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Abstract

We study geometric transitions for topological strings on compact
Calabi–Yau hypersurfaces in toric varieties. Large N duality predicts
an equivalence between topological open and closed string theories con-
nected by an extremal transition. We develop new open string enumera-
tive techniques and perform a high-precision genus zero test of this con-
jecture for a certain class of toric extremal transitions. Our approach
is based on (a) an open string version of Gromov–Witten theory with
convex obstruction bundle and (b) an extension of Chern–Simons theory
treating the framing as a formal variable.

1 Introduction

Large N duality [21, 23, 53] predicts a highly nontrivial relation between
open and closed topological strings on Calabi–Yau three-folds connected
by an extremal transition. Originally formulated for local conifold tran-
sitions, the duality has been extended in various directions in refs. [2–5,
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15–18, 29, 30, 38–40, 47, 52, 54]. The generalizations considered in refs. [4, 5,
15, 16] are especially interesting since they shed a new light on the structure
of Gromov–Witten invariants of toric Calabi–Yau manifolds. These develop-
ments are based on an earlier idea of Witten [58], who outlines a beautiful
approach to A-model topological open string amplitudes. The main idea
of this approach is based on a subtle combination of Chern–Simons theory
and open string enumerative geometry, which will be discussed in detail
below. At present, open string enumerative geometry is not a fully devel-
oped mathematical formalism. The basic principles understood so far have
been developed in refs. [25, 33, 45] in the context of toric Calabi–Yau three-
folds. Additional work on the subject exhibiting various points of view can
be found in refs. [1, 2, 15, 16, 24, 31, 32, 41–43, 48, 49]. In particular, the work
of Diaconescu et al. [15, 16] was successfully applied to geometric transitions
for noncompact Calabi–Yau hypersurfaces in toric varieties.

In this paper, we consider large N duality for extremal transitions between
compact Calabi–Yau hypersurfaces in toric varieties. Geometric transitions
for compact Calabi–Yau manifolds have been proposed in ref. [57], but no
concrete results are known so far. There are many conceptual as well as
technical issues that have to be addressed in this context. Perhaps the most
challenging obstacle is the absence of a rigorous mathematical formalism for
open string amplitudes on compact Calabi–Yau three-folds.

Keeping the details to a minimum, let us summarize our results. We
develop a computational approach to genus zero open string A-model ampli-
tudes on a certain class of compact Calabi–Yau target manifolds. This
approach follows the basic principles outlined in ref. [58] supplemented by a
heavy use of equivariant enumerative techniques. There are two key aspects
in the whole process. First, we develop an open string version of the con-
vex obstruction bundle approach usually encountered in Gromov–Witten
theory. Second, we propose a formal extension of standard Chern–Simons
theory in which the framing is regarded as a formal variable. In particular,
it could take fractional values. Using these two elements, plus a great deal of
patience, we run a successful genus zero test of large N duality for compact
Calabi–Yau hypersurfaces in toric varieties. Along the way, we gain new
insights into the structure of Gromov–Witten invariants, and we also clar-
ify some aspects of local geometric transitions [5, 15, 16]. A more detailed
overview of the general set-up and the results is included in the next section.

The paper is structured as follows. In Section 2, we present the stage, the
cast of characters and outline the main plot. Section 3 consists of a concep-
tual discussion of open string enumerative geometry for compact Calabi–
Yau manifolds. In Section 4, we describe the main examples to be used
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for concrete computations. We revisit local geometric transitions in Section
5, focusing on the interplay between equivariant enumerative geometry and
Chern–Simons theory. The main outcome of this discussion is a notion of
formal Chern–Simons expansion which will prove crucial for compact three-
folds. Sections 6 and 7 are devoted to an implementation of our program in
a concrete model.

2 Large N duality for compact three-folds — preliminary
remarks

Although the problem can be formulated in a more general context, in this
paper we will consider only toric extremal transitions between Calabi–Yau
hypersurfaces [6, 8, 50]. Recall [7] that a family of Calabi–Yau hypersurfaces
Y in a toric variety Z is described by a reflexive Newton polyhedron P∆Y

.
The class of extremal transitions we are interested in is described by an
embedding of reflexive polyhedra P∆

˜Y
⊂ P∆Y

. It has been shown in refs. [6,
8, 50] that such an embedding gives rise to a commutative diagram of the
form

˜Y ��

��

˜Z

��
Y0 �� Z

(2.1)

The vertical arrows are extremal contractions and Y0 is a singular hyper-
surface in the family Y corresponding to special values of complex struc-
ture parameters. The toric extremal contraction ˜Z−→Z admits a simple
toric description in terms of a similar embedding of dual reflexive polyhedra
P∇Y

⊂ P∇
˜Y
. The vertices of P∇

˜Y
not belonging to P∇Y

correspond to toric
divisors on ˜Z which are contracted in the process. In the following, we will
consider only singular hypersurfaces Y0 with isolated ordinary double points.
Moreover, the contraction ˜Y −→Y is a simultaneous crepant resolution of
the nodes. Also, we will assume Z, ˜Z to be smooth toric four-folds. This
can always be achieved by triangulating the toric fans.

To be more concrete, let us consider a one-parameter family Yµ of hyper-
surfaces in Z which degenerates to Y0 for µ = 0. We denote by v the number
of nodal singularities of Y0 and by [L1], . . . , [Lv] the corresponding homol-
ogy classes of vanishing cycles on Yµ. The [Li], i = 1, . . . , v, generate a
rank (v − r) sublattice Hv ⊂ H3(Yµ, Z), where r is the number of relations
among vanishing cycles. Without loss of generality, we can assume that
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[Lr+1], . . . , [Lv] is an integral system of generators for Hv. Therefore, we
have the following linear relations with integral coefficients

[Li] =
v
∑

m=r+1

ai,m[Lm] (2.2)

for i = 1, . . . , r.

The exceptional locus of the crepant resolution ˜Y −→Y consists of v

isolated (−1,−1) curves C1, . . . , Cv on ˜Y . Clemens [12] shows that the
curve classes [C1], . . . , [Cv] ∈ H2(˜Y , Z) are subject to (v − r) relations, so
that we are left with r independent curve classes on ˜Y . Without loss of
generality, we can take them to be [C1], . . . , [Cr]. The numbers (v, r) can be
related to the toric data described in the previous paragraph using Batyrev’s
formulae [7]. We will work under the simplifying assumption that all extra
r (1, 1) classes on Ỹ are toric, i.e., r = h1,1( ˜Z) − h1,1(Z). Therefore, the
curves C1, . . . , Cr determine r independent curve classes on ˜Z as well. We
will understand why this assumption is necessary by the end of this section.

In this geometric context, we consider an open string A-model specified by
wrapping Ni topological branes on a collection of vanishing cycles Li ∈ [Li]
[58]. In order to obtain a well-defined topological open string A-model,
the cycles Li should be Lagrangian. Physical considerations [26, 55] suggest
that each class [Li] should contain a unique special Lagrangian cycle home-
omorphic to S3 in order for the transition to make sense in string theory.
Unfortunately, this does not seem to be a well-established mathematical
result for a generic deformation Yµ. For the remaining part of this section,
we will assume this to be true. In later sections, we will work with a spe-
cial degeneration of Yµ where one can explicitly construct such Lagrangian
representatives.

In a topological theory, there should not be any constraint on the Ni

arising from flux conservation. If we regard our model as the topological
sector of an underlying superstring theory, the total D-brane charge has to
be zero because ˜Y is compact. Therefore, we must have

v
∑

i=1

Ni[Li] = 0. (2.3)

Although this is not strictly a necessary condition in the topological theory,
it seems to be required in order to match the number of parameters in the
context of large N duality. This can be seen by substituting equation (2.2)
in equation (2.3) and using the fact that [Lr+1], . . . , [Lv] form a basis. We
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obtain

Nm +
r
∑

i=1

Niai,m = 0, m ≥ r + 1. (2.4)

This shows that there are only r independent D-brane charges N1, . . . , Nr

in one-to-one correspondence with the exceptional curves C1, . . . , Cr.

As topological A-model amplitudes depend on Kähler moduli, we choose
specific parameterizations of the Kähler cones of Z, ˜Z as follows

J =
h1,1(Z)
∑

α=1

tαJα, ˜J =
h1,1( ˜Z)
∑

γ=1

˜tγ ˜Jγ . (2.5)

Here Jα, α = 1, . . . , h1,1(Z), and, respectively, ˜Jγ , γ = 1, . . . , h1,1( ˜Z), are
Kähler cone generators. Note that tα and ˜tγ are classical Kähler parame-
ters. The topological amplitudes should be written in terms of flat Kähler
parameters, which include instanton corrections. Abusing notation, we will
use the same symbols for classical and flat Kähler parameters. The distinc-
tion should be clear from the context.

After all these preliminary remarks, we are ready to discuss the large N
duality conjecture in the present context. Following the general philosophy
of [22], large N duality should predict a relation between topological closed
strings on ˜Y and topological open strings on (Y, L), where L = ∪v

i=1Li.
Therefore, it would be tempting to conjecture a direct relation between the
Gromov–Witten expansion of ˜Y and a hypothetical open string expansion
associated to (Y, L). While such a relation may exist abstractly, at present
such a direct approach is out of reach. Instead, we will concentrate only
on the genus zero part of the duality and follow one of the main lessons of
mirror symmetry for Calabi–Yau hypersurfaces. In the linear sigma model
approach, the genus zero Gromov–Witten expansion of a hypersurface ˜Y

is defined extrinsically in terms of maps to the ambient toric variety ˜Z,
using the convex obstruction bundle approach. Roughly, this means that
one counts holomorphic maps to ˜Z, subject to an algebraic constraint. This
produces a genus zero closed string expansion of the form

F (0)
˜Y ;cl

(gs,˜tγ) = g−2
s

∑

˜β∈H2( ˜Z,Z)

˜C0,˜β
e−〈 ˜J,˜β〉, (2.6)

where the coefficients ˜C0,˜β
have a standard definition in terms of intersection

theory on the moduli space of stable maps to ˜Z which will be reviewed in
the next section. It is worth noting here that only the data of ˜Z and the
linear system |˜Y | enter the definition of ˜C0,˜β

. Therefore, these coefficients
are manifestly independent of complex structure deformations of Y .
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Following the same idea, one would like to define a similar instanton sum
for topological open strings on (Y, L) using maps to the ambient space Z
with boundary conditions on L. This is a very delicate construction for
many reasons explained in detail in Section 3. One of the obvious problems
is that such a construction would not be manifestly independent on complex
structure deformations of Y , since the cycles L move with Y . Moreover, for
fixed (Y, L), there is no rigorous mathematical formalism for counting open
string maps in an appropriate sense. Finally, in open string theories one has
to sum over highly degenerate maps which contract a bordered Riemann
surface into an infinitely thin ribbon graph [58]. From a physical point
of view, this yields a Chern–Simons sector of the topological string theory
consisting of v Chern–Simons theories with gauge groups U(Ni) supported
on the cycles Li, i = 1, . . . , v [58]. The coupling of this sector to open string
instantons is a very subtle issue not fully understood at this stage. This
subject will be discussed in detail in Section 5 for local models and Section 7
for compact Calabi–Yau three-folds.

We will not attempt to fill all the gaps mentioned in the previous para-
graph in the present paper. Instead, we will assume invariance under
complex structure deformations, and construct a genus zero open string
generating functional using a special degeneration (Y ,L) of the pair (Y, L).
The construction relies heavily on the existence of a toric action on Z which
induces a subtorus action on Y . The existence of a suitable degeneration
places important restrictions on the range of validity of this approach. As
explained in Sections 3 and 6, such a direct construction can be carried
out only for extremal transitions in which the nodal points are fixed points
of the torus action on Z. Without giving more details here, let us note
that in favorable cases we can construct a genus zero open string generating
functional of the form1

F (0)
(Y,L);op(gs, tα, λi) = F (0)

Y ;cl(gs, tα) +
∑

β∈H2(Z,L;Z)

F
(0)
β (gs, λi) e−〈J,β〉. (2.7)

Here λi = gsNi are the ‘t Hooft coupling constants for the v Chern–Simons
theories on Li. Given the relations (2.4), we have only r independent ‘t Hooft
couplings λi, i = 1, . . . , r, in formula (2.7). This matches the number of
exceptional curve classes on ˜Z, according to the paragraph below equation
(2.2). In the right-hand side of (2.7), FY ;cl(gs, tα)(0) is the genus zero closed

1Here we ignore some subtleties related to open string quantum corrections to the flat
Kähler parameters. Since this is a general discussion, these corrections can be absorbed
in the definition of F

(0)
β (gs, λi).



LARGE N DUALITY FOR COMPACT CALABI–YAU 3-FOLDS 37

string Gromov–Witten expansion of Y

F (0)
Y ;cl(gs, tα) = g−2

s

∑

β∈H2(Z,Z)

C0,β e−〈J,β〉. (2.8)

The construction of the generating functional in equation (2.7) is discussed
from a conceptual point of view in Section 3, and carried out for a concrete
compact example in Sections 6 and 7.

Granting the existence of a well-defined open string partition function,
what are the predictions of large N duality? The conjecture is that the two
generating functionals (2.6) and (2.7) should be equal, subject to a certain
identification of parameters which is the duality map. To this end, let us
introduce a different system of generators (π∗(Jα), Di), α = 1, . . . , h1,1(Z),
i = 1, . . . , r, of H1,1( ˜Z). Here π: ˜Z−→Z is the contraction map and Di, i =
1, . . . , r, are divisor classes on ˜Z such that π∗(Di) = 0 and Di · Cj = δij for
1 ≤ i, j ≤ r. Then, modulo some subtleties concerning open string Kähler
moduli which will be considered later, the duality map is specified by the
following relations

˜J = π∗J − i

r
∑

i=1

λiDi. (2.9)

Using this map, we will test the duality predictions for a concrete example
in Section 7.

3 Open string A-model approach — general considerations

In principle, large N duality should hold for any conifold transition between
Calabi–Yau three-folds. However, our current understanding of topological
open string A-model amplitudes is restricted to the so-called local models,
i.e., noncompact Calabi–Yau three-folds admitting a torus action. The case
of compact Calabi–Yau three-folds is especially hard, no concrete results
being known so far. In this paper, we would like to propose an approach
to this problem for a certain class of hypersurfaces in toric varieties. This
section is a rather general exposition of the basic principles. The details will
be worked out for concrete examples in the next sections.

Let us start the discussion with some general considerations on open
string A-models, following ref. [58]. Suppose we have a model defined by v
Lagrangian cycles L1, . . . , Lv as in the previous section. The target space
effective action of such a theory consists of v Chern–Simons theories with
gauge groups U(Ni), i = 1, . . . , v, supported on the v Lagrangian cycles.
This is a universal sector of the theory which is present for any target
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manifold. Then one has instanton corrections to the Chern–Simons theory
obtained by summing over holomorphic maps f : Σg,h−→Y with Lagrangian
boundary conditions on the Li. Obviously, these corrections depend on
the geometry of the target manifold, and the sum should be properly for-
mulated in terms of intersection theory on a moduli space of stable maps
Mg,h(Y, L). There is, however, an important subtlety in this approach which
may be easier to understand for a concrete example. Suppose one can find
a rigid holomorphic disc Di embedded in Y with boundary Γi ⊂ Li. Let
β = [Di] ∈ H2(Y, L; Z) and let γ = [Γi] ∈ H1(Li, Z). This yields an instanton
correction of the form

e−τi Tr
(

P exp
∫

Γi

f∗Ai

)

(3.1)

to the U(Ni) Chern–Simons theory on Li. Here τi is the symplectic area
of the disc and Ai is the U(Ni) gauge field on Li. It is important to note
that Ai is not a fixed flat connection on Li. Since the cycle is compact,
Ai is a dynamical variable, and one should integrate over all connections.
However, this proposal immediately raises a puzzle if the disc Di moves in
a family on Y . Since Ai is not flat, the holonomy factor Tr (P exp

∫

Γi
f∗Ai)

depends on the position of Γ in Li. Therefore, it is not clear how to write
down the instanton corrections in this case. Since A-models make sense on
general symplectic manifolds equipped with a compatible almost complex
structure, one solution is to deform to a generic situation in which we have
a finite number of rigid discs. Then each disc would yield a correction of
the form (3.1). Conceptually, this is a satisfying solution, but it is not very
effective in practice if one is interested in explicit numerical computations.
The solution proposed in refs. [15, 16] is based on localization with respect
to a toric action. More precisely, if Y admits a torus action which pre-
serves the Lagrangian cycles, the idea is to sum only over fixed points of
the induced action on the moduli space of maps. To each fixed point, one
can associate an instanton expansion consisting of terms of the form (3.1)
and multicovers. In order to obtain the topological free energy, one has to
first sum the instanton expansions over all fixed points and then perform
the Chern–Simons functional integral with all these corrections taken into
account. Such computations have been performed for noncompact manifolds
in refs. [5, 15, 16].

At this point, it may be helpful to emphasize the distinction between
compact and noncompact cycles. If Li were a noncompact cycle in some
noncompact Calabi–Yau manifold, one could take Ai to be a fixed flat con-
nection on Li. For a flat connection, the holonomy factor Tr (P exp

∫

Γi
f∗Ai)



LARGE N DUALITY FOR COMPACT CALABI–YAU 3-FOLDS 39

depends only on the homology class γ. Therefore, for fixed homology classes
(β, γ) the instanton series can be thought of a formal series in two sets of
variables [33]. The computation of topological amplitudes is then reduced
to the construction of a virtual cycle of dimension zero on the moduli space
of stable open string maps. The structure of this moduli space is not very
well understood at the moment, hence there are various technical problems
with such a construction. Nevertheless, one can go a long way exploiting the
presence of a torus action [25, 33, 45, 49]. Even if the moduli space is very
complicated, the fixed loci of the induced torus action are much simpler and
can be described in detail. Then one can define the virtual cycle by directly
summing over invariant maps. Since the moduli space has boundary, the
resulting invariants will depend on a choice of boundary conditions, which
can be encoded in a choice of the torus weights [33]. Therefore, we obtain a
family of invariants depending on a discrete set of choices.

If the cycles Li are compact, the local contribution of a fixed locus is to be
interpreted as a series of corrections to Chern–Simons theory, as explained
above. As a result, each term in this series will be a rational function of
the weights of the torus action. The final expression for the open string free
energy is obtained by computing the free energy of the corrected Chern–
Simons action. At this point, we seem to obtain a puzzle since a priori the
resulting open string amplitudes will depend on the weights of the torus
action. This dependence is not physically acceptable in the context of large
N duality, since there are no discrete ambiguities in the dual closed string
expansion.

The resolution of this puzzle is that the choice of the toric weights has
to be correlated to the framing of the knots Γi in Chern–Simons theory in
such a way that the final result agrees with the closed string dual. Although
this idea has been concretely applied in certain local models in refs. [15, 16],
the general rules behind the weight-framing correspondence are not well
understood at present. In particular, integrality of the framing imposes very
strong constraints on the allowed weights, which may not even have solution
in many cases. One of the main results of this work is a general rule for this
correspondence based on a certain extension of the Chern–Simons expansion
treating the framing as a formal variable. This will be discussed at length
for local models in Section 5, and for compact Calabi–Yau three-folds in
Section 7.

For the remaining part of this section, we will focus on localization ques-
tions for open string maps to compact Calabi–Yau hypersurfaces. Our goal
is to develop an algorithm for the computation of the local contributions
associated with fixed loci in such situations.
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3.1 Open string morphisms — the convex obstruction
bundle approach

Open string A-model localization techniques have been first developed in
refs. [25, 33, 45] for noncompact Lagrangian cycles in noncompact toric three-
folds. An extension of these techniques to compact Lagrangian cycles has
been discussed in refs. [15, 16]. In the later cases, the ambient Calabi–Yau
three-fold was a noncompact hypersurface in a toric variety. The invariants
computed there may be regarded as an open string version of closed string
local Gromov–Witten invariants [13].

Briefly, the typical situation encountered in closed string computations
is the following. One has a toric Calabi–Yau variety X isomorphic to the
total space of a holomorphic vector bundle N over a base B. Usually B
is a rational curve or a toric Fano surface, so that the zero section of the
fibration N−→B is rigid in X. The basic data of the enumerative problem
is given by the negative obstruction bundle E = R1ρ∗(ev∗N) on the mod-
uli space of stable maps Mg,0(B, β), with fixed class β ∈ H2(B, Z). Here
ev: Mg,1(B, β)−→B is the evaluation map and ρ: Mg,1(B, β)−→Mg,0(B, β)
is the forgetful map. This is standard material. The local Gromov–Witten
invariants are defined by integrating the Euler class of E against the vir-
tual fundamental class [Mg,0(B, β)]. Alternatively, we can define the same
invariants as the degree of the virtual cycle [Mg,0(X, β)], which is of dimen-
sion zero. One can show without too much effort that the two definitions
are equivalent (see, e.g., Section 9.2.2 of ref. [12]). Since B is toric, we can in
fact explicitly evaluate these numbers using localization techniques [20, 36].

By contrast, compact Calabi–Yau three-folds, such as hypersurfaces in
toric varieties, require a different approach. The obvious difficulty in apply-
ing localization techniques to this case is the absence of a torus action
on a smooth generic hypersurface. For genus zero maps, this problem
is elegantly solved by the convex obstruction bundle approach. Shifting
perspective, the genus zero numerical invariants are formulated in terms
of the moduli space M0,0(Z, β) of stable maps to the ambient toric vari-
ety Z, which admits a toric action. Here β ∈ H2(Z, Z) is a fixed second
homology class. On this moduli space, one can construct a virtual fun-
damental class of positive degree. Therefore, to obtain numerical invari-
ants, one has to intersect this class with the Euler class of the obstruc-
tion bundle V = R0ρ∗(ev∗O(−KZ)). Here ρ: M0,1(Z, β)−→M0,0(Z, β) is
the forgetful map and ev: M0,1(Z, β)−→Z is the evaluation map as usual.
Note that the line bundle O(−KZ) defines the linear system of Calabi–
Yau hypersurfaces on Z. Therefore, the zeroes of a generic section of V on
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M0,0(Z, β) can be thought of intuitively as maps to a generic hypersurface
Y . In fact, one can show rigorously that these intersection numbers coin-
cide with the degree of the virtual cycle [M0,0(Y, β)] (see Example 7.1.5.1
in ref. [12]). Since only the data of the linear system |−KZ | enters this
definition, the invariants are manifestly independent of complex structure
deformations of Y . This approach is valid if the bundle O(−KZ) is convex,
i.e., R1ρ∗(ev∗O(−KZ)) = 0. By a slight abuse of language, we will call V a
convex obstruction bundle in this case.

Following the same general line of thought, we would like to propose an
extension of the convex obstruction bundle approach to open string A-model
amplitudes on compact Calabi–Yau hypersurfaces. It should be said at the
offset that the methods employed here are not entirely rigorous, since a rig-
orous mathematical formulation of open string Gromov–Witten invariants
has not been developed so far. We make no claim of filling this gap. More-
over, since our approach relies heavily on localization with respect to a toric
action, it applies only to a special class of hypersurfaces and Lagrangian
cycles which will be described later. The models presented in the next sec-
tion provide a good testing ground for explicit computations which can be
checked against large N duality predictions.

The main idea is quite straightforward. Given a Calabi–Yau hypersur-
face Y ⊂ Z and a collection of vanishing cycles L = ∪iLi, we would like to
consider the open string morphisms to Z with certain boundary conditions
along Li, viewed as cycles in Z. Obviously, the Li cannot be Lagrangian
cycles in Z for dimensional reasons, but this will not be a major obsta-
cle. More precisely, one would like to consider the moduli space of sta-
ble maps M0,h(Z, L; β) where β denotes now a relative homology class
β ∈ H2(Z, L; Z). Note that H2(Z, L; Z) � H2(Z, Z) since L is a collection
of 3-spheres, and hence we can identify β with an absolute class. In order
to localize the open string morphisms following refs. [25, 33, 45], we need a
torus action on M0,h(Z, L; β) compatible with the torus action on Z. The
problem here is that the torus action on Z does not preserve the vanishing
cycles Li lying on a generic hypersurface Y . This is a new element compared
to the closed string situation.

In the following, we would like to propose a solution to this problem based
on the assumption that toplogical A-model amplitudes are invariant under
complex structure deformations. Working under this assumption, it suffices
to define and compute these invariants by specializing (Y, L) to a singular
hypersurface Y and a collection of cycles L preserved by a subtorus. The
main problem with such an approach is that the existence of such a “good
degeneration” of (Y, L) is not by any means obvious. This is in fact the
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main restriction on the class of transitions which can be treated in this
fashion. We have not been able to develop a systematic characterization
of “good degenerations” in arbitrary families of Calabi–Yau hypersurfaces.
Analyzing the concrete examples worked out in the next sections, it seems
that such a degeneration will exist whenever the nodal points of Y0 are fixed
points of the torus action on the ambient toric variety Z. Clearly, this point
deserves further study, but this is the criterion that seems to emerge so far.

Provided one can find such a degeneration Y , the next step is to evaluate
the contributions of the fixed loci in M0,h(Z, L; β). This can be done by
constructing the tangent-obstruction complex for open string morphisms to
the pair (Z, L). Although the target space is a toric four-fold, the main idea
is the same as [25, 33], i.e., one has to consider the deformation complex of
an open string map f : Σ0,h−→Z subject to boundary conditions along L.
The boundary conditions can be inferred from the concrete presentation of
L, as we will discuss in detail in concrete examples. In particular, in all
these examples we will find a real subbundle TR of TZ restricted to L so
that the pair (f∗TZ , f∗

∂TR) forms a Riemann–Hilbert bundle on Σ0,h.

We need one more ingredient, which is the convex obstruction bundle on
the moduli space. One would like to define the fiber of the obstruction bundle
V over a point (Σ0,h, f), as the space of holomorphic sections of f∗O(−KZ)
subject to certain boundary conditions along ∂Σ0,h. In order to obtain a
good boundary problem for the Dolbeault operator, the boundary conditions
should be specified by a real subbundle R of f∗O(−KZ)|∂Σ0,h

[33]. In fact
the pair (f∗O(−KZ),R) should define a Riemann–Hilbert bundle on Σ0,h.
Such a structure can be naturally obtained in the present case if we use
the isomorphism O(−KZ) � Λ4(TZ), where TZ is the holomorphic tangent
bundle to Z. Then we can take R to be f∗

∂

(

Λ4(TR)
)

. It is not a priori
obvious that this construction is sensible, since the structure of the moduli
space is not understood. However, we will show in the next sections that
the results are in perfect agreement with large N duality predictions. This
is a strong evidence in favor of this approach.

