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1 Introduction

T-duality in String Theory, certainly from a local perspective, is an impor-
tant and well-studied subject (see, e.g., [1–3] and references therein for a
comprehensive review), but only recently have people begun to study the
global properties of T-duality, in particular, in the presence of background
fluxes.

In this paper, we study global properties of T-duality for principal torus
bundles in the background of NS H-flux. We will do this by constructing
a Gysin sequence for principal torus bundles, which encodes the T-dual in
terms of its invariants, e.g., a generalized Chern class. We will argue that in
the most general case, the T-dual is a bundle (or more precisely a continuous
field) of noncommutative, nonassociative tori, generalizing all earlier partial
results, [4–9]. In a companion paper [7], we study the algebraic structures
of the T-dual as arising from the results of this paper. A similar conclusion,
in the context of deformation quantization, was reached in [10].

The main observation in this paper is that fluxes [H] ∈ H3(E) can be
characterized by vector-valued forms (H3, H2, H1, H0) on the base manifold.
This is referred to as “dimensional reduction” or, mathematically, as the
Chern–Weil homomorphism.

T-duality for principal circle bundles was treated geometrically in [4,5,11],
and dimensional considerations force the H0 and H1 components of the
H-flux to vanish in this case. The T-dual turns out to be another principal
circle bundle with T-dual H-flux. The arguments were extended in [6] to
principal T

n-bundles with H-flux satisfying the condition that the H0 and
H1 components vanish. Then, the T-dual turns out to be another principal
T

n-bundle with T-dual H-flux having vanishing H0 and H1 components.
The analysis in [8, 9] shows that if one considers principal T

n-bundles with
H-flux satisfying condition that just the H0 component vanishes, then one
arrives at the surprising conclusion that the T-dual bundle has to have
noncommutative tori as fibres, provided the H1 component is nonzero. The
weaker condition in [8, 9] permits nonvanishing H1, but still excludes nonzero
H0. The emergence of noncommutative structures in T-dual descriptions
has also arisen in various other contexts, such as mirror symmetry [12], and
matrix theory compactifications [13]. In this paper, we will remove the last
of these constraints and will allow for a nonvanishing H0 component. In
this case, we arrive at the astonishing conclusion that the T-dual bundle
has to have nonassociative tori as fibres, taking it even beyond the normal
range of noncommutative geometry. The algebraic structure, generalizing
that of [8, 9], is discussed in [7].
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An alternative approach to make global sense of the T-duality transfor-
mation in the presence of a ‘nongeometric’ flux H1 has been advocated in,
e.g. [14,15], in terms of ‘doubled torus bundles’ with T-duality transforma-
tions in the overlaps and a local choice of polarization. We believe these
so-called nongeometric string compactifications are equivalent, in an appro-
priate sense, to our global description by means of a Seiberg-Witten map.
We leave this for further investigation.

The paper is organized as follows. In order to explain our ideas as carefully
as possible, we first recall in Section 2 how the Buscher rules encode the
global aspects of T-duality. Then, we review how those rules are related
to the Gysin sequence for principal circle bundles. In the latter part of
Section 2, we make closer contact with the usual form of the Buscher rules by
dimensionally reducing the Gysin sequence. We also discuss how T-duality
gives rise to an isomorphism on twisted cohomology in this dimensionally
reduced setting. Motivated by the discussion in Section 2, we generalize the
dimensional reduction to (higher rank) principal torus bundles in Section 3.
We derive a Gysin sequence for principal torus bundles (which, to the best
of our knowledge, has not appeared elsewhere). In Section 4, we deduce
from the Gysin sequence of Section 3 that the T-dual of a principal torus
bundle with H-flux is, in general, a continuous field of noncommutatitve,
nonassociative tori over the base. We discuss both the T-duality group
and a simple example in this setting. We end, in Section 5, with some
conclusions and open problems. In an appendix, we briefly discuss duality
from the operator algebraic perspective, which might be useful for the reader
to relate the results of this paper to the results of, in particular, [8, 9], as well
as the companion paper [7] where we explore the nonassociative structures
arising in this paper in more detail.

2 Principal circle bundles

To motivate our construction, in the case of principal torus bundles, we first
look at the simplest case, name that of a principal circle bundle.

2.1 A bit of notation

Throughout this paper, we will denote by Ωk(E), Zk(E), and Bk(E), the
spaces of k-forms, closed k-forms, and exact k-forms on a smooth manifold
E, respectively. The de-Rham cohomology of E is defined as Hk

dR(E) =
Zk(E)/Bk(E). The integer, or Čech, cohomology of E will be denoted by
Hk(E, Z). For clarity, we will restrict the presentation in this paper to
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de-Rham cohomology only, or rather to the image Hk(E) = i(Hk(E, Z)) ⊂
Hk

dR(E) of integer cohomology in de-Rham cohomology (i.e., forms with
integral periods), but most of the results of this paper will generalize to
integer cohomology without too much effort.

2.2 Buscher rules revisited

We start with a principal S1-bundle π : E → M , supported by an H-flux
[H] ∈ H3(E). If A denotes a connection 1-form on E and ḡ a metric on the
base M , then E carries a canonical metric g = ḡ + A ⊗ A. If κ denotes the
Killing vector corresponding to the S1-isometry, we may choose a (de-Rham)
representative H of [H], satisfying the invariance condition LκH = 0. Again,
locally H = dB for a 2-form B, and we will assume that B can be chosen
such that LκB = 0 (this is not a necessary requirement, but it will slightly
simplify the discussion below).

Locally, we can choose coordinates xM = (xµ, x0) ≡ (xµ, θ) on E such that
the Killing vector of the S1-isometry is given by κ = ∂/∂θ. The invariance
conditions LκH = LκB = 0 then simply imply that the components HLMN

and BMN do not depend on θ.

Furthermore, locally we can choose the connection A = AM dxM = dθ +
Aµ dxµ, where Aµ dxµ ∈ Ω1(M). That is,

g = ḡ + A ⊗ A = ḡµν dxµ ⊗ dxν + (dθ + Aµ dxµ)2,

B =
1
2
Bµν dxµ ∧ dxν + Bµ dxµ ∧ (dθ + Aν dxν), (2.1)

where the components Aµ, Bµν , and Bµ do not depend on θ. Physically, the
decomposition of g and B above is referred to as dimensional reduction. In
terms of matrices, the metric and B-field components are

gMN =
(

ḡµν + AµAν Aµ

Aν 1

)
, BMN =

(
Bµν + (BµAν − AµBν) Bµ

−Bν 0

)
.

