail, and show how the result generalizes to SU(N). In the final section,
we compare our results to those obtained based on gauge instanton calculus.
In Appendix A, we provide some details on the geometries studied in this
paper and their toric description, and make some comments relating to the
5d theory one obtains by considering M-theory on these CY geometries.

2 Geometric engineering of SU(N) theories

Compactifications of type IIA on singular CYs yield effective four-
dimensional theories with enhanced gauge symmetry [6–8]. The gauge
symmetry in the field theory arises from D2-branes wrapping collapsing
curves in the CY3-fold. Thus to get a particular gauge symmetry, one has
to study a CY3-fold with the appropriate shrinking cycles.

The engineering of an SU(N) gauge theory requires a singularity of
AN−1 type. Type IIA compactification on such a geometry gives a six-
dimensional SU(N) theory with sixteen supercharges. To obtain a four-
dimensional theory, further compactification on a two-dimensional surface is
required. If the four-dimensional surface is T 2, the four-dimensional theory
acquires N = 4 supersymmetry. To break supersymmetry down to N = 2
(eight supercharges), the surface should have no holomorphic one forms and
therefore has to be a P

1. To obtain a CY3-fold, the AN−1 must be fibered
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non-trivially over the P
1. The web diagram corresponding to such a geom-

etry is given in figure 1. We review aspects of such geometries in Appendix
A. The details of the N = 2 theory obtained by type IIA compactification
on such a CY3-fold depend on the choice of fibration. In the field theory
limit, which we review next, all such 3-folds reduce to the same theory.

The field theory limit is obtained by taking the string scale to infinity. By
the relations of the base and fiber Kähler parameters to the gauge coupling
and W-boson masses, these parameters must be scaled as1

QB := e−TB =
(

βΛ
2

)2N

, QFi := e−TFi = e−βai,i+1 i = 1, . . . , N − 1.

(2.1)
Λ above denotes the quantum scale in four dimensions, the ai,i+1 = ai+1 − ai

parameterize the VEVs of adjoint scalars in the Cartan subalgebra of the
gauge group, and the parameter β is introduced such that the field theory
limit corresponds to β → 0.

The N = 2 prepotential has both 1-loop perturbative and non-
perturbative (instanton) contributions,

F = Fclassical + F1−loop +
∞∑

k=1

ck(ai)Λ2Nk. (2.2)

We compare this to the expansion of the genus zero topological string ampli-
tude

F0(TB, {TFi}) = P3(TB, {TFi}) +
∑

(k,m) �=(0,0)

∞∑

n=1

N0
(k,m)

n3 e−nkTB−n
∑

i miTFi ,

(2.3)

(here P3(TB, {TFi}) is a cubic polynomial from which one gets the classical
contribution to the prepotential). The contributions of worldsheet instanton
multiwrappings, n > 1, vanish in the field theory limit. By considering (2.1),
it then becomes clear that the k-th gauge instanton contributions stem from
worldsheet instantons that wrap the base P

1 of our geometries k-times.

In this paper, we will be interested in taking the field theory limit of the
full topological partition function

∑
g2g−2
s Fg, rather than just studying the

genus 0 contribution. We are motivated to study the full quantity due to
recent works [10–12] which obtain it, as reviewed in Section 5, via instan-
ton calculations within field theory. Obtaining finite contributions from all
genera requires scaling the string coupling such that q := eigs = eβ� · � will

1In the following, the notation Qc will always be reserved for the exponential of minus
the corresponding Kähler parameter, e−Tc .
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(−1,−1)

(−N+1,1)
(m+1,1)

(N−m−1,−1)

Figure 1: The web diagram for SU(N) geometries. The tupels in parenthe-
ses signify the slope of the respective lines.

serve to distinguish between the contributions at different gs (the notation
is chosen in accordance with [10]).

3 Diagrammatics

3.1 Geometric transitions

In [20], the string theory partition function
∑

g2g−2
s Fg is shown to have the

following form
∞∑

g=0

g2g−2
s Fg(ω) =

∑

Σ∈H2(X)

∞∑

g=0

∞∑

n=1

Ng
Σ

n

(
2 sin

(
n

gs

2

))2g−2
e−nΣ · ω. (3.1)

In [2], the Gopakumar–Vafa invariants Ng
Σ for a given local Calabi–Yau are

determined by using duality to the open topological string on a deformed
geometry obtained by performing local conifold transitions. The worldsheet
instantons of this deformed geometry are under strict control, and by [21],
Chern–Simons theory can be used to determine the open string partition
function. In particular, open string worldsheet instantons map the bound-
aries of the worldsheet to S3’s in the target space, and their contribution
to the partition function is captured within the Chern–Simons theory by
Wilson loops on the image of these boundaries. For this paper, we will
require the expression WR1R2 for the expectation value of two Wilson loops
in representations R1, R2 of SU(N) on an S3 forming a Hopf link. This is
given by2

WR1R2 = dimq R1(λq)l2/2sµ2(Eµ1(t)). (3.2)

2For a derivation of the following expressions for Wilson loop amplitudes in Chern–
Simons theory, the reader is referred to [22] and references cited therein.
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Here, q is the exponential of the Chern–Simons coupling, q = exp( 2πi
k+N ),

λ the exponential of the ’t Hooft coupling, λ = qN . µ1,2 denote the Young
tableaux corresponding to the representations R1, R2. dimq R, the quantum
dimension of the representation R, is the normalized expectation value of a
Wilson loop in representation R on an unknot, given by

dimq R =
∏

1≤i<j≤d

[µi − µj + j − i]
[j − i]

d∏

i=1

µi∏

v=1

[v]λ
[v − i + d]

, (3.3)

where [x]λ = λ1/2qx/2 − λ−1/2q−x/2, [x] = [x]1, d denotes the number of rows
in the tableau µ and µi denotes the number of boxes in the i-th row of µ.
Finally, sµ is the Schur polynomial of the representation described by µ,
given by

sµ = det Mµ, (3.4)
where the r × r matrix Mµ, with r the number of columns in µ, is given by
M

(ij)
µ = (aµ∨

i +j−i). µ∨ is the transposed Young tableaux to µ, obtained
by interchanging columns and rows. The ai are the coefficients of the
power series which is the argument of the Schur polynomial, in our case the
coefficients of ti in the expansion of Eµ, given by

Eµ(t) =

(

1 +
∞∑

n=1

(
n∏

i=1

1 − λ−1qi−1

qi − 1

)

tn

)⎛

⎝
d∏

j=1

1 + qµj−jt

1 + q−jt

⎞

⎠ . (3.5)

The open string parameters q and λ map to the closed string parameters
eigs and et, where t is the Kähler parameter of the compact curve obtained
by resolving the conifold singularity (note that q and λ are not independent
parameters, whereas gs and t are). Upon rewriting the Chern–Simons ampli-
tude in terms of closed string parameters, one obtains all Gopakumar–Vafa
invariants Ng

Σ up to a given degree in Σ.