As mentioned several times so far, evaluating the contributions of the fixed
points is only a first step in the computation of open string amplitudes. In
order to finish the computation, the contribution of each fixed point has to be
interpreted as a series of instanton corrections in the Chern–Simons theory.
This involves another very subtle aspect of the whole approach, namely the
correlation between the toric weights and Chern–Simons framing.

Given the complexity of the problem, we will proceed in several stages.
In the next section, we describe in detail the models considered in this
paper. Although we will find explicit extremal transitions between compact
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Calabi–Yau manifolds, the starting point will be local del Pezzo models.
Section 5 will be devoted to the weight-framing correspondence for local
models, focusing on the idea of a formal Chern–Simons expansion. Finally,
equipped with a better understanding of these points, we will address large
N duality for compact models in Sections 6 and 7.

4 The models

Concrete examples in which the above program can be implemented2 arise
by taking projective completions of the local Calabi–Yau models considered
in refs. [5, 15, 16]. Let us briefly recall the relevant geometric constructions.

We will consider extremal transitions for noncompact toric Calabi–Yau
three-folds fibered in complex lines over toric del Pezzo surfaces. The base
B of the fibration can be either dP2 as in the model studied in ref. [16]
or dP3 or dP5 as in ref. [5]. In all cases, it is easier to describe the small
resolution ˜X first, which is isomorphic to the total space of the canonical
bundle O(KB). The toric diagrams for the del Pezzo surfaces dP2, dP3 and
dP5 are represented below.

In each case, the toric fan of the three-fold ˜X is a cone over the two-
dimensional polytope represented in figure 1. Note that dP2 is represented
here as a two-point blow-up of P

2, and similarly dP3 and dP5 are con-
structed by blowing up two and, respectively, four points on F0. In the last
case, the four points on F0 are not in general position, and therefore we
obtain a nongeneric dP5 surface. This is consistent with the toric presenta-
tion, since the generic dP5 surface is not toric. We denote the exceptional
curves by ei, i = 1, . . . , n, where n = 2, 2, 4 in the three cases, as specified in
figure 1. The ei can be embedded as (−1,−1) curves in ˜X via the zero
section σ: B−→ ˜X.

In the following, we will consider extremal transitions consisting of a
contraction of the curves ei on ˜X followed by a deformation of the resulting
nodal singularities. The singular three-folds obtained in the process can be
represented as hypersurfaces in noncompact toric varieties W [16]. The toric

2These are not the only examples which can be treated this way. We will eventually
learn along the way that all extremal transitions in which the nodal points are fixed by
the torus action admit a similar approach.
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Figure 1: del Pezzo surfaces.

data of W are

dP2:
Z1 Z2 Z3 U V

C
∗ 1 1 1 −1 −2

dP3:
Z1 Z2 Z3 Z4 U V

C
∗ 1 1 0 0 −1 −1

C
∗ 0 0 1 1 −1 −1

dP5:
Z1 Z2 Z3 Z4 U V

C
∗ 1 1 0 0 −2 0

C
∗ 0 0 1 1 0 −2

. (4.1)

The equations for the nodal hypersurfaces read in the three cases

dP2: UZ1 + V Z2Z3 = 0,

dP3: UZ1Z4 + V Z2Z3 = 0,

dP5: UZ1Z2 + V Z3Z4 = 0.

(4.2)

It is easy to check that the singular points are given by

dP2: P1 = {Z1 = Z2 = U = V = 0}, P2 = {Z1 = Z3 = U = V = 0},

dP3: P1 = {Z1 = Z3 = U = V = 0}, P2 = {Z2 = Z4 = U = V = 0},

dP5: P1 = {Z1 = Z3 = U = V = 0}, P2 = {Z2 = Z4 = U = V = 0},

P3 = {Z1 = Z4 = U = V = 0}, P4 = {Z2 = Z3 = U = V = 0}.
(4.3)

The deformations are described by adding a constant term µ to the right
hand side of the equations (4.2). The geometry of the resulting smooth
variety can be analyzed in detail as in [16]. In particular, one can show
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that there are n vanishing cycles on the deformed hypersurface Xµ (where
n = 2, 2, 4 as explained above) subject to one homology relation. These
cycles have the topology of a three-sphere and they can be described quite
explicitly in terms of local coordinates. We will give more details on this
point at a later stage.

Now let us describe the compact Calabi–Yau three-folds associated to
the above local models. The idea is quite straightforward. We first take a
projective completion of the ambient toric varieties W, obtaining smooth
compact toric four-folds Z given by the following data

dP2:
Z1 Z2 Z3 U V W

C
∗ 1 1 1 −1 −2 0

C
∗ 0 0 0 1 1 1

dP3:

Z1 Z2 Z3 Z4 U V W
C

∗ 1 1 0 0 −1 −1 0
C

∗ 0 0 1 1 −1 −1 0
C

∗ 0 0 0 0 1 1 1

.

dP5:

Z1 Z2 Z3 Z4 U V W
C

∗ 1 1 0 0 −2 0 0
C

∗ 0 0 1 1 0 −2 0
C

∗ 0 0 0 0 1 1 1

(4.4)

Note that in all cases we obtain a P
2 bundle over the base B. It is a simple

exercise to check that the canonical class of Z is given by KZ = 3η, where η
is the divisor at infinity defined by the equation W = 0. The generic divisor
in the linear system |−KZ | is a smooth Calabi–Yau variety defined by an
equation of the form

∑

a,b,c≥0, a+b+c=3

UaV bW cfabc(Zi). (4.5)

For the dP2 model, fabc(Zi) is a homogeneous polynomial of degree a + 2b in
(Z1, Z2, Z3). For the other two models, fabc(Zi) is a bihomogeneous polyno-
mial of bidegree (a + b, a + b) and, respectively, (2a, 2b) in (Z1, Z2), (Z3, Z4).
One can work out the vertices of the dual toric polyhedra and the Hodge
numbers for all the three cases.3 The toric polyhedra ∇Y are specified by

3The Hodge numbers of all manifolds appearing in this paper have been computed
using the program POLYHEDRON, written by Philip Candelas.
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the following sets of vertices VY

dP2:
{

(−1, 0, 0, 0), (−1, 1, 0, 0), (−1, 0, 1, 0), (−1, 0, 0, 1), (−1, 1, 1, 1),

(2,−1,−1,−1)
}

,

dP3:
{

(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1,−1, 0, 0), (1, 0,−1, 0),

(1, 0, 0,−1), (−1, 0, 0, 0)
}

,

dP5:
{

(1, 1, 0, 0), (1,−1, 0, 1), (−1, 1,−1, 0), (−1,−1, 1, 0),

(−1,−1, 0, 1)
}

.
(4.6)

The Hodge numbers of the three models are, respectively, (h1,1, h1,2) =
(2, 92), (3, 81), (3, 63).

The local extremal transitions can be lifted to transitions between com-
pact Calabi–Yau three-folds as follows. The one-parameter families Yµ are
given by the following equations

(UZ1 + V Z2Z3 − µW )W 2 +
∑

(a,b,c)′

UaV bW cfabc(Zi) = 0,

(UZ1Z4 + V Z2Z3 − µW )W 2 +
∑

(a,b,c)′

UaV bW cfabc(Zi) = 0,

(UZ1Z2 + V Z3Z4 − µW )W 2 +
∑

(a,b,c)′

UaV bW cfabc(Zi) = 0,

(4.7)

where the (a, b, c)′ denote all the allowed triples (a, b, c) which do not appear
in the first three terms in each equation. The coefficients of the polynomials
fabc(Zi) are fixed at some generic values so that we obtain one-parameter
families parameterized by µ. These hypersurfaces are smooth for µ = 0 and
develop isolated nodal singularities at µ = 0. The singular points are again
given by equation (4.3), except that they have to be regarded as points on
the compact toric four-fold Z. These singularities can be simultaneously
resolved by performing a blow-up of Z along the section U = V = 0. Let ˜Z
denote the resulting toric four-fold. The strict transform ˜Y ⊂ ˜Z is a crepant
resolution of Y0 with exceptional locus given by isolated (−1,−1) curves Ci,
i = 1, . . . , n.

The blow-up of the ambient toric variety can be described torically by
adding an extra vertex to the dual toric polyhedron ∇Y . One then obtains
the following toric data for the dual polyhedron of the small resolution ˜Y

dP2: V
˜Y

= VY ∪ {(−2, 1, 1, 1)},

dP3: V
˜Y

= VY ∪ {(1, 0, 0, 0)},

dP5: V
˜Y

= VY ∪ {(−1,−1, 0, 0)}.

(4.8)
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The package PALP [37] proved to be very useful in analyzing the above
extremal transitions between the smooth three-folds Y and ˜Y . Moreover, the
Hodge numbers of ˜Y are, respectively, (h1,1, h1,2) = (3, 91), (4, 80), (4, 60)
for the three cases. In the following sections, we will develop in detail a
computational approach to open string topological amplitudes on the three-
folds Y . Although we will work out the details only for the second model
presented above, it is clear that the other models can be treated along the
same lines. Moreover, these techniques seem to be valid for all extremal
transitions in which the singular points are fixed under the generic torus
action on Z.

5 Local transitions and formal Chern–Simons expansion

Following the program outlined in Section 3, here we review the open string
localization techniques for local transitions developed in refs. [15, 16]. The
main goal of this review is to clarify the interplay between torus action and
framing in Chern–Simons theory. We will find that the proper framework for
open string amplitudes is a formal extension of the Chern–Simons expansion
which treats the framing as a formal variable. This new idea will allow
us to formulate general rules for the correspondence between toric weights
and framing encompassing all cases known so far [5, 15, 16]. Moreover, as
discussed in Section 6, the same rules play a crucial role for open string
amplitudes on compact manifolds. Let us start with the first local model
described in the previous section, namely the local dP2 model. The deformed
hypersurface Xµ is given by the equation

UZ1 + V Z2Z3 = µ (5.1)

in the toric variety W specified in equation (4.1), and the singular points
at µ = 0 are P1 = {Z1 = Z2 = U = V = 0} and P2 = {Z1 = Z3 = U = V =
0}. The geometry of this model has been thoroughly analyzed in ref. [16],
so we will keep the details to a minimum. The main point is that there
are two Lagrangian spheres L1 and L2 on Xµ in the same homology class
[L1] = [L2]. Each cycle can be described as an intersection of Xµ with two
real hypersurfaces in W given by the following equations

L1: UZ2Z2 − WZ1 = 0, V Z2
2Z2 − WZ3 = 0,

L2: UZ3Z3 − WZ1 = 0, V Z2
3Z3 − WZ2 = 0.

(5.2)

Writing these equations in suitable local coordinates centered at the points
P1, P2 ∈ W, one can check that the local geometry is indeed isomorphic to
a local deformation of a conifold singularity. Moreover, it has been shown
in ref. [16] that one can choose a symplectic Kähler structure on W so that
L1 and L2 are Lagrangian.
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The open string topological A-model considered in ref. [16] is defined by
wrapping N1 and N2 topological branes on L1 and L2. As explained there,
and also in Section 3 of this paper, a crucial step in the computation of
the free energy is summing up the instanton corrections to Chern–Simons
theory. This can be done by localization with respect to the following toric
action

Z1 Z2 Z3 U V W
S1 λ1 λ2 0 −λ1 −λ2 0 . (5.3)

Note that this action preserves both the hypersurface Xµ and the spheres
L1 and L2. We have to sum over open string maps which are invariant
under the induced toric action on the moduli space. As usual in localization
computations, the image of all such maps consists of a collection of invariant
holomorphic Riemann surfaces embedded in Xµ. In closed string situations,
these would have to be closed Riemann surfaces, or equivalently algebraic
curves on Xµ. Since we are doing an open string computation, we will have
a collection of invariant bordered Riemann surfaces with boundary compo-
nents embedded in L1 and L2. According to the analysis of Diaconescu
et al. [16], there are only three such invariant surfaces—two discs and a
cylinder—which can be described as follows.

Let Xµ be the (relative) projective closure of Xµ in the compact toric
variety Z. The defining equation of Xµ is

UZ1 + V Z2Z3 = µW. (5.4)

One can check that Xµ is a toric Fano three-fold which contains Xµ as the
complement of the divisor at infinity D∞ = Xµ ∩ {W = 0}. The bordered
Riemann surfaces are obtained by intersecting the spheres L1 and L2 with
three invariant curves on Xµ given by

C ′
1: V = Z2 = 0, UZ1 = µW,

C ′
2: V = Z3 = 0, UZ1 = µW,

C ′
3: U = Z1 = 0, V Z2Z3 = µW.

(5.5)

We have the following intersections L1 ∩ C ′
1 = Γ′

1, L2 ∩ C ′
2 = Γ′

2, L1 ∩ C ′
3 =

Ξ′
1 and L2 ∩ C ′

3 = Ξ′
2, where Γ′

1 and Ξ′
1 and, respectively, Γ′

2 and Ξ′
2 are

algebraic knots in L1 and L2 forming Hopf links with linking number +1.
Γ′

1 divides C ′
1 into two invariant discs D′

1 and D′′
1 and Γ′

2 divides C ′
2 into

two other invariant discs D′
2 and D′′

2 . Similarly, Ξ′
1 and Ξ′

2 divide C ′
3 into

two discs D′′
3 and D′′

4 and a holomorphic annulus A as in figure 2.

Note that the discs D′
1 and D′

2 have a common origin at Q = {Z2 = Z3 =
V = 0, UZ1 = µW}. The origins of all other discs are points on the divisor
at infinity D∞.
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Figure 2: Primitive open string instantons on X.

A careful argument based on homology constraints [16] shows that only
D′

1, D
′
2 and A contribute to the open string amplitudes in the local case.

The other discs do not play any role for the local computation, but they will
enter the computation of open string amplitudes for the compact model. In
order to write down a general formula for the instanton corrections, let us
denote the holonomy variables associated to the four knots Γ′

1, Γ
′
2, Ξ

′
1 and

Ξ′
2 by V ′

1 , V
′
2 , U

′
1 and U ′

2, respectively. The instanton series has the form

Finst(gs, t
′
1, t

′
2, tc, U

′
1, U

′
2, V

′
1 , V

′
2)

= F
(1)
inst(gs, tc, U

′
1, U

′
2) + F

(2)
inst(gs, t

′
1, t

′
2, V

′
1 , V

′
2), (5.6)

where

F
(1)
inst(gs, tc, U

′
1, U

′
2) =

∞
∑

g=0

∞
∑

h1,h2=0

∞
∑

d=0

∑

mi≥0,nj≥0

ih1+h2g2g−2+h1+h2
s

× Cg,h1,h2(d|mi, nj) e−dtc

h1
∏

i=1

Tr U ′mi
1

h2
∏

j=1

Tr U
′nj

2 ,

(5.7)
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F
(2)
inst(gs, t

′
1, t

′
2, V

′
1 , V

′
2) =

∞
∑

g=0

∞
∑

h1,h2=0

∞
∑

d1,d2=0

∑

mi≥0,nj≥0

ih1+h2g2g−2+h1+h2
s

× Fg,h1,h2(d1, d2|mi, nj) e−d1t′1−d2t′2

×
h1
∏

i=1

Tr V ′mi
1

h2
∏

j=1

Tr V
′nj

2 . (5.8)

The first represents the contribution of multicovers of the cylinder A and
the second term represents the contribution of invariant maps with image
contained in the union D′

1 ∪ D′
2. The parameters t′1, t

′
2 and tc represent open

string Kähler moduli. At the classical level, they should equal the symplectic
areas of D′

1, D
′
2, A which are equal since all these surfaces are homologically

equivalent. However, it is understood by now that these parameters can
receive quantum corrections due to degenerate instantons, which can be
in principle different for the three surfaces. The rest of the notation is
standard: d, d1 and d2 denote the degrees of a given map with respect to the
three fixed surfaces A, D′

1 and D′
2 and (mi, nj) denote the winding numbers

of the boundary components about the invariant knots in the target space.

The coefficients Cg,h1,h2(d|mi, nj) and Fg,h1,h2(d1, d2|mi, nj) can be deter-
mined by localization computations for open string morphisms. This com-
putation has been done in great detail in ref. [16], and we will not repeat it
here. For our purposes, it suffices to recall the results for genus zero maps
of total degree smaller or equal than 3. We will rewrite all the formulae
obtained in ref. [16], in terms of the ratio of toric weights z = λ2/λ1.

Let us start with multicovers of the two discs. Since we do not make a
particular choice of toric weights, we will have nonzero corrections corre-
sponding to surfaces with one, two and three boundary components. We
have the following expressions.

Degree 1:
F0,1,0(1, 0|1) = F0,0,1(0, 1|1) = 1. (5.9)

Degree 2:

F0,1,0(2, 0|2) =
2z + 1

4
,

F0,0,1(0, 2|2) =
1 − z

4(1 + z)
,

F0,2,0(2, 0|1, 1) = −z(1 + z)
4

, (5.10)

F0,0,2(0, 2|1, 1) =
z

4(1 + z)2
,

F0,1,1(1, 1|1, 1) = −1.
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Degree 3:

F0,1,0(3, 0|3) =
(3z + 1)(3z + 2)

18
,

F0,0,1(0, 3|3) =
(1 − 2z)(2 − z)

18(1 + z)2
,

F0,1,1(2, 1|2, 1) = −z,

F0,1,1(1, 2|1, 2) =
z

1 + z
,

F0,2,1(2, 1|1, 1, 1) =
z2

2
,

F0,1,2(1, 2|1, 1, 1) =
z2

2(1 + z)2
, (5.11)

F0,2,0(3, 0|2, 1) = −z(z + 1)(2z + 1)
3

,

F0,0,2(0, 3|2, 1) =
z(1 − z)
3(1 + z)3

,

F0,3,0(3, 0|1, 1, 1) =
z2(1 + z)2

6
,

F0,0,3(0, 3|1, 1, 1) =
z2

6(1 + z)4
.

The multicover contributions of the cylinder are independent of toric weights.
In fact, one has a very simple formula of the form

C0,1,1(d|d, d) =
(−1)d

d
(5.12)

for multicovers of degree d and all other terms being zero. The alternating
sign in this formula needs some explanation. A common problem with open
string localization computations is that the moduli spaces of open string
maps, and the obstruction bundles do not have a canonical complex struc-
ture as in the closed string case. Instead, one has only a complex structure
up to conjugation. This gives rise to a sign ambiguity in the open string
amplitudes noticed first time in refs. [25, 33]. In the absence of a rigorous
framework for these computations, this ambiguity cannot be resolved from
first principles. Since the present open string model has a closed string dual,
a practical solution to this problem is to fix the sign so that the final results
agree with the closed string amplitudes. This is not a satisfactory solution,
but it seems to be the only one available at the moment. The choice made
here is different from the one made in ref. [16], where the sign was taken
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to be +1 for all d. It will be clear shortly that equation (5.12) is a more
natural choice in this context.

The next step is to perform the Chern–Simons functional integral taking
into account the instanton corrections (5.9)–(5.12). At this stage, we need to
make a choice of framing for the knots Γ′

1, Γ
′
2, Ξ

′
1 and Ξ′

2. The idea proposed
in ref. [16] is that this choice is related to a choice of toric weights, namely
to the value of z. Let us discuss some of the main points. Choose local coor-
dinates (x1, y1, u1, v1) centered at Z1 = Z2 = U = V = 0 and (x2, y2, u2, v2)
centered at Z1 = Z3 = U = V = 0. The local equations of the three-fold Xµ

in these patches are

x1u1 + y1v1 = µ, x2u2 + y2v2 = µ, (5.13)

and the spheres L1 and L2 are described by the real sections

L1: u1 = x1, v1 = y1, L2: u2 = x2, v2 = y2. (5.14)

The knots Γ′
1, Ξ

′
1 ⊂ L1 are cut by the equations y1 = v1 = 0 and, respec-

tively, x1 = u1 = 0 on L1. In order to specify a framing of Γ′
1 and Ξ′

1 we
have to specify sections of the normal bundles NΓ′

1/L1 and NΞ′
1/L1 , respec-

tively. Let us parameterize the knots by the angular variables θx1 and θy1

corresponding to the complex coordinates x1 and y1, respectively. Then we
can write down the normal sections in the form

Γ′
1: (y1, v1) =

(

µ1/2 eip1θx1 , µ1/2 e−ip1θx1

)

,

Ξ′
1: (x1, u1) =

(

µ1/2 eiq1θy1 , µ1/2 e−iq1θy1

)

,
(5.15)

where (p1, q1) determine the framing of the two knots.4 We can write down
analogous formulae for the pair (Γ′

2, Ξ
′
2) of knots in L2

Γ′
2: (y2, v2) =

(

µ1/2 eip2θx2 , µ1/2 e−ip2θx2

)

,

Ξ′
2: (x2, u2) =

(

µ1/2 eiq2θy2 , µ1/2 e−iq2θy2

)

.
(5.16)

The relation between the framings (p1, q1), (p2, q2) and the toric weights
follows by imposing the condition that equations (5.15) and (5.16) be pre-
served by the torus action, as first proposed in ref. [33]. This yields the

4There is a subtlety here pointed out in ref. [16]. Namely, specifying a single section
of a principal S1 bundle over S1 does not determine an integer number. One needs to
specify in fact a pair of sections in order to obtain integral data. In the present case, there
is a canonical choice for a reference section since we have explicitly constructed (Γ′

1, Ξ′
1)

as algebraic knots. This choice determines the framing to be (p1, q1).
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following relations

λy1 = p1λx1 , λx1 = q1λy1 ,

λy2 = p2λx2 , λx2 = q2λy2 ,
(5.17)

where the (λx1 , . . . , λy2) denote the weights of the torus action on the local
coordinates, which can be easily expressed in terms of (λ1, λ2). This is a
very constrained system of equations, since (p1, . . . , q2) have to be integers
in order for the solution to make sense within the framework of standard
Chern–Simons theory. In fact, it is not hard to show that there are no
nontrivial solutions satisfying all these conditions. The solution proposed in
ref. [16] was to impose these conditions only for the knots Γ′

1 and Γ′
2, i.e.,

the boundary components of the two discs D′
1 and D′

2. Then, the framings
(q1, q2) of (Ξ′

1, Ξ
′
2) were determined by more indirect arguments to be (0, 0).

Furthermore, imposing the equivariance conditions for the sections of NΓ′
1/L1

and NΓ′
2/L2 leaves us with only two sensible solutions

p1 = p2 = 2 ⇒ z = 0,

p1 = p2 = 0 ⇒ z = 1.
(5.18)

The first solution was shown to be a sensible choice in ref. [16], although
there were some unclear aspects of the duality map. We will shortly come
back to this point.

Here we would like to propose a different solution to this problem which
involves far less obscure choices. The main idea is to relax the condition that
the framings (p1, q1, p2, q2) be integral. Instead, our proposal is to treat them
as formal variables which can in particular take fractional values. Although
this idea seems to be at odds with standard Chern–Simons theory, we will
show below that it makes perfect sense provided one treats the vacuum
expectation values of Wilson loops as formal power series expansion in the
framing variables. Following this idea, we can easily solve all equivariance
conditions (5.17)

p1 = z + 2, q1 =
1

z + 2
, p2 =

z + 2
z + 1

, q2 =
z + 1
z + 2

, (5.19)

where z is left undetermined. This fixes the framing of all knots in the
problem with no ambiguities. At the same time, the instanton corrections
(5.9)–(5.11) also depend on the variable z. The next step is to perform the
Chern–Simons computations treating z as a formal variable and expanding
all knot and link invariants in powers of z. The truly remarkable aspect of
this procedure is that the final result turns out to be independent of z, as
it is usually the case with closed string localization computations! Below
we will perform the computations for genus zero amplitudes up to degree 3,
finding very strong evidence for this conjecture.
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For concreteness, let us collect the instanton corrections (5.9)–(5.12) in a
single formula

Finst =
iq′

1
gs

Tr V ′
1 +

iq′
2

gs
Tr V ′

2 − qcTr U ′
1 Tr U ′

2 +
iq′2

1
gs

2z + 1
4

Tr V ′2
1

+
iq′2

2
gs

(1 − z)
4(1 + z)

Tr V ′2
2 + q′2

1
z(1 + z)

4
(Tr V ′

1)
2 − q′2

2
z

4(1 + z)2
(Tr V ′

2)
2

+ q′
1q

′
2Tr V ′

1 Tr V ′
2 +

1
2
q2
c Tr U ′2

1 Tr U ′2
2

+
iq′3

1
gs

(3z + 1)(3z + 2)
18

Tr V ′3
1 +

iq′3
2

gs

(1 − 2z)(2 − z)
18(1 + z)2

Tr V ′3
2

+ q′2
1 q′

2z Tr V ′2
1 Tr V ′

2 − q′
1q

′2
2

z

1 + z
Tr V ′

1 Tr V ′2
2

+ q′3
1

z(z + 1)(2z + 1)
3

Tr V ′2
1 Tr V ′

1 − q′3
2

z(1 − z)
3(1 + z)3

Tr V ′2
2 Tr V ′

2

− igsq
′2
1 q′

2
z2

2
(Tr V ′

1)
2Tr V ′

2 − igsq
′
1q

′2
2

z2

2(1 + z)2
Tr V ′

1(Tr V ′
2)

2

− igsq
′3
1

z2(1 + z)2

6
(Tr V ′

1)
3 − igsq

′3
2

z2

6(1 + z)4
(Tr V ′

2)
3

− 1
3
q3
c Tr U ′3

1 Tr U ′3
2 . (5.20)

In this formula, q′
1 = e−t′1 , q′

2 = e−t′2 and qc = e−tc denote the instanton
factors associated to the three primitive open string instantons.