(2.2)

The Buscher rules [16]

ĝµν = gµν − 1
g00

(gµ0gν0 − Bµ0Bν0) , ĝ00 =
1

g00
, ĝµ0 =

Bµ0

g00
,

B̂µν = Bµν − 1
g00

(gµ0Bν0 − gν0Bµ0) , B̂µ0 =
gµ0

g00
(2.3)
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give

ĝMN =
(

ḡµν + BµBν Bµ

Bν 1

)
, B̂MN =

(
Bµν Aµ

−Aν 0

)
. (2.4)

That is, with the choices above, T-duality locally simply corresponds to the
interchange Aµ ↔ Bµ.

Denoting the coordinate of the dual circle by θ̂, we can interpret Â =
dθ̂ + Bµ dxµ, locally, as a connection on a dual circle bundle π̂ : Ê → M .
We deduce from equation (2.4) that on the correspondence space E ×M Ê =
{(x, x̂) ∈ E × Ê | π(x) = π̂(x̂)}, with local coordinates (xµ, θ, θ̂),

B̂ = B + A ∧ Â − dθ ∧ dθ̂, (2.5)

so that
Ĥ − H = d(A ∧ Â) = F ∧ Â − A ∧ F̂ , (2.6)

where F = dA and F̂ = dÂ are the curvatures of A and Â, respectively, and
are (globally) defined forms on M . Equation (2.6) actually makes sense glob-
ally on E ×M Ê. Rewriting this equation as

H − F̂ ∧ A = Ĥ − F ∧ Â ,

we see that the left-hand side is a form on E while the right-hand side is a
form on Ê. Thus, in order to have equality, we conclude that both have to
equal a form H3 defined on M . That is

H = H3 + F̂ ∧ A ,

Ĥ = H3 + F ∧ Â . (2.7)

We note that these equations imply that

F = π̂∗Ĥ, F̂ = π∗H, (2.8)

which is the statement that H-flux and first Chern class of the circle bundle
are exchanged under T-duality [4, 5].

2.3 Dimensionally reduced Gysin sequence

Let us first review how the global content of the Buscher rules, i.e., equation
(2.8), is encoded in the Gysin sequence for the principal circle bundle π:
E → M (cf. [4,5]). Principal circle bundle are classified, up to isomorphism,
by the Euler class χ(E) ∈ H2(M, Z) or, equivalently, by the first Chern class
c1(LE) ∈ H2(M, Z) of the associated line bundle LE = E ×U(1) C. Given a
principal circle bundle π: E → M , we have the pull-back map π∗: Hk(M) →
Hk(E), as well as the push-forward map (“integration over the S1-fibre”)
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π∗: Hk(E) → Hk−1(M). These maps nicely fit into a long exact sequence
in cohomology, the so-called Gysin sequence [17].1

. . . −−−−→ Hk(M) π∗
−−−−→ Hk(E) π∗−−−−→ Hk−1(M)

δ−−−−→ Hk+1(M) −−−−→ · · · (2.9)

where the map δ: Hk−1(M) → Hk+1(M) is given, on a representative ω of
a class in Hk−1(M), by δω = F ∧ ω. Here, F is (a representative for) the
Euler class of E, i.e., the curvature of a connection on E.

Considering the k = 3 segment of the Gysin sequence (2.9), we see that
any class [H] ∈ H3(E), i.e., any H-flux on E, gives rise to a class π∗[H] ∈
H2(M), which can be interpreted as the equivalence class [F̂ ] of the cur-
vature F̂ of a T-dual circle bundle π̂: Ê → M .2 Furthermore, we have
[F ] ∧ [F̂ ] ≡ 0 in H4(M). Conversely, by considering the Gysin sequence
corresponding to the T-dual circle bundle π̂: Ê → M , we conclude from
[F ] ∧ [F̂ ] = [F̂ ] ∧ [F ] ≡ 0 that [F ] = π̂∗[Ĥ] for some class [Ĥ] ∈ H3(Ê). This
is precisely the content of Equation (2.8).

From the Gysin sequence, we can of course only determine the element
[Ĥ] ∈ H3(Ê) up to an element in π∗(H3(M)). To fix this ambiguity, we
need some extra input. The extra input, of course, is that T-duality should
not affect that part of the H-flux that “lives” on the base manifold M . This
is equivalent to demanding that p∗[H] − p̂∗[Ĥ] ≡ 0 in H3(E ×M Ê), where
E ×M Ê = {(x, x̂) ∈ E × Ê | π(x) = π̂(x̂)} is the correspondence space, and
the projections p and p̂ are defined in the following commutative diagram

E

π

���
��

��
��

��
��

��
�

E ×M Ê

p̂

���
��

��
��

��
��

��

p

����
��

��
��

��
��

�

M

Ê

π̂

����
��

��
��

��
��

��

1This Gysin sequence also holds in integer cohomology, but for simplicity of presenta-
tion, we restrict ourselves to de-Rham cohomology throughout the paper.

2The isomorphism class of this T-dual bundle is only unique up to torsion, but would
be unique if we would have presented the analysis in integer cohomology.
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With a bit more work, using again the Gysin sequence, one can actually
argue that at the level of forms, we reproduce Equations (2.6)–(2.8) (see [4]
for details).

Obviously, there is a great deal of similarity between the analysis in
Section 2.2 and the discussion from the point of view of the Gysin sequence
above. This similarity can be further illuminated by “dimensionally reduc-
ing” the Gysin sequence (2.9). The resulting dimensionally reduced Gysin
sequence will immediately present to us how the above analysis should be
generalized to higher rank principal torus bundles.

To explain the ideas, let us start by considering the trivial principal circle
bundle π: M × S1 → M . By the Künneth theorem, we have

Hk(E) ∼=
⊕

p+q=k

(
Hp(M) ⊕ Hq(S1)

) ∼= Hk(M) ⊕ Hk−1(M). (2.10)

Explicitly, if we denote the generator of H1(S1) by dθ, normalized such that
π∗(dθ) =

∫
dθ = 1, then the isomorphism (2.10) is given by

(ωk, ωk−1) �−→ ωk + dθ ∧ ωk−1, (2.11)

with inverse, for Ω ∈ Ωk(E)inv

Ω �−→ (ωk, ωk−1) ≡ (Ω − dθ ∧ π∗Ω, π∗Ω). (2.12)

Note that, in particular, π∗(Ω − dθ ∧ π∗Ω) = 0, so that ωk can indeed be
identified with an element of Ωk(M).