The open geometry related via flops and blowdowns to the SU(3) geom-
etry is depicted in figure 2.3 As we describe in the next subsection, it is
not necessary to compute the complete open string partition function and
then take appropriate limits to arrive at the desired closed string result. A
shortcut is available.

3.2 The emergence of diagrammatic rules

Upon calculating closed topological amplitudes using geometric transitions
and CS theory, it was noticed by several authors [2, 4, 5] that diagrammatic

3For a more detailed description of such transitions and an explanation of diagrams
such as figure 2, see e.g., [19].
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blowdown

flop

transition

geometric

Figure 2: The open geometry dual to a resolved A2 over P
1 fibration.

rules emerge which allow writing down the amplitude by considering the
web diagram of the closed string geometry. All internal lines are labeled by
representations of SU(N), which must be summed over. They contribute
factors Ql

c = e−lTc to the amplitude, where Tc is the Kähler class of the curve
represented by the internal line, and l is the length of the representation.
Vertices with two internal lines carry a factor WR1,R2 , which is the leading
order contribution in λ to the quantity WR1R2 introduced in (3.2) above,

WR1R2(q) = WR1(q) qlR2/2sµR2
(EµR1

(t)), (3.6)

with

Eµ =

(

1 +
∞∑

n=1

(
n∏

i=1

1
qi − 1

)

tn

)⎛

⎝
d∏

j=1

1 + qµj−jt

1 + q−jt

⎞

⎠ . (3.7)

In particular, WR = WR· is given by

WR(q) = qκR/4
∏

1≤i<j≤d

[µi − µj + j − i]
[j − i]

d∏

i=1

µi∏

v=1

1
[v − i + d]

, (3.8)
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where κR is

κR = lR +
d(µ)∑

i=1

µi(µi − 2i). (3.9)

These rules are inspired by considering the open string dual to an extended
closed geometry, related to the original geometry by blow-ups, such that all
internal lines of the original geometry correspond to annulus instantons in
the open geometry.4 The geometric transition gives rise to additional com-
pact curves, one per local transition from a deformed to a resolved conifold,
which are eliminated by taking their Kähler parameters λi to infinity. As
long as only two annuli end on an S3 in the open geometry, each S3 con-
tributes factors WR1R2 to the amplitude, and the λi → ∞ limit yields the
vertex factors WR1R2 as claimed above.

[4] points out the similarity of the diagrammatic rules to Feynman rules,
where the Kähler parameters of the 3-fold play the role of Schwinger param-
eters, the vertices are given by WRiRj and a framing factor described below,
and the factor e−l1rδR1R2 can be interpreted as a propagator. This approach
has recently been made rigorous in [5].

Let us clarify the diagrammatic approach by looking at two examples.

Consider first the resolved conifold. The relevant amplitude on the open
string side here is of course, via the conifold transition, the CS partition
function on a sphere. To obtain an expression which adheres to our dia-
grammatic rules, we follow the seemingly more cumbersome path depicted
in figure 3 to arrive at the partition function of the resolved conifold. This is
in accordance with the procedure outlined above of relating compact curves
of the closed geometry to annulus instantons in the open geometry. Equating
the two expressions yields the relation

Z

S−1
00 (λ1)S−1

00 (λ2)
= lim

λ1,λ2→∞

∑
W·R(λ1, q)W·R(λ2, q)

(
Q√
λ1λ2

)lR

(−1)lRq−κR/2

=
∑

W·R(q)W·R(q)QlR(−1)lRq−κR/2

= S−1
00 (Q). (3.10)

Note that Q must be renormalized by a factor 1√
λ1λ2

in order for the
λ1, λ2 → ∞ limit to exist. Note also that the limit yields the CS partition

4Note that this procedure might lead to additional compact divisors, which manifest
themselves in the web diagram as crossing external lines.
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V1
V2

Figure 3: The path to the resolved conifold partition function which yields
diagrammatic rules.

function on S3 proper, not divided by S−1
00 . Finally, the factor (−1)lRq−κR/2

is a framing factor. Iqbal [4] proposes the following diagrammatic rules to
determine these. Associate with each vertex of the web diagram an SL(2, Z)
matrix which maps the (p, q) charge (the slope) of one leg to the (p′, q′)
charge of the other, with (p, q) and (p′, q′) being the charges associated with
two internal legs. In our example, we only have one internal leg at each
vertex, so we must think of the bottom diagram in figure 3 as embedded in
a larger geometry. The matrix TmS−1Tn at a vertex WR1R2 gives rise to a
framing factor (−1)nl1+ml2qnκ1/2+mκ2/2. For the diagram shown, we obtain
the following SL(2, Z) matrices,

V1 = S−1T−1, V2 = S−1, (3.11)

in accordance with the framing factor exhibited in (3.10). The expression
for S−1

00 (Q) obtained here will be useful shortly.

The second example we wish to consider is local P
2 blown up at one

point, which is the first del Pezzo surface B1. The web diagram which can
be obtained from the toric data is shown in figure 4 below. Again, there
are two ways of obtaining the partition function. In [2], see also [3], the
geometric transition depicted in figure 5 is considered. Taking the λ2,3 → ∞
limit yields a geometry which is related to B1 by a flop, see figure 6. In this
approach, the Kähler class of the exceptional divisor of the del Pezzo is given
by log λ1, i.e., related to the exponential of the Chern–Simons coupling in
the open picture. Instead, we can apply the diagrammatic rules outlined
above to this example. Here, the Kähler class of the exceptional divisor is
related to the renormalized area of the annulus instanton stretching between
vertex V2 and V3 in figure 4.
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V1

V2

R2
R4

V3

V4

R1

R3

Figure 4: Web diagram of local P
2 blown up at one point.