The free energy of the topological open string is given by the following
formula

Fop(gs, q
′
1, q

′
2, qc, λ1, λ2) = FCS

1 (λ1, gs) + FCS
2 (λ2, gs) + ln

〈

eFinst
〉

(5.21)

where λ1 and λ2 are the ‘t Hooft couplings of the two Chern–Simons theories,
which are related to the string coupling by λ1,2 = N1,2gs. The first two terms
in the right-hand side of this equation represent the contributions of the two
Chern–Simons sectors while the third term represents the expectation value
of the instanton corrections. In the following, we will concentrate on the last
term. As mentioned above, our goal is to show that the resulting expression
for the free energy agrees with the closed string expansion of the local dP2
model. In particular, it should be independent of z. Similar computations
have been performed in ref. [16], so we will not repeat all the details here.
The important point in the present approach is that all knot invariants
occurring in the process have to be expanded as formal power series of the
framing variables.
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Let us explain the algorithm for a general link L with c components Rα

and framings pα, α = 1, . . . , c. The framing dependence of the expectation
value 〈WRα(L)〉 is of the form

〈WRα(L)〉(p1,...,pc) = e(igs/2)
∑c

α=1 κRαpα e(iλ/2)
∑c

α=1 lαpα〈WRα(L)〉(0,...,0),
(5.22)

where lα is the total number of boxes in the Young tableau of Rα, and κRα

is a group-theoretic quantity defined as follows. Let v = 1, . . . , r label the
rows of the Young tableau of a representation R and lv denote the length of
the vth row. Then we have [47]

κR = l +
r
∑

v=1

(l2v − 2vlv), (5.23)

where l =
∑r

v=1 lv is the total number of boxes. In the process of evaluating
equation (5.21) we will encounter trace products of the form

∏

i Tr V ni ,
where V is any of the holonomy variables V ′

1 , V
′
2 , U

′
1 and U ′

2. Such products
have to be written as linear combinations of the form

∑

R TrR V in order
to evaluate the Chern–Simons vacuum expectation values. A general rule
in all such cases is that the number of boxes in the Young diagram of any
representation R in this sum equals the total degree d =

∑

i ni of the open
string map. All the resulting terms will be weighted by qd, where q = q′

1, q
′
2

or qc is the appropriate instanton factor. This means that we will always
obtain combinations of the form

(

q ei(λ/2)p
)d in the final expression for the

free energy (where p is the framing of the appropriate knot). Therefore, we
can simplify the computation by absorbing all the prefactors e(iλ/2)

∑c
α=1 lαpα

in a redefinition of the instanton factors. Since these factors are independent
of gs and do not play any role in the expansion, we will call them trivial
framing factors. With this redefinition understood, we can use the following
expression for the link invariants in the Chern–Simons expansion

〈WRα(L)〉′
(p1,...,pc) = e(igs/2)

∑c
α=1 κRαpα〈WRα(L)〉(0,...,0). (5.24)

As explained above, all the expectation values must be written as power
series in the framing variables, which appear in the exponential prefactor
of equation (5.23) multiplying the string coupling gs. Since we want to
obtain the result as a power series in gs, the most efficient way to pro-
ceed is to expand all expectation values equation (5.23) in gs. Given the
particular form of the framing dependence, the resulting expressions will
also be series expansions in pα. The expectation values in canonical fram-
ing 〈WRα(L)〉(0,...,0) can be written as rational functions of the variables
y = eiλ/2, x = eigs/2. Therefore, the expansion is straightforward, although
somewhat tedious. Without giving more details here, let us record the final
answer for this computation. We will write down only the genus zero contri-
bution, i.e., the coefficient of g−2

s in the final expression for the free energy,
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truncated to terms up to degree three5

F (0)
op (gs, q

′
1, q

′
2, qc, λ1, λ2)

= y2
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1 +
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(
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(
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. (5.25)

A first observation is that the final answer does not depend on z, as promised
above. Moreover, it is not hard to show that the above formula has the
correct integrality properties of a genus zero closed string expansion. In
order to compare with the Gromov–Witten expansion of the local dP2 model,
we have to rewrite equation (5.25) in terms of closed string variables using

5There is a subtlety here. The instanton sum (5.20) contains only terms of genus zero.
It is not a priori clear that higher genus corrections do not affect the final answer for the
genus zero free energy. In principle, this could happen since the Chern–Simons expansion
generates various powers of gs, which mix with the instanton corrections in a nontrivial
way. However, in all known examples of generic transitions (present cases included), it is
a posteriori clear that such effects are absent. This pattern will be confirmed for compact
hypersurfaces in Section 7.
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the duality map

y2
1 = q̃1, y2

2 = q̃2, q′
1y1 = q′

2y2 = qcy1y2 = q̃. (5.26)

Here q̃1, q̃2 and q̃ are the instanton factors associated to curve classes e1, e2
and h on dP2. Then we obtain the following expression

F (0)
cl (q̃1, q̃2, q̃) = q̃1 + q̃2 + q̃(q̃−1
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27
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2 + 3) + · · ·
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+ · · · ,

(5.27)

which is precisely the genus zero Gromov–Witten expansion of dP2.

This result has been obtained previously in ref. [16]. The novelty here
is that we have a much better understanding of the choices made in the
process. In particular, we have found and tested a general framework for
these computations which does not require fixing the toric weights. This
formalism is closer in spirit to closed string localization computations on
moduli spaces of stable maps. Similar techniques can be applied at higher
genus, although the localization computations for arbitrary z become more
involved. We will not try to pursue these computations here, but there is
little doubt that the results will be in perfect agreement with the closed
string expansion.

If one is interested in computational power, a particular choice of z may
be very useful. For example, we could choose z = 0 as in ref. [16], in which
case we would obtain a closed form for the instanton corrections

Finst =
∞
∑

d=1

iq′d
1

2d sin (dgs/2)
Tr V ′d

1 +
iq′d

2
2d sin (dgs/2)

Tr V ′d
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+
∞
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d
Tr V ′d

1 Tr V ′d
2 +

∞
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(−1)dqd
c

d
Tr U ′d

1 Tr U ′d
2 . (5.28)

The framings of the four knots can be read off from equation (5.19) as
p1 = p2 = 2, q1 = q2 = 1

2 . Therefore, we still have fractional framing for the
knots Ξ′

1 and Ξ′
2. Using this expression, one can perform the Chern–Simons

integration as in ref. [16] obtaining agreement with the closed string dual
for all genera up to degree 4.
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It is interesting to note that this system of Chern–Simons theories is
different from the one found in ref. [16], although they give rise to identical
expressions for the free energy. This is a very interesting phenomenon whose
origin can be traced to a special symmetry of the Gromov–Witten expansion
of the local dP2 model. We will sketch an argument here, leaving a more
thorough investigation of this aspect for future work. Let us recall the
expression for the instanton corrections found in ref. [16]

Finst =
∞
∑

d=1

iq′d
1

2 d sin (dgs/2)
Tr V ′d

1 +
iq′d

2
2d sin (dgs/2)
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2

+ 2
∞
∑
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q′
1q
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2

d
Tr V ′d

1 Tr V ′d
2 −

∞
∑

d=1

qd
c

d
Tr U ′d

1 Tr U ′d
2 (5.29)

with framings p1 = p2 = 2 and q1 = q2 = 0. Note that the contributions of
multicovers of the annulus A and the pinched cylinder D′

1 ∩ D′
2 have different

coefficients, and also q1 and q2 have different values.

In order to understand the meaning of these different choices, it suffices
to consider the terms of order 2 in the free energy. More precisely, let us
look at the degree 2 multicover contributions of the annulus A. Formula
(5.28) yields

1
8
q2
c

(

y2
1y

2
2 − y2

1y
−2
2 − y−2

1 y2
2 − y−2

1 y−2
2
)

− q2
c

(

y2
1y

2
2 − y2

1 − y2
2 + 1

)

. (5.30)

The first term in this formula represents degree 2 multicovers of the degree 1
contribution. The second term represents a nontrivial contribution to the
degree 2 Gromov–Witten invariants. If we perform a similar computation
starting with equation (5.29), we find that only the multicover contributions
are present. Hence in this case, the degree 2 annulus corrections do not
generate genuine new contributions to the Gromov–Witten invariants of
degree 2. Instead, the corrections corresponding to the pinched cylinder
D′

1 ∩ D′
2 have to be counted twice in order to compensate for the missing

terms. Of course, it is highly nontrivial that this correction yields the correct
results at higher degree as well.

From the closed string point of view, this phenomenon has the following
interpretation. Let us consider, e.g., the localization computations for the
Gromov–Witten invariant of the local dP2 model in curve class 2h–e1–e2.
Adopting a Kontsevich graph representation [36] of the fixed loci, we obtain
the graphs in figure 3.

These graphs can be easily evaluated according to standard deformation
theory techniques. For z = 0, one finds that graphs I, II and III contribute
−1 each while the sum of the graphs IV, V and VI is also −1. The total
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I IIIII

IV V VI

Figure 3: Closed string Kontsevich graphs in the class 2h–e1–e2.

is −4 as expected. Now, we can establish a correspondence between these
contributions and various terms of degree 2 in the open string free energy
(equation (5.25)). The contributions of I, II and III correspond to the terms
−q′

1q
′
2y

−1
1 y−1

2 ,−q′
1qcy

−1
1 and, respectively, −q′

2qcy
−1
2 . The first term arises in

the Chern–Simons evaluation of the correction q′
1q

′
2 Tr V1 Tr V2 associated

to the pinched cylinder. The next two terms appear in the Chern–Simons
evaluation of the connected expectation values
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1qc
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〈
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Tr U ′
1
〉 (5.31)

of the links (Γ′
1, Ξ

′
1), and, respectively, (Γ′

2, Ξ
′
2). Note that there is a clear

geometric interpretation of this correspondence since each invariant primi-
tive open string instanton corresponds to an invariant primitive closed string
instanton. According to this rule, we would expect the sum over the last
three graphs to be associated to a term in the Chern–Simons expansion of
the following annulus instanton corrections

q2
c

2

[
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Tr U ′2
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〉 〈

Tr U ′2
2
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+
1
2
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(Tr U ′
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2〉− 1
2
〈

Tr U ′
1
〉2 〈Tr U ′

2
〉2
]

.

(5.32)
This is indeed true if we use the instanton series (5.28). The relevant term is
−q2

c in equation (5.30). However, if we use equation (5.29) there is no such
term in the expression of the free energy. Instead, we find that the term
−q′

1q
′
2y

−1
1 y−1

2 appears with coefficient 2, so that the final answer in closed
string variables is the same. Moreover, similar phenomena can be noticed for
higher degree terms in the expansion. This suggests a nontrivial symmetry
in the graph representation of Gromov–Witten invariants of the local dP2
model. Perhaps this symmetry can be better understood if we regard the
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Figure 4: F0 and dP2 discriminant loci.

dP2 as the one-point blow-up of a Hirzebruch F0 surface. Obviously, the
Kontsevich graphs of the local F0 model are symmetric with respect to
reflections with respect to the diagonal (see figure 4).

The above observation suggests that this symmetry is somehow present in
a hidden form in the graph expansion of the local dP2 model, at least for a
specific choice of weights. These issues deserve a more detailed investigation
since they are very likely related to localization of the integral invariants of
Gopakumar and Vafa.

To summarize this discussion, we conclude that both systems of Chern–
Simons theories represent sensible large N dual models for the local dP2
geometry. However, the model specified by equation (5.28) is preferable
from a conceptual point of view since it was obtained as a result of a rather
general set of rules. Essentially, the only ambiguities left in this construction
are related to the sign of various open string corrections, which cannot be
fixed rigorously at the present stage. To illustrate the general character of
this approach, let us briefly consider other local transitions.

5.1 Local dP3 and dP5 transitions

The remaining local models can be analyzed along the same lines. Given
the deformed hypersurface equations

dP3: UZ1Z4 + V Z2Z3 = µ,

dP5: UZ1Z2 + V Z3Z4 = µ,
(5.33)

we can find again the vanishing cycles for each model. For local dP3, we
find two spheres L1 and L2 cut by the following real equations on Xµ

L1: UZ2Z2Z4 = Z1, V Z2Z4Z4 = Z3,

L2: UZ1Z1Z3 = Z2, V Z1Z3Z3 = Z4.
(5.34)
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In terms of local coordinates (x1, y1, u1, v1), (x2, y2, u2, v2) centered around
the points P1, P2, the equations of L1, L2 take the canonical form

L1: x1u1 + y1v1 = µ, u1 = x1, v1 = y1,

L2: x2u2 + y2v2 = µ, u2 = x2, v2 = y2.
(5.35)

For local dP5, we obtain similarly four spheres L1, L2, L3, L4, whose local
equations are identical to (5.35) when written in terms of coordinates cen-
tered at P1, P2, P3, P4. The resulting geometry is represented in figure 5
below.

In order to proceed with the localization computations, we have to define
suitable torus actions on the deformed hypersurfaces Xµ, which preserve
the vanishing cycles. It turns out that we can choose the same form of the
action for both local models

Z1 Z2 Z3 Z4 U V
S1 λ1 0 λ3 0 −λ1 −λ3.

(5.36)

The next step is to identify the invariant open string Riemann surfaces in
Xµ with boundary components contained in the 3-spheres. This can be done
using the same techniques as in the previous section. Namely, we consider
projective completions Xµ, and identify all S1-invariant curves thereof which
intersect the vanishing cycles. This results in a collection of invariant discs
and annuli embedded in Xµ. For the local transitions we have to keep only
those surfaces which do not have points at infinity, as before. We will not
repeat all the details of this algorithm, since it is very similar to the local dP2
example. Moreover, we will study the compact version of the dP3 model in
great detail in the next section. The resulting configurations are represented
below.

Note that in the dP3 case, the open string maps localize on a collection
of four discs D′

3, D
′
4, D

′′
3 and D′′

4 so that D′
3 and D′′

4 end on L1, whereas D′′
3

and D′
4 end on L2. D′

3 and D′
4 have common origin Q3 = {Z1 = Z4 = U = 0,

V Z2Z3 = µ} and D′′
3 and D′′

4 have common origin Q4 = {Z2 = Z3 = V = 0,
UZ1Z4 = µ}. We will denote the boundary components of D′

3, D
′
4, D

′′
3 and

D′′
4 by Γ′

3, Γ
′
4, Γ

′′
3 and Γ′′

4, respectively. A short local computation shows
that (Γ′

3, Γ
′′
4) and, respectively, (Γ′′

3, Γ
′
4) form algebraic Hopf links in L1

and L2 with linking number l = +1. We will also denote the holonomy
variables associated to the four link components by V ′

3 , V
′
4 , V

′′
3 and V ′′

4 . In
the dP5 example, the open string maps localize on a collection of four annuli
A13, A14, A23 and A24. The boundary components of each pair of annuli
ending on a given sphere form again an algebraic Hopf link with linking
number +1. Let us denote by V ′

1 , . . . , V
′′
4 the holonomy variables associated

to the eight boundary components, as shown in figure 5.
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Figure 5: Primitive open string instantons on X.

Next, we have to compute the instanton corrections Finst for these con-
figurations. To keep the exposition simple, for the dP3 model we will only
write down genus zero corrections up to degree 2. For the dP5 model, we
can write down a closed form expression for all instanton corrections. The
results of localization computations can be written as rational functions of
z = λ3/λ1. We find the following expansions.

Local dP3:

Finst = − iq′
3

gs
Tr V ′

3 − iq′′
3

gs
Tr V ′′

3 − iq′
4

gs
Tr V ′

4 − iq′′
4

gs
Tr V ′′

4 +
iq′2

3
gs

2 − z

4z
Tr V ′2

3

+
iq′′2

3
gs

2 − z

4z
Tr V ′′2

3

+
iq′2

4
qs

2z − 1
4

Tr V ′2
4 +

iq′′2
4
qs

2z − 1
4

Tr V ′′2
4

− q′2
3

z − 1
4z2 (Tr V ′

3)
2 − q′′2

3
z − 1
4z2 (Tr V ′′

3 )2

− q′2
4

z(1 − z)
4

(Tr V ′
4)

2 − q′′2
4

z(1 − z)
4

(Tr V ′′
4 )2

+ q′
3q

′
4 Tr V ′

3 Tr V ′
4 + q′′

3q′′
4 Tr V ′′

3 Tr V ′′
4 , (5.37)

where q′
3, q

′′
3 , q′

4 and q′′
4 are open string Kähler moduli associated to the four

discs.
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Local dP5:

Finst =
∞
∑

n=1

(

qn
13
n

Tr V ′n
1 Tr V ′n

3 +
qn
14
n

Tr V ′′n
1 Tr V ′′n

4

+
qn
23
n

Tr V ′′n
2 Tr V ′′n

3 +
qn
24
n

Tr V ′n
2 Tr V ′n

4

)

, (5.38)

where q13, q14, q23 and q24 are open string Kähler moduli associated to the
four cylinders. Note that in both expressions we made particular choices
of signs for the open string computations. For the dP3 model, the correct
choice involves an alternating sign in the multicover contributions of a single
disc. Since all open string invariant maps can be reduced to discs and closed
string components using a normalization sequence, this choice fixes the sign
ambiguity for all localization contributions. Note also that the choice made
for the annulus corrections in the dP5 example is different from the corre-
sponding choice in the dP2 case. We will discuss a potential explanation
for this discrepancy after fixing the framing, which is the last piece of the
puzzle.

In order to determine the framing for all boundary components, we will
proceed by analogy with local dP2 example. Namely, we will impose
S1-invariance for all sections to the normal bundles to the knots. After a
straightforward computation, we find the following values

dP3: p′
3 = p′′

3 =
1
z
, p′

4 = p′′
4 = z

dP5: p′
1 = p′

2 =
1
z
, p′

3 = p′
4 = −1

z
,

p′′
1 = p′′

2 = z, p′′
3 = p′′

4 = −z.

(5.39)

As discussed before, the framings are to be thought of as formal variables. In
order to perform the Chern–Simons functional integral, we have to expand
all expectation values of knots and links as formal power series in gs. Follow-
ing the same steps as in the dP2 example, one can show that the resulting
free energy agrees with the closed string expansions of the local dP3 and
dP5 models.6 In particular, the final answer is independent of z, without
making any further choices.

Several remarks are in order here. The dP5 example has been consid-
ered before in ref. [5]. The dual Chern–Simons theory found there is

6There are some subtleties with the closed string instanton expansion for dP5 related
to the fact that the toric model is not generic.
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formally identical to equation (5.38), except that the framing is integer-
valued. However, it was also shown there that for annulus corrections, the
result depends only on the effective framing, which is defined as the sum of
the framing assigned to the two boundary components. In our case, we have
to treat the framing as a formal variable, but the conclusion turns out to be
the same, i.e., the final result depends only on the effective framing, which
is an integer in all cases. For the annulus in the dP2 model, the effective
framing is q1 + q2 = 1, while for all annuli in the dP5 model, the effective
framing is zero. These values are in agreement with the general prescrip-
tion given in ref. [5], except that our algorithm is different and it applies
equally well to invariant discs. In the later case, treating the framing as
a formal variable is crucial since the corrections themselves have a similar
dependence.

The effective framing of a cylinder has a simple geometric dependence,
which can be described as follows. Let us note that each invariant open string
surface on Xµ corresponds to an invariant rational curve on the resolution ˜X.
Using this correspondence, we can find a correlation between the effective
framing of a cylinder and the normal bundle of the associated curve on ˜X.
Suppose an annulus A corresponds to a curve C, and let S ⊂ X denote
the image of the zero section. The normal bundle NC/X is an extension
of i∗CNS/X by NC/S which is typically split. It can be easily seen that the
effective framing of A is given by deg(i∗CNS/X). Presumably, this rule is
consistent with the general prescription of ref. [5], which is formulated in a
different language.

Finally, there is one more aspect that deserves a few comments. We noted
above that the sign ambiguity was given different resolutions in the dP2 and,
respectively, dP5 models. Note that a concise rule encompassing all choices
is to take the sign of a term of degree n to be (−1)np where p is the effective
framing of the cylinder. This rule is very likely connected to a subtle sign
problem found in a similar context in ref. [47]. There it was found that the
holonomy variable for a knot had to be redefined by a sign (−1)p in order
to obtain the desired integrality properties. We believe that these problems
are related, but we will not discuss this aspect further here.

In conclusion, the main idea developed in this section is that the proper
framework for open string amplitudes is a formal extension of Chern–Simons
theory which allows the framing to become fractional. Within this formal-
ism, we have found a natural relation between framing and the torus weights
which can be uniformly applied to local transitions. In the next sections,
we will extend the analysis of this section to transitions between compact
Calabi–Yau manifolds.
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6 Localization of open string morphisms
to compact three-folds

After this rather long digression, we return to open string amplitudes on
compact Calabi–Yau target spaces. We outlined the main principles of the
approach in Section 3. In this section, we will carry out this program in
detail for one of the models introduced in Section 4. For concreteness, we
focus on the compact transition based on the local dP3 model. The other
models admit a similar treatment.

To fix ideas, let us recall the toric data of the ambient toric variety Z
Z1 Z2 Z3 Z4 U V W

C
∗ 1 1 0 0 −1 −1 0

C
∗ 0 0 1 1 −1 −1 0

C
∗ 0 0 0 0 1 1 1

(6.1)

and the generic Calabi–Yau hypersurface
∑

a,b,c≥0,a+b+c=3

UaV bW cfabc(Zi) = 0. (6.2)

Here fabc(Zi) are bihomogeneous polynomials of (Z1, Z2) and, respectively,
(Z3, Z4) of bidegree (a + b, a + b). We consider a one-parameter family of
hypersurfaces Yµ defined by

(UZ1Z4 + V Z2Z3 − µW )W 2 +
∑

(a,b,c)′

UaV bW cfabc(Zi) = 0, (6.3)

where the triples (a, b, c)′ take all allowed values except (1, 0, 2), (0, 1, 2),
(0, 0, 3). The coefficients of fabc(Zi) are fixed to some generic values. One
can check that equation (6.3) is smooth for generic µ �= 0 and develops two
ordinary double points

P1: Z1 = Z3 = U = V = 0, P2: Z2 = Z4 = U = V = 0 (6.4)

at µ = 0. As discussed in Section 4, the two conifold singularities can be
simultaneously resolved by performing a toric blow-up of Z along the section
U = V = 0. The strict transform ˜Y is a crepant resolution of Y0. The
exceptional locus consists of two homologous curves C1 and C2.

The smooth fiber Yµ, µ �= 0 contains two vanishing cycles L1 and L2 in the
same homology class [L1] = [L2] ∈ H3(Yµ, Z). The topological open string
theory considered in this section is defined by wrapping N1 and N2 A-branes
on L1 and L2. Then the charge constraint (2.4) yields N1 + N2 = 0. This
means the D-brane configuration should be interpreted as a brane/anti-
brane system. We have N = N1 branes on L1 and N anti-branes on L2,
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which can be thought of as N branes wrapping the cycle L2 with opposite
orientation. This is a particular case of our general discussion in which v = 1
and r = 1, hence the lattice of vanishing cycles has rank 1. Formula (2.7)
for the genus zero topological open string free energy takes the form

F (0)
(Y,L);op(gs, tα, λ) = F (0)

Y ;cl(gs, tα) +
∑

β∈H2(Z,L)

F
(0)
β (gs, λ)e−〈J,β〉, (6.5)

where λ = Ngs and tα, α = 1, 2, 3, are the Kähler moduli of Y . In order to
compute the coefficients F

(0)
β (gs, λ), we have to follow the steps outlined in

Section 3.

Consider the following G = (S1)7 action on Z

(eiφ1 , . . . , eiφ7) · (Z1, Z2, . . . , W )−→(eiφ1Z1, eiφ2Z2, . . . , eiφ7W ). (6.6)

As explained in Section 3, one of the main problems is that the cycles L1 and
L2 are not preserved by the torus action (6.6). The solution is to specialize
the triple (Y, L1, L2) to a degenerate hypersurface Y and two cycles L1
and L2 which are preserved by a certain subtorus. In general, it is not
clear that such a limit in the complex structure moduli space always exists.
However, for all the models discussed in Section 4, a suitable degeneration
immediately presents itself. Recall that in the local context of the previous
section, we had to take a projective completion Xµ of Xµ, which was a toric
Fano three-fold. For the dP3 example, the equation of Xµ is

UZ1Z4 + V Z2Z3 = µW. (6.7)

Moreover, Xµ admits a torus action which preserves the vanishing cycles.
The degeneration we are looking for is the reducible nonreduced hypersurface
Y defined by

(UZ1Z4 + V Z2Z3 − µW )W 2 = 0. (6.8)

Y has two components Y 1 = Xµ and Y 2 defined by W 2 = 0. The cycles L1

and L2 are the vanishing cycles defined in equation (5.34), which are obvi-
ously embedded in Y . By construction, the triple (Y ,L1, L2) is preserved
by a subtorus (S1)2 ⊂ G. We will give more details on the local geometry
below.

Note that similar degenerations can be found without difficulty for the
other two models discussed in Section 4. Moreover, we believe that a suitable
limit in the complex structure moduli space can be found for all transitions
for which the singular points are fixed by the torus action. This is in fact
the main restriction on the present approach to open string amplitudes on
Calabi–Yau hypersurfaces.
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6.1 Local geometry on Z

A thorough analysis of open string maps in the present context requires a
systematic description of the local geometry. Recall that the toric four-fold
Z is isomorphic to the projective bundle P(O ⊕ O(−1,−1) ⊕ O(−1,−1))
over F0, and U, V and W are relative projective coordinates. The torus
action (6.6) leaves the sections S = {U = V = 0}, S′ = {U = W = 0}, S′′ =
{V = W = 0} and the fibers F1 = {Z1 = Z3 = 0}, F2 = {Z2 = Z4 = 0}, F3 =
{Z1 = Z4 = 0}, F4 = {Z2 = Z3 = 0} invariant. Note that S, S′ and S′′ are
isomorphic to F0 and F1, . . . , F4 are isomorphic to P

2. The fixed locus of the
G-action on Z consists of 12 isolated points Pk, P

′
k, P

′′
k , k = 1, . . . , 4, which

are intersection points of S, S′, S′′ and Fk. More precisely, Pk = Fk ∩ S, P ′
k =

Fk ∩ S′, P ′′
k = Fk ∩ S′′, k = 1, . . . , 4. For a given k, the points (Pk, P

′
k, P

′′
k )

determine three invariant curves PkP
′
k, PkP

′′
k and P ′

kP
′′
k . The fixed points

lying in a given section, say S, determine four invariant curves P1P3, P1P4,
P2P3 and P2P4. The same is true for the sections S′ and S′′. Overall,
we obtain a toric skeleton consisting of 24 invariant curves intersecting at
12 fixed points as in figure 6.

For later applications, we have introduced a color coding for the homology
classes of curves on Z as follows. We choose a basis in H2(Z, Z) consisting of
the Mori cone generators (h1, h2, h3). Using equation (A.1) in Appendix A,
one can check that (h1, h2, h3) are represented by the following curves on Z

h1: Z1 = Z3 = U = 0,

h2: Z1 = U = V = 0,

h3: Z3 = U = V = 0.

(6.9)

P P

P

P"

P’

3

P’

P"

P’

1

1

3

2

2

2

4

3
P"

P"4

P’4

P1

Figure 6: Four-fold skeleton for the generic toric action. The color coding is
the following: green = h1, blue = h2, red = h3, cyan = h1 + h2, magenta =
h1 + h3.
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By construction, h1 is the hyperplane class of a P
2 fiber of Z over F0

while h2 and h3 are (1, 0) and, respectively, (0, 1) classes of the zero sec-
tion U = V = 0. For convenience, we will call h1 vertical class, and h2 and
h3 horizontal classes. In figure 6, green line segments represent curves in
the class h1, blue line segments represent curves in the class h2 and red line
segments represent curves in the class h3. We also have curves in mixed
classes h1 + h2 represented by cyan line segments and h1 + h3 represented
by magenta line segments. This color coding will also be used later for
invariant discs in Z.

This skeleton plays an important part in the localization computation of
closed string Gromov–Witten invariants. In the following, we will explain
that it also plays an important role in the localization computation of open
string instanton corrections.