Now consider a nontrivial circle bundle π: E → M . Choose a repre-
sentative curvature F ∈ Ω2(M) such that [F ] = c1(LE), with connection
A ∈ Ω1(E), i.e., π∗F = dA, normalized such that π∗A = 1. The question
arises whether we can still characterize classes in Hk(E) by forms living
on the base manifold.

Let Ω be a representative of an element in Hk(E). We would like to
mimic (2.12), but of course, in the more general case, the element dθ is not a
globally defined 1-form on E. Instead, we can make use of the connection A.
Again, let κ denote the (globally defined) Killing vector field corresponding
to the U(1)-isometry, and let Ωk(E)inv denote the space of k-forms invariant
under the isometry, i.e., LκΩ = 0. Then, we have a map

fA: Ωk(M) ⊕ Ωk−1(M) → Ωk(E)inv, (ωk, ωk−1) �−→ ωk + A ∧ ωk−1,
(2.13)

with inverse

f−1
A : Ωk(E)inv −→ Ωk(M) ⊕ Ωk−1(M), Ω �−→ (Ω − A ∧ π∗Ω, π∗Ω).

(2.14)
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A simple computation shows

(d ◦ fA)(ωk, ωk−1) = (dωk + F ∧ ωk−1) − A ∧ dωk−1,

and thus, upon defining a modified differential D: Ωk(M) ⊕ Ωk−1(M) →
Ωk+1(M) ⊕ Ωk(M) by

D(ωk, ωk−1) = (dωk + F ∧ ωk−1,−dωk−1), (2.15)

we have d ◦ fA = fA ◦ D. It is straightforward to check that D2 = 0 and
hence that D defines a cohomology Hk

D(M) ≡ Hk(Ω•(M) ⊕ Ω•−1(M), D).
Furthermore, because of the commutativity of the diagram

Ωk(M) ⊕ Ωk−1(M)
∼=−−−−→
fA

Ωk(E)inv

D

⏐⏐	
⏐⏐	d

Ωk+1(M) ⊕ Ωk(M)
∼=−−−−→
fA

Ωk+1(E)inv

we have the result
Hk(E) ∼= Hk

D(M). (2.16)
While the explicit isomorphism (2.13) depends on the choice of connection
A, it is easily verified that isomorphism (2.16) is independent of the choice
of A.

Now that we have a globally defined dimensional reduction of forms,
equation (2.14), and an identification of cohomology, equation (2.16), it
is straightforward to dimensionally reduce the Gysin sequence (2.9). The
result is the following exact sequence

· · · −−−−→ Hk(M) π∗
−−−−→ Hk

D(M) π∗−−−−→ Hk−1(M)
δ−−−−→ Hk+1(M) −−−−→ . . . (2.17)

where the various maps, on representatives of the cohomology, are given by

π∗: Hk(M) −→ Hk
D(M), π∗(ωk) = (ωk, 0),

π∗: Hk
D(M) −→ Hk−1(M), π∗(ωk, ωk−1) = ωk−1,

δ: Hk−1(M) −→ Hk+1(M), δ(ωk−1) = F ∧ ωk−1.

It is interesting to observe that we can consider the sequence (2.17) in itself,
without making reference to any principal circle bundle, but just defined by
a certain representative of [F ] ∈ H2(M).

Usually, the proof that (2.9) defines a long exact sequence in cohomology is
quite involved. The standard proof is given by examining the Leray spectral
sequence corresponding to the principal circle bundle (see e.g., [17]). After
dimensional reduction, however, the proof is remarkably simple and does
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not require sophisticated techniques. To illustrate this point, we present the
proof below.

Theorem 2.1. The sequence (2.17) defines an exact complex.

Proof. First we show that (2.17) defines a complex.

a. Let ωk ∈ Zk(M) be a representative of a class in Hk(M). It is obvious,
from the definitions, that π∗(π∗ωk) = π∗(ωk, 0) = 0.

b. Let (ωk, ωk−1) ∈ Zk
D(M) represent a class in Hk

D(M). We have δ(π∗(ωk,

ωk−1)) = F ∧ ωk−1 = −dωk, hence δ(π∗(ωk, ωk−1)) ≡ 0 in Hk+1(M).
c. Finally, let ωk−1 ∈ Zk−1(M) represent a class in Hk−1(M). Then,

π∗(δ(ωk−1)) = π∗(F ∧ ωk−1) = (F ∧ ωk−1, 0) = D(0, ωk−1), hence π∗(δ
(ωk−1)) ≡ 0 in Hk+1

D (M).

To show that the complex is exact, consider

1. Let ωk ∈ Zk(M) be such that π∗(ωk) ≡ 0 in Hk
D(M), i.e., π∗(ωk) =

(ωk, 0) = D(νk−1, νk−2) = (dνk−1 + F ∧ νk−2,−dνk−2) for some (νk−1,
νk−2). Then, ωk ≡ F ∧ νk−2 in Hk(M) for some νk−2 ∈ Zk−2(M).

2. Let (ωk, ωk−1) ∈ Zk
D(M) be such that π∗(ωk, ωk−1) = ωk−1 ≡ 0 in

Hk−1(M), i.e., ωk−1 = dνk−2 for some νk−2. Thus, (ωk, ωk−1) = (ωk +
F ∧ νk−2, 0) − D(0, νk−2), and (ωk, ωk−1) ≡ (ωk + F ∧ νk−2, 0) in Hk

D(M).
But, (ωk + F ∧ νk−2, 0) = π∗(ωk + F ∧ νk−2).

3. Finally, let ωk−1 ∈ Zk−1(M) be such that δ(ωk−1) = F ∧ ωk−1 ≡ 0 in
Hk+1(M), i.e., F ∧ ωk−1 = −dνk for some νk. Then, (νk, ωk−1) ∈ Zk

D(M)
while π∗(νk, ωk−1) = ωk−1.

�

The dimensionally reduced Gysin sequence in the case of principal circle
bundles, as discussed in this section, is of course not new. It is apparently
well known in the context of foliations (see e.g. [18]), and also occurs in the
context of M-theory reduction on a principal circle bundle to type IIA string
theory in [19] (section 3.1).

2.4 Twisted cohomology

Let us denote the space of even and odd forms on E by Ω0̄(E) and Ω1̄(E),
respectively. That is,

Ωı̄(E) =
⊕

i=ı̄ mod 2

Ωi(E). (2.18)
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Then, given a representative H for a class [H] ∈ H3(E), we can construct a
“twisted differential” dH : Ωı̄ → Ωı+1 by

dHΩ = dΩ + H ∧ Ω. (2.19)

Clearly, (dH)2 = 0 (since dH = 0). The cohomology of the Z2-graded com-
plex (Ω•(E), dH) is known as the twisted cohomology H ı̄(E, [H]) of E, with
respect to the 3-form H. It is easy to see that while explicit representa-
tives for twisted cohomology classes depend on the choice of H, the twisted
cohomology itself only depends on the class [H].