The SL(2, Z) matrices associated to the vertices for this example are
given by

V1 = S−1, V2 = S−1, V3 = T−1S−1T−1, V4 = TS−1T. (3.12)

We thus obtain for local B1

Z =
∑

R1,2,3,4

Ql1+l3
B Ql1+l2+l4

F (−1)l1+l3 q(κ1−κ3)/2 WR1,R2WR2,R3WR3,R4

WR4,R1 , (3.13)

where TB,F are the Kähler parameters of the base and the fiber P
1 with

QB,F = e−TB,F . Note that the expression we obtain from applying dia-
grammatics only contains WR1R2 ’s, which are algebraically simpler than
the WR1R2 that arises in the first approach to this example described above.

Let us define the following generating function of the Gopakumar–Vafa
invariants,

f (n)
g (x) =

∑

m

(−1)g−1Ng
(n,m)x

m, (3.14)

l3

l1

l2

l3

l1

l2

geometric

transition

Figure 5: Obtaining B1 via geometric transition and limits.
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flop

Figure 6: The flop relating the limit of the geometry in figure 5 to B1.

then from (3.13) it follows that

f (1)
g (x) = δg,0(1 + 3x + 5x2 + 7x3 + 9x4 + 11x5 + 13x6 + 15x7 + 17x8

+ 19x9 + 21x10 + · · · ),

f
(2)
0 (x) = 6x2 + 32x3 + 110x4 + 288x5 + 644x6 + 1280x7 + 2340x8 + 4000x9

+ 6490x10 + · · · ,

f
(2)
1 (x) = 9x3 + 68x4 + 300x5 + 988x6 + 2698x7 + 6444x8 + 13916x9

+ 27764x10 + · · · ,

f
(2)
2 (x) = 12x4 + 116x5 + 628x6 + 2488x7 + 836x8 + 22404x9

+ 55836x10 + · · ·

3.3 The three point vertex: VR1R2R3(q)

The examples studied above involve open configurations in which at most
two annulus instantons end on the same S3, or, in terms of diagrammatics,
only vertices with at most two internal lines attached occur.

As shown in a recent paper [5], an effective vertex on which three internal
lines end (we will refer to this as a three point vertex) can be formulated as
well. Once the existence of this vertex is established, the expressions for the
vertices V·,R1,R2 and V ,R1,R2 we will need for our computations can easily
be determined as follows.5

We consider the subdiagram of a web diagram and its transition, as
depicted in figure 7. Assuming the existence of the three point vertex, the

5Our vertex differs slightly from [5] in the choice of framing factors.
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R

R

R

R

R1

2

1

2

Figure 7: A local transition.

contribution to the partition function coming from the the diagram on the
right (RHD) should be given by

ZRHD
R1R2

=
∑

R

QlR VRR1R2(q) WR(q) (−1)lRq−κR/2, (3.15)

where the factor of (−1)lRq−κR/2 is due to the SL(2, Z) transformation,

S−1T−1, which maps
(

1
1

)

to
(

1
0

)

.

On the other hand, we know that the diagram on the left (LHD) is given
by the CS expectation value of Wilson loops on a Hopf link with the two
components in the representations R1 and R2,

ZLHD
R1R2

= λ−(lR1+lR2 )/2WR1R2

∑

R

λ−lRW2
R(q) (−1)lRq−κR/2. (3.16)

In the above expression, log λ is the Kähler parameter of the P
1, and

λ−(lR1+lR2 )/2 is the renormalization factor discussed above. Equating (3.15)
and (3.16) yields

∑

R

QlR VRR1R2(q) WR(q) (−1)lRq−κR/2 = λ−(lR1+lR2 )/2WR1R2

∑

R

λ−lR

W2
R(q) (−1)lRq−κR/2. (3.17)

We now set Q = λ−1 and expand both sides in λ−1 to obtain the following
expressions for the three point vertex,

V·R1R2 = WR1R2 ,

V R1R2 = W WR1R2 − GR1R2(q)
W ,

(3.18)

where GR1R2 is the next to leading order coefficient in the expansion of
λ−(lR1+lR2 )/2WR1R2 ,

λ−(lR1+lR2 )/2WR1R2 = WR1R2(q) + λ−1GR1R2(q) + · · · . (3.19)
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GR1R2 can be determined easily from WR1R2 ,

G·R(q) = −WR fR(q−1),

G R(q) = −WR W − WR fR(q−1),
(3.20)

where fR(q) =
∑d

i=1
∑µi

v=1 qv−i. Thus from (3.18) and (3.20), it follows that

V·R (q) = WR (q), (3.21)

V R·(q) = W WR +
WR

W fR(q−1)

= W RT qκR/2, (3.22)

V R (q) = W WR + WR

(

1 + fR(q−1)
WR

WRW

)

= WR

{

1 +
W R

WR

W RT

WRT

}

, (3.23)

where we have used the following identities,
d∑

i=1

µi−i∑

v=1−i

q−v =
q

(q − 1)2

{ W RT

WRT W − 1
}

, (3.24)

WRT (q) = WR(q) q−κR/2, (3.25)
W R

W (q−1) = −W R

W (q). (3.26)

The expression for the vertices given above can be simplified and written as
follows

V·R
WR

= hR(q),

V R·
WR

= hRT (q),

V R (q)
WR

= 1 + hR(q) hRT (q),

(3.27)

where

hR(q) :=
W R

WR
= W +

fR(q)
W . (3.28)

4 Calculating the partition function

Using geometric transitions to calculate closed string amplitudes along the
lines introduced in [2] computationally involves sums over all representations
of SU(N). Aborting the calculation at representations of a certain length,
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one obtains the Gopakumar–Vafa invariants Ng
(k,l,...) for all genera but only

up to a restricted level in k, l, . . . .

In [19], we presented a method which, for A1 fibrations over P
1, yields

the invariants to all orders in the fiber. This allows us to determine the
generating functions

f (k)
g =

∑
Ng

(k,l)Q
l
F , (4.1)

where the maximal level k depends on the maximal length of representations
we consider. In this section, we will expand the method to AN−1 fibrations
over P

1.