In order to analyze deformations of open string maps we will also need
local coordinates (xk, yk, uk, vk), (x′

k, y
′
k, u

′
k, v

′
k), (x′′

k, y
′′
k , u′′

k, v
′′
k), k = 1, . . . , 4,

centered at each fixed point. We will adopt the following conventions:
(xk, yk), (x′

k, y
′
k) and (x′′

k, y
′′
k) are horizontal coordinates along the sections S,

S′ and S′′ while (uk, vk), (u′
k, v

′
k) and (u′′

k, v
′′
k) are vertical coordinates along

the fibers Fk, k = 1, . . . , 4. For concreteness, let us write down the affine
open subsets and local coordinates centered around P1, P

′
1 and P ′′

1 .

U1 = {Z2 �= 0, Z4 �= 0, W �= 0},

U ′
1 = {Z2 �= 0, Z4 �= 0, V �= 0},

U ′′
1 = {Z2 �= 0, Z4 �= 0, U �= 0},

(6.10)

U1: x1 =
Z1

Z2
, y1 =

Z3

Z4
, u1 =

UZ2Z4

W
, v1 =

V Z2Z4

W
,

U ′
1: x′

1 =
Z1

Z2
, y′

1 =
Z3

Z4
, u′

1 =
U

V
, v′

1 =
W

V Z2Z4
, (6.11)

U ′′
1 : x′′

1 =
Z1

Z2
, y′′

1 =
Z3

Z4
, u′′

1 =
V

U
, v′′

1 =
W

UZ2Z4
.

The other coordinates can be obtained by permuting the indices. The local
equations of Y 1 in these coordinate patches are

U1: x1u1 + y1v1 = µ,

U ′
1: x′

1u
′
1 + y′

1 = µv′
1,

U ′′
1 : x′′

1 + y′′
1v′

1 = µu′′
1.

(6.12)

The cycles L1 and L2 on Y 1 are given by the following local equations

L1: u1 = x1, v1 = y1,

L2: u2 = x2, v2 = y2.
(6.13)
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Given these local equations, one can deform the symplectic Kähler structure
on Y 1 so that the cycles L1 and L2 are Lagrangian. The details are explained
in Appendix A of ref. [16]. Therefore, the topological open string A-model
is well defined, at least in this limit.

One can check that the triple (Y ,L1, L2) is preserved by a subtorus
(S1)2 ⊂ G. In fact for localization computations, it suffices to consider a
one-parameter subgroup T ⊂ G defined by

(eiφ1 , eiφ2 , . . . , eiφ7) = (eiλ1φ, 1, eiλ3φ, 1, e−iλ1φ, e−iλ3φ, 1). (6.14)

In the next section, we will determine the structure of T -invariant open
string morphisms with boundary conditions on L1 ∪ L2.

6.2 The fixed loci

At a first look, one would like to sum over open string maps to the singular
hypersurface Y . This is, however, a very difficult task, since the degeneration
considered here is not semistable. Therefore, we do not have a good control
of intersection theory even on the moduli space of stable closed string maps.
Instead, it is more convenient to consider open string maps to the ambient
toric variety Z, as explained in Section 3. In order to obtain numerical
invariants, we will have to develop an open string version of the convex
obstruction bundle.

First note that the fixed point set of the T -action on Z consists of eight
isolated fixed points P1, P2, P

′
1, P

′
2, P

′′
1 , . . . , P ′′

4 and two fixed curves P3P ′
3

and P ′
4P

′′
4 . The presence of fixed curves in the target space will cause some

complications at a certain point in our analysis.

Now, let f : Σ0,h−→Z be a genus zero open string stable morphism which
sends the boundary ∂Σ0,h to the cycle L = L1 ∪ L2. We also fix the homol-
ogy class β = f∗[Σ0,h] ∈ H2(Z, Z) � H2(Z, L; Z). The torus action (6.14)
induces an action on the moduli space of such maps M0,h(Z, L; β). Our goal
is to determine the structure of fixed loci for this action. By T -invariance,
the domain of such a map must be either (i) an annulus or (ii) a nodal bor-
dered Riemann surface Σ0,h = Σ0 ∪ ∆1 ∪ · · · ∪ ∆h, where Σ0 is a prestable
curve of genus 0 and ∆1, . . . ,∆h are h discs attached to Σ0 by identifying
the origins with the marked points (p1, . . . , ph). The data (Σ0, p1, . . . , ph)
defines a prestable marked curve of genus 0.



70 DUILIU-EMANUEL DIACONESCU AND BOGDAN FLOREA

Obviously, the first case can be realized only if h = 2. Then the image of
f should be an invariant holomorphic annulus embedded in Z with bound-
ary on L. We will show in the following that there are no such annuli in the
present example. In the second case, the morphism f should map Σ0 to a
curve in Z which is preserved by the subtorus action (6.14). The disc com-
ponents should be mapped to invariant discs embedded in Z with boundary
on L. One must also impose a stability constraint on (f,Σ0,h) which makes
the automorphism group finite.

It is clear that we should start by identifying the invariant annuli and
discs in Z with boundary on L. Using an argument similar to ref. [15,
Section 5], one can show that any invariant embedding f : Σ0,h−→Z can be
extended to an invariant embedding f : Σ−→Z, where Σ is a closed Riemann
surface without boundary. Moreover, since we are only interested in discs
or annuli, Σ will be a smooth rational curve. Therefore, we have to find all
T -invariant smooth rational curves on Z which intersect the cycles L1 and
L2 along orbits of the torus action. Since L1 and L2 are cycles in Y 1, it
follows that any such curve must be in fact contained in Y 1. This reduces
the analysis to the local case considered briefly in the previous section. Let
us give more details here.

As Y 1 is a toric Fano three-fold, this is a simple question which has been
addressed in similar situations in refs. [15, 16]. In the present case, we find
the curves

C ′
13: Z1 = U = 0, V Z2Z3 = µW,

C ′′
14: Z3 = V = 0, UZ1Z4 = µW,

C ′′
23: Z2 = V = 0, UZ1Z4 = µW,

C ′
24: Z4 = U = 0, V Z2Z3 = µW,

(6.15)

which intersect the cycles L1 and L2 along invariant circles as follows

Γ′
1 ≡ C ′

13 ∩ L1 = {x1 = u1 = 0, |y1| = |v1| = µ1/2}, C ′
13 ∩ L2 = ∅,

Γ′′
1 ≡ C ′′

14 ∩ L1 = {|x1| = |u1| = µ1/2, y1 = v1 = 0}, C ′′
14 ∩ L2 = ∅,

C ′′
23 ∩ L1 = ∅, Γ′′

2 ≡ C ′′
23 ∩ L2 = {|x2| = |u2| = µ1/2, y2 = v2 = 0},

C ′
24 ∩ L1 = ∅, Γ′

2 ≡ C ′
24 ∩ L2 = {x2 = u2 = 0, |y2| = |v2| = µ1/2}.

(6.16)

Note that all circles are algebraic knots with orientation induced by the
canonical orientation of Z. Moreover, Γ1 and Γ′

1, respectively, Γ′
2 and Γ′′

2
form Hopf links in L1 and L2 with linking number +1. For later use, let us
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introduce the holonomy variables

V ′
i = P exp

∫

Γ′
i

A(i), i = 1, 2, V ′′
i = P exp

∫

Γ′′
i

A(i), i = 1, 2, (6.17)

where A(1) and A(2) are the Chern–Simons gauge fields on L1 and L2. Note
that the curves C ′

13, . . . , C
′
24 are invariant under the T -action on Z, but not

under the generic G-action.

Each knot divides one of the curves (equation (6.15)) into two invariant
discs embedded in Z with boundary on L1 or L2 as follows

C ′
13 = D′

1 ∪Γ′
1
D′

3,

C ′′
14 = D′′

1 ∪Γ′′
1

D′′
4 ,

C ′′
23 = D′′

2 ∪Γ′′
2

D′′
3 ,

C ′
24 = D′

2 ∪Γ′
2
D′

4.

(6.18)

Note that D′
1, D′′

1 , D′
2 and D′′

2 intersect the toric skeleton at the fixed points
P ′

1, P
′′
1 and P ′

2, P
′′
2 lying on the divisor at infinity ζ∞. The discs D′

3, D
′′
3 and,

respectively, D′
4 and D′′

4 have common origins Q3 and Q4 given by

D′
3 ∩ D′

4 = {Z1 = Z4 = U = 0, V Z2Z3 = µW} = Q3,

D′′
3 ∩ D′′

4 = {Z2 = Z3 = V = 0, UZ1Z4 = µW} = Q4.
(6.19)

Note that Q3 and Q4 lie on the G-invariant lines P3P ′
3 and P4P ′

4, but they
are not fixed points of the G-action. The resulting configuration of invariant
discs is represented in figure 7.

For future reference, let us determine the relative homology classes of the
discs (equation (6.18)). As noticed earlier, we have H2(Z, L; Z) � H2(Z, Z),
which is generated by the curve classes h1, h2 and h3 specified in equation
(6.9). The homology classes of the discs can be determined by deforming to
the singular hypersurface Y0 as discussed in Section 5 of [15]. In the present
case, we obtain

[D′
1] = [D′′

1 ] = [D′
2] = [D′′

2 ] = h1, [D′
3] = [D′′

3 ] = h2, [D′
4] = [D′′

4 ] = h3.
(6.20)

Adopting the same terminology, we will call the discs D′
1, D

′′
1 , D′

2 and D′′
2

vertical discs and D′
3, D

′′
3 , D′

4 and D′′
4 horizontal discs. The homology classes

are represented in figure 7 using the color coding introduced below (6.9).

From equation (6.20), it follows that the symplectic areas of the discs are
given at the classical level7 by the closed string Kähler parameters t1, t2 and
t3. If open string quantum effects are taken into account, the symplectic area

7What is meant here is classical level from the open string point of view. The param-
eters t1, t2 and t3 are flat coordinates on the closed string Kähler moduli space.
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Figure 7: Discs in Z invariant under the restricted torus action. The points
Q3 and Q4 have been represented by yellow dots in order to distinguish them
from the fixed points under the generic torus action. The color coding for
discs is the same as for curve classes: green = h1, blue = h2, red = h3.

is shifted by a multiple of λ/2 (recall that λ is the ‘t Hooft coupling constant)
as discussed in ref. [15]. Therefore, we introduce the corrected Kähler
parameters τ ′

i , τ ′′
i , i = 1, . . . , 4, for the eight discs. The relation between τ ′

i ,
τ ′′
i and the closed string Kähler parameters on the small resolution ˜Y is part

of the prescriptions of the duality map, and will be discussed later.

Having determined all invariant discs in Z, we can now understand the
structure of a more general invariant map f : Σ0,h−→Z.

As stated above, the domain Σ0,h is the union of a prestable curve Σ0 of
genus zero with h marked points p1, . . . , ph and h discs ∆1, . . . ,∆h attached
to Σ0 at p1, . . . , ph. Each disc ∆a is mapped da: 1 to one of the eight discs
found above. The closed curve Σ0 is mapped to a genus zero curve in Z



LARGE N DUALITY FOR COMPACT CALABI–YAU 3-FOLDS 73

which is preserved by the restricted torus action (6.14). As we are working
with the restricted torus action, there may be nontrivial families of invariant
curves on Z. Therefore, the connected components of the fixed loci may have
a complicated structure, as discussed in more detail below.

We are interested in computing all open string instanton corrections for a
fixed relative homology class β ∈ H2(Y, L; Z) � H2(Z, L; Z). Therefore, we
have to sum over all fixed loci in M0,h(Z, L; β) which are compatible with
the given homology class β. In order to make this sum more explicit, first
we have to classify the fixed loci according to the images of the discs ∆a in
Z. There are eight invariant discs D′

1, . . . , D
′
4, D

′′
1 , . . . , D′′

4 embedded in Z,
and in principle any such disc can be the image of any component ∆a of the
domain. Let us introduce the set of labels I = {1′, . . . , 4′, 1′′, . . . , 4′′} for the
invariant discs in Z. The notation is self-explanatory. Specifying the image
of each component ∆a is equivalent to giving a function ρ: {1, . . . , h}−→I,
and we have to sum over all such functions. The instanton series can be
written schematically as follows

∞
∑

h=1

∑

(da,β)

∑

ρ

Ch,ρ(da, β) e−〈J,β−
∑h

a=1 da[Dρ(a)]〉 e−
∑h

a=1 daτρ(a)

h
∏

a=1

Tr V da

ρ(a).

(6.21)
Let us explain this formula in detail. The coefficients Ch,ρ(da, β) repre-
sent the sum over all fixed loci with given (h, ρ) and (da, β). We have
suppressed the genus subscript g since we will exclusively consider genus
zero maps. The exponential factors e−〈J,β−

∑h
a=1 da[Dρ(a)]〉 e−

∑h
a=1 daτρ(a) rep-

resent the instanton factors associated to a given map. Naively, these
factors should be written as e−〈J,β〉, where the pairing in the exponent is
well defined since J |L = 0 by the Lagrangian condition. We have modi-
fied this expression in order to allow for a possible shift in the open string
Kähler moduli τρ(a) with respect to the closed string parameters. This shift
can be interpreted as an open string quantum effect and plays an impor-
tant role in the duality map [15]. Therefore, one has to write down sep-
arate expressions for the instanton factors of the open and closed string
components, obtaining the expression in equation (6.21). The area of the
closed component −〈J, β −

∑h
a=1 da[Dρ(a)]〉 must be expressed in terms of

the closed string parameters t1, t2 and t3. Finally, Vρ(a) represents the holo-
nomy variable associated to the knot Γρ(a) = ∂Dρ(a), which is defined as
follows. If ρ(a) ∈ {1′, 1′′, 2′, 2′′}, say ρ(a) = 1′, Vρ(a) = V ′

1 is the holonomy
of the U(N) connection about the knot Γ′

1 defined in equation (6.17). Note
that the canonical orientation on D′

1 induces an orientation on Γ′
1 using the

inner normal convention. The holonomy V ′
1 is computed with respect to

this particular orientation. This convention is valid for all vertical discs
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D′
1, D

′′
1 , D′

2 and D′′
2 . If ρ(a) ∈ {3′, 3′′, 4′, 4′′}, Vρ(a) = V −1

i−2, i = 3, 4, since
the canonical orientation on D′

3, . . . , D
′′
4 induces the opposite orientation

on Γ′
1, . . . ,Γ

′′
2 (see figure 7).

Our main problem is to evaluate the coefficients Ch,ρ(da, β) using open
string localization techniques. This requires a thorough understanding of the
deformation complex and the obstruction bundle for open string morphisms.

6.3 Deformation complex and obstruction bundle
for open strings morphisms

To begin with, let us consider the definition of the instanton coefficients
Ch,ρ(da, β) in more detail. We stress that the following considerations are
only heuristic arguments based on unproven assumptions. Essentially, we
will assume that certain known results in the theory of closed string Gromov–
Witten invariants [9, 10, 20, 44] carry over to the open string case. As in refs.
[25, 33], these arguments will eventually lead us to a precise computational
definition of the enumerative invariants Ch,ρ(da, β). The first assumption is
that the moduli space (or, more precisely, the moduli stack) M0,h(Z, L; β)
exists in the appropriate category, and can be endowed with a perfect
obstruction complex. Then one would have a virtual class [M0,h(Z, L; β)]
(of positive dimension, since Z is not a Calabi–Yau three-fold). Follow-
ing the closed string approach, we would also need an obstruction bun-
dle V on M0,h(Z, L; β) of rank equal to the dimension of [M0,h(Z, L; β)].
Assuming these elements can be constructed, we could define ‘open string
Gromov–Witten invariants’ by pairing the Euler class e(V) with the virtual
fundamental class. However, even in such an ideal situation the coefficients
Ch,ρ(da, β) could not be simply defined by this pairing for reasons explained
in Section 3. In order to write down the couplings to Chern–Simons theory,
one needs in fact an equivariant refinement, as discussed below.

The holonomy V about the boundary Γ of an open string surface is
defined with respect to an arbitrary (not necessarily flat) U(N) connec-
tion. Therefore, it depends continuously on the position of the boundary
Γ in the cycle L. In formula (6.21), the Vi are holonomy variables about
the boundaries Γi of the T -invariant discs in Z. Hence the torus action on
(Z, L) enters in a crucial way. This suggests that the appropriate refine-
ment of open string Gromov–Witten invariants should be considered in an
equivariant setting. The torus action on (Z, L) induces a torus action on
M0,h(Z, L; β). Under the above assumptions, we can define equivariant open
string Gromov–Witten invariants by working with the equivariant virtual
cycle [M0,h(Z, L; β)]T and equivariant obstruction bundle VT .
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Following this line of argument, one would finally have a localization
formula for the equivariant invariants of the form

∫

[M0,h(Z,L;β)]T
eT (V) =

∑

Ξ

∫

[Ξ]T

eT (VΞ)
eT (NΞ)

. (6.22)

In this formula, we sum over all fixed loci Ξ in the moduli space of open string
maps. eT (VΞ) is the equivariant Euler class of the obstruction bundle VT

restricted to Ξ and eT (NΞ) is the equivariant Euler class of the virtual normal
bundle N(Ξ) to Ξ in M0,h(Z, L; β). [Ξ]T is the equivariant fundamental
class of the fixed locus Ξ. The intersection pairing in the left-hand side
of equation (6.22) takes values in the cohomology ring RT = H∗(BT ) �
H∗(BS1). The local contributions in the right-hand side take values in the
associated fraction field KT .

Now, the fixed loci Ξ can be classified according to the degrees da and the
map ρ as discussed in the paragraph below equation (6.21). The refinement
we are looking for is defined by summing only over those fixed loci Ξ with
given (ρ, da). We will refer to these loci as fixed loci of type (ρ, da). The
maps therein will also be referred to as open string maps of type (ρ, da). We
define

Ch,ρ(da, β) =
∑

Ξ

∫

[Ξ]T

eT (VΞ)
eT (NΞ)

, (6.23)

where the sum is restricted to fixed loci of type (ρ, da). Clearly, the result-
ing invariants Ch,ρ(da, β) take values in KT . The instanton coefficients
Ch,ρ(da, β) are defined as the nonequivariant limit of Ch,ρ(da, β) [12]. More
precisely, let ipt: {pt}−→BT be the embedding of a point in BT . Then we
define Ch,ρ(da, β) by

Ch,ρ(da, β) = i∗ptCh,ρ(da, β) ∈ H∗(pt). (6.24)

If we identify H∗(pt) with Q, we can regard Ch,ρ(da, β) as a rational function
of the toric weights λ1 and λ3. In the following, it is very convenient to regard
λ1 and λ3 as formal variables. This is our heuristic formula for the instanton
coefficients. Besides lacking a rigorous formulation, this expression raises
another question. If Ch,ρ(da, β) are to be thought of as rational functions of
formal variables, what is the physical meaning of the resulting open string
expansion? This question has been given an elegant answer in the previous
section in the context of local transitions. There we found that the framing
in Chern–Simons theory should also be treated as a formal variable, which
is related to the toric weights. The final result was shown to be a series with
numerical coefficients, as expected. We will show in the next section that
similar considerations can be applied to compact models as well, although
the final picture will be more subtle in that case.
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At this point, we still have to set the formula (6.23) on firmer grounds.
The main idea is to rewrite the open string formula (6.22) in terms of
equivariant integrals on moduli spaces of closed string maps with marked
points. This approach has been successfully employed in a local context in
ref. [25]. The extension to compact three-folds will involve some additional
(sometimes delicate) steps. Although our arguments are mostly heuristic, we
will eventually obtain well-defined integrals on well-defined moduli spaces.
Following the strategy of refs. [25, 33], we proceed with the analysis of the
deformation-obstruction complex for open string morphisms.

In order to simplify the exposition, let us first consider the case h = 1, i.e.,
the domain Σ0,1 has a single disc component ∆. After a detailed treatment
of this case, we will consider the generalization to h > 1. The disc ∆ can
be mapped to any of the discs D′

i and D′′
i , hence we should consider all

these cases separately. In fact, it suffices to consider only a vertical disc, say
f(∆) = D′

1, and a horizontal one, f(∆) = D′
3, since all other cases can be

treated by analogy.

6.3.1 Vertical discs

Let us start with f(∆) = D′
1. We have an invariant map f : Σ0,1−→Z, where

Σ0,1 = Σ0 ∪p ∆ and Σ0 is a prestable curve of genus zero with a marked point
p. We denote by f0, f∆ the restrictions of f to Σ0 and, respectively, ∆, and
by f∂ the restriction of f to the boundary ∂Σ = ∂∆. Moreover, from now
on we will suppress the subscript (0, 1) on Σ. In local coordinates, f∆ is
given by

x′
1 = u′

1 = 0, y′
1 = v′

1 = t′d
′
1 , (6.25)

where t′ is a local coordinate on ∆. Note that there is an induced torus
action on ∆ with weight λt′ = λv′

1
/d′

1.

The map f represents a point in some component Ξ of the fixed locus.
Following our main strategy, we would like to identify Ξ with a component
Ξ0 of the fixed locus in a certain moduli space of stable closed string maps.
Note that the triple (∆, f∆, p) defines an isolated fixed point in the moduli
space of d′

1: 1 multicovers of the disc D′
1 with a marked point.

If Σ0 is empty, this is in fact an isolated fixed point in the moduli space of
open string maps M0,1(Z, L; d′

1h1), since [D′
1] = h1, as explained in the para-

graph containing equation (6.20). The associated coefficient C1,1′(d′
1, d

′
1h1)

is evaluated in Appendix B. We will shortly review some aspects of that
computation.
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If Σ0 is not empty, the triple (Σ0, f0, p) is a stable closed string map
to Z with a marked point subject to the constraint f(p) = P ′

1 ∈ Z. More-
over, the homology class of f0 is determined by β′ = β − d′

1h1 ∈ H2(Z, Z).
Therefore, (Σ0, f0, p) represents a fixed point in a closed subspace MP ′

1
of

the moduli space of stable closed string maps M0,1(Z, β′) defined by the
following commutative diagram

MP ′
1

jP ′
1��

π

��

M0,1(Z, β′)

ev

��
P ′

1

iP ′
1 �� Z

(6.26)

Note that the T -action on M0,1(Z, β′) induces a T -action on MP ′
1

since
P ′

1 is a fixed point on Z. In principle, (Σ0, f0, p) is not an isolated fixed
point, but it belongs to a component Ξ0 of the fixed locus of the induced
T -action on MP ′

1
. By construction, there is an obvious 1:1 map between

ψ: Ξ−→Ξ0 defined by (Σ, f)−→(Σ0, f0, p). This map is well defined and 1:1
since (∆, f∆, p) is an isolated fixed point. Now, the fixed locus Ξ0 is in fact
a closed subspace of the moduli space MP ′

1
(more precisely, it is a closed

algebraic substack) and is equipped with an induced virtual fundamental
class [Ξ0] = ι!Ξ0

[MP ′
1
]. Here ιΞ0 : Ξ0−→MP ′

1
denotes the embedding map

and ι!Ξ0
: A∗(MP ′

1
)−→A∗(Ξ0) denotes the associated Gysin map. The vir-

tual cycle [MP ′
1
] is induced by the base change diagram (6.26), [MP ′

1
] =

i!P ′
1
[M0,1(Z, β)]. All these considerations carry over to the equivariant setting.

As part of our assumptions, let us suppose there is a similar structure
on Ξ so that the map ψ described in the above paragraph becomes an
isomorphism. Then Ξ will also be endowed with a virtual cycle ψ![Ξ0],
where ψ! : A∗(Ξ0)−→A∗(Ξ) is the Gysin map. This is the first ingredient in
a rigorous formulation of the integral in equation (6.22). We still need to
make sense of the integrand.

To this end, we have to determine the virtual normal bundle NΞ using
the tangent-obstruction complex of (Σ, f), and to construct the obstruction
bundle V. First we have to introduce some notation. The restriction of the
holomorphic tangent bundle TZ to L1 admits a real subbundle TR defined
as the fixed locus of the local antiholomorphic involution (x1, y1, u1, v1)−→
(u1, v1, x1, y1). We denote by T the sheaf of sections of Riemann–Hilbert
bundle defined by the pair (f∗TZ , f∗

∂TR) on Σ. Note that T |Σ0 = f∗
0 TZ . We

will also denote by T∆ the restriction of T to ∆. The deformation complex
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for the map f is of the form

0−→Aut(Σ)−→H0(Σ, T )−→T
1−→Def(Σ)−→H1(Σ, T )−→T

2−→0 (6.27)

where T
1 and T

2 are the deformation and, respectively, obstruction spaces
of the map (Σ, f). Using a normalization exact sequence with respect to
the decomposition Σ = Σ0 ∪p ∆, one can split the terms in equation (6.27)
into open string and closed string parts, plus corrections due to the node
p. We will show below that the closed string part reduces to the standard
deformation complex for Ξ0. The open string part and the node correc-
tions become part of the data of an equivariant integral on Ξ0. In order
to completely specify the integrand, we also have to construct the obstruc-
tion bundle V. As outlined in Section 3, the fiber of the obstruction bundle
over a point (Σ, f) is given by the space of global holomorphic sections
of a Riemann–Hilbert bundle L = (f∗Λ4(TZ),R) on Σ. The real subbun-
dle R ⊂ f∗

∂ (Λ4(TZ))|L1
is defined as the fixed set of the local antiholomor-

phic involution (x1, y1, u1, v1)−→(u1, v1, x1, y1). VΞ can also be decomposed
in closed and, respectively, open string parts using a normalization exact
sequence. The terms in equation (6.27) and in the various normalization
sequences encountered in the process are not in general vector bundles over
the fixed loci because the fiber dimension may jump. Nevertheless, we will
formally manipulate such objects as if they were locally free following, e.g.,
the approach of ref. [36]. This approach yields correct results since it is
only the equivariant K-theory class of these objects which enters the com-
putations. Equivariant K-theory classes will be denoted by [ ]. We have to
distinguish two cases.