Let us now examine what a twisted cohomology class looks like under the
dimensional reduction of Section 2.2.

Decomposing H = H3 + A ∧ H2, and Ω = Ω′ + A ∧ Ω′′, as in equation
(2.13), we have

dHΩ = (dΩ′ + H3 ∧ Ω′ + F ∧ Ω′′) + A ∧ (−dΩ′′ − H3 ∧ Ω′′ + H2 ∧ Ω′).

Thus, the condition for Ω to be a twisted cohomology class, i.e., dHΩ = 0,
decomposes into two equations

dΩ′ + H3 ∧ Ω′ + F ∧ Ω′′ = 0,

dΩ′′ + H3 ∧ Ω′′ − H2 ∧ Ω′ = 0. (2.20)

Note that both equations do not depend on the choice of A and are described
completely in terms of forms on M .

Now, consider the pair ((H3, H2), F ) ∈ H3
D(M) ⊕ H2(M). As shown in

the previous section, T-duality is the transformation

((Ĥ3, Ĥ2), F̂ ) = ((H3, F ), H2). (2.21)

Therefore, T-duality provides an isomorphism on twisted cohomology, which
is explicitly given by

(Ω̂′, Ω̂′′) = (Ω′′,−Ω′). (2.22)

That is, dHΩ = 0 iff d
̂H
Ω̂ = 0. Of course, equation (2.22) agrees with the

“Hori formula” [4, 20]

Ω̂ =
∫

S1
e−A∧ ̂A Ω. (2.23)

3 Principal torus bundles

In this section, we will generalize the construction of the “dimensionally
reduced” Gysin sequence of the previous section to principal torus bundles.
In order to do this, we will first have to establish how forms on the bundle
space of a principal torus bundle are related to forms on the base space. This



T-DUALITY FOR PRINCIPAL TORUS BUNDLES 759

is a special case of the so-called Chern–Weil homomorphism which holds for
general principal G-bundles.

3.1 Dimensional reduction—the Chern–Weil homomorphism

Let T = T
n denote a rank-n torus. Let t denote the Lie algebra of T and

denote by t∗ the dual Lie algebra. Suppose we are given a principal T-bundle
π: E → M . The action of T on E associates to each element X ∈ t a vector
field on E which, by abuse of notation, we will also denote as X. The Lie
derivative and contraction with respect to the vector field X will be denoted
as LX and ıX , respectively.

For each cohomology class in Hk(E), we may choose a closed repre-
sentative Ω ∈ Ωk(E), such that LXΩ = 0 for all X ∈ t. Locally, we can
choose coordinates xM = (xµ, xa) (µ = 1, . . . , N − n, a = 1, . . . , n) such that
a basis of Killing vectors for the T

n-isometry is given by Xa = ∂/∂xa. Then,
LXaΩ = 0, for all a = 1, . . . , n, translates into Ω(xµ, xa) = Ω(xµ). We can
decompose Ω = ΩM1M2···Mk

dxM1 ∧ · · · ∧ dxMk with respect to the number of
directions in T (‘dimensional reduction’), as Ω = (Ωµ1µ2···µk

, Ωµ1···µk−1a1 , . . . ,
Ωa1···ak

). We can think of the component Ωµ1···µqa1···aq , p + q = k, as defining
an element ωp,q ∈ Ωp(M) ⊗ ∧qt∗ by

ωp,q =
1

p!q!
Ωµ1···µqa1···aq dxµ1 ∧ · · · ∧ dxµp ⊗ (X∗a1 ∧ · · · ∧ X∗aq), (3.1)

where X∗a, a = 1, . . . , n, denotes a basis of t∗. Obviously, the original
form Ω ∈ Ωk(E) can be reconstructed locally from its components ωp,q ∈
Ωp(M) ⊗ ∧qt∗, p + q = k.

The local construction above is of course reminiscent of the Künneth
theorem for trivial torus bundles E = M × T

n, in which case

Hk(E) ∼=
⊕

p+q=k

(
Hp(M) ⊗ Hq(Tn)

) ∼=
⊕

p+q=k

(
Hp(M) ⊗ ∧q

t
∗). (3.2)

As in the case of circle bundles, the local construction above can be made
global. To this end, we need a choice of (principal) connection A ∈ Ω1(E, t)
on E, i.e., a connection A satisfying

ıXA = X, (3.3)

for all X ∈ t (such a connection always exists, see e.g., [21]). Or, equiva-
lently, if we think of a connection A as defining a map A: t∗ → Ω1(E), the
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principality condition can be expressed as

ıXA(Y ∗) = 〈Y ∗, X〉, (3.4)

for all X ∈ t, Y ∗ ∈ t∗.

In addition, let us introduce the following notation for invariant, horizon-
tal, and basic forms on E, respectively,

Ω(E)inv = {ω ∈ Ω(E) | LXω = 0,∀X ∈ t},

Ω(E)hor = {ω ∈ Ω(E) | ıXω = 0,∀X ∈ t},

Ω(E)bas = {ω ∈ Ω(E) | LXω = ıXω = 0,∀X ∈ t} = Ω(E)hor ∩ Ω(E)inv.
(3.5)

As remarked before, we have an isomorphism H(Ω(E)inv, d) ∼= H(E), i.e.,
every class in H(E) can be represented by a closed, invariant, form [21]. In
addition, basic forms are in 1–1 correspondence with forms on M through
the pull-back map, i.e., π∗: Ω(M) → Ω(E)bas is an isomorphism.

We have an isomorphism fA: Ω(E)hor ⊗ ∧t∗ → Ω(E), given by

fA(ω ⊗ (X∗
1 ∧ · · · ∧ X∗

q )) = ω ∧ A(X∗
1 ) ∧ · · · ∧ A(X∗

q ), (3.6)

which, since the group is Abelian, restricts to an isomorphism fA: Ω(E)bas ⊗
∧t∗ → Ω(E)inv. Or, since Ω(E)bas ∼= Ω(M), we have

⊕
p+q=k

(Ωp(M) ⊗ ∧q
t
∗) ∼= Ωk(E)inv. (3.7)

The inverse of fA is more cumbersome to write down. First of all, given
ω ∈ Ωk(E)inv, we can define ω̃p,q ∈ Ωp(E) ⊗ ∧qt∗, with p + q = k, by

ω̃p,q(X1, . . . , Xq) = ıX1 · · · ıXqω,

where X1, . . . , Xq ∈ t. Obviously, LX ω̃p = 0, thus ω̃p,q ∈ Ωp(E)inv ⊗ ∧qt∗.
However,

ıX ω̃p,q(X1, . . . , Xq) = ω̃p−1,q+1(X, X1, . . . , Xq).