4.1 SU(2)

Let us first recall how we proceeded in the case of local Hirzebruch surfaces
Fm, m = 0, 1, 2. The relevant CS amplitude is given by [19]

ZCS(QB, QF ; q) =
∑

R1,2,3,4

Q
lR1+lR3
B Q

mlR1+lR2+lR4
F WR1R4(q) WR4R3(q)

WR3R2(q)WR2R1(q)(−1)m(lR1+lR3 )qm(κR1−κR3 )/2. (4.2)

To obtain the exact result to a given order in QB, we need to be able to
perform the sum

KR1R2(Q) =
∑

R

QlRWR1R(q) WRR2(q). (4.3)

In the case that R1 and R2 are trivial, this expression, K··(Q), has a closed
string interpretation: it is the partition function of T ∗(P1) × C. This parti-
tion function was determined in [2]. It is

K··(Q) = Exp

{ ∞∑

n=1

1
n

W2 (qn)Qn

}

, W (q) =
1

√
q − 1/

√
q
, (4.4)

i.e., Ng
m = −δg,0δm,1. Inspired by this, we parametrize KR1R2 for general R1

and R2 in the following way,

KR1R2(Q) = WR1(q)WR2(q)Exp

{ ∞∑

n=1

f̃n
R1R2

(q)Qn

}

. (4.5)

The coefficient of the exponential is dictated by comparison of the 0-th order
term in Q between (4.3) and (4.5). So far, nothing is gained, since we must
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determine the unknown functions f̃n for all n. The crucial assumption we
now make is that all f̃n can be determined from f̃1 via

f̃n
R1R2

(q) =
f̃1

R1R2
(qn)

n
. (4.6)

This form for the coefficients of the multicovering is not that surprising since
the term in the exponential in this case is a refinement of the open string
amplitude which is conjectured [23] to have multicovering contribution with
coefficients satisfying the above equation. Once we conjecture this form
for f̃n

R1R2
, determining KR1R2(Q) is a matter of determining f̃1

R1R2
. This

can be achieved by expanding (4.3) and (4.5) to first order in Q. A simple
calculation yields

f̃1
R1R2

(q) =
WR1

WR1

W R2

WR2

=
q

(q − 1)2

⎧
⎨

⎩
1 + (q − 1)

d1∑

j=1

(qµ1
j−j − q−j)

⎫
⎬

⎭

⎧
⎨

⎩
1 + (q − 1)

d2∑

j=1

(qµ2
j−j − q−j)

⎫
⎬

⎭
. (4.7)

In the following, it will often be convenient to consider the quantity

K̂R1R2 =
KR1R2(Q)

K··(Q)
(4.8)

= WR1WR2 Exp

{
∑

n

fR1R2(q
n)

n
Qn

}

. (4.9)

The fR1R2 are related in a simple way to the f̃R1R2 and the hR defined in
(3.28),

fR1R2(q) + W2 (q) = f̃1
R1R2

(q) (4.10)

= hR1(q)hR2(q). (4.11)

The coefficients fR1R2 were introduced in [19]. They can be written as a
finite sum in powers of q and q−1,

fR1R2(q) =
∑

k

Ck(R1, R2)qk, (4.12)
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such that the expansion coefficients have the following properties,

fR1R2(1) =
∑

k

Ck(R1, R2) = lR1 + lR2 ,

dfR1R2(q)
dq

|q=1 =
∑

k

kCk(R1, R2) =
κR1 + κR2

2
.

(4.13)

Substituting the expansion (4.12) into (4.8), we obtain

KR1R2(Q)
K··(Q)

= WR1WR2

∏

k

(1 − qkQ)−Ck(R1,R2).

Thus the partition function of local Fm is given by

Z(QB, QF ) = K2
··(QF )

∑

R1,2

(−1)m(lR1+lR2 )qm(κR1−κR2 )/2Q
lR1+lR2
B Q

mlR1
F

W2
R1

W2
R2∏

k(1 − qkQF )2Ck(R1,R2)

= K2
··(QF )

∑

R1,2

Q
lR1+lR2
B Q

mlR1
F KR1R2(QF )K(m)

R1R2
(QF ), (4.14)

where we have defined K
(m)
R1R2

(Q) as

K
(m)
R1R2

(Q) = (−1)m(lR1+lR2 )qm(κR1−κR2 )/2KR1R2(Q). (4.15)

This splitting of Z(QB, QF ) into contributions from K and K(m) can be
depicted as in figure 8.

4.2 SU(3)

We now consider the case of SU(3) geometries and generalize this to SU(N)
in the next subsection. There are four inequivalent geometries giving pure

B

F

B

F F

B+F

B

F F

B+2F

B

F

Figure 8: Splitting local Fm into K
(m)
RiRj

contributions.
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SU(3) gauge theory via geometric engineering. The web diagram corre-
sponding to these geometries is shown in figure 9. We discuss how these
diagrams come about in Appendix A.

Ignoring the angles, these web diagrams all have the ladder structure
depicted in figure 10.

The Kähler parameters Tbi
are related to the Kähler parameters of the

base B and fibers F1,2 (recall that Qc = e−Tc) as follows,

Qb1 = QBQm+1
F1

Q
(m−1)(1−δm,0)
F2

,

Qb2 = QBQ
(m−1)(1−δm,0)
F2

,

Qb3 = QBQ
δm,0
F2

.

(4.16)

In analogy to the SU(2) case, we split the ladder across its rungs (dashed
line in figure 10) and define for each half

K
(m)
R1R2R3

(QF1 , QF2) = M (m)(q, Ri)
∑

S1,2

WR1S1(q) Q
lS1
F1

VS1R2S2(q)

Q
lS2
F2

WS2R3(q), (4.17)

where M (m)(q, Ri) = q
∑3

i=1 αi(m)κRi
/2 (−1)

∑3
i=1 αi(m)lRi is a framing factor.

The QF1,F2 independent term in the above expression is given by K
(m)
R1R2R3

(QF1 = 0, QF2 = 0) = M (m)(q, Ri)WR1WR2WR3 . We parametrize the QF1,F2

dependent pieces as follows

K
(m)
R1R2R3

(QF1QF2) = M (m)(q, Ri) WR1 WR2 WR3Exp

{ ∞∑

n=1

A
(n)
R1R2

(q)Qn
F1

+
∞∑

n=1

A
(n)
R2R3

(q)Qn
F2

+
∞∑

n=1

A
(n)
R1R2R3

(q)(QF1QF2)
n

}

.