(i) If Σ0 is empty, there is no closed string part and Ξ is an isolated fixed
point. In this case, we will denote Ξ by Ξ∆ to avoid any confusion with
the general case. The deformation complex becomes

0−→Aut(∆)−→H0(∆, T )−→T
1−→0−→H1(∆, T )−→T

2−→0 (6.28)

since the domain ∆ has no deformations. The automorphism group is
generated by holomorphic vector fields of the form a∂t′ + bt′∂t′ , where
a ∈ C and b ∈ R. Therefore, in terms of T = S1 representations we have

Aut(∆) � (0)R ⊕ (−λt′). (6.29)

The cohomology groups H0(∆, T ) and H1(∆, T ) are computed in
Appendix B. We have H1(∆, T ) = 0, hence T

2 = 0 as well, and the com-
plex (6.28) reduces to

0−→Aut(∆)−→H0(∆, T )−→T
1−→0. (6.30)
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The remaining term H0(∆, T ) decomposes into representations of T as
follows

H0(∆, T ) �
d′
1

⊕

n=0

(

−λ1 +
n

d′
1
λ3

)

⊕
2d′

1
⊕

n=0

(

n − d′
1

d′
1

λ3

)

. (6.31)

Note that for n = d′
1 in the second sum we obtain a term of weight

zero (0)C containing the image of the fixed part (0)R of Aut(∆). It
follows from the exact sequence (6.30) that we obtain a term of weight
zero (0)R in the equivariant decomposition of T

1. The obstruction space
V∆ = H0(∆,L) is also computed in Appendix B, with the result

H0(∆,L) = (0)R ⊕
3d′

1
⊕

n=1

(

n

d′
1
λ3

)

. (6.32)

Note that this is a real vector space containing a fixed direct summand
(0)R. The local contribution of such a fixed point should be of the form

C1,1′(d′
1, d

′
1h1) =

∫

ptT

eT ([V∆] − [N∆]) , (6.33)

where N∆ is the virtual normal bundle to Ξ∆. A straightforward extrap-
olation of standard localization results would predict that N∆ is given by
the moving part of T

1. However, we have to be more careful here. Since
Ξ∆ is an isolated fixed point, we will define N∆ to be the tangent space
T

1, including the fixed real deformation (0)R noticed above. The obstruc-
tion space contains an identical fixed real summand, and the two terms
cancel off in the formula (6.33), leaving a well-defined nonzero answer.
This cancellation reflects the fact that the fixed infinitesimal deformation
is obstructed. The situation encountered here is a bit unusual compared
to standard localization computations for closed string maps, but we do
not see other sensible solution for the moment. This unusual behavior
is very likely related to the fact that the cycles L are not Lagrangian
middle dimensional cycles on Z. The solution proposed here should be
regarded as an experimental result, which will be backed up by numerical
computations in the next section. We leave a more conceptual treatment
for future work.8 Collecting the facts, this leaves us with the following

8Another point of view one could take is to consider open string maps to the singular
three-fold Y instead of Z. The problem is that the vertical discs intersect the singular
divisor D∞ on Y and it is not clear how to write down the deformation complex of such a
map. (Recall that Y contains nonreduced components.) This approach has been effectively
used for horizontal discs in the local case since they do not intersect the singular locus.
According to our calculations in Appendix B, for horizontal discs the two methods give
the same answer. This is an encouraging sign, although much more work remains to be
done.
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formula for d′
1 multicovers of D′

1

C1,1′(d′
1, d

′
1h1) =

(−1)d′
1

d
′d′

1+2
1

(3d′
1)!

(d′
1!)2

λ
d′
1+1

3
∏d′

1
n=0 (−λ1 + (n/d′

1)λ3)
. (6.34)

There is a subtle sign ambiguity in this expression reflecting the choice of
a complex structure on moduli space of open string maps, as explained
in Appendix B. In the absence of a more rigorous construction, the only
criterion for fixing the sign at present is agreement with the closed string
dual. This will be shown in the next section.

(ii) If Σ0 is not empty, we have to split [T1], [T2] and [VΞ] in open and closed
string parts using the exact sequences

0−→T −→f∗
0 TZ ⊕ T∆−→(f∗TZ)p−→0, (6.35)

0−→L−→f∗
0 Λ4(TZ) ⊕ L∆−→(f∗Λ4(TZ))p−→0. (6.36)

The associated long exact sequences read

0−→H0(Σ, T )−→H0(Σ0, f
∗
0 TZ) ⊕ H0(∆, T∆)−→(TZ)P ′

1

−→H1(Σ, T )−→H1(Σ, f∗
0 TZ) ⊕ H1(∆, T∆)−→0, (6.37)

0−→H0(Σ,L)−→H0(Σ0, f
∗
0 Λ4(TZ)) ⊕ H0(∆,L∆)−→Λ4(TZ)P ′

1

−→H1(Σ,L)−→H1(Σ0, f
∗
0 Λ4(TZ)) ⊕ H1(∆,L∆)−→0. (6.38)

We claim that H1(Σ0, f
∗
0 Λ4(TZ)) = 0. This follows from a similar nor-

malization sequence applied to the irreducible components of Σ0. The
pull-back f∗

0 Λ4(TZ) has nonnegative degree on each irreducible compo-
nent of Σ0 since Λ4(TZ) = O(−KZ) is negative on Z. Since all com-
ponents are rational, the claim follows easily from the associated long
exact sequence. With more effort, we can also show that H1(∆,L∆) = 0
(according to Appendix B), hence the last term of the exact sequence
(6.38) is trivial. The morphism H0(Σ0, f

∗
0 Λ4(TZ)) ⊕ H0(∆,L∆)

−→Λ4(TZ)P ′
1

is surjective since Σ0 has genus zero and Λ4(TZ) is negative
on Z. Therefore, we conclude that H1(Σ,L) = 0, i.e., the obstruction
bundle is convex, as promised before. The exact sequence (6.38) reduces
to the first three terms.

Moreover, note that Aut(Σ) decomposes as Aut(Σ0, p) ⊕ Aut(∆, p) in
automorphisms of Σ0, respectively, ∆ which preserve the point p. Def(Σ)
decomposes similarly as Def(Σ0, p) ⊕ TpΣ0 ⊗ Tp∆ in deformations of Σ0
leaving p fixed and deformations of the node. There are no deformations of
∆. Using the exact sequences (6.27), (6.37) and (6.38), we find the following
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relations in the equivariant K-theory of Ξ

[T1] − [T2] = [H0(Σ, T )] − [H1(Σ, T )] + [Def(Σ)] − [Aut(Σ)]

= [H0(∆, T∆)] − [Aut(∆)] + [∂t′ ] + [H0(Σ0, f
∗
0 TZ)]

− [H1(Σ0, f
∗
0 TZ)] + [Def(Σ0, p)] − [Aut(Σ0, p)]

− [(TZ)P ′
1
] + [TpΣ0 ⊗ Tp∆], (6.39)

and

[VΞ] = [H0(∆,L)] + [H0(Σ0, f
∗
0 Λ4(TZ))] − [Λ4(TZ)P ′

1
]. (6.40)

The combination [H0(∆, T∆)] − [Aut(∆)] is precisely the K-theory class of
the normal bundle N∆ to the fixed point (∆, f∆) defined at point (i) above.
In order to identify the remaining terms in equation (6.39), let us write down
the tangent-obstruction complex for the stable map (Σ0, f0, p) regarded as
a point in M0,1(Z, β′)

0−→Aut (Σ0, p)−→H0(Σ0, f
∗
0 TZ)−→T

1
0−→Def (Σ0, p)

−→H1(Σ0, f
∗
0 TZ)−→T

2
0−→0. (6.41)

Using the K-theory relations derived from equation (6.41), we can rewrite
equation (6.39) as follows

[T1] − [T2] = [N∆] + [∂t′ ] + [T1
0] − [T2

0] − [(TZ)P ′
1
] + [TpΣ0 ⊗ Tp∆]. (6.42)

The combination [T1
0] − [T2

0] − [(TZ)P ′
1
] represents the image in K-theory of

the deformation complex of (Σ0, f0, p) regarded as a point in MP ′
1
. This

follows from the construction of MP ′
1

as the subspace of M0,1(Z, β′) defined
by f0(p) = P ′

1. Therefore, the K-theory class of the virtual normal bundle
NΞ0 in MP ′

1
is given by the moving parts

[NΞ0 ] = [(T1
0)

m] − [(T2
0)

m] − [((TZ)P ′
1
)m]. (6.43)

We will define the class of the open string virtual normal bundle NΞ to be

[NΞ] = [N∆] + [(T1
0)

m] − [(T2
0)

m] − [((TZ)P ′
1
)m] + [(∂t′)m]

+ [(TpΣ0 ⊗ Tp∆)m]. (6.44)

Up to the first term, which has been explained above, this is just the mov-
ing part of equation (6.42), as expected. The fixed part of equation (6.42),
[(T1

0)
f ] − [(T2

0)
f ] − [((TZ)P ′

1
)f ], enters the construction of the induced vir-

tual cycle [Ξ0]T ∈ AT
∗ (Ξ0), [Ξ0]T = ι!Ξ0

[MP ′
1
]T [20]. This is consistent with

our earlier proposal [Ξ] = ψ![Ξ0] for the open string virtual cycle (see the
paragraph below equation (6.26)).

The K-theory class of the obstruction bundle splits similarly in an open
string part [V∆] which has been considered before, and a closed string part
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[H0(Σ0, f
∗
0 Λ4(TZ))]. The later is the K-theory class of the standard obstruc-

tion bundle over M0,1(Z, β′) restricted to Ξ0. Recall that the fiber of V0

over a point (Σ0, f0, p) is given precisely by H0(Σ0, f
∗
0 Λ4(TZ)).

We can now tie all loose ends together and write down a well-defined local
formula for the open string invariants C1,1′(d′

1, β)

C1,1′(d′
1, d

′
1h1)

(−λt′H)

∫

[Ξ0]T

1
eT (NΞ0)

eT ([V0
Ξ0

− Λ4(TZ)P ′
1
])

−λt′H − ψp
, (6.45)

where H is the generator of H∗(BT ). The factor (−λt′H) in the denomina-
tor represents the equivariant Euler class of [∂t′ ], ψp is the Mumford class
associated to the point p and Λ4(TZ)P ′

1
should be regarded as an equivari-

ant bundle over Ξ0. Summing over all fixed loci Ξ0, we obtain the following
expression

C1,1′(d′
1, β) =

C1,1′(d′
1, d

′
1h1)

(−λt′H)

∫

[MP ′
1
]T

eT ([j∗
P ′

1
(V0) − Λ4(TZ)P ′

1
])

−λt′H − ψp
, (6.46)

where Λ4(TZ)P ′
1

should be regarded as an equivariant bundle over MP ′
1
.

Although this formula is now well defined, it is also of little use for explicit
computations. The major problem is that the fixed loci Ξ0 can have a very
complicated structure, since the T action on Z is not generic. Ideally, we
would like to be able to compute the invariants (6.46) in terms of standard
Kontsevich graphs for closed string maps to Z. In order to do so, we have to
take one more step and rewrite the formula (6.46) in terms of a generic torus
action. Recall that T is a subgroup of the torus G = (S1)7 which acts on Z
and P ′

1 is a G-fixed point on Z. Then we have the following commutative
diagram

(MP ′
1
)T

S ��

��

(MP ′
1
)G

��
BT

s �� BG

(6.47)

Let (η1, . . . , η7) denote the generators of H∗(BG) defined by the characters
of G as explained in Chapter 9 of ref. [12]. Then we have

KG � Q (η1, . . . , η7) , KT � Q (λ1H, λ3H) . (6.48)
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The map s in the above diagram induces a pull-back map s∗: KG−→KT by
localization, which factorizes as

KG
s∗

��

π
��

KT

KG ⊗RG
(RG/J )

s

��������������
(6.49)

where J ⊂ RG is the ideal generated by (η2, η4, η1 + η5, η3 + η6, η7), and
s is defined by s(η1) = λ1H and s(η3) = λ3H. Using these relations, we
can write the class −λt′H − ψp = −(λ3/d′

1)H − ψp in equation (6.46) as
s∗(−η3/d′

1 − ψp). Moreover, the equivariant virtual class [MP ′
1
]T and the

obstruction bundle V0 are pulled back via S from (MP ′
1
)G (for the virtual

cycles, we have to use the Gysin map). Therefore, using the projection
formula, we can rewrite (6.46) in the form

C1,1′(d′
1, β) =

C1,1′(d′
1, d

′
1h1)

(−λt′H)
s∗

⎡

⎣

∫

[MP ′
1
]G

eG([j∗
P ′

1
(V0) − Λ4(TZ)P ′

1
])

−η3/d′
1 − ψp

⎤

⎦ .

(6.50)
We will explain how to perform explicit computations using this formula in
the next section. Here let us note that we can rewrite equation (6.50) in a
different form which is closer to the integrals written in ref. [25]

C1,1′(d′
1, β) =

C1,1′(d′
1, d

′
1h1)

(−λt′H)
s∗
[

1
eG(Λ4(TZ)P ′

1
)

×
∫

[M0,1(Z,β′)]G

eG(V0)ev∗
G(φP ′

1
)

−η3/d′
1 − ψp

]

, (6.51)

where evG: M0,1(Z, β′)G−→ZG is the equivariant evaluation map and φP ′
1

∈
H∗

G(Z) the equivariant Thom class of the fixed point P ′
1. The equivalence of

the two expressions follows from the commutative diagram (6.26) by a series
of formal manipulations based on the functorial properties of Chow groups
given, e.g., in ref. [46, Chapter V, Sections 5–8]. Let α = eG(V0)

−(η3/d′
1−ψp) ∈

A∗
G(M0,1(Z, β′)) and note that the equivariant integral in equation (6.50)

can be written as
∫

[MP ′
1
]G

eG([j∗
P ′

1
(V0) − Λ4(TZ)P ′

1
])

−η3/d′
1 − ψp

=
1

eG(Λ4(TZ)P ′
1
)
π∗j

∗
P ′

1
(α), (6.52)

where we use the notation of equation (6.26). Then, using the projection
formula, we have

π∗j
∗
P ′

1
(α) = i!P ′

1
ev∗

(

α ∩ [M0,1(Z, β′)]
)

. (6.53)
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All these manipulations are carried out in equivariant setting, but we sup-
pressed the subscript G for simplicity. If we denote by Π: Z−→pt the
projection onto a point, the equivariant integral in equation (6.51) can be
written as
∫

[M0,1(Z,β′)]G

eG(V0)ev∗
G(φP ′

1
)

−η3/d′
1 − ψp

= Π∗ev∗
(

α ∪ ev∗(φP ′
1
) ∩ [M0,1(Z, β′)]

)

.

(6.54)
Now we can use localization on ZG to rewrite the right-hand side of
equation (6.54) as

Π∗ev∗(α ∪ ev∗(φP ′
1
) ∩ [M0,1(Z, β′)])

=
∑

Pf

i!Pf
(φP ′

1
∩ ev∗(α ∪ ∩[M0,1(Z, β′)])) ∩ 1

eG((TZ)Pf )

=
∑

Pf

i∗Pf
(φP ′

1
)

eG((TZ)Pf )
∩ i!Pf

ev∗
(

α ∪ ∩[M0,1(Z, β′)]
)

, (6.55)

where the sum is over all fixed points Pf of the G action of Z. The equivariant
Thom classes of the fixed points satisfy orthogonality conditions of the form

i∗Pf
(φP ′

1
) =

{

eG((TZ)Pf ) if Pf = P ′
1,

0, if Pf �= P ′
1.

(6.56)

Therefore, equation (6.55) reduces to

Π∗ev∗(α ∪ ev∗(φP ′
1
) ∩ [M0,1(Z, β′)]) = i!P ′

1
ev∗

(

α ∪ ∩[M0,1(Z, β′)]
)

(6.57)

as claimed above.

6.3.2 Horizontal discs

Let us now consider horizontal discs, i.e., f∆ is an invariant d′
3: 1 cover of

D′
3. Most of the above considerations go through, but there is an important

difference, namely the origin Q3 of D′
3 is not a fixed point under the generic

G action. Instead, it is a degenerate T -fixed point lying on the fixed curve
P3P ′

3. The contribution of the isolated fixed point (∆, f∆) can be computed
along the same lines

C1,3′(d′
3, d

′
3h2) =

(−1)d′
3

d′
3
3−d′

3

∏d′
3−1

n=1 (λ1 − (n/d′
3)λ3)

λ
d′
3−1

3

. (6.58)

The overall sign is again ambiguous; the present choice should be regarded
as part of the prescriptions of the duality map. Formula (6.46) goes through
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essentially unchanged

C1,3′(d′
3, β) =

C1,3′(d′
3, d

′
3h2)

(−λtH)

∫

[MQ3 ]T

eT ([j∗
Q3

(V0) − Λ4(TZ)Q3 ])
−λtH − ψp

, (6.59)

where λt = λ3/d′
3 is the weight of the induced torus action on the domain.

Now we have to integrate against the virtual cycle of the moduli space MQ3

defined by the following diagram

MQ3

jQ3��

π

��

M0,1(Z, β′)

ev

��
Q3

iQ3 �� Z

(6.60)

and β′ = β − d′
3h2.

At this point, we encounter an extra complication, since Q3 is not invari-
ant under the generic torus action. Nevertheless, we would still like to
rewrite equation (6.58) in terms of a generic torus action in order to per-
form the computations efficiently. A key observation is that there exists
a T -equivariant automorphism h: Z−→Z mapping the G-fixed point P ′

3 =
{Z1 = Z4 = U = W = 0} to Q3. In terms of homogeneous coordinates, h is
given by

h: [Z1, Z2, Z3, Z4, U, V ]−→[Z1, Z2, Z3, Z4, U, V, W − µV2V3]. (6.61)

It is straightforward to check that equation (6.61) is compatible with the
(C∗)3 action (6.1) and the T -action on Z. Let MP ′

3
be the subspace of the

moduli space M0,1(Z, β′) defined by a commutative diagram of the form
(6.60), with Q3 replaced by P ′

3. Since P ′
3 is a fixed point, there is an induced

T -action on MP ′
3
. Then composition by h : Z−→Z induces a T -equivariant

automorphism Ψh: M0,1(Z, β′)−→M0,1(Z, β′) and we obtain a commutative
diagram of the form

MQ3

jQ3 ��

��

M0,1(Z, β′)

��

MP ′
3

ψh

���������� jP ′
3 ��

��

M0,1(Z, β′)

Ψh

�������������

��

Q3
iQ3 �� Z

P ′
3

iP ′
3 ��

�����������
Z

h

������������������

(6.62)
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The obstruction bundle V0 over M0, 1 (Z, β′) and the virtual cycle [M0,1
(Z, β′)] are invariant under h by construction. That is, we have Ψ∗

h(V0) =
V0 and h![M0,1(Z, β′)] = [M0,1(Z, β′)]. The virtual cycles [MP ′

3
] and [MQ3 ]

are determined by Gysin maps [MP ′
3
] = i!P ′

3
[M0,1(Z, β′)] and [MQ3 ] = i!Q3

[M0,1(Z, β′)]. Therefore, we have ψ!
h[MQ3 ] = [MP ′

3
] and ψ∗

hj∗
Q3

(V0) = j∗
P ′

3

(V0). Moreover, Λ4(TZ)Q3 � Λ4(TZ)P ′
3

as T -vector spaces. We conclude
that the equivariant integral (6.59) is equal to

C1,3′(d′
3, β) =

C1,3′(d′
3, d

′
3h2)

(−λtH)

∫

[MP ′
3
]T

eT ([j∗
P ′

3
(V0) − Λ4(TZ)P ′

3
])

−λtH − ψp
. (6.63)

Since P ′
3 is fixed under the generic torus action, we can further rewrite this

expression as

C1,3′(d′
3, β) =

C1,3′(d′
3, d

′
3h2)

(−λtH)
s∗

⎡

⎣

∫

[MP ′
3
]G

eT ([j∗
P ′

3
(V0) − Λ4(TZ)P ′

3
])

η3/d′
3 − ψp

⎤

⎦ ,

(6.64)
or, equivalently, as

C1,3′(d′
1, β) =

C1,3′(d′
3, d

′
3h2)

(−λtH)
s∗

×
[

1
eG(Λ4(TZ)P ′

3
)

∫

[M0,1(Z,β′)]G

eG(V0)ev∗(φP ′
3
)

η3/d′
3 − ψp

]

. (6.65)

This formula will be used for explicit computations in the next section.

6.3.3 Multiple boundary components

We are left with open string maps with several boundary components. Let
f : Σ−→Z, Σ = Σ0 ∪ ∆1 ∪ · · · ∪ ∆h be such a map of type (ρ, da). Recall
that ρ: {1, . . . , h}−→{1′, . . . , 4′, 1′′, . . . , 4′′} specifies the image of each disc
∆a, a = 1, . . . , h, of the domain, and da are the corresponding degrees.

If Σ0 is nonempty, we proceed by analogy with the previous two cases. A
similar sequence of arguments shows that the sum over all open string local
contributions can be written as a moduli space integral of the form

Ch,ρ(da, β) =
1

|P|

h
∏

a=1

C1,ρ(a)(da, da[Dρ(a)])
−(λtaH)

s∗
[

1
∏h

a=1 eG(Λ4(TZ)P (a))

×
∫

[M0,h(Z,β′)]G
eG(V0)

h
∏

a=1

ev∗
a(φP (a))

−κa − ψpa

]

. (6.66)
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Let us explain the notation. The coefficient C1,ρ(a)(da, da[Dρ(a)]) represents
the multicover contribution of the ath disc of the domain which is mapped
da: 1 to the disc Dρ(a) in the target space. P is a function from the
index set {1, . . . , h} to the set of fixed points of Z under the G action.
If Dρ(a) is a vertical disc, P (a) is the origin of Dρ(a); if Dρ(a) is hori-
zontal, then we have P (a) = P ′

3 if ρ(a) = 3′, 4′, and P (a) = P ′′
4 if ρ(a) =

3′′, 4′′. M0,h(Z, β′) is the moduli space of stable closed string maps to Z
with h marked points {pa}. The homology class β′ ∈ H2(Z, Z) is given
by β′ = β −

∑h
a=1[Dρ(a)]. ev: M0,h(Z, β′)−→Zh is the evaluation map and

eva: M0,h(Z, β′)−→Z denotes its ath component. κa, a = 1, . . . , h, is an
equivariant class in KG such that s∗(κa) = λtaH, where λta is the weight of
the induced torus action on the disc ∆a. One can easily check that κa =
η3/da if ρ(a) = 1′, 3′′, κa = η1/da if ρ(a) = 1′′, 4′, κa = −η3/da if ρ(a) = 2′′, 3′

and κa = −η1/da if ρ(a) = 2′, 4′′. Finally, 1/|P| is a symmetry factor which
takes into account the automorphism group of a fixed locus. The auto-
morphism group of an invariant open string map as above is of the form
∏h

a=1 (Z/daZ) × P. The first h factors represent deck transformations of the
Galois cover f∆a : ∆a−→Dρ(a). Their effect would be a prefactor

∏h
a=1 1/da

in equation (6.66) which is absorbed in the coefficients C1,ρ(a)(da, da[Dρ(a)]).
P is a subgroup of the permutation group Sh which permutes the marked
points pa leaving the map da unchanged. More precisely, if we have n discs of
the domain mapping to the same disc in Z, P contains a factor Sn. There-
fore, we obtain a factor 1/n! in equation (6.66) for each such group of n
discs. There are eight discs in the target space, so we can have up to eight
factors of this form.

If Σ0 is empty, the domain of f can be either a single disc or a two discs
with common origin forming a nodal cylinder. The first case has been treated
above. A map of the form f : ∆1−→Z contributes C1,ρ(1)(d1, d1[Dρ(1)]) to
the instanton expansion. The second case follows easily from the first using
normalization exact sequences. Given a map f : ∆1 ∪p ∆2−→Z of type
(ρ, d1, d2) as above, its contribution can be easily shown to be of the form

C1,2,ρ(1),ρ(2)(d1, d2, d1[Dρ(1)] + d2[Dρ(2)])

= C1,ρ(1)(d1, d1[Dρ(1)])C1,ρ(2)(d2, d2[Dρ(2)])

×
eT ([(TZ)P (1) − Λ4(TZ)P (1)])

(−λt1H)(−λt2H)(−λt1 − λt2)H
. (6.67)

For a uniform treatment, we can extend the formula (6.66) to encompass
all possible cases. By convention, if Σ0 is empty, equation (6.66) should be
interpreted as explained in the current paragraph.
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This concludes our discussion of open string instantons on compact three-
folds. Since this section is rather long and complicated, let us summarize
the main points. The open string instanton corrections take the form (6.21),
where the enumerative invariants Ch,ρ(da, β) are given by equation (6.66),
which is our main formula. Although this expression has been derived
starting from heuristic considerations, it is a well-defined equivariant inte-
gral over a moduli space (or stack) of stable maps. In the next section, we
will find very convincing evidence for the approach proposed here by direct
computations and comparison with the closed string dual.

7 Explicit computations and large N duality

At this stage, we have all the ingredients needed for computing topologi-
cal open string amplitudes and testing large N duality. Some preliminary
remarks on large N duality for compact three-folds have been included in
Section 2. Let us start with a more precise account of the duality predictions
for the extremal transition under consideration.

7.1 Large N duality predictions

As explained in Section 4, we have an extremal transition between smooth
projective Calabi–Yau three-folds Y, ˜Y which can be represented as hyper-
surfaces in toric varieties Z, ˜Z. ˜Z is the blow-up of Z along the section
U = V = 0 and ˜Y the strict transform of the singular hypersurface Y0. ˜Z
has the following toric presentation

˜Z1 ˜Z2 ˜Z3 ˜Z4 ˜U ˜V ˜W ˜T
C

∗ 1 1 0 0 −1 −1 0 0
C

∗ 0 0 1 1 −1 −1 0 0
C

∗ 0 0 0 0 1 1 1 0
C

∗ 0 0 0 0 1 1 0 −1

. (7.1)

One can easily check that h1,1( ˜Z) = h1,1(Z) + 1, therefore r = 1 in the nota-
tion of Section 2. The toric contraction π: ˜Z−→Z is given in terms of
homogeneous coordinates by

Zi = ˜Zi, i = 1, . . . , 4, U = ˜U ˜T , V = ˜V ˜T , W = ˜W (7.2)

with exceptional divisor (˜T ). Note that (˜T ) is isomorphic to P
1 × F0 and

the map (7.2) contracts the P
1 fibers.
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Geometrically, ˜Z is a fibration over F0 with F1 fibers. This follows from
the fact that each P

2 fiber of Z−→F0 undergoes an embedded one-point
blow-up. The Mori cone of ˜Z is generated by (see equation (A.1))

˜h1: ˜Z1 = ˜Z3 = ˜T = 0, ˜h2: ˜Z1 = ˜U = ˜T = 0,

˜h3: ˜Z3 = ˜U = ˜T = 0, ˜h4: ˜Z1 = ˜Z3 = ˜U = 0.
(7.3)

Note that ˜h1 and ˜h4 are vertical classes and ˜h2 and ˜h3 are horizontal classes
on ˜Z. Moreover, ˜h1 is the fiber class of ( ˜T ), and ˜h1 · ( ˜T ) = −1. Therefore in
the notation of Section 2, we have a single exceptional curve class [C] = ˜h1,
and one exceptional divisor D = −( ˜T ) so that C · D = 1.