Thus, upon defining, ωp,q ∈ Ωp(E) ⊗ ∧qt∗ by

ωp,q(X1, . . . , Xq) =
p∑

r=0

1
r!

(−1)rp−(1/2)r(r+1) ω̃p−r,q+r(A, . . . , A︸ ︷︷ ︸
r

, X1, . . . , Xq),

(3.8)
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we have ωp,q ∈ Ωp(E)bas ⊗ ∧qt∗, where we have used

ıX ω̃p−r,q+r(A, . . . , A︸ ︷︷ ︸
r

, X1, . . . , Xq) = ω̃p−r−1,q+r+1(X, A, . . . , A︸ ︷︷ ︸
r

, X1, . . . , Xq)

+ (−1)p−rr ω̃p−r,q+r(X, A, . . . , A︸ ︷︷ ︸
r−1

, X1, . . . , Xq).

Hence, f−1
A : Ωk(E)inv →

⊕
p+q=k(Ω

p(M) ⊗ ∧qt∗) is given by

ω �−→ (ωk,0, ωk−1,1, . . . , ω0,k), (3.9)

with ωp,q ∈ Ωp(M) ⊗ ∧q t∗ and p + q = k. We will often simplify the nota-
tion and simply write

ω �−→ (ωk, ωk−1, . . . , ω0), (3.10)

with ωp ∈ Ωp(M) ⊗ ∧k−p t∗.

We think of the curvature F ∈ Z2(M, t) ∼= Z2(M) ⊗ t, and thus as defin-
ing a map F : t∗ → Ω2(M), satisfying dF (X∗) = 0 for all X∗ ∈ t∗. The
differential on Ωp(M) ⊗ ∧qt∗ is then defined by

D
(
ω ⊗ (X∗

1 ∧ · · · ∧ X∗
q )

)
= dω ⊗ (X∗

1 ∧ · · · ∧ X∗
q )

+ (−1)p
q∑

i=1

(−1)i−1 (ω ∧ F (X∗
i )) ⊗ (X∗

1 ∧ · · · ∧ X̂∗
i ∧ · · · ∧ X∗

q ). (3.11)

It is easily verified that D2 = 0 using the fact that F is closed and the
symmetry of F (X∗

i ) ∧ F (X∗
j ) in i and j.

Next, we show that fA ◦ D = d ◦ fA. On the one hand, we have, for
ω ⊗ (X∗

1 ∧ · · · ∧ X∗
q ) ∈ Ωp(M) ⊗ ∧qt∗,

(d ◦ fA)(ω ⊗ (X∗
1 ∧ · · · ∧ X∗

q )) = d(ω ∧ A(X∗
1 ) ∧ · · · ∧ A(X∗

q )), = dω ∧ A(X∗
1 )

∧ · · · ∧ A(X∗
q ) + (−1)p

q∑
i=1

(−1)i−1ω ∧ A(X∗
1 ) ∧ · · · ∧ F (X∗

i ) ∧ · · · ∧ A(X∗
q ),

while

(fA ◦ D)(ω ⊗ (X∗
1 ∧ · · · ∧ X∗

q )) = fA

(
dω ⊗ (X∗

1 ∧ · · ·X∗
q ) + (−1)p

q∑
i=1

(−1)i−1

(ω ∧ F (X∗
i )) ⊗ (X∗

1 ∧ · · · ∧ X̂∗
i ∧ · · · ∧ X∗

q )
)

= dω ∧ A(X∗
1 ) ∧ · · · ∧ A(X∗

q )

+ (−1)p
q∑

i=1

(−1)i−1(ω ∧ F (X∗
i )) ∧ A(X∗

1 ) ∧ · · · ∧ Â(X∗
i ) ∧ · · · ∧ A(X∗

q ).
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Obviously, the two expressions are equal, and thus we have a commutative
diagram ⊕

p+q=k

(
Ωp(M) ⊗ ∧q

t
∗) ∼=−−−−→

fA

Ωk(E)inv

D

⏐⏐	
⏐⏐	d⊕

p+q=k+1

(
Ωp(M) ⊗ ∧q

t
∗) ∼=−−−−→

fA

Ωk+1(E)inv

To summarize, if we denote

Ωk(M, t∗) ∼=
⊕

p+q=k

(
Ωp(M) ⊗ ∧q

t
∗), (3.12)

we have a complex (Ω(M, t∗), D) whose cohomology, Hk
D(M, t∗), is isomor-

phic to the cohomology Hk(E).3

Remark. It can be shown that while the Chern–Weil homomorphism
depends on the choice of connection, the isomorphism on cohomology does
not (see, e.g., [21]).

Remark. As mentioned before, the construction we have described here
is merely a special case of a theory constructed by Chevalley, Chern, Weil,
Cartan, and others (see, in particular, [21–24]). Given a Lie group G, its
cohomology can be calculated as H(G) ∼= ∧P (g), where P (g) is a set of
primitive elements in the symmetric algebra Sg∗ and g is the Lie algebra
of G. Now, given a principal G-bundle E → M , there exists an isomor-
phism between the cohomology H(E) and the cohomology of a complex
Ω(M) ⊗ ∧P (g) with Koszul differential D. The case of Abelian G, in this
paper, is special since in that case the Chern–Weil homomorphism Ω(M) ⊗
∧P (g) → Ω(E)inv is actually an isomorphism, unlike in the more general
case.