(4.18)

The three sums in the exponential are to take account of the holomorphic
curves in the open string geometry and their multicovers running between
the upper two, the lower two, and the upper and the lower rung of the

m=3 m=2 m=0m=1

Figure 9: (a) m = 3 with F2 and F4, (b) m = 2 with F1 and F3, (c) m = 1
with F0 and F2, (d) m = 0 with F1 and F1.
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F1

F2

B2

B3

B1

Figure 10: Ladder structure of web diagrams.

ladder. Since this geometry, ignoring the representations on the external
legs, is resolved A2 × C, holomorphic cycles are in one to one correspondence
with positive roots of SU(3), i.e., there are three holomorphic cycles F1, F2
and F1 + F2. Now, we again make an assumption about the coefficient in
the multicovering expansion,

A
(n)
R1R2

(q) =
AR1R2(q

n)
n

, A
(n)
R2R3

(q) =
AR2R3(q

n)
n

,

A
(n)
R1R2R3

(q) =
AR1R2R3(q

n)
n

.

(4.19)

Equating the coefficients of Q1, Q2, and Q1Q2 respectively in (4.17) and
(4.18) yields

AR1R2(q) =
W R1V R2·
WR1WR2

= hR1(q)hRT
2
(q),

AR2R3(q) =
V·R2 W R3

WR2WR3

= hR2hR3 ,

AR1R2R3 =
WR1 V R2 W R3

WR1WR2WR3

− AR1R2AR2R3

= hR1hR3 .

(4.20)

By (4.10), we hence obtain

K̂
(m)
R1R2R3

(QF1 , QF2)

:=
K

(m)
R1R2R3

(QF1 , QF2)
K00(QF1)K00(QF2)K00(QF1QF2)

=
M (m)(q, Ri)WR1 WR2 WR3

∏
k(1 − qkQF1)Ck(R1,RT

2 )(1 − qkQF2)Ck(R2,R3)(1 − qkQF1QF2)Ck(R1,R3)
.
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Define

Ẑ(m)(QF1 , QF2) :=
Z(m)(QF1 , QF2)

K00(QF1)2K00(QF2)2K00(QF1QF2)2
, (4.21)

then

Ẑ(m)(Q1, Q2)

=
∑

R1,2,3

e−Tb1 lR1−Tb2 lR2−Tb3 lR3 K̂
(m1)
R1R2R3

(Q1, Q2) K̂
(m2)
R1R2R3

(Q1, Q2)

=
∑

R1,2,3

Q
lR1
b1

Q
lR2
b2

Q
lR3
b3

M (m1)(q, Ri)M (m2)(q, Ri)

W2
R1

W2
R2

W2
R3∏

k(1 − qkQ1)2Ck(R1,RT
2 )(1 − qkQ2)2Ck(R2,R3)(1 − qkQ1Q2)2Ck(R1,R3)

=
∑

R1,2,3

Ql1+l2+l3
B Q

(m+1)l1
F1

Q
(m−1)(1−δm,0)(l1+l2)+δm,0l3
F2

M(q, Ri)
W2

R1
W2

R2
W2

R3
∏

1≤i<j≤3
∏

k(1 − qkQij)2Ck(Ri,RT
j )

, (4.22)

where Q12 = QF1 , Q23 = QF2 , and Q13 = QF1QF2 . Also in the third line
above we have changed R3 to RT

3 and used (3.25), so that

M(q, Ri) = M (m1)(q, Ri)M (m2)(q, Ri)q−κ3 (4.23)

= (−1)αl1+βl2+γl3q(ακ1+βκ2+γκ3)/2.

To determine the framing factors α, β, γ, which of course depend on m, we
take QF1 → 0, QF2 → 0 respectively and thus reduce to the local Hirzebruch
geometries we studied in [19] and reviewed in the previous section. To com-
pare the limit of (4.22) to the SU(2) partition function, (4.14), we use (3.25)
to rewrite the SU(3) partition function in terms of non-transposed represen-
tations. For the geometry containing Fk, Fl, (k, l) �= (1, 1), we obtain α = k,
β = k − 2 from the QF2 → 0 limit and β = l, γ = l − 2 from the QF1 → 0
limit.6 Since k and l are related via l = k − 2, we can choose a consistent
framing for the full geometry. For the case (k, l) = (1, 1), the QF1 → 0 limit
yields β = −l, γ = −l − 2, again consistent with a choice of framing for the
full geometry. In terms of the integer m used to label the SU(3) geometries
in figure 9, the framing coefficients are α = m + 1, β = m − 1, γ = m − 3.

6In [19], we consider the local Hirzebruch surfaces Fk for k = 0, 1, 2, since the canonical
line bundle over higher Hirzebruch surfaces contains additional compact divisors. Here, we
match the QF1,F2 → 0 limit to (4.14) for arbitrary k and show that this allows a consistent
choice of framing for all SU(3) geometries.
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4.2.1 Gopakumar–Vafa invariants

We can evaluate (4.22) to obtain generating functions for Gopakumar–Vafa
invariants,

f (n)
g (x, y) =

∑

k,l

(−1)g−1Ng
(n,k,l)x

kyl. (4.24)

We consider the m = 1 and m = 3 case. The latter was also considered in
[5]. For m = 3 and n = 1, we obtain

f (1)
g (x, y) = δg,0

(
y2

(1 − x)2(1 − y)2
+

1
(1 − y)2(1 − xy)2

+
x4y2

(1 − x)2(1 − xy)2

)

, (4.25)

which agrees with [5] upon expansion in x and y. For n = 2, the expression
for the generating function is too long to reproduce here. It has the form

f (2)
g (x, y) =

P2,g(x, y)
(1 − x)2g+6(1 − y)2g+6(1 − xy)2g+6(1 + x)2(1 + y)2(1 + xy)2

,

(4.26)
with P2,0 a polynomial of order 13 in x, 16 in y, P2,1 a polynomial of order
16 in x, 20 in y, etc. We can expand these expressions out to low order in
x and y to get

f
(2)
0 (x, y) = 6y3 + 32y4 + 110y5 + (10y3 + 70y4 + 270y5)x + (12y3 + 96y4

+ 416y5)x2 + (12y3 + 110y4 + 518y5)x3 + (y3 + 112y4

+ 576y5)x4 + (14y3 + 126y4 + 630y5)x5 + · · ·

f
(2)
1 (x, y) = 9y4 + 68y5 + (16y4 + 144y5)x + (21y4 + 204y5)x2 + (24y4

+ 248y5)x3 + (25y4 + 276y5)x4 + (24y4 + 288y5)x5 + · · ·

f
(2)
2 (x, y) = 12y5 + 22y5x + 30y5x2 + 36y5x3 + 40y5x4 + 42y5x5 + · · · .