The Kähler cones of Z and ˜Z are generated by the toric divisors (see
formulae (A.1) and (A.3) in Appendix A)

J1 = (W ), J2 = (Z1), J3 = (Z3)

˜J1 = (˜U), ˜J2 = ( ˜Z1), ˜J3 = ( ˜Z3), ˜J4 = (˜W ). (7.4)

Using equation (7.2) and standard linear relations among toric divisors, we
find the following relations

˜J1 = π∗(J1 − J2 − J3) + (˜T ), ˜J2 = π∗(J2), ˜J3 = π∗(J3), ˜J4 = π∗(J1).
(7.5)

Therefore, the geometric part of the duality map (2.9) becomes in this case

˜t1 = −iλ, ˜t2 − ˜t1 = t2, ˜t3 − ˜t1 = t3, ˜t4 + ˜t1 = t1. (7.6)

In order to test the duality predictions, equation (7.6) must be supplemented
with extra relations between the open string Kähler parameters τ ′

i and τ ′′
i ,

i = 1, . . . , 4, and the closed string parameters ˜tγ , γ = 1, . . . , 4. These will
be determined later. We have to compare the genus zero Gromov–Witten
expansion of ˜Y

F (0)
˜Y ;cl

(gs,˜tγ) = g−2
s

∑

˜β∈H2( ˜Z,Z)

˜C
˜β
e−〈 ˜J,˜β〉 (7.7)

to the genus zero open string expansion of (Y, L), or, more precisely, to a
generating functional attached to the triple (Z, Y , L).

Since the discussion in Section 2 was very schematic, let us summarize
the main points of the construction. We start with a generating functional
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of the form
Finst(gs, tα, τ ′

i , τ
′′
i )

=
∞
∑

h=1

∑

(da,β)

∑

ρ

Ch,ρ(da, β) e−〈J,β−
∑h

a=1 da[Dρ(a)]〉 e−
∑h

a=1 daτρ(a)

h
∏

a=1

Tr V da

ρ(a),

(7.8)

where the notation has been explained in detail in Section 6, and will not
be reviewed here. The coefficients Ch,ρ(da, β) = i∗ptCh,ρ(da, β) are defined by
our main formula (6.66), which is reproduced below for convenience

Ch,ρ(da, β) =
1

|P|

h
∏

a=1

C1,ρ(a)(da, da[Dρ(a)])
−λtaH

s∗
[

1
∏h

a=1 eG(Λ4(TZ)P (a))

×
∫

[M0,h(Z,β′)]G
eG(V0)

h
∏

a=1

ev∗
a(φP (a))

−κa − ψpa

]

. (7.9)

The formal series (7.8) is called the open string instanton sum and should
be interpreted as a series of corrections to Chern–Simons theory.9 The final
open string generating functional is the Chern–Simons free energy with all
these corrections taken into account. Therefore, the final expression for the
genus zero free energy will be of the form

F (0)
(Y,L);op(gs, tα, λ, τ ′

i , τ
′′
i ) = F (0)

Y ;cl(gs, tα) + F (0)
CS,1 + F (0)

CS,2

+
∑

d′
i,d

′′
i ,β′

Fd′
i,d

′′
i ,β(gs, λ) e−〈J,β′〉 e−

∑4
i=1(d′

iτ
′
i+d′′

i τ ′′
i ),

(7.10)

where
F (0)

Y ;cl = g−2
s

∑

β∈H2(Z,Z)

Cβ e−〈J,β〉 (7.11)

is the genus zero Gromov–Witten expansion of Y . The next two terms
in equation (7.10) represent the genus zero contributions of the uncorrected
Chern–Simons theories supported on L1 and L2 and the last sum encodes the
effect of open string instantons. Note that we sum over all relative homology
classes β = β′ +

∑4
i=1(d

′
i[D

′
i] + d′′

i [D
′′
i ]), with d′

i, d
′′
i ≥ 0. In the remaining

part of this section, we will show by explicit computations that equations
(7.7) and (7.10) are in exact agreement. This is very strong evidence for the
large N duality, as well as the open string techniques developed here.

Let us start with some remarks on the instanton coefficients (7.9). This
formula factorizes in open and closed string contributions reflecting the

9Note that it suffices to include only genus zero corrections in this formula, in agreement
with the footnote at page 24.
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structure of a generic invariant open string map. The open string contribu-
tions are represented by the prefactor

∏h
a=1 C1,ρ(a)(da, da[Dρ(a)])/−(λtaH)

while the closed string contribution is the equivariant integral in square
brackets, which takes values in KG � Q (η1, . . . , η7). This integral can be
evaluated by localization with respect to the G-action on the moduli space
M0,h(Z, β′). The fixed loci of this action can be classified using the graph
method developed in ref. [36] and the evaluation of local contributions is
standard material. The open string factors can be represented graphically
by adding extra legs to the closed string graphs as in ref. [25]. There is,
however, a subtlety in this approach, as the closed string graphs represent
fixed loci under the induced G-action on the moduli space of marked stable
maps. On the other hand, G does not act on the moduli space of open string
maps, as explained in detail in Section 6. Hence a closed string graph with
extra legs should not be interpreted naively as a graphical representation
of an open string fixed locus. Instead, one should think of such a graph as
encompassing two sets of data corresponding to the factorization of equation
(7.9) into open and closed string contributions. The closed string data are
encoded in a conventional closed string graph, while the open string data is
encoded in the extra legs. We will shortly discuss concrete examples.

The homomorphism s∗: KG−→KT has been described in detail in Section
6, below equation (6.49). We have s∗(η1,3) = λ1,3H, s∗(η2,4,7) = s∗(η1 +
η5) = s∗(η3 + η6) = 0. These formulae must be extended to KG by localiza-
tion. Since we also have to take the nonequivariant limit of equation (7.9),
the final answer will be a homogeneous rational function of (λ1, λ3) of degree
zero. It is very convenient to express the answer as a rational function of
the ratio z = λ3/λ1. Following the local examples discussed in Section 5, z
will be related to framing in Chern–Simons theory, provided that the later
can be thought of as a formal variable. We will show that this algorithm
gives rise to sensible results, although we will find some subtleties along
the way.

Spheres L1 and L2 contain two knots Γ′
1 and Γ′′

1 and, respectively, Γ′
2

and Γ′′
2 which form Hopf links with linking number +1. As explained in

the paragraph below equation (6.21), these knots are endowed with the
orientation induced by the canonical orientation of the vertical discs with
respect to the inner normal convention. This means that the multicover
contributions of the vertical discs will be weighted by holonomy factors of
the form Tr (V ′

1)
d and Tr (V ′′

1 )d and, respectively, Tr (V ′
2)

d and Tr (V ′′
2 )d,

where d > 0 is the degree. The contributions of the horizontal discs will be
weighted by holonomy factors of the form Tr (V ′

1)
−d = Tr (V ′

1)
d, etc.10 The

framing of Γ′
1, . . . ,Γ

′′
2 can be related to the torus weights following the same

10Here we denote by convention TrR V = TrR V for any U(N) group element V .
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considerations as in the local case. We find the following relations

p′
1 =

1
z
, p′′

1 = z, p′
2 = z, p′′

2 =
1
z
. (7.12)

After these preliminary remarks, let us turn to concrete computations.
For a systematic approach, we will distinguish several cases, depending on
the class β ∈ H2(Z, Z).

7.2 Vertical classes

We start with instanton corrections associated to vertical homology classes.
This means that the discs ∆a are mapped to the vertical discs D′

1, D′′
1 , D′

2,
D′′

2 , and the class β′ associated to the closed curve Σ0 is a multiple of h1. Let
us denote by n the total degree of such a map, i.e., β = nh1, n ≥ 0. The class
β′ introduced in Section 6 will be of the form β′ = n′h1, with 0 ≤ n′ < n.
For a fixed n, we have to sum over all values of n′. Except for the individual
disc factors in equation (6.66) the computation reduces to the evaluation of
the equivariant integral by localization. The fixed loci in the moduli space
of stable maps with marked points consist of points of the form (Σ0, f0, pa)
where the marked points pa are mapped to {P ′

1, P
′′
1 , P ′

2, P
′′
2 } and f0(Σ0) is a

G-invariant vertical curve on Z. The structure of the G-fixed locus on Z and
the G-invariant curves have been described in detail in Section 6.1. There
we found a “skeleton” consisting of 24 invariant curves which is reproduced
below for convenience.

The vertical invariant curves form four connected (reducible) components
lying in four distinct P

2 fibers which were denoted by F1, . . . , F4. These are
the green triangles in figure 8. Since the marked points must be mapped
to either {P ′

1, P
′′
1 } or {P ′

2, P
′′
2 }, it follows that Σ0 can be mapped either to

P P

P

P"

P’

3

P’

P"

P’

1

1

3

2

2

2

4

3
P"

P"4

P’4

P1

D’

  

P L1

P’

P"

D"1

 1

1

1

1

Figure 8: The toric skeleton of Z and the configuration of vertical discs
attached to the fiber F1. The color coding has been explained in Section 6.
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F1 or to F2, which are disjoint fibers. Therefore, the fixed loci naturally
divided into two classes depending on their image. Moreover, there is a Z/2
symmetry which exchanges the fixed loci in different classes. For each fixed
locus mapping to F1, there is an identical fixed locus mapping to F2. A
straightforward local computation shows that their contributions are also
identical, and therefore it suffices to consider only one class, say G-invariant
maps to F1. The local geometry near F1 is sketched in figure 8. The fixed loci
are represented by closed string graphs comprised continuous line segments.
Additionally, we have extra legs corresponding to the open string factors, as
explained below equation (6.48). In particular, we can have pure open string
graphs when the domain of the map f consists only of disc components.

The image of each irreducible component of the domain is specified by
the inclination angle of the corresponding line segment and by the color
code. Uncontracted components are represented by green lines with marked
endpoints. Contracted components are represented by black line segments
with no marking at the endpoints. The degree of the map onto its image is
specified by a number d attached to each segment unless d = 0, 1 in which
case the segment is left unlabeled. For example, the graph (f3) in figure 9
represents an invariant map f : P

1−→Z which is mapped 1: 1 to P ′
1P

′′
1 .

The marked point p1 is mapped to P ′
1. This corresponds to a certain local

contribution to the equivariant integral

s∗
[

1
eG(Λ4(TZ)P (1))

∫

[M0,h(Z,h1)]G
eG(V0)

ev∗
1(φP (1))

−η3 − ψp1

]

. (7.13)

In addition, we have an open string prefactor of the form C1,1′(1, [D′
1]) cor-

responding to the dashed line segment. According to the discussion below
equation (6.48), this should not be interpreted as graphical representation
corresponding to a fixed invariant map. The correct point of view is to
regard this graphs as a pair (closed string graph, open string graph)
representing a local contribution to the instanton coefficient C1,1′(1, 2h1)
defined in equation (7.9). Similarly, (f5) consists of a closed string graph
which represents a f : P

1−→Z which is 1:1 onto P1P ′
1. The marked point

p1 is mapped to P ′
1. The extra dashed leg represents an open string factor

given by a degree 1 cover of D′
1. The graph (f15) has a similar interpreta-

tion, except that the domain of the closed string map has three irreducible
components. One component is contracted (the black line) and two other
components are are mapped to P ′

1P
′′
1 with degree 1. The open string data

consist again of a degree 1 cover of D′
1.

We list below all contributions of vertical maps to F1 of total degree up
to 3. Each local contribution carries a subscript which corresponds to a
fixed locus represented in figures 9–11.
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Degree 1:

C(f1) =
6z2

z − 1
, C(f2) = − 6

z(z − 1)
. (7.14)

Degree 2:

C(f3) =
18z(z + 2)(2z + 1)

(z − 1)(2z − 1)
, C(f4) =

18(z + 2)(2z + 1)
z(z − 1)(z − 2)

,

C(f5) = C(f6) = 0, C(f7) = − 45z3

2(z − 1)(z − 2)
,

C(f8) = − 45
2z(z − 1)(2z − 1)

, C(f9) =
3z2

z − 1
,

C(f10) = − 3
z(z − 1)

. (7.15)

Degree 3:

C(f11) =
27z(z + 2)2(2z + 1)2

(z − 1)3(2z − 1)
, C(f12) =

27(z + 2)2(2z + 1)2

z(z − 1)3(z − 2)
,

2

2

(f1) (f2)

(f3) (f4) (f5) (f6)

(f7) (f8) (f9) (f10)

degree 1

degree 2

Figure 9: Stable maps: degree 1 and 2 fiber class.
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C(f13) = C(f14) = 0, C(f15) =
27(z + 2)2(2z + 1)2

(z − 1)3
,

C(f16) = −27(z + 2)2(2z + 1)2

z(z − 1)3
, C(f17) = C(f18) = 0,

C(f19) = C(f20) = 0, C(f21) = −27z(z + 2)(z + 5)(2z + 1)(5z + 1)
(z − 1)3(3z − 1)

,

C(f22) = −27(z + 2)(z + 5)(2z + 1)(5z + 1)
z(z − 1)3(z − 3)

, C(f23) = C(f24) = C(f25) = 0

C(f26) = C(f27) = C(f28) = 0, C(f29) =
18z(z + 2)(2z + 1)

(z − 1)2
,

C(f30) =
18(z + 2)(2z + 1)

z(z − 1)2
, C(f31) = C(f32) = 0,

C(f33) =
36z(z + 2)(2z + 1)

(z − 1)2(z − 2)(2z − 1)
, C(f34) = − 270z2(z + 2)(2z + 1)

(z − 1)(z − 2)(3z − 2)
,

C(f35) =
270(z + 2)(2z + 1)

z(z − 1)(2z − 1)(2z − 3)
, C(f36) =

4z2

z − 1
,

C(f37) = − 4
z(z − 1)

, C(f38) = − 60z3

(z − 1)(z − 2)
,

C(f39) = − 60
z(z − 1)(2z − 1)

, C(f40) =
1120z4

3(z − 1)(z − 3)(2z − 3)
,

C(f41) = − 1120
3z(z − 1)(3z − 1)(3z − 2)

.

(7.16)

We have identical corrections for vertical maps to the fiber F2, except that
the holonomy variables are different. Collecting all localization results, we
can write the vertical instanton corrections in the form

F
(f)
inst = −ia(t′1)q

′
1 − ia(t1,t′1)q1q

′
1

− ia(2t′1)q
′2
1 − ia(2t1,t′1)q

2
1q

′
1 − ia(t1,2t′1)q1q

′2
1 − ia(3t′1)q

′3
1 , (7.17)

where

a(t′1) =
1
gs

[

C(f1)(Tr V ′
1 + Tr V ′′

2 ) + C(f2)(Tr V ′′
1 + Tr V ′

2)
]

,

a(t1,t′1) =
1
gs

[

(C(f3) + C(f5))(Tr V ′
1 + Tr V ′′

2 ) + (C(f4) + C(f6))

× (Tr V ′′
1 + Tr V ′

2)
]

,
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22

2

2

(f11) (f12) (f13) (f14) (f23) (f24)

(f25)(f15) (f16) (f17) (f18)

(f26)(f19) (f20) (f21) (f22)

Figure 10: Stable maps: degree 3 fiber class-I.

a(2t′1) =
1
gs

[

C(f7)(Tr V ′2
1 + Tr V ′′2

2 ) + C(f8)(Tr V ′′2
1 + Tr V ′2

2 )
]

− iC(f9)
[

(Tr V ′
1)

2 + (Tr V ′′
2 )2

]

− iC(f10)
[

(Tr V ′′
1 )2 + (Tr V ′

2)
2] ,

Q5 a(2t1,t′1) =
1
gs

⎡

⎢

⎢

⎣

27
∑

k=1
k odd

C(fk)(Tr V ′
1 + Tr V ′′

2 ) +
28
∑

k=2
k even

C(fk)(Tr V ′′
1 + Tr V ′

2)

⎤

⎥

⎥

⎦

,

a(t1,2t′1) = −i(C(f29) + C(f31))
[

(Tr V ′
1)

2 + (Tr V ′′
2 )2

]

− i(C(f30) + C(f32))
[

(Tr V ′′
1 )2 + (Tr V ′

2)
2]

− iC(f33)(Tr V ′
1 Tr V ′′

1 + Tr V ′′
2 Tr V ′

2)

+
1
gs

[

C(f34)(Tr V ′2
1 + Tr V ′′2

2 )

+ C(f35)(Tr V ′′2
1 + Tr V ′2

2 )
]

,

a(3t′1) = −gs

[

C(f36)
[

(Tr V ′
1)

3 + (Tr V ′′
2 )3

]

+ C(f37)
[

(Tr V ′′
1 )3 + (Tr V ′

2)
3]
]

− iC(f38)(Tr V ′
1 Tr V ′2

1 + Tr V ′′
2 Tr V ′′2

2 )

− iC(f39)(Tr V ′′
1 Tr V ′′2

1 + Tr V ′
2 Tr V ′2

2 )

+
1
gs

[

C(f40)(Tr V ′3
1 + Tr V ′′3

2 ) + C(f41)(Tr V ′′3
1 + Tr V ′3

2 )
]

.

(7.18)
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2

2

2

3

2 3

(f27)

(f28)

(f29) (f30) (f31) (f32)

(f33) (f34) (f35) (f36) (f37)

(f38) (f39) (f40) (f41)

Figure 11: Stable maps: degree 3 fiber class-II.

Some points in this formula deserve explanation. As we mentioned earlier,
for each disc ∆a of the domain we have to write down an instanton factor of
the form e−daτρ(a) , where τρ(a) are flat open string Kähler parameters, which
are generally different from the flat closed string moduli. For the vertical
classes under consideration, we should have four such parameters τ ′

1, τ
′′
1 , τ ′

2
and τ ′′

2 corresponding to D′
1, D

′′
1 , D′

2 and D′′
2 . These parameters depend

linearly on the framing of the corresponding knots, hence a priori they have
different values although all vertical discs are in the same homology class.
However, once we absorb the trivial framing dependence by redefining the
holonomy variables, as explained below equation (5.23), we can take them
to be equal. We let q′

1 = e−τ ′
1 = e−τ ′′

1 = e−τ ′
2 = e−τ ′′

2 and q1 = e−t1 be the
closed string instanton factor for the vertical class h1.

The next step is to compute the Chern–Simons free energy including the
instanton corrections (7.17). All link and knot invariants should be expanded
in powers of gs as explained in Section 5. The resulting expansion will
automatically be a power series of the framings p′

1, p
′′
1, p

′
2 and p′′

2, which take
the values (7.12). Let us first record the final result including corrections
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up to second order in q1 and q′
1

g2
s ln

〈

eF
(f2)
inst

〉

= −12q′
1(y − y−1)

z2 + z + 1
z

+
3
2
(q′

1)
2y2 14z4 + 51z3 + 173z2 + 51z + 14

z(z − 2)(2z − 1)

+ 3(q′
1)

2 −8z4 − 24z3 − 86z2 − 24z − 8
z(z − 2)(2z − 1)

+
3
2
(q′

1)
2y−2 2z4 − 3z3 − z2 − 3z + 2

z(z − 2)(2z − 1)

+ 3q′
1q1(y − y−1)

−24z4 − 36z3 + 12z2 − 36z − 24
z(z − 2)(2z − 1)

, (7.19)

where y = eiλ/2 denotes the exponentiated ‘t Hooft coupling constant of
the two Chern–Simons theories supported on L1 and L2. (The two coupling
constants must be equal as a result of the zero charge condition, as explained
above equation (6.5).)

Having reached this point, we have to face a new puzzle: unlike the local
examples studied in Section 5, the final answer is a function of z. If this
answer has to be taken at face value, what is the correct interpretation? To
shed some light on this question, let us perform a change of variables of the
form

q1 = q̃1q̃4, y = (q̃1)1/2, q′
1 = (q̃1)1/2q̃4. (7.20)

Note that the first two relations follow from the duality map (7.6). The third
relation involving the open string instanton factor q′

1 takes into account an
extra shift in the Kähler parameters due to open string quantum corrections
[15]. As a function of the new parameters, equation (7.19) becomes

g2
s ln

〈

eF
(f2)
inst

〉

= 12q̃4(1 − q̃1)
z2 + z + 1

z
− 3

2
q̃2
1 q̃

2
4
17z2 + 53z + 17

z

+ 6q̃1q̃
2
4
4z2 + 13z + 4

z
+

3
2
q̃2
4
2z4 − 3z3 − z2 − 3z + 2

z(z − 2)(2z − 1)
.

(7.21)

In order to understand the meaning of this expression in the context of
large N duality, it is very helpful to take a closer look at the closed string
expansions on both sides, i.e., the series F (0)

Y ;cl(gs, tα) and F (0)
˜Y ;cl

(gs,˜tγ).

In both cases, the coefficients Cβ and ˜C
˜β

can be computed by localization
using the convex obstruction bundle approach reviewed in Section 3. We
have studied in detail the G action on Z. There is a similar ˜G = (S1)8 action
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on ˜Z given by
(

ei˜φ1 , ei˜φ2 , . . . , ei˜φ8
)

·
(

˜Z1, ˜Z2, . . . , ˜T
)

=
(

ei˜φ1
˜Z1, ei˜φ2

˜Z2, . . . , ei˜φ8
˜T
)

, (7.22)

whose fixed locus consists of all isolated points on ˜Z which can be repre-
sented as a quadruple intersection of toric divisors. The ˜G-invariant curves
on ˜Z form a skeleton which can be obtained from the skeleton of Z by
replacing the fibers F1, . . . , F4 with F1 surfaces ˜F1, . . . , ˜F4. For later use,
note that there is a lift of the action of T to ˜Z given by

(

ei˜φ1 , ei˜φ2 , . . . , ei˜φ8
)

=
(

eiλ1φ, 1, eiλ3φ, 1, e−iλ1φ, e−iλ3φ, 1, 1
)

. (7.23)

Now let us write down the vertical Gromov–Witten expansions for Y and
˜Y . We have β = nh1, n ≥ 0, on Y and ˜β = n1˜h1 + n4˜h4, n1, n4 ≥ 0 on ˜Y .
Therefore, we obtain

F (0),f
Y ;cl (gs, t1) =

∑

n≥0

Cnqn
1 , F (0),f

˜Y ;cl
=

∑

n1,n4≥0

˜Cn1n4 q̃
n1
1 q̃n4

4 , (7.24)

where the coefficients Cn and ˜Cn1n4 have integral representations of the form

Cn =
∫

[M0,0(Z,β)]
e(V), ˜Cn1n4 =

∫

[M0,0( ˜Z,˜β)]
e(˜V), (7.25)

where V and ˜V are the obstruction bundles.

Given the structure of the toric skeleton in both cases the fixed loci in
the moduli spaces M0,0(Z, β) and M0,0( ˜Z, ˜β) fall naturally in four classes,
depending on their image in Z, ˜Z. A component of the fixed locus in
M0,0(Z, β) will be called of type i, i = 1, . . . , 4, if its image is embedded
in the invariant fiber Fi ⊂ Z. Similarly, a component of the fixed locus in
M0,0( ˜Z, ˜β) will be called of type i, i = 1, . . . , 4, if its image is embedded in
the invariant fiber ˜Fi ⊂ ˜Z. The coefficients Cn and ˜Cn1n4 receive contribu-
tions from all such fixed loci, i.e., we have

Cn = i∗pt

4
∑

i=1

∑

Ξi

∫

[Ξi]G

eG(VΞi)
eG(NΞi)

,

˜Cn1n4 = i∗pt

4
∑

i=1

∑

˜Ξi

∫

[˜Ξi] ˜G

e
˜G
(˜V

˜Ξi
)

e
˜G
(N

˜Ξi
)
.

(7.26)

The local contributions in equation (7.26) are homogeneous rational func-
tions of degree zero of the torus weights. In order to understand the meaning
of the open string expansion (7.21), we will specialize these local contributions
to KT as explained below equation (6.49), obtaining rational functions of z.
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Naively, large N duality predicts a relation of the form

∑

n1,n4≥0

˜Cn1n4 q̃
n1
1 q̃n4

4 =
∑

n≥0

Cnqn
1 + F (0)

CS,1 + F (0)
CS,2 + ln

〈

eF
(f2)
inst

〉

, (7.27)

where the coefficients Cn and ˜Cn1n4 are given by equation (7.26). Clearly,
such a relation cannot be true since Cn and ˜Cn1n4 are rational numbers, while
the coefficients in the open string expansion are functions of z. However,
let us recall an interesting geometric fact. The closed component Σ0 of the
open string maps which contribute to equation (7.21) is mapped either to
F1 or to F2. There are no such maps to F3 and F4 since all these fibers
are supported away from the vertical discs. This suggests that in (7.27)
one should take a similar truncation of the coefficients Cn and ˜Cn1n4 by
only summing over invariant maps to F1, F2 and, respectively, ˜F1, ˜F2. More
precisely, the truncated coefficients are given by

Ctr
n = i∗pts

∗
2
∑

i=1

∑

Ξi

∫

[Ξi]G

eG(VΞi)
eG(NΞi)

,

˜Ctr
n1n4

= i∗pts̃
∗

2
∑

i=1

∑

˜Ξi

∫

[˜Ξi] ˜G

e
˜G
(˜V

˜Ξi
)

e
˜G
(N

˜Ξi
)
,

(7.28)

where s∗: KG−→KT and s̃∗: K
˜G
−→KT are specialization morphisms. Clearly

these are no longer rational numbers since we do not sum over all fixed loci.
After specialization to KT we will obtain rational functions of z, as discussed
before. One can regard Ctr

n and ˜Ctr
n1n4

as equivariant refinements of standard
Gromov–Witten invariants which probe a finer structure of the moduli space
of maps. Then, we propose the following modified large N duality conjecture

∑

n1,n4≥0

˜Ctr
n1n4

q̃n1
1 q̃n4

4 =
∑

n≥0

Ctr
n qn

1 + F (0)
CS,1 + F (0)

CS,2 + ln
〈

eF
(f2)
inst

〉

. (7.29)

Ideally, one would like to have a conceptual proof of this conjecture, which
seems to be very difficult. Here we will restrict ourselves to a numerical test.
The truncated closed string expansions can be evaluated by summing over
Kontsevich graphs [36]. This is a standard computation, so we will omit the
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details. Up to second degree terms, one finds the following expressions

∑

n≥0

Ctr
n qn

1 = 18
(z + 2)(2z + 1)

z
q1 +

81
4

2z2 + 5z + 2
z

q2
1 + O(q3

1),

∑

n1,n4≥0

˜Ctr
n1n4

q̃n1
1 q̃n4

4 = 2q̃1 +
1
4
q̃2
1 + 12

z2 + z + 1
z

q̃4

+
3
2

2z4 − 3z3 − z2 − 3z + 2
z(z − 2)(2z − 1)

q̃2
4

+ 6
4z2 + 13z + 4

z
q̃1q̃4 +

3
4

20z2 + 29z + 20
z

q̃2
1 q̃

2
4

+ O(q̃3
1, . . . , q̃

3
4). (7.30)

Using the duality relation q1 = q̃1q̃4 and equation (7.21), it is straightforward
to check that equation (7.29) is satisfied up to terms of degree 2. This is
positive evidence for the modified duality conjecture. Obviously, one would
like to test this conjecture at higher order in the expansion. The main
problem is that the closed string computations become very tedious since
we have to sum over large numbers of graphs. Although a more thorough
investigation is possible, it would be preferable to develop a more conceptual
approach. We leave this aspect for future work.