3.2 Dimensionally reduced Gysin sequences

In order to write down a Gysin sequence for principal T-bundles π: E →
M , part of which is the pull-back map π∗: Hk(M) → Hk(E) ∼= Hk

D(M, t∗)
given simply by π∗ω = ω ∈ Ωk(M) ⊗ ∧0t∗. We need to define a map π∗ on
Hk

D(M, t∗) by “stripping off” the component in Ωk(M) ⊗ ∧0t∗. Thus, in

3We denote this cohomology by Hk
D(M, t∗) to distinguish it from the cohomology

Hk(M, t∗) of k-forms with coefficients in t
∗.
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addition to
Ωk(M, t∗) ∼=

⊕
p+q=k

(
Ωp(M) ⊗ ∧q

t
∗), (3.13)

let us define the following truncated versions of this space (for 0 ≤ r ≤ s ≤ n)

Ωk,(r,s)(M, t∗) ∼=
s⊕

i=r

(
Ωk−i(M) ⊗ ∧i

t
∗), (3.14)

such that Ωk(M, t∗) ∼= Ωk,(0,n)(M, t∗) and Ωk(M) ∼= Ωk,(0,0)(M, t∗). Also
denote the basic truncation as

Ωk(M, t∗) ≡ Ωk,(1,n)(M, t∗). (3.15)

The differential D of equation (3.11) restricts to a differential on
Ω•,(r,s)(M, t∗) and defines a cohomology H

k,(r,s)
D (M, t∗). In particular, we

have Hk(M) ∼= H
k,(0,0)
D (M, t∗) and Hk

D(M, t∗) ∼= H
k,(0,n)
D (M, t∗). We also

define4

H
k−1
D (M, t∗) ≡ H

k,(1,n)
D (M, t∗). (3.16)

We then have

Theorem 3.1. We have the following long exact sequence for cohomologies
related to a principal torus bundle π: E → M .

−−−−→ Hk(M) π∗
−−−−→ Hk

D(M, t∗) π∗−−−−→ H
k−1
D (M, t∗)

δ−−−−→ Hk+1(M) −−−−→ (3.17)

where the maps are given, on representatives, by

π∗: Hk(M) −→ Hk
D(M, t∗), π∗(ωk) = (ωk, 0, . . . , 0),

π∗: Hk
D(M, t∗) −→ H

k−1
D (M, t∗), π∗(ωk, . . . , ω0) = (ωk−1, . . . , ω0),

δ: H
k−1
D (M, t∗) −→ Hk+1(M), δ(ωk−1, . . . , ω0) = F (X∗) ∧ ω̃k−1,

(if ωk−1 ≡ ω̃k−1 ⊗ X∗).

Proof. The proof is exactly analogous to the proof in Section 2.3 for the circle
bundle case. The proof that equation (3.17) defines a complex is straight-
forward. The hardest part in the proof of exactness is at H

k−1
D (M, t∗).

Thereto, suppose ω = (ωk−1, . . . , ω0), with ωk−1 = ω̃k−1 ⊗ X∗, is a represen-
tative of a class in H

k−1
D (M, t∗) such that δω = 0 in Hk+1(M), i.e., we have

F (X∗) ∧ ω̃k−1 = −dν for some ν ∈ Ωk(M). Then, ν = (ν, ωk−1, . . . , ω0) ∈
Ωk(M, t∗) satisfies Dν = 0 while π∗ν = ω. �

4Note the shift in degree, chosen such that H
k−1
D (M, t∗) ∼= Hk−1(M) for principal circle

bundles.
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In fact, Theorem 3.2 is easily generalized by considering different trunca-
tions as in equation (3.14). Namely

Theorem 3.2. For 0 ≤ r < s ≤ n, we have exact sequences

H
k,(r,r)
D (M, t∗) π∗

−−−−→ H
k,(r,s)
D (M, t∗) π∗−−−−→ H

k,(r+1,s)
D (M, t∗)

δ−−−−→ H
k+1,(r,r)
D (M, t∗) −−−−→ (3.18)

where

π∗: H
k,(r,r)
D (M, t∗) −→ H

k,(r,s)
D (M, t∗), π∗(ωk−r) = (ωk−r, 0, . . . , 0),

π∗: H
k,(r,s)
D (M, t∗) −→ H

k,(r+1,s)
D (M, t∗), π∗(ωk−r, . . . , ωk−s) =

(ωk−r−1, . . . , ωk−s),

δ: H
k,(r+1,s)
D (M, t∗) −→ H

(k+1,(r,r)
D (M, t∗),

δ(ωk−r−1, . . . , ωk−s) =
∑

i

(−1)i−1F (X∗
i ) ∧ ω̃k−r−1

⊗ (X∗
1 ∧ · · · ∧ X̂∗

i ∧ · · · ∧ X∗
r+1),

if ωk−r−1 = ω̃k−r−1 ⊗ (X∗
1 ∧ · · · ∧ X∗

r+1).

The basic Gysin sequence for π: E → M is the one given by r = 0, s = n
in Theorem 3.2. The other sequences can be viewed as truncated Gysin
sequences (from the left if r > 0 and from the right if s < n). In particu-
lar, we note that for r = 0, s = 1 we get the Gysin sequence of [25], which
was discussed in the de-Rham framework in equation [6]. The image of
i: H3,(0,1)(M, t∗) ↪→ H3(E) by means of the Chern–Weil homomorphism fA

(equation (3.6)) is what was called a T-dualizable H-flux in [6].

4 Application to T-duality

4.1 T-duality for principal torus bundles

Suppose we are given a principal torus bundle π: E → M , with curvature
class [F ] ∈ H2(M) and with H-flux [H] ∈ H3(E). We will think of this
as specifying an element ([H], [F ]) ∈ H3 (E) ⊕ H2 (M). We will choose a
representative (H, F ) which, upon dimensional reduction, can be viewed
as a tuple ((H3, H2, H1, H0), (F2, 0, 0)), with Hi ∈ Ωi(M) ⊗ ∧3−i t∗, Fi ∈
Ωi(M) ⊗ ∧2−i t, both closed under D.
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The image of H ≡ (H3, H2, H1, H0), in the Gysin sequence (3.17), is
given by F̂ ≡ (F̂2, F̂1, F̂0) = (H2, H1, H0). This 3-tuple is supposed to clas-
sify (up to torsion) our T-dual object. Subsequently, one would expect
the T-dual H-flux carried by this object to be given by the 4-tuple Ĥ ≡
(Ĥ3, Ĥ2, Ĥ1, Ĥ0) = (H3, F2, F1, F0) = (H3, F2, 0, 0).

In the case H1 = H0 = 0, our T-dual object is characterized by F̂ =
(H2, 0, 0), where H2 ∈ Ω2(M) ⊗ t∗ and hence can be identified with the
curvature of a principal T̂-bundle π̂: Ê → M . This case was analyzed in
detail in [6], and the corresponding H-fluxes were dubbed “T-dualizable.”