For m = 1, we obtain

f (1)
g (x, y) = δg,0

(
1

(1 − x)2(1 − y)2
+

1
(1 − y)2(1 − xy)2

+
x2

(1 − x)2(1 − xy)2

)

, (4.27)
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and

f
(2)
0 (x, y) = 6y + 32y2 + 110y3 + 288y4 + 644y5 + (10y + 70y2 + 270y3

+ 770y4 + 1820y5)x + (12y + 96y2 + 416y3 + 1280y4

+ 3204y5)x2 + (6 + 30y + 140y2 + 560y3 + 1764y4 + 4576y5)x3

+ (32 + 98y + 288y2 + 840y3 + 2368y4 + 6020y5)x4

+ (110 + 306y + 672y2 + 1540y3 + 3528y4 + 8064y5)x5 + · · ·

f
(2)
1 (x, y) = 9y2 + 68y3 + 300y4 + 988y5 + (16y2 + 144y3 + 704y4

+ 2496y5)x + (21y2 + 204y3 + 1073y4 + 4032y5)x2 + (24y2

+ 248y3 + 1368y4 + 5368y5)x3 + (9 + 16y + 57y2 + 324y3

+ 1653y4 + 6528y5)x4 + (68 + 144y + 252y2 + 668y3

+ 2268y4 + 7956y5)x5 + · · ·

f
(2)
2 (x, y) = 12y3 + 116y4 + 628y5 + (22y3 + 242y4 + 1430y5)x + (30y3

+ 348y4 + 2168y5)x2 + (36y3 + 434y4 + 2794y5)x3 + (40y3

+ 500y4 + 3308y5)x4 + (12 + 22y + 30y2 + 92y3 + 616y4

+ 3800y5)x5 + · · · .

4.3 SU(N)

In this section we generalize the calculation of the previous section to the case
of geometries giving rise to SU(N) gauge theory via geometric engineering.

Consider the half-web shown in figure 11 below. Two such webs joined
together give rise to the web diagrams for SU(N) geometries depicted in
figure 1. As in the case of SU(3) geometries discussed in the last section,

R1

RN−1

RN

R2

(m+1,1)

(N−m−1,−1)

S1

SN−1

Figure 11: The diagrammatic representation of K
(m)
R1···RN

. The tupels in
parentheses denote the slopes of the corresponding lines.
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the partition function associated with such a half-web is given by

K
(m)
R1···RN

(QF1,...,N−1) = M (m)(q, Ri)
∑

S1,...,N−1

WR1S1(q)Q
lS1
1 VS1R2S2(q) · · ·

VSN−2RN−1SN−1(q)Q
lSN−1
N−1 WSN−1RN

(q) q
∑N−1

i=1 βiκSi

(−1)
∑N−1

i=1 βilSi , (4.28)

where M (m)(q, Ri) = q
∑N

i=1(αi/2)κRi (−1)
∑N

i=1 αilRi . Since the geometry
described by the half-web (i.e., ignoring the representations on the exter-
nal legs) is resolved AN−1 × C, we know that the holomorphic cycles are in
one to one correspondence with the positive roots of SU(N) such that the
cycles Fi correspond to the simple roots. The above partition function can
be written as a sum over all holomorphic curves in the geometry and their
multicovering,

K
(m)
R1···RN

(Q1,...,N−1)

= M (m)(q, Ri) WR1(q) · · · WRN
(q)

Exp

{
N−1∑

i=1

N−1−i∑

r=0

∞∑

n=1

A
(n)
Ri···Ri+r+1

(q)(QiQi+1 · · ·Qi+r)n

}

,

= M (m)(q, Ri) WR1(q) · · · WRN
(q)

Exp

{
N−1∑

i=1

N−1−i∑

r=0

∞∑

n=1

ARi···Ri+r+1(q
n)

n
(QiQi+1 · · ·Qi+r)n

}

, (4.29)

where, as before, we have assumed

A
(n)
Ri···Ri+r+1

(q) =
ARi···Ri+r+1(q

n)
n

. (4.30)

The functions ARi···Rj (q) can be easily determined from (4.29) and (3.28),

ARi···Rj = hRi(q) hRT
j
(q), j �= N,

ARi···RN
= hRi(q) hRN

, i = 1, . . . , N − 1.
(4.31)

Define

K̂
(m)
R1···RN

(Q1, . . . , QN−1) =
K

(m)
R1···RN∏

1≤i<j≤N K00(Qi · · ·Qj−1)
, (4.32)
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then using (4.14) we get

K̂
(m)
R1···RN

(Q1, . . . , QN−1) = M(q, Ri)
N∏

i=1

W2
Ri

∏

1≤i<j<N−1

(1 − qkQi · · ·Qj−1)−Ck(Ri,Rj)

N∏

i=1

(1 − qkQi · · ·QN−1)−Ck(Ri,RN ).