Before we can continue our analysis, we should try to understand the
meaning of the modified duality conjecture. The truncation (7.30) seems to
be necessary because the open string expansion cannot capture all the closed
string information. For pure geometric reasons, on the open string side, we
cannot take into account the effect of the fixed loci mapping to ˜F3 and ˜F4.
Clearly, this phenomenon is very specific to the present example. In other
examples, one may find that various truncations of Gromov–Witten invari-
ants are needed. For example, we expect that no truncation is necessary for
the compact dP5 model described in Section 4. This is so because in that
case we have four vanishing cycles rather than two, and the invariant open
string maps can take values in the fibers F3 and F4 as well. The general
assertion one could make in this context is that the open string expansion
computes the sum over those closed string graphs which are geometrically
accessible. The notion of geometrically accessible graphs depends on the
peculiarities of the model. We expect that such a notion and a refined dual-
ity conjecture can be formulated for all transitions in which the nodal points
are fixed points of the generic torus action. This is a very interesting subject
for future work.

Returning to our model, there is an important observation one could
make. While the unrefined duality conjecture (7.27) cannot be true for
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arbitrary values of z, quite remarkably, it holds true for the special value
z = 1! First note that if we specialize z = 1 in equation (7.30) we obtain

∑

n≥0

Ctr
n qn

1 = 162q1 +
729
4

q2
1 + · · · ,

∑

n1,n4≥0

˜Ctr
n1n4

q̃n1
1 q̃n4

4

= 2q̃1 +
1
4
q̃2
1 + 36q̃4 +

9
2
q̃2
4 + 126q̃1q̃4 +

207
4

q̃2
1 q̃

2
4 + · · · . (7.31)

Although written in terms of truncated coefficients, these are the full genus
zero Gromov–Witten expansions of the two models (see Appendix A). The
explanation is that for z = 1, the contributions of the fixed loci of types 3
and 4 cancel each other, leaving only the contributions of fixed loci of types 1
and 2. This phenomenon is not very uncommon in Gromov–Witten theory.
Sometimes one can exploit the symmetry properties of the target space to
simplify the local contributions of the fixed loci by making a special choice
of weights (see, e.g., [19]).

Since the refined duality conjecture was shown to be true up to order 2
for any z, it follows that the unrefined conjecture also holds up to order 2
if we set z = 1. Exploiting this feature, we can perform higher-order tests
of the duality more efficiently. Below we record the open string expansion
including terms up to order 3 in Kähler classes for z = 1

g2
s ln

〈

eF
(f)
inst

〉

= −36q′
1(y − y−1) + 324q1q

′
1(y − y−1)

+ 450q′2
1 +

9
2
q′2
1 y−2 − 909

2
q′2
1 y2

+ 8748q2
1q

′
1(y − y−1) − 6804q1q

′2
1 + 5346q1q

′2
1 y−2

+ 8262q1q
′2
1 y2 +

4
3
q′3
1 y−3 − 5344q′3

1 y−1

+ 22508q′3
1 y − 51496

3
q′3
1 y3 + · · · . (7.32)

Using the duality map (7.20), we can rewrite this expression in the following
form

g2
s ln

〈

eF
(f)
inst

〉

= 36q̃4 − 36q̃1q̃4 +
9
2
q̃2
4 + 126q̃1q̃

2
4 − 261

2
q̃2
1 q̃

2
4

+
4
3
q̃3
4 + 2q̃1q̃

3
4 + 152q̃2

1 q̃
3
4 − 466

3
q̃3
1 q̃

3
4 + · · · . (7.33)
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(h1)

2

(h3) (h5)

2

(h7)

(h2) (h4) (h6)

(m1)

(m2)

Figure 12: Stable maps: degree 2 mixed and degree 1 and 2 horizontal
classes. The color coding is as before.

This formula is to be compared to the closed string genus zero expansion
worked out in Appendix A. Before running this test, it is more convenient
to compute the open string expansions for mixed and horizontal classes as
well.

7.3 Mixed and horizontal classes

We have to perform analogous computations for instanton corrections in
homology classes of the form β = n1h1 + n2h2 + n3h3 with n1, n2, n3 ≥ 0.
The technology is very similar, except that now one has to consider horizon-
tal discs as well. The equivariant integrals (7.9) can be computed as above
using the graph method. We record below the instanton expansion and enu-
merate the relevant graphs, which should be interpreted as explained below
equations (6.48) and (7.13).

The closed string data are encoded in continuous line segments represent-
ing irreducible components of the domain. Each such component is either
contracted or mapped to an invariant curve in Z as indicated by color, incli-
nation angle and degree. The conventions for the degree of the map are
the same as before, i.e., for d = 0, 1 the segment is left unmarked, while for
d ≥ 2 the segment is marked. The extra legs drawn with dashed colored
lines represent the open string contributions to the instanton coefficients
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(equation (7.9)). The colors correspond to different homology classes, as
explained below figure 6. For example, the graphs in the first line of figure
12 represent pure horizontal open string contributions. The vertical blue
lines correspond to multicover contributions of either D′

3 or D′′
3 , and the

horizontal red lines correspond to multicover contributions of D′
4 or D′′

4 .
Due to the symmetry properties of Z, the moduli space integrals are iden-
tical for D′

3 and D′′
3 and respectively, D′

4 and D′′
4 . However, the holonomy

variables are different. This is reflected in the coefficients a(t′2) and a(t′3) in
equation (7.34). (h7) is again a pure open string contribution representing
a 1:1 cover of either D′

3 ∪Q3 D′′
3 or D′

4 ∪Q4 D′′
4 . This gives rise to a(t′2,t′3).

(m1) represents a contribution of the form (7.9) with h = 1, a = 1, ρ(1) = 3′

(or ρ(1) = 4′′), d′
3 = 1 (or d′

4 = 1) and β = h1 + h2. Therefore, we have one
degree 1 disc factor corresponding to a 1:1 cover of either D′

3 or D′
4 and an

equivariant integral on M0,1(Z, h1) which localizes on a vertical curve in F3

(F4) passing through P ′
3 (P ′′

4 ). There are two such curves P ′
3P3 and P ′

3P
′′
3 in

F3, respectively, P ′′
4 P4 and P ′′

4 P ′
4 in F4. However, it can be easily checked

that whenever a component maps to either P ′
3P3 or P ′′

4 P4, the contribution
of the corresponding graph vanishes identically upon specialization to KT .
This follows form the fact that these curves are fixed under T , hence the tan-
gent toric weight vanishes. Such graphs will not be included in the figures.
Overall, we are left with the contribution of the vertical curves P ′

3P
′′
3 and

P ′′
4 P ′

4; they determine the term a(t1,t′2). The last graph (m2) is very similar
and yields a(t1,t′3). The same rules apply to the third degree graphs repre-
sented in figures 13 and 14. The final expression for all relevant instanton
corrections is11

F
(m,h)
inst = −ia(t′1)q

′
1 − ia(t′2)q

′
2 − ia(t′3)q

′
3 − ia(t1,t′1)q1q

′
1 − ia(t1,t′2)q1q

′
2

− ia(t1,t′3)q1q
′
3 − ia(2t′1)q

′2
1 − ia(2t′2)q

′2
2 − ia(2t′3)q

′2
3 − ia(t′2,t′3)q

′
2q

′
3

− ia(2t1,t′2)q
2
1q

′
2 − ia(2t1,t′3)q

2
1q

′
3 − ia(t1,t2,t′1)q1q2q

′
1

− ia(t1,t2,t′2)q1q2q
′
2 − ia(t1,t2,t′3)q1q2q

′
3 − ia(t1,t3,t′1)q1q3q

′
1

− ia(t1,t3,t′2)q1q3q
′
2 − ia(t1,t3,t′3)q1q3q

′
3

− ia(t1,2t′2)q1q
′2
2 − ia(t1,2t′3)q1q

′2
3 , (7.34)

11Note that in this formula we have to include pure vertical corrections up to degree 2
as well. Such terms multiply the existing mixed and horizontal corrections in the Chern–
Simons expansion giving rise to new mixed terms in the final answer.
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where

a(t′2) = − 1
gs

C(h1)(Tr V
′
1 + Tr V

′′
2),

a(t′3) = − 1
gs

C(h2)(Tr V
′′
1 + Tr V

′
2),

a(t1,t′2) = − 1
gs

C(m1)(Tr V
′
1 + Tr V

′′
2),

a(t1,t′3) = − 1
gs

C(m2)(Tr V
′′
1 + Tr V

′
2),

a(2t′2) = − 1
gs

C(h3)(Tr V
′2
1 + Tr V

′′2
2 ) − iC(h5)[(Tr V

′
1)

2 + (Tr V
′′
2)

2],

a(2t′3) = − 1
gs

C(h4)(Tr V
′′2
1 + Tr V

′2
2 ) − iC(h6)[(Tr V

′′
1)

2 + (Tr V
′
2)

2],

a(t′2,t′3) = −iC(h7)(Tr V
′
1 Tr V

′
2 + Tr V

′′
1 Tr V

′′
2),

a(2t1,t′2) = − 1
gs

(

6
∑

k=3

C(mk)

)

(Tr V
′
1 + Tr V

′′
2),

a(2t1,t′3) = − 1
gs

(

10
∑

k=7

C(mk)

)

(Tr V
′′
1 + Tr V

′
2),

a(t1,t2,t′1) =
1
gs

[(C(m19) + C(m20))(Tr V ′
1 + Tr V ′′

2 )

+ (C(m21) + C(m22))(Tr V ′′
1 + Tr V ′

2)],

a(t1,t2,t′2) = − 1
gs

C(m11)(Tr V
′
1 + Tr V

′′
2),

a(t1,t2,t′3) = − 1
gs

C(m12)(Tr V
′′
1 + Tr V

′
2),

a(t1,t3,t′1) =
1
gs

[(C(m23) + C(m24))(Tr V ′
1 + Tr V ′′

2 )

+ (C(m25) + C(m26))(Tr V ′′
1 + Tr V ′

2)],

a(t1,t3,t′2) = − 1
gs

C(m13)(Tr V
′
1 + Tr V

′′
2),

a(t1,t3,t′3) = − 1
gs

C(m14)(Tr V
′′
1 + Tr V

′
2),

a(t1,2t′2) = − 1
gs

C(m15)(Tr V
′2
1 + Tr V

′′2
2 ) − iC(m16)[(Tr V

′
1)

2 + (Tr V
′′
2)

2],

a(t1,2t′3) = − 1
gs

C(m17)(Tr V
′′2
1 + Tr V

′2
2 ) − iC(m18)[(Tr V

′′
1)

2 + (Tr V
′
2)

2].

(7.35)
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2

(m12)(m11)(m10)(m9)(m8)

(m5) (m6) (m7)(m4)(m3)

2

Figure 13: Stable maps: degree 3 mixed classes-I. The color coding is as
before.

The expressions for the coefficients C obtained by localization are listed
below.

Degree 1:

C(h1) = C(h2) = −1. (7.36)

Degree 2:

C(h3) = −z − 2
4z

, C(h4) =
2z − 1

4
,

C(h5) =
z − 1
4z2 , C(h6) = −z(z − 1)

4
, (7.37)

C(h7) = −1, C(m1) = C(m2) = −6(z − 1)2

z
.

Degree 3:

C(m3) =
45(z − 1)2

z(z + 1)
, C(m4) = C(m6) = −6(z − 1)2

z
,

C(m5) = −36(z − 1)2

z2 , C(m7) =
45(z − 1)2

(z + 1)
,

C(m9) = −36(z − 1)2, C(m8) = C(m10) = −6(z − 1)2

z
,

C(m11) = C(m13) = 3, C(m12) = − 6
z(z − 1)

,
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(m21)

(m20) (m19)

(m26)

(m24)

(m23)

(m22)

(m18)

(m17)

2

(m16)(m15)

2

(m14)(m13)

(m25)

Figure 14: Stable maps: degree 3 mixed classes-II. The color coding is as
before.

C(m14) =
6z2

z − 1
, C(m15) =

6(z − 1)2

z2 ,

C(m16) = −6(z − 1)2

z3 , C(m17) = 6(z − 1)2,

C(m18) = −6z(z − 1)2, C(m19) =
6z2

z − 1
,

C(m20) =
12z2

z − 1
, C(m21) = −9(2z − 3)(z − 3)

z − 1
,

C(m22) = C(m24) = 0, C(m23) =
9(3z − 1)(3z − 2)

z(z − 1)
,

C(m25) = − 6
z(z − 1)

, C(m26) = − 12
z(z − 1)

. (7.38)

For the final result, we have to compute the Chern–Simons free energy
with all these corrections included. Following the rules given so far, this
is a straightforward, although quite tedious computation. In order to sim-
plify this process, we have considered only pure horizontal corrections up to
order 2 instead of 3. The only new aspect in this calculation is that one has to
evaluate Chern–Simons expectation values of the form 〈TrR1(V

′
1) TrR2(V

′
1)〉p′

1
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and 〈TrR1(V
′
1) TrR2(V

′′
1)〉p′

1,p′′
1
, where the knots Γ′

1 and Γ′′
1 form a Hopf link

with linking number +1. Such expectation values are typically avoided in
local geometric transitions by performing an analytic continuation [47, 52].
In our situation, this is not possible, hence we have to perform the compu-
tations directly. This entails an exercise in representation theory which is
discussed in Appendix C. The final result is12

g2
s ln

〈

eF
(m,h)
inst

〉

|(m,h)

= −2q′
2(y − y−1) − 2q′

3(y − y−1) − 1
4
q′2
2 (y2 − y−2) − 1

4
q′2
3 (y2 − y−2)

− 2q′
2q

′
3(2y2 − 3 + y−2) + 36q′

1q
′
2(1 − y−2) + 36q′

1q
′
3(1 − y−2)

− 324q1q
′
1q

′
2(1 − y−2) − 324q1q

′
1q

′
3(1 − y−2)

+ 90q′2
1 q′

2(5y − 4y−1 − y−3)

+ 90q′2
1 q′

3(5y − 4y−1 − y−3) − 216q1q2q
′
1(y − y−1)

− 216q1q3q
′
1(y − y−1)

+ 36q′
1q

′
2q

′
3(3y − 5y−1 + 2y−3)

+ 18q1q
′
2q3(y − y−1) + 18q1q2q

′
3(y − y−1).

(7.39)

Using equation (7.20) supplemented with the extra relations

q2 =
q̃2

q̃1
, q3 =

q̃3

q̃1
, q′

2 = (q̃1)1/2q̃2, q′
3 = (q̃1)1/2q̃3, (7.40)

we find the following expression in terms of closed string variables

g2
s ln

〈

eF
(m,h)
inst

〉

|(m,h)

= 2(q̃2 + q̃3) − 2(q̃1q̃2 + q̃1q̃3 + q̃2q̃3) +
1
4
(q̃2

2 + q̃2
3) + 6q̃1q̃2q̃3

− 1
4
(q̃2

1 q̃
2
2 + q̃2

1 q̃
2
3) − 4q̃2

1 q̃2q̃3 − 36(q̃2 + q̃3)q̃4 + 126(q̃2 + q̃3)q̃2
4

+ 36(q̃1q̃2 + q̃1q̃3 + q̃2q̃3)q̃4 − 252q̃1(q̃2 + q̃3)q̃2
4 − 144q̃1q̃2q̃3q̃4

+ 126q̃2
1(q̃2 + q̃3)q̃2

4 + 108q̃2
1 q̃2q̃3q̃4. (7.41)

The contribution of the pure Chern–Simons sector reads

F (0)
CS,1 + F (0)

CS,2 = y2
1 + y2

2 +
1
8
(y4

1 + y4
2) +

1
27

(y6
1 + y6

2) + · · · , (7.42)

12The subscript |(m, h) means that we only keep mixed and horizontal terms in
the final answer. The pure vertical terms have been already taken into account in
equation (7.33).
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which in closed string variables becomes

F (0)
CS,1 + F (0)

CS,2 = 2q̃1 +
1
4
q̃2
1 +

2
27

q̃3
1 + · · · . (7.43)

The full open closed expansion of the topological free energy is obtained
by adding equations (7.33), (7.41), (7.42), and the genus zero closed string
contribution (A.15) expressed in terms of closed string variables q̃1, . . . , q̃4.
This gives the following expression

F (0);inst
Y ;cl + F (0)

CS,1 + F (0)
CS,2 + g2

s ln
〈

eF
(f)
inst

〉

+ g2
s ln

〈

eF
(m,h)
inst

〉

|(m,h)

= 2(q̃1 + q̃2 + q̃3) + 36q̃4 − 2(q̃1q̃2 + q̃1q̃3 + q̃2q̃3) + 126(q̃1 + q̃2 + q̃3)q̃4

+
9
2
q̃2
4 +

1
4
(q̃2

1 + q̃2
2 + q̃2

3) − 1
4
(q̃2

1 q̃
2
2 + q̃2

1 q̃
2
3) +

4
3
q̃3
4 + 126(q̃1 + q̃2 + q̃3)q̃2

4

+ 36(q̃1q̃2 + q̃1q̃3 + q̃2q̃3)q̃4 + 6q̃1q̃2q̃3 +
2
27

q̃3
1 + 2q̃1q̃

3
4 +

207
4

q̃2
1 q̃

2
4

+ 2178(q̃1q̃2 + q̃1q̃3)q̃2
4 − 144q̃1q̃2q̃3q̃4

− 4q̃2
1 q̃2q̃3 + 152q̃2

1 q̃
3
4 + 126(q̃2

1 q̃2 + q̃2
1 q̃3)q̃2

4 + 108q̃2
1 q̃2q̃3q̃4 +

20
3

q̃3
1 q̃

3
4.

(7.44)

This result should be compared to the closed string expansion (A.14), keep-
ing carefully track of the degrees of the terms in the two formulae. It can
be easily seen that we obtain an exact agreement, except for the following
terms in the closed string formula (A.14)

2
27

(q̃3
2 + q̃3

3) + 2(q̃2 + q̃3)q̃3
4 +

207
4

(q̃2
2 + q̃2

3)q̃
2
4 + 2178q̃2q̃3q̃

2
4

− 4q̃1q̃2q̃3(q̃2 + q̃3) + 152(q̃2
2 + q̃2

3)q̃
3
4 + 126(q̃1q̃

2
2 + q̃1q̃

2
3 + q̃2

2 q̃3 + q̃2q̃
2
3)q̃

2
4

+ 108(q̃1q̃
2
2 q̃3 + q̃1q̃2q̃

2
3)q̃4 +

20
3

(q̃3
2 + q̃3

3)q̃
3
4. (7.45)

These are either pure horizontal terms of degree 3 (the first two terms) or
mixed and vertical terms of degree at least 4. Such terms cannot be obtained
in the open string expansion unless we include higher degree corrections in
the open string instanton series. (For example, we have checked that the
first two terms in equation (7.45) are recovered if we include degree 3 pure
horizontal corrections in equation (7.34). Therefore, we can conclude that
there is a perfect agreement, once the degrees are matched consistently.
This is a very convincing evidence for the duality conjecture, and of the
open string techniques developed in this paper.
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Appendix A Genus zero closed string partition functions

In this section, we will compute the genus zero closed string partition func-
tions of ˜Y and Y using mirror symmetry. First, we determine the Kähler
and Mori cones of the ambient toric varieties and then we write down and
solve the GKZ systems. From this, we will determine the Gromov–Witten
invariants of the Calabi–Yau hypersurfaces.

A.1 The Kähler and Mori cones of Z and ˜Z

Following the method of piecewise linear functions of ref. [51], we obtain
the following basis for the Mori cone of P∇Y

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7

l(1) = 0 0 1 0 0 1 1
l(2) = 0 1 −1 0 1 −1 0
l(3) = 1 0 −1 1 0 −1 0

, (A.1)

where ζi, i = 1, . . . , 7, are the divisor classes corresponding, respectively, to
the ith vertex of ∇Y . Therefore, the Kähler cone of P∇Y

is generated by the
divisor classes ζ1, ζ2 and ζ7. The only nonvanishing intersection numbers in
the Calabi–Yau hypersurface Y are

ζ3
7 = 18, ζ2

7ζ1 = ζ2
7ζ2 = 6, ζ1ζ2ζ7 = 3. (A.2)

Similarly, the basis of the Mori cone of P∇
˜Y

is given by

ζ̃1 ζ̃2 ζ̃3 ζ̃4 ζ̃5 ζ̃6 ζ̃7 ζ̃8

l̃(1) = 0 0 1 0 0 1 0 −1
l̃(2) = 0 1 0 0 1 0 0 −1
l̃(3) = 1 0 0 1 0 0 0 −1
l̃(4) = 0 0 0 0 0 0 1 1

, (A.3)

where ζ̃i, i = 1, . . . , 8, are the divisor classes corresponding, respectively,
to the ith vertex of ∇

˜Y
. Then the Kähler cone of P∇

˜Y
is generated by

the divisor classes ζ̃4, ζ̃5, ζ̃6 and ζ̃7. The triple intersections can be easily
computed using SCHUBERT [34]. The nonvanishing intersection numbers in
the Calabi–Yau hypersurface ˜Y are

ζ̃3
7 = 18, ζ̃4ζ̃

2
7 = 6, ζ̃5ζ̃

2
7 = 6, ζ̃6ζ̃

2
7 = 6,

ζ̃4ζ̃5ζ̃7 = 3, ζ̃4ζ̃6ζ̃7 = 3, ζ̃5ζ̃6ζ̃7 = 3, ζ̃4ζ̃5ζ̃6 = 2.
(A.4)

We also have c2(˜Y )ζ̃7 = 72 and c2(˜Y )ζ̃4 = c2(˜Y )ζ̃5 = c2(˜Y )ζ̃6 = 24.
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A.2 The GKZ operators and the prepotential

The GKZ operators associated with the Mori cone generators (A.3) read

˜Di = ˜Θ2
i − z̃i(˜Θ4 − ˜Θ1 − ˜Θ2 − ˜Θ3)(2˜Θ4 + ˜Θ1 + ˜Θ2 + ˜Θ3 + 1),

i = 1, . . . , 3,

˜D4 = ˜Θ4(˜Θ4 − ˜Θ1 − ˜Θ2 − ˜Θ3) − z̃4

2
∏

i=1

(2˜Θ4 + ˜Θ1 + ˜Θ2 + ˜Θ3 + i),

(A.5)

where z̃i, i = 1, . . . , 4, are the large complex structure coordinates and ˜Θi =
z̃i∂/∂z̃i, i = 1, . . . , 4. Note that the GKZ operators are sufficient to deter-
mine a complete set of period integrals for the mirror of ˜Y since ∇

˜Y
does not

have any points interior to codimension 1 faces and admits a (unique) max-
imal triangulation with all the cones of unit volume [27, 28]. Also note that,
as a consistency check, it is possible to rederive the intersection numbers
(A.4) starting from the principal part of the GKZ operators (A.5).

We denote by �0 the solution of equation (A.5) that is analytic at z̃i = 0,
i = 1, . . . , 4. This solution is given by the series [11, 27]

�0 =
∑

n1,n2,n3,n4

f0

=
∑

n1,n2,n3,n4

z̃
n1
1 z̃

n2
2 z̃

n3
3 z̃

n4
4 Γ(1+n1+n2+n3+2n4)

Γ(1+n1)2Γ(1+n2)2Γ(1+n3)2Γ(1+n4)Γ(1−n1−n2−n3+n4) . (A.6)

There are four solutions of equation (A.5) that are asymptotically like ln z̃i,
i = 1, . . . , 4

�i = �0 ln z̃i + fi, (A.7)
where

fi =
∑

n1,n2,n3,n4

[f0(Sn1+n2+n3+2n4 − 2Sni + S−n1−n2−n3+n4) + h] ,

i = 1, . . . , 3,

f4 =
∑

n1,n2,n3,n4

[f0(2Sn1+n2+n3+2n4 − Sn4 − S−n1−n2−n3+n4) − h] .