As soon as H1 �= 0 or H0 �= 0, the T-dual object takes us outside the
realm of principal torus bundles. The case H1 �= 0, H0 = 0, was analyzed
in detail in [8, 9]. In this case, the T-dual object was argued to be a
continuous field of noncommutative tori over the base space M . Con-
cretely, in this case, H1 determines an integral class [H1] ∈ H1(M, ∧2t∗)
or, equivalently, a homotopy class in [M, ∧2t∗]. If f : M → ∧2t∗ is a rep-
resentative for this class, then the fibre over a point z in the base M is
given by the noncommutative torus Af(z).5 A global description of this
field of noncommutative tori is given in terms of a crossed product alge-
bra A � R

n, such that spec(A) = E (see Appendix A for some details).
The results of this paper suggest that appropriate equivalence classes of
these objects are classified by a triple (F2, F1, 0), Fi ∈ Ωi(M) ⊗ ∧2−it, closed
under D. It would be extremely interesting to establish this directly and
to find a more “geometric” description of the T-dual object even in this
case.

In the most general case, H0 �= 0, the T-dual object carries information
about an integral class [H0] ∈ H0(M, ∧3t∗), i.e., a locally constant func-
tion with values in ∧3T∗. It is well known that such classes often cor-
respond to nonassociative structures (cf. [26, 27]). In [7], we construct a
C∗-algebra A, with Dixmier–Douady invariant H = (H3, H2, H1, H0) and
spec(A) = E, as a twisted induced algebra that carries a twisted action
of R

n. This generalizes a construction in [8, 9], which applies to H =
(H3, H2, H1, 0), by introducing a twisting u given by the H0-component.6

We argue that the T-dual is given by the twisted crossed product A �u R
n

and that this twisted crossed product can be interpreted as a continuous

5Locally, one can think of the commutativity parameter of the torus as given by the
components of the B-field in the torus directions.

6Note that while the analysis in this paper is carried out in the de-Rham cohomology,
the component H0 does not carry torsion, it can in fact simply be described as the pull-back
of H from H3(E, Z) to H3(T, Z) under fibre inclusion i: T ↪→ E. Hence, the construction
of [7], by adding an H0 part, is valid for arbitrary integer H-fluxes in H3(E, Z).
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field of noncommutative, nonassociative tori over the base M . It would
be interesting to establish directly and precisely which objects are clas-
sified by a 3-tuple (F2, F1, F0), Fi ∈ Ωi(M) ⊗ ∧2−it, closed under D, and
in which sense the T-dual H-flux can be interpreted as a flux on that
object.

4.2 The T-duality group

The T-duality group is O(n, n; Z). It turns out that the action of the
T-duality group on the tuples

((H3, H2, H1, H0), (F2, F1, F0)),

where Hi ∈ Ωi(M, ∧3−it∗) for i = 0, 1, 2, 3 and Fi ∈ Ωi(M, ∧2−it) for i =
0, 1, 2 have very simple expression.

Given g ∈ O(n, n; Z), it acts naturally on t∗ ⊕ t, preserving the natu-
ral quadratic form. It induces an action on ∧it∗ ⊕ ∧it. Let us denote by
gi = ∧3−ig the action of O(n, n; Z) on ∧3−it∗ ⊕ ∧3−it (for i = 0, 1, 2). We
have a corresponding induced action on Ωi(M, ∧3−it∗) ⊕ Ωi(M, ∧3−it) for

i = 0, 1, 2, which we also denote by gi =
(

Ai Bi

Ci Di

)
.

The action of g ∈ O(n, n; Z) on ((H3, H2, H1, H0), (F2, F1, F0)) is then
explicitly explicitly by

g · ((H3, H2, H1, H0), (F2, F1, F0)) ∼=
(
H3, g2 ·

(
H2
F2

)
, g1 ·

(
H1
F1

)
, g0 ·

(
H0
F0

))

∼= ((H3, A2H2 + B2F2, A1H1 + B1F1, A0H0 + B0F0), (C2H2 + D2F2, C1H1

+ D1F1, C0H0 + D0F0)). (4.1)

Note that the action of the T-duality group resembles fractional linear trans-
formations.

In particular, if we start out with a principal torus bundle with H-flux,
then the action of g ∈ O(n, n; Z) on ((H3, H2, H1, H0), (F2, 0, 0)) is given
explicitly by

((H3, A2H2 + B2F2, A1H1, A0H0), (C2H2 + D2F2, C1H1, C0H0)) . (4.2)

The T-duality transformation discussed in Section 4.1 corresponds to the
element g ∈ O(n, n, Z) given by

g =
(

0 1n

1n 0

)
. (4.3)
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4.3 Example

The simplest example of the various cases of T-duality is given by the three
torus T

3, with H-flux k dV = k dx ∧ dy ∧ dz, which can be considered as
a principal torus bundle over a (strictly) lower dimensional torus in three
different ways

(1) (T3, k dx ∧ dy ∧ dz) considered as a trivial circle bundle over T
2. The

T-dual of (T3, k dx ∧ dy ∧ dz) is the nilmanifold (HR/HZ, 0), where HR is
the three-dimensional Heisenberg group and HZ the lattice in it
defined by

HZ =

⎛
⎜⎝

1 x
1
k
z

0 1 y
0 0 1

⎞
⎟⎠ : x, y, z ∈ Z. (4.4)

(2) (T3, k dx ∧ dy ∧ dz) considered as a trivial T
2-bundle over T. The T-dual

of (T3, k dx ∧ dy ∧ dz) is a continuous field of stabilized noncommutative
tori, C∗(HZ) ⊗ K, since

H1 ∼
∫

T2={(y,z)}
k dx ∧ dy ∧ dz = k dx �= 0.

(3) (T3, k dx ∧ dy ∧ dz) considered as a trivial T
3-bundle over a point. The

T-dual of (T3, k dx ∧ dy ∧ dz) is a nonassociative torus, Aφ, where φ is
the tricharacter associated to k dx ∧ dy ∧ dz, since

H0 ∼
∫

T3
k dx ∧ dy ∧ dz = k �= 0.

Other examples, treated in previous papers, such as the nilmanifold [4]
and the group manifold, viewed as a principal torus bundle over the flag
manifold [6], both with H-flux, can be re-interpreted similarly.

5 Conclusions and further generalizations

In this paper, we have shown how Gysin sequences encode the global prop-
erties of T-duality, building on previous work [4–6]. We have constructed a
Gysin sequence for principal torus bundles, using what is known in physics as
dimensional reduction and in mathematics as a special case of the Chern–Weil
homomorphism, and have used it to determine the T-dual of a principal
torus bundle with arbitrary H-flux, generalizing the special cases considered
in [4–6, 8, 9]. The algebraic structures arising in the T-dual have been dis-
cussed in a separate paper [7]. Gysin sequences are useful in a more general
context as well, e.g., in cases where we do not have a principal torus bundle,
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but only an infinitesimally free torus action (e.g., Seifert fibreed spaces, in
which case the base manifold is a two-dimensional orbifold).