The partition function is given by

Ẑ(m) =
∑

R1,··· ,N

(
N∏

i=1

Q
lRi
bi

)

K̂
(N−2)
R1···RN

(Q1, . . . , QN−1)K̂
(m)
R1···RN

(Q1, . . . , QN−1)

=
∑

R1,··· ,N

(
N∏

i=1

Q
lRi
bi

)

M(q, Ri)

∏N
i=1 WRi(q)

2

∏
1≤i<j≤N

∏
k(1 − qkQi · · ·Qj−1)2Ck(Ri,RT

j )
. (4.33)

In writing the above expression we have changed RN to RT
N and absorbed

a factor of q−κN into M (m)(q, Ri). Studying the limits QFi → 0 as in the
previous section, we can determine the framing factor to be

M (m)(q, Ri) = (−1)(N+m)(l1+···+lN ) q1/2
∑N

i=1(N+m−2i)κi . (4.34)

Recall that when N + m is even (odd), the corresponding geometry contains
Hirzebruch surfaces IF2r (IF2r+1). The Kähler parameters Tbi

are related to
the Kähler parameter of the base TB and of the fibers TF1,...,N−1 via,

for N + m = 2r + 1,

Tbr+1 = TB,

Tbr+1−i
= TB +

i∑

j=1

(2j − 1)TFr+1−j , i = 1, . . . , r,

Tbr+1+i
= TB +

i∑

j=1

(2j − 1)TFr+j , i = 1, . . . , N − r − 1,

(4.35)
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and for N + m = 2r,

Tbr = Tbr+1 = TB,

Tbr−i
= TB +

i∑

j=1

2j TFr−j , i = 1, . . . , r − 1

Tbr+1+i
= TB +

i∑

j=1

2j TFr+j , i = 1, . . . , N − r − 1,

(4.36)

where Tbi
is to be set to 0 if i > N or i < 1. The above relation between the

Kähler parameters is depicted in figure 12. It can be determined from the
fact that the divisors which appear in the local geometry are

{IFm+2−N , IFm+4−N , . . . , IFm+2r−N , . . . , IFm+N−2}, (4.37)

where F−n for n > 0 is to indicate that the corresponding subdiagram within
the web diagram for the SU(N) geometry occurs upside down as compared
to the subdiagram for Fn.

From (4.37) we can easily determine
∏

i Q
li
bi

to be

N∏

i=1

Q
lRi
bi

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q
∑N

i=1 lRi
B

(N+m−1)/2∏

i=1

Q
(N+m−2i)(l1+···+li)
Fi

N−1∏

i=((N+m−1)/2)+1

Q
(2i−N−m)(li+1+···+lN )
Fi

, N + m = odd

Q
∑N

i=1 lRi
B

((N+m)/2)−1∏

i=1

Q
(N+m−2i)(l1+···+li)
Fi

N−1∏

i=((N+m)/2)+1

Q
(2i−N−m)(li+1+···+lN )
Fi

, N + m = even.

(4.38)

Fr

Fr

Fr−1

Fr−1Fr−2

Fr+1

Fr+1

Fr+2

Fr+2 Fr+3

B

B

B + 2Fr−1

B + 2Fr−1 + 4Fr−2

B + 2Fr+1

B + 2Fr+1 + 4Fr+2

B

B + Fr

B + Fr + 3Fr−1

B + Fr+1

B + Fr+1 + 3Fr+2

B + Fr+1 + 3Fr+2 + 5Fr+3

Figure 12: Identifying the Kähler classes of curves, for geometries containing
even Hirzebruch surfaces (left) and odd (right).
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5 Nekrasov’s conjecture and the field theory limit

Ever since the work of Seiberg and Witten [24], it has been a challenge
to reproduce their results using instanton calculus. In [13, 14, 17, 18], this
calculus is used to express the coefficients Fk of the k-instanton contributions
to the prepotential as integrals over the moduli space of instantons which
can be evaluated using localization techniques. These calculations become
feasible when the integral localizes to a finite number of points. In [10], this
was achieved by a certain deformation of the integrand by parameters ε1
and ε2. While the ε1,2 → 0 limit cannot be taken in the individual integrals
Zk(ε1, ε2), [10] assembles these into an infinite sum

Z(ϕ, ε1, ε2) = 1 +
∞∑

k=1

Zk(ε1, ε2)ϕk, (5.1)

from which a generating function F(ϕ, ε1, ε2) =
∑∞

k=1 Fk(ε1, ε2)ϕk can be
extracted via

Z = exp
(

− 1
ε1ε2

F
)

, (5.2)

such that limε1,2→0 Fk(ε1, ε2) = Fk. Somewhat surprisingly, Z has physical
significance at finite ε1 = −ε2 = �

7 as well. For this choice of parameters,
[10] derives the following result (in our notation)

Z =
∑

R1,...,N

ϕlR1+···+lRN

N∏

l,n=1

∞∏

i,j=1

aln + �(µl,i − µn,i + j − i)
aln + �(j − i)

. (5.3)

The sum over R1,...,N runs over Young tableaux, as there is a 1 : 1 corre-
spondence between an ordered N -tupel of Young tableaux and the points at
which the deformed integrals localize. As conjectured in [10] and shown in
[19], in the case of SU(2), this expression reproduces the field theory limit of
the topological string partition function, for a particular choice of fibration
of the resolved An geometry over P

1, with the parameter � acquiring the
role of the string coupling.

In [10], it was further conjectured that the following simple modification
of this expression in fact reproduces the complete string partition function,

ZNekrasov :=
∑

R1,...,N

ϕlR1+···+lRN

N∏

l,n=1

∞∏

i,j=1

sinh[β(aln + �(µl,i − µn,i + j − i))/2]
sinh[β(aln + �(j − i))/2]

.

(5.4)

This conjecture was also verified, again in the SU(2) case, in [19].

7
�, following Nekrasov’s notation, denotes an arbitrary constant.
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In this section, we wish to extend the verification of Nekrasov’s conjecture
to the general SU(N) case. The calculation goes through almost exactly as
in the SU(2) case.

In [19], we noted that using the definition of WR(q) and the following
identity

∏

1≤i<j<∞

[µi − µj + j − i]
[j − i]

=
∏

1≤i<j≤d(µ)

[µi − µj + j − i]
[j − i]

d(µ)∏

i=1

µi∏

v=1

1
[v − i + d(µ)]

,

(5.5)

we have, with q = e−β�,

W2
R(q) = 2−2lRqκR/2

∞∏

i,j=1

sinh[β�(µi − µj + j − i)/2]
sinh[β�(j − i)/2]

. (5.6)

Furthermore,
∏

k

(1 − qkQ)−2Ck(Rr,RT
s ) = Q−lRr −lRs 2−2(lRr+lRs ) q−1/2(κRr −κRs )

∏

l �=n,i,j

sinh[β(aln + �(µl,i − µn,j + j − i))/2]
sinh[β(aln + �(j − i))/2]

,

(5.7)

where l, n ∈ {r, s}, i, j ≥ 1, Q = e−βar,s . The above two identities imply,
using