(A.8)

In the above, we have introduced the notation Sn =
∑n

k=1 1/k and we have
defined

h = (−z̃1)n1 (−z̃2)n2 (−z̃3)n3 (−z̃4)n4Γ(1+n1+n2+n3+2n4)Γ(n1+n2+n3−n4)
Γ(1+n1)2Γ(1+n2)2Γ(1+n3)2Γ(1+n4) . (A.9)

Following refs. [11, 27], we can now write down the mirror map

t̃i = − �i

�0
= − ln z̃i − fi

�0
, i = 1, . . . , 4. (A.10)
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In order to compute the genus zero Gromov–Witten invariants of ˜Y , we
need to find the second-order solutions of the system of differential equations
(A.5). These are easily obtained to be given by

�ij = �0 ln z̃i ln z̃j + ln z̃ifj + ln z̃jfi + fij , i, j = 1, . . . , 3, i �= j,

�i4 = �0 ln z̃i ln z̃4 + ln z̃if4 + ln z̃4fi + fi4, i = 1, . . . , 3,

�44 = �0(ln z̃4)2 + 2 ln z̃4f4 + f44, (A.11)

where

fij =
∑

n1,n2,n3,n4

[

f0
(

S2
n1+n2+n3+2n4

− S(n1+n2+n3+2n4)2 − 2S−n1−n2−n3+n4(Sni + Snj )

+ 2Sn1+n2+n3+2n4(S−n1−n2−n3+n4 − Sni − Snj )

+ S2
−n1−n2−n3+n4

+ S(−n1−n2−n3+n4)2 + 4SniSnj

)

+ 2S2
(ni)δij(f0)

+ 2h
(

Sn1+n2+n3−n4−1 + Sn1+n2+n3+2n4 − Sni − Snj

)]

,

i, j = 1, . . . , 3, i �= j,

fi4 =
∑

n1,n2,n3,n4

[

f0
(

2S2
n1+n2+n3+2n4

− 2S(n1+n2+n3+2n4)2

+ S−n1−n2−n3+n4(2Sni − Sn4)

+ Sn1+n2+n3+2n4(S−n1−n2−n3+n4 − 4Sni − Sn4)

− S2
−n1−n2−n3+n4

− S(−n1−n2−n3+n4)2 + 2SniSn4

)

+ h
(

− 2Sn1+n2+n3−n4−1 + Sn1+n2+n3+2n4 + 2Sni − Sn4

)]

,

i = 1, . . . , 3,

f44 =
∑

n1,n2,n3,n4

[

f0
(

4S2
n1+n2+n3+2n4

− 4S(n1+n2+n3+2n4)2

+ 2Sn4S−n1−n2−n3+n4 + S2
n4

+ S(n4)2

− 4Sn1+n2+n3+2n4(Sn4 + S−n1−n2−n3+n4)

+ S2
−n1−n2−n3+n4

+ S(−n1−n2−n3+n4)2
)

+ 2h(Sn1+n2+n3−n4−1 − 2Sn1+n2+n3+2n4 + Sn4)
]

.
(A.12)

In equation (A.12), we have introduced the notation S(n)2 =
∑n

k=1 1/k2.
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Taking into account the triple intersections (A.4), a consequence of mirror
symmetry is that the following equations hold true [11, 27, 28]

∂t̃i
F (0)

˜Y ;cl
= − 1

�0

⎡

⎣2�jk + 3
3
∑

j=1

�j4 + 3�44

⎤

⎦ , i = 1, . . . , 3, j, k �= i, 4,

∂t̃4
F (0)

˜Y ;cl
= − 3

�0

⎡

⎢

⎢

⎢

⎣

3
∑

i,j,k=1
i<j<k

�ij + 2
3
∑

i=1

�i4 + 3�44

⎤

⎥

⎥

⎥

⎦

. (A.13)

The system of equations (A.13) completely determines the prepotential.
Up to degree 6 in the instanton expansion,13 the prepotential for ˜Y reads

F (0)
˜Y ;cl

= −3t̃34 − 3(t̃1 + t̃2 + t̃3)t̃24 − 3(t̃1t̃2 + t̃1t̃3 + t̃2t̃3)t̃4 − 2t̃1t̃2t̃3

+ t̃1 + t̃2 + t̃3 + 3t̃4 + 2(q̃1 + q̃2 + q̃3) + 36q̃4 − 2(q̃1q̃2 + q̃1q̃3 + q̃2q̃3)

+ 126(q̃1 + q̃2 + q̃3)q̃4 +
9
2
q̃2
4 +

1
4
(q̃2

1 + q̃2
2 + q̃2

3) +
4
3
q̃3
4

+ 126(q̃1 + q̃2 + q̃3)q̃2
4 + 36(q̃1q̃2 + q̃1q̃3 + q̃2q̃3)q̃4 + 6q̃1q̃2q̃3

+
2
27

(q̃3
1 + q̃3

2 + q̃3
3) + 2(q̃1 + q̃2 + q̃3)q̃3

4 − 1
4
(q̃2

1 q̃
2
2 + q̃2

1 q̃
2
3 + q̃2

2 q̃
2
3)

+
207
4

(q̃2
1 + q̃2

2 + q̃2
3)q̃

2
4 + 2178(q̃1q̃2 + q̃1q̃3 + q̃2q̃3)q̃2

4 − 144q̃1q̃2q̃3q̃4

− 4q̃1q̃2q̃3(q̃1 + q̃2 + q̃3) + 152(q̃2
1 + q̃2

2 + q̃2
3)q̃

3
4

+ 126(q̃2
1 q̃2 + q̃1q̃

2
2 + q̃2

1 q̃3 + q̃1q̃
2
3 + q̃2

2 q̃3 + q̃2q̃
2
3)q̃

2
4

+ 108(q̃2
1 q̃2q̃3 + q̃1q̃

2
2 q̃3 + q̃1q̃2q̃

2
3)q̃4 +

20
3

(q̃3
1 + q̃3

2 + q̃3
3)q̃

3
4 + · · · ,

(A.14)

where q̃i = e−t̃i , i = 1, . . . , 4.

Proceeding in a similar manner, we obtain the prepotential for Y up to
degree 3 in the instanton expansion

F (0)
Y ;cl = −3t31 − 3t21t2 − 3t21t3 − 3t1t2t3 + 3t1 + t2 + t3 + 162q1

+
729
4

q2
1 + 162(q1q2 + q1q3) + 162q3

1 + 2430(q2
1q2 + q2

1q3) + · · · ,

(A.15)

where qi = e−ti , i = 1, . . . , 3.

13We only include terms that correspond to instanton corrections of degree less or equal
than 3 on Y .
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Appendix B Disc multicovers

Here we summarize the computation of disc multicover contributions using
the convex obstruction bundle approach. As explained in Section 6, it suf-
fices to consider only the discs D′

1 and D′
3 since all other cases are similar.

B.1 Multicovers of D′
1

Recall that the disc D′
1 is obtained by intersecting the curve C ′

13 with the
3-cycle L1, according to the local analysis of Section 6.2. The defining
equations of D′

1 in the coordinate patches U1 = {Z2 �= 0, Z4 �= 0, W �= 0} and
U ′

1 = {Z2 �= 0, Z4 �= 0, V �= 0} are

U1: x1 = u1 = 0, y1v1 = µ, |y1| ≤ µ1/2, |v1| ≥ µ1/2

U ′
1: x′

1 = u′
1 = 0, y′

1 = µv′
1, |y′

1| ≤ µ1/2, |v′
1| ≤ µ−1/2. (B.1)

We have to compute the cohomology groups H0(∆, T ) and H1(∆, T ) and
the obstruction groups H0(∆,L) and H1(∆,L) defined in Section 6.3. The
computation is performed in Čech cohomology, as in refs. [16, 45]. We will
work with the following two set cover of the domain ∆

Υ′
1 = {0 ≤ |t′| < µ−1/2d′

1}, Υ1 = {µ1/2d′
1 ≤ |t| < (µ + ε2)1/2d′

1}. (B.2)

A Galois cover of degree d′
1 of D′

1 is given in local coordinates by

U ′
1: x′

1(t
′) = 0, y′

1(t
′) = µt′d

′
1 , u′

1(t
′) = 0, v′

1(t
′) = t′d

′
1

U1: x1(t) = 0, y1(t) =
µ

td
′
1
, u1(t) = 0, v1(t) = td

′
1 . (B.3)

Proceeding as in ref. [16], we construct the Čech complex

0−→T∆(Υ′
1) ⊕ T∆(Υ1)

κ−→T∆(Υ′
1 ∩ Υ1)−→0, (B.4)
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where the generic sections in T∆(Υ′
1) and T∆(Υ1) can be written as

s′
1 =

( ∞
∑

n=0

α′
nt′

n

)

∂x′
1
+

(

µ

∞
∑

n=0

β′
nt′

n

)

∂y′
1
+

( ∞
∑

n=0

γ′
nt′

n

)

∂u′
1

+

( ∞
∑

n=0

δ′
nt′

n

)

∂v′
1

s1 =

(

∑

n∈Z

αntn

)

∂x1 +

(

µ
∑

n∈Z

βntn

)

∂y1 +

(

∑

n∈Z

γntn

)

∂u1

+

(

∑

n∈Z

δntn

)

∂v1

. (B.5)

Note that we sum over n ≥ 0 for sections in T∆(Υ′
1). In order to have a

uniform notation, we can extend these sums to n ∈ Z, with the convention
that α′

n, . . . , δ′
n are zero for n < 0. The boundary conditions at |t| = µ1/2d′

1

yield the following relations between the coefficients

αn = µ−n/d′
1 γ̄−n, βn = µ−(d′

1+n)/d′
1 δ̄−n. (B.6)

Now we have to compute the kernel and cokernel of κ. Using the linear
transformations

∂x1 = ∂x′
1
, ∂y1 = ∂y′

1
, ∂u1 = v′

1∂u′
1
, ∂v1 = −u′

1v
′
1∂u′

1
− v′

1
2
∂v′

1
,

(B.7)
and taking into account the local equations (B.1), we find that κ is given by

κ(s′
1, s1) =

(

∑

n∈Z

(α′
n − α−n)t′n

)

∂x′
1
+

(

µ
∑

n∈Z

(β′
n − β−n)t′n

)

∂y′
1

+

(

∑

n∈Z

(γ′
n − γ−n+d′

1
)t′n

)

∂u′
1
+

(

∑

n∈Z

(δ′
n + δ−n+2d′

1
)t′n

)

∂v′
1
.

(B.8)

Therefore, in order to find the kernel of κ we have to solve the following
system of equations

α′
n − α−n = 0, β′

n − β−n = 0,

γ′
n − γ−n+d′

1
= 0, δ′

n + δ−n+2d′
1

= 0. (B.9)

Since α′
n, . . . , δ′

n = 0 for n < 0, we obtain

αn = 0, n > 0, βn = 0, n > 0,

γn = 0, n > d′
1, δn = 0, n > 2d′

1. (B.10)
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Moreover, combining equations (B.6) and (B.10), we find the following rela-
tions

αn = 0, n < −d′
1, βn = 0, n < −2d′

1,

γn = 0, n < 0, δn = 0, n < 0. (B.11)

Therefore Ker(κ) = H0(∆, T ) is the 2(3d′
1 + 2)-dimensional real vector space

spanned by sections of the form

s1 =

⎛

⎝

0
∑

n=−d′
1

αntn

⎞

⎠ ∂x1 +

⎛

⎝µ

0
∑

n=−2d′
1

βntn

⎞

⎠ ∂y1

+

⎛

⎝

d′
1

∑

n=0

γntn

⎞

⎠ ∂u1 +

⎛

⎝

2d′
1

∑

n=0

δntn

⎞

⎠ ∂v1 (B.12)

with the coefficients αn, . . . , δn subject to the boundary conditions (B.6).
Next, we compute the cokernel of κ. This is generated by local sections with
coefficients an, . . . , dn for which the following equations have no solutions

α′
n − α−n = an, β′

n − β−n = bn,

γ′
n − γ−n+d′

1
= cn, δ′

n + δ−n+2d′
1

= dn. (B.13)

Taking into account equation (B.6) and the constraints α′
n, . . . , γ′

n = 0, it is
straightforward to check that these equations admit nontrivial solutions for
any values of an, . . . , dn. Therefore, Coker(κ) = H1(∆, T∆) is trivial.

In conclusion, as shown in Section 6.3, the space of infinitesimal defor-
mations of the multicover (B.3) is isomorphic to H0(∆, T ). Although this
is a priori only a real vector space, it should carry a complex structure
reflecting the choice of an orientation on the moduli space of open string
maps. This is a very subtle issue since we do not have a rigorous con-
struction of the moduli space and the virtual fundamental class. Here
we will simply choose the complex structure defined by the isomorphism
H0(∆, T )−→C

3d′
1+1, s1−→(αm, βn), m = 1, . . . , d′

1, n = 1, . . . , 2d′
1. With

this choice, H0(∆, T∆) is S1-isomorphic to

d′
1

⊕

n=0

(

−λ1 +
n

d′
1
λ3

)

⊕
2d′

1
⊕

n=0

(

−λ3 +
n

d′
1
λ3

)

. (B.14)

One could in principle make other choices by choosing different isomoprhisms
to C

3d′
1+2, e.g., s1−→(γm, δn), m = 1, . . . , d′

1, n = 1, . . . , 2d′
1. This would

change the representations in equation(B.14) by complex conjugation, and
it would reflect in a different sign of the multicover contribution to the
instanton sum.
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Now we turn to the computation of H0(∆,L∆). We construct the Čech
complex

0−→L∆(Υ′
1) ⊕ L∆(Υ1)

κ−→L∆(Υ′
1 ∩ Υ1)−→0. (B.15)

The generic sections of L over Υ′
1 and Υ1 have the form

s̃′
1 =

( ∞
∑

n=0

ε′
nt′

n

)

Λ′ max,

s̃1 =

(

∑

n∈Z

εntn

)

Λmax,

(B.16)

where Λ′ max = ∂x′
1
∧ ∂y′

1
∧ ∂u′

1
∧ ∂v′

1
and Λmax = ∂x1 ∧ ∂y1 ∧ ∂u1 ∧ ∂v1 .

Using equation (B.7), we find that κ is given by

κ(s̃′
1, s̃1) =

(

∑

n∈Z

(ε′
n − ε−n+3d′

1
)t′n

)

Λ′ max, (B.17)

where it is understood that ε′
n = 0 for n < 0. Then, after using the boundary

condition εn = ε̄−n, we find that the kernel of κ is generated by sections of
the form

s̃1 =

⎛

⎝ε0 +
3d′

1
∑

n=1

(εntn + ε̄nt−n)

⎞

⎠Λmax. (B.18)

This is a 6d′
1 + 1 real vector space which splits naturally in a direct sum

of the form R ⊕ R
6d′

1 . The first summand is generated by sections of the
form ε0Λmax, and the second summand is defined by sections s̃1 with ε0 = 0.
One can define a complex structure on the subspace ε0 = 0 by an isomor-
phism R

6d′
1−→C

3d′
1 , s̃1−→(εn), n = 1, . . . , 3d′

1. Then H0(∆,L∆) is S1-
isomorphic to

(0)
R

⊕
3d′

1
⊕

n=1

(

nλ3

d′
1

)

. (B.19)

Analogous considerations show that the cokernel of κ is empty in this case,
and therefore H1(∆,L∆) = 0.

B.2 Multicovers of D
′
3

Since D′
1 and D′

3 are complementary discs in C ′
13, D′

3 is covered by the coor-
dinate patches U1 = {Z2 �= 0, Z4 �= 0, W �= 0}, U3 = {Z2 �= 0, Z3 �= 0, W �= 0}.
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The local coordinates in the second patch are

U3: x3 =
Z1

Z2
, y3 =

Z4

Z3
, u3 =

UZ2Z3

W
, v3 =

V Z2Z3

W
, (B.20)

and D′
3 is given by

U1: x1 = u1 = 0, y1v1 = µ, |y1| ≥ µ1/2 |v1| ≤ µ1/2

U3: x3 = u3 = 0, v3 = µ, |y3| ≤ µ−1/2
. (B.21)

We choose an open cover of the domain of the form

Υ1 = {µ1/2d′
3 ≤ |t| < (µ + ε2)1/2d′

3}, Υ3 = {0 ≤ |t′| < µ−1/2d′
3}. (B.22)

A Galois cover of degree d′
3 of D′

3 is given in local coordinates by

U1: x1(t) = 0, y1(t) = td
′
3 , u1(t) = 0, v1 = µt−d′

3

U3: x3(t′) = 0, y3(t′) = t′d
′
3 , u3(t′) = 0, v3(t′) = µ

. (B.23)

The Čech complex for T is

0−→T∆(Υ1) ⊕ T∆(Υ3)
κ−→T∆(Υ1 ∩ Υ3)−→0 (B.24)

with generic sections in T∆(Υ1) and T∆(Υ3) given by

s1 =

(

∑

n∈Z

αntn

)

∂x1 +

(

∑

n∈Z

βntn

)

∂y1 +

(

∑

n∈Z

γntn

)

∂u1

+

(

µ
∑

n∈Z

δntn

)

∂v1

s3 =

( ∞
∑

n=0

α′
nt′n

)

∂x3 +

( ∞
∑

n=0

β′
nt′n

)

∂y3 +

( ∞
∑

n=0

γ′
nt′n

)

∂u3

+

(

µ

∞
∑

n=0

δ′
nt′n

)

∂v3

. (B.25)

Note that we sum over n ≥ 0 for sections in T∆(Υ3). In order to have a
uniform notation, we can extend these sums to n ∈ Z, with the convention
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that α′
n, . . . , δ′

n are zero for n < 0. Using the linear transformations

∂x1 = ∂x3 , ∂y1 = −y2
3∂y3 + y3v3∂v3 , ∂u1 = y−1

3 ∂u3 , ∂v1 = y−1
3 ∂v3 ,
(B.26)

and proceeding as in the previous case, we obtain the following form for the
Čech differential

κ(s1, s3) =

(

∑

n∈Z

(α′
n − α−n)t′n

)

∂x3 +

(

∑

n∈Z

(β′
n + β−n+2d′

3
)t′n

)

∂y3

+

(

∑

n∈Z

(γ′
n − γ−n−d′

3
)t′n

)

∂u3

+

(

µ
∑

n∈Z

(δ′
n − β−n+d′

3
− δ−n−d′

3
)t′n

)

∂v3 . (B.27)

Again, in order to determine H0(∆, T∆), we have to compute the kernel of
κ, which is determined by the following system of equations

α′
n = α−n, β′

n = −β−n+2d′
3
, γ′

n = γ−n−d′
3
,

δ′
n = β−n+d′

3
+ δ−n−d′

3
.

(B.28)

But α′
n, . . . , δ′

n = 0 for n < 0, and we obtain that

αn = 0, n > 0, βn = 0, n > 2d′
3, γn = 0, n > −d′

3,

β−n+d′
3
+ δ−n−d′

3
= 0, n < 0. (B.29)

We will also need to employ boundary conditions at |t| = µ1/2d′
3 which yield

the following relations

αn = µ−n/d′
3 γ̄−n, βn = µ(d′

3−n)/d′
3 δ̄−n. (B.30)

Using equations (B.29) and (B.30), we obtain

αn = 0, n < d′
3, βn = 0, n < 0, γn = 0, n < 0,

δn = 0, n < −2d′
3 or n > 0, (B.31)

βd′
3+1 = β̄d′

3−1, δ−d′
3+1 = δ̄−d′

3−1. (B.32)

Taking into account all constraints, we find that the kernel of κ is generated
by sections of the form

s1 =

⎡

⎣

d′
3−1
∑

n=0

(βntn − β̄ntn+d′
3+1) + βd′

3
td

′
3

⎤

⎦ ∂y1

+

⎡

⎣µ

0
∑

n=−d′
3+1

(δntn − δ̄nt−n−d′
3−1) + δ−d′

3
t−d′

3

⎤

⎦ ∂v1 , (B.33)
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with coefficients βn and δn subject to the boundary conditions (B.30). Choos-
ing δn, n = −d′

3, . . . , 0, to be holomorphic coordinates, the S1-equivariant
decomposition of H0(∆, T∆) reads

d′
3

⊕

n=0

(

−λ3 +
n

d′
3
λ3

)

. (B.34)

Next, proceeding as in the previous case, we find that the cokernel of κ is
generated by sections of the form

s1 =

⎛

⎝

d′
3−1
∑

n=1

αntn

⎞

⎠ ∂x1 +

⎛

⎝

−1
∑

n=−d′
3+1

γntn

⎞

⎠ ∂u1 , (B.35)

with coefficients αn and βn subject to the boundary conditions (B.30). If we
choose γn, n = −d′

3 + 1, . . . ,−1, to be holomorphic coordinates, H1(∆, T∆)
is S1-isomorphic to

d′
3−1
⊕

n=1

(

λ1 − n

d′
3
λ3

)

. (B.36)

Finally, we are left with H0(∆,L∆). In this case, the Čech complex reads

0−→L∆(Υ1) ⊕ L∆(Υ3)
κ−→L∆(Υ1 ∩ Υ3)−→0. (B.37)

The generic sections of L over Υ1 and Υ3 have the form

s̃1 =

(

∑

n∈Z

εntn

)

Λmax
1 ,

s̃3 =

( ∞
∑

n=0

ε′
nt′

n

)

Λmax
3 , (B.38)

where Λmax
1 = ∂x1 ∧ ∂y1 ∧ ∂u1 ∧ ∂v1 and Λmax

3 = ∂x3 ∧ ∂y3 ∧ ∂u3 ∧ ∂v3 . Using
equation (B.26), we find that κ is given by

κ(s̃1, s̃3) =

(

∑

n∈Z

(ε′
n − ε−n)t′n

)

Λmax
3 , (B.39)

where it is understood that ε′
n = 0 for n < 0. Then, also using the boundary

condition εn = ε̄−n, it follows that the kernel of κ is generated by sections
of the form

s̃1 = ε0Λmax
1 . (B.40)

Therefore, H0(∆,L∆) is S1-isomorphic to (0)R. A similar analysis shows
that H1(∆,L∆) is trivial.
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To conclude this section, note that horizontal discs such as D′
3 are embed-

ded in the smooth component Y 1 of Y , and have no common points with the
singular divisor. This is already clear from the local analysis in Section 5.
Then one can compute the same multicover contributions by taking open
string maps to Y 1 as in ref. [16] instead of Z. If the formalism proposed
here is robust, this point of view should give the same results as above. As
this computation has been performed in detail in ref. [16], let us just record
the results. With suitable choices of complex structures, we have

H0(∆, T )Y � (0)R ⊕
d′
3−1
⊕

n=0

(

−λ3 +
n

d′
3
λ3

)

,

H1(∆, T )Y �
d′
3−1
⊕

n=1

(

λ1 − n

d′
3
λ3

)

.

(B.41)

Note that in this case there is no obstruction bundle since D′
3 is a rigid disc

on Y 1 supported away from the canonical class. Therefore, the expected
dimension of the moduli space is zero [33]. The formulae (B.41) are very
similar to equations (B.34) and (B.36) except for a small discrepancy in
the fixed parts of the deformation spaces H0(∆, T ) and H0(∆, T )Y . For
maps to Z, one finds that the fixed part is (0)C corresponding to the term
n = d′

3 in equation (B.34), while for maps to Y the fixed part is (0)R. This
discrepancy is accounted for by the fixed part of the obstruction space, as
explained in Section 6.3. The final result is that the two contributions agree,
as expected.

Appendix C Chern–Simons expectation values

The Chern–Simons expansion performed in Section 7 involves products of
holonomy variables in U(N) representations of the form Ri and Rj , where
Ri and Rj are defined by Young tableaux. Such expressions can usually
be avoided in the context of large N duality literature [38, 40, 47, 52, 54] by
analytic continuation. This is no longer true in compact examples, and
hence we have to evaluate such knot and link invariants by direct methods.
We only need to consider two cases.

(i) Consider unknot invariants of the form

〈

TrR1 V TrR2
V
〉

p
, (C.1)



122 DUILIU-EMANUEL DIACONESCU AND BOGDAN FLOREA

where p denotes the framing. Proceeding by analogy with refs. [38, 40,
47, 52, 54], we write

〈

TrR1 V TrR2
V
〉

p
=
∑

ρ

〈Trρ V 〉p , (C.2)

where

R1 ⊗ R2 = ⊕ρρ (C.3)

is the irreducible decomposition of the product representation. Each
term in the right-hand side of equation (C.2) can then be evaluated
according to the rules explained in ref. [47]

〈Trρ V 〉p = xpCρ 〈Trρ V 〉0 , (C.4)

where x = eiπ/(k+N) and Cρ is the second Casimir of ρ. Therefore, the
computation reduces to some standard representation theory and expec-
tation values of the unknot in the canonical framing. Given a SU(N)
representation R defined by a Young tableau Π, R is isomorphic to the
SU(N) representation defined by the complementary Young tableau Π.
Two Young tableaux Π and Π are called complementary if by adjoin-
ing the (N − k)th row of Π to the kth row of Π we obtain a square
tableau with N × N boxes. Then, for two SU(N) representations R1
and R2, one can compute the irreducible decomposition (C.3) using the
standard rules for Young tableaux. The irreducible decomposition for
U(N) representations can be obtained by tensoring the SU(N) decom-
position by appropriate U(1) representations. Using these rules, we find
the following relations

⊗ = 1l ⊕ A1,

⊗ = ⊕ A2,

⊗ = ⊕ A3,

(C.5)

where A1, A2 and A3 are irreducible representations of U(N) given by

A1 = ... ⊗ (−
√

N), A2 = ... ⊗ (−
√

N), A3 = ... ⊗ (−
√

N).

(C.6)
The number of boxes in the first column of each tableau in equation (C.6)
is N − 1 and (w) denotes a one-dimensional U(1) representation of charge
w. A routine computation shows that the dimensions and the quadratic
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Casimir operators of A1, A2 and A3 are

dim(A1) = N2 − 1, dim(A2) = N(N−1)(N+2)
2 ,

dim(A3) = N(N+1)(N−2)
2 ,

C2(A1) = 2N, C2(A2) = 3N + 2, C2(A3) = 3N − 2. (C.7)

Furthermore, we have the following relations

⊗ A1 = ⊕ A2 ⊕ A3, ⊗ A1 = ⊕ A2 ⊕ A3. (C.8)

The unknot expectation values in canonical framing can be computed
using the rules explained in refs. [47, 52]. The U(1) factor decouples,
and hence U(N) expectation values are the same as SU(N) expectation
values. The later are of the form 〈TrR V 〉 = TrR U0, where U0 is a fixed
group element. Using this property, one can easily show that

〈TrA1 V 〉0 = (〈Tr V 〉0)
2 − 1,

〈TrA2 V 〉0 = 〈Tr V 〉0 (〈Tr V 〉0 − 1),

〈TrA3 V 〉0 = 〈Tr V 〉0
(〈

Tr V
〉

0
− 1

)

. (C.9)

Using equations (C.4) and (C.9) and using the normalization explained
in Section 5, we find

〈

Tr V Tr V
〉

= y−2 +
〈

Tr V
〉2
0 − 1,

〈

Tr V Tr V
〉

=
〈

Tr V Tr V
〉

= y−2〈Tr V
〉

0 + x2p
〈

Tr V
〉

0(
〈

Tr V
〉

0 − 1),
〈

Tr V Tr V
〉

=
〈

Tr V Tr V
〉

= y−2〈Tr V
〉

0 + x−2p
〈

Tr V
〉

0

(〈

Tr V
〉

0 − 1
)

.

(C.10)

(ii) We also encounter expectation values of the form

〈TrR1 V TrR2 U〉+1
p1,p2

(C.11)

for a Hopf link with linking number +1 and framings (p1, p2). This
computation can be reduced to a Hopf link with l = −1 and canonical
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framing on both components as follows

〈TrR1 V TrR2 U〉+1
p1,p2

= xp1CR1+p2CR2 〈TrR1 V TrR2 U〉−1
0,0 (x → x−1). (C.12)

The correctly normalized link invariant in the context of geometric
transitions [38]–[40] reads
〈

Tr V Tr U
〉−1
0,0 = x(C2( )+C2( ))

∑

ρ∈ ⊗

x−C2(ρ) dimq ρ. (C.13)

Dropping again the trivial framing factors, we finally obtain
〈

Tr V Tr U
〉

=
〈

Tr V Tr U
〉

= y−2 + 〈Tr V 〉20 − 1,
〈

Tr V Tr V
〉

=
〈

Tr V Tr V
〉

= y−2x2(p−1) 〈Tr V 〉0 + x2p 〈Tr V 〉0 (〈Tr V 〉0 − 1),
〈

Tr V Tr V
〉

=
〈

Tr V Tr V
〉

= y−2x−2(p−1) 〈Tr V 〉0 + x−2p 〈Tr V 〉0
(〈

Tr V
〉

0 − 1
)

,

〈

Tr V Tr V Tr U
〉

=
〈

Tr V Tr V Tr U
〉

= 2y−2 〈Tr V 〉0 + x2 〈Tr V 〉0 (〈Tr V 〉0 − 1)

+ x−2(〈Tr V
〉

0 − 1
)

. (C.14)
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