Once one realizes that the T-dual of a principal torus bundle, character-
ized by a curvature F = (F2, 0, 0), F2 ∈ Ω2(M) ⊗ t, with background H-
flux H = (H3, H2, H1, H0), Hi ∈ Ωi(M) ⊗ ∧3−it∗, is an object character-
ized by the 3-tuple (H2, H1, H0), it seems natural to somehow study a
Gysin sequence related to such an object and to interpret the dual tuple
Ĥ = (H3, F2, 0, 0) as an H-flux on this dual object by reversing the argu-
ment in the Gysin sequence. This we leave as a problem for further inves-
tigation. From the physics point of view, the results of this paper show
that if one is trying to build a manifestly T-duality invariant description of
M-theory, one is forced to include not only noncommutative structures but
also nonassociative structures into the game.

Another obvious extension of this work is to incorporate torsion by gen-
eralizing the analysis of this paper from de-Rham cohomology to integer,
i.e., Čech cohomology. Although there are some subtleties, we believe this
is possible and we hope to come back to this in a future publication (cf.
[28, 29] for some relevant results in this direction). One could even wonder
whether a similar dimensional reduction might be possible at the level of
K-theory.

Maybe one of the most striking results of this paper is that we are led to T-
dual objects which appear to be quite “pathological”—noncommutative or
even nonassociative—but nevertheless are characterized by forms on the base
manifold. Thus one realizes that this approach might be useful in getting a
hold on even more exotic structures such as torus fibrations (manifolds with
nonfree torus actions), as long as the base manifold has a well-understood
theory of differential forms and de-Rham cohomology.

Appendix A Duality from the operator algebraic perspective

In this paper, as well as previous ones [4, 6], we have attempted to sketch
the geometric counterpart, as well as applications to T-duality, of results
established in the context of, in particular, operator algebras, derived in a
series of beautiful papers (see, in particular, [7–9,25,30–35]). For the benefit
of readers wishing to familiarize themselves with the algebraic perspective,
we include this appendix.

We begin with a reformulation of [4,5]. Given a circle bundle S1 ↪→ E →
M over M , and a closed, integral 3-form H on E, then there is a unique
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algebra bundle E → E with fibre equal to the algebra of compact operators
K and Dixmier–Douady invariant equal to [H] ∈ H3(E, Z). Then, the space
of continuous sections A = C(E, E) is a stable, continuous trace C∗-algebra
with spectrum spec(A) = E. The R action on E lifts uniquely to an R action
on A (cf. [30]), and one has a commutative diagram,

spec(A)

π

���
��

��
��

��
��

��
��

��
��

��
�

spec(A � Z)

p̂

���
��

��
��

��
��

��
��

��
��

��
�

p

����
��

��
��

��
��

��
��

��
��

��

spec(A)/R

spec(A � R)

π̂

����
��

��
��

��
��

��
��

��
��

��
(A.1)

That is, A � Z and A � R are also continuous trace C∗-algebras with
spec(A � R) = Ê, a circle bundle over M = spec(A)/R, such that c1(Ê) =
π∗[H] and the Dixmier–Douady invariant of A � R is [Ĥ] ∈ H3(Ê, Z), such
that c1(E) = π̂∗[Ĥ], and spec(A � Z) = E ×M Ê is the correspondence space.
Now the T-dual of the continuous trace C∗-algebra A � R is the crossed
product (A � R) � R̂, which by Takai duality is Morita equivalent to A, and
in particular, spec((A � R) � R̂) = spec(A). That is, applying T-duality
twice gets us back to where we started off. As a result, we also get the
horizontal isomorphisms (Connes–Thom isomorphisms in K-theory and in
cyclic homology) and the commutativity of the diagram,

K•(A) T!−−−−→∼=
K•(A � R)

ChH

⏐⏐	
⏐⏐	Ch

HP•(A∞) T∗−−−−→∼=
HP•(A∞

� R)

(A.2)

where A∞ = C∞(E, E∞) is a smooth subalgebra of A. This motivates the
definition of the T-dual of a principal torus bundle with H-flux, when the
T-dual is not classical, viz, when the T-dual is not another principal torus
bundle with H-flux.
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In dealing with higher rank torus bundles, we will use the notation G =
R

n, N = Z
n, and T = G/N = T

n. Now, given a torus bundle T ↪→ E → M
over M , and a closed, integral 3-form H on E, then there is a unique algebra
bundle E → E with fibre equal to the algebra of compact operators K and
Dixmier–Douady invariant equal to [H] ∈ H3(E, Z). Let A denote the space
of all continuous sections of E , which is a stable, continuous trace C∗-algebra
with spectrum spec(A) = E. Now if (and only if) the restriction of [H]
to each fibre is trivial (i.e., H0 = 0), then the G-action on E lifts to an
G-action on the total space E , i.e., there is an induced G-action on A. The lift
of the G-action on E to A is not unique, cf. [8,9], but this does not affect the
K-theory. The T-dual of the torus bundle with H-flux (E, H) is then defined
as A � G. Note that this is in general not a stable, continuous trace C∗-alge-
bra. Then we have an analogous diagram for this situation as in (A.2). More
importantly, by Takai duality (A � G) � Ĝ is Morita equivalent to A, and in
particular, spec((A � G) � Ĝ) = spec(A). That is, applying T-duality twice
gets us again back to where we started off, as was established in [8, 9].

Given a torus bundle T ↪→ E → M over M , and a closed, integral 3-form
H on E, let E → E be the unique algebra bundle with fibre equal to the
algebra of compact operators K and Dixmier–Douady invariant equal to
[H] ∈ H3(E, Z). Let A denote the space of all continuous sections of E .
Now, if the restriction of [H] to each fibre is not trivial (i.e., H0 �= 0), then
the G-action on E lifts to a twisted G-action on E and hence on A [7]. Again,
this lifted action is not unique. The T-dual of the torus bundle with H-flux
(E, H) is defined as the twisted crossed product A �u G. The twisted crossed
product A �u G is in general a nonassociative, noncommutative algebra,
which is a field of nonassociative tori on the base. By twisted Takai duality
[7], (A �u G) �û Ĝ is Morita equivalent to A, and in particular, spec((A �u

G) �û Ĝ) = spec(A). That is, applying T-duality twice gets us again back
to where we started off, as was established in [7].
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