∑
i<j(κi − κj) =

∑N
i=1(N − 2i + 1)κi,

Ẑ(m) =
∑

R1,...,N

N∏

i=1

Q
lRi
bi

M (m)(q, Ri)2−2N(l1+···+lN )

N−1∏

i=1

Q
−(N−i)(l1+···+li)−i(li+1+···+lN )
i q−1/2

∑N
i=1(N−2i)κi

∏

l,n,i,j

sinh[β(aln + �(µl,i − µn,j + j − i))/2]
sinh[β(aln + �(j − i))/2]

. (5.8)

Using (5.1) and (4.34), we see that for m = 0,

Ẑ(0) =
∑

R1,...,N

ϕl1+···+lN
∏

l,n,i,j

sinh[β(aln + �(µl,i − µn,j + j − i))/2]
sinh[β(aln + �(j − i))/2]

, (5.9)

where

ϕ =
QB

22ND(QFi)
,
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D(QFi) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N−1/2∏

i=1

Qi
Fi

N−1∏

i=(N−1/2)+1

QN−i
Fi

, N = odd

N/2−1∏

i=1

Qi
Fi

N−1∏

i=N/2+1

QN−i
Fi

, N = even.

Taking the field theory limit

QB = (−1)N−m

(
βΛ
2

)2N

, QFj = e−βaj,j+1 , β → 0, (5.10)

we get

Z(m) =
∑

R1,...,N

(
Λ
2

)2N(l1+···+lN ) ∏

l,n,i,j

aln + �(µl,i − µn,j + j − i)
aln + �(j − i)

. (5.11)

Evaluating the sum above upto representations of combined length k yields,
by invoking (5.2), the instanton coefficients Fk of N = 2 SU(N) gauge the-
ory. This evaluation is performed in equations (3.23) and (3.24) of [10],
and the results coincide with previous work employing Seiberg–Witten tech-
niques [25].
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Appendix A

SU(N) Geometries

In this section, we would like to sketch the origins of the diagrams encoding
the An−1 fibrations over P

1 that we study in this paper. While not self
contained, we hope that we will give the reader with a passing familiarity
with toric geometry a clearer understanding of how these diagrams arise.

An−1 singularities are of the form C
2/Zn. The corresponding toric dia-

gram is depicted in figure A.1.
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(1,0)

(n,1)

(0,1)

(−1,n)

Figure A.1: The fan for An−1 (in blue) and its dual fan (in red).

We can read off the coordinate ring of the toric variety from the dual fan.
It is given by

C

[

x,
yn

x
, y

]

= C[a, b, c]/(ab − cn), (A.1)

which we recognize as the coordinate ring of C
2/Zn. The fact that the

corresponding variety is singular is encoded in the toric diagram in the fact
that the single 2-cone comprising the fan is not generated by (part of) a basis
of the lattice: rather than being generated by maximally two vectors, the
fan is generated by the n + 1 vectors {(1, 0), (1, 1), . . . , (n, 1)}. Subdividing
the fan as depicted in figure A.2 yields the toric diagram for the resolution
of the An−1 singularity.

We now want to fiber these geometries over P
1, the toric diagram of which

is depicted in figure A.3.

(0,1) (1,1) (2,1) (n,1)...

Figure A.2: The resolved An−1 geometry.
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Figure A.3: The fan for P
1.

To this end, we embed figure A.2 in a three-dimensional lattice. To pre-
serve the Calabi–Yau condition, we only add cones which are generated by
vectors ending on the plane through the point (0, 1, 0) and parallel to the xz
plane. In the diagrams in figure A.4, we omit the y direction. Adding any
two cones such that their projection onto the z-axis yields the toric diagram
of P

1 yields the desired geometry. The specific choice of cones determines
how the resolved An−1 singularity is fibered over the P

1.

In figure A.4, we present the fans for fibrations of resolved A2 over P
1,

and the corresponding web diagrams. Note that this comprises all possible
choices. If we move the vector (a, 1) further to the right than the (2, 1)
position that yields the geometry with divisor F2 and F4, we obtain a space
with more than two compact divisors. This is evident e.g., from the fact that
the external legs of the web diagram start crossing past this point. On the
other hand, if we move the vector further to the left than the (−1, 0) position
of the F1 − F1 geometry, we reproduce fibrations already considered.

The considerations for the general case are completely analogous. Note
that the web diagrams can also be obtained by gluing together the web

Figure A.4: A2 fibrations over P
1.
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diagrams of local Hirzebruch surfaces Fk, where the k’s of adjacent surfaces
differ by 2. We label the fibrations by an integer m, where m = N denotes
the geometry with the sequence {F2, F4, . . .} of divisors, and count down-
wards. For the case N = 2, this reproduces the conventional labeling for
Hirzebruch surfaces.

SU(N) geometries and the 5d Chern–Simons coefficient

The label m we use to distinguish the various fibrations for a given N is
related to the triple intersection number of divisors and as such has a phys-
ical significance in the 5d theory one obtains by considering M-theory com-
pactification, instead of type IIA, on the CY3-folds we have been considering
[26, 27]. The five-dimensional theory has a prepotential with a cubic term.
This cubic term arises from the Chern–Simons term Tr(A ∧ F ∧ F ), where A
is the gauge field and F its field strength, in the corresponding Lagrangian.
The coefficient of this term, with appropriate normalization, is an integer
called the Chern–Simons coefficient. From the CY point of view, the cubic
term in the prepotential arises from the triple intersection numbers as fol-
lows [27, 28]. Let Si(m) be the various divisors which in our case are either
even or odd Hirzebruch surfaces depending on N + m even or odd,

Si(m) ∈ {Fm+2−N , Fm+4−N , . . . , IFm+2r−N , . . . , IFm+N−2}. (A.2)

Define S(m) =
∑N−1

i=1 (φi+1 + · · · + φN )Si, where φi, in the 5d theory,
parametrize the Coulomb branch moduli space. Then,

S3 =
∑

i,j,k

(φi+1 + · · · + φN )(φj+1 + · · · + φN )(φk + · · · + φN ) (Si · Sj · Sk)

(A.3)

is such that

S3(m) =
1
2

∑

i,j

|φi − φj |3 + m
∑

i

φ3
i . (A.4)

Thus the term we are using to label the geometries is exactly the Chern–
Simons coefficient of the 5d theory.
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