
c© 2005 International Press
Adv. Theor. Math. Phys. 8 (2005) 861–893

On the Structure of

Asymptotically de Sitter and

Anti-de Sitter Spaces

Michael T. Anderson

Department of Mathematics
SUNY at Stony Brook

Stony Brook, NY 11794-3651

anderson@math.sunysb.edu

Abstract

We discuss several aspects of the relation between asymptotically AdS
and asymptotically dS spacetimes including: the continuation between
these types of spaces, the global stability of asymptotically dS spaces and
the structure of limits within this class, holographic renormalization, and
the maximal mass conjecture of Balasubramanian-deBoer-Minic.

1 Introduction.

This paper deals with several distinct issues on local and global aspects
of asymptotically de Sitter spaces and their anti-de Sitter or hyperbolic
counterparts. Besides their intrinsic interest in classical general relativity,
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asymptotically de Sitter spaces arise frequently in the context of inflationary
models and issues related to the cosmic no-hair conjecture [1], [2]. Moreover,
they are of current interest in attempts to understand a possible dS/CFT
correspondence [3], [4] analogous to the much more rigorously established
AdS/CFT correspondence [5]-[7].

Asymptotically de Sitter (dS) spaces are understood here to be vacuum
solutions to the Einstein equations with Λ > 0 which to the future (or past),
have geometry asymptotically approaching that of pure de Sitter space lo-
cally. Globally, these spaces may be quite different than de Sitter; in partic-
ular future space-like infinity I+ may have arbitary topology and induced
metric. Asymptotically anti-de Sitter (AdS) or hyperbolic (AH) spaces are
understood in the same sense; see §2 for the precise definitions.

It has long been known that there is a formal correspondence between
asymptotically dS spaces and AH spaces, based on viewing each as a hy-
perboloid in a vacuum (Λ = 0) spacetime of one higher dimension. The
continuation from AH to dS takes place across the null cone of a given
point, as in the usual hyperboloidal decomposition of Minkowski space, cf.
[8], and [9]-[11] for instance for more recent discussion. In §2, this formal
process is made exact, and gives a rigorous form of Wick rotation or con-
tinuation between these classes of metrics; in addition, some ambiguities in
the choice of “analytic continuation” are addressed.

Perhaps the most significant classical result on de Sitter (dS) spacetimes
is the stability result of Friedrich [12]; in 3 + 1 dimensions, the class dS± of
globally hyperbolic dS spacetimes which have smooth and compact future
and past conformal infinity I+ and I−, is open in a natural topology. Thus,
Cauchy data of any given (M, g) ∈ dS± may be perturbed in a small but
arbitrary way, giving rise to spacetimes (M, g̃) in dS± with the same overall
global structure as (M, g). One expects such a result is also true in higher
dimensions, but a proof of this is lacking.

In §3, we describe the structure of the possible limits of spaces in dS±, i.e.
elements in the boundary ∂(dS±) = dS± \dS±, at least in 3+1 dimensions.
All limits are globally hyperbolic and geodesically complete and can be one
of three general types; (I) a pair of spaces (M, g+) and (M, g−), infinitely
far apart, and with fully degenerate I− or I+ respectively, or (II) a single
space (M, g+) with partially or fully degenerate I−, or (III), a single space
(M, g−) with partially or fully degenerate I+. In particular, singularities
occur only for Cauchy data “outside” the boundary ∂(dS±). This result is
also valid for all dimensions in which Friedrich’s theorem holds.
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From several perspectives, the most natural limits are those of type I.
As discussed in §4, such limit behavior occurs very clearly and explicitly in
the family of dS Taub-NUT metrics on R× S3, (and its higher dimensional
generalizations). No examples are known where the limits are of type II or
III.

In §5, we discuss holographic renormalization in the dS context, and relate
the AH, AdS, and dS holographic stress-energy tensors and conserved quan-
tities, cf. [13]-[15], [9], [11]. In [15], an interesting maximal mass conjecture
was proposed for spaces in dS+, in analogy to positive mass theorems in
AdS and AH spaces, and also in analogy to entropy bounds in dS+ spaces,
[16]. Thus, it was conjectured that any space (M, g) in dS+ has holographic
mass m satisfying

(1) m ≤ m0,

where m0 is the mass of pure de Sitter space (in static coordinates), unless
(M, g) has a cosmological singularity. In particular, any space (M, g) ∈ dS±
should satisfy (1.1). We refer to [17]-[20] for prior work and commentary on
this conjecture.

However, we find in §5 general counterexamples to this conjecture in 3+1
dimensions. Depending on the exact formulation of the conjecture, coun-
terexamples are also found in n + 1 dimensions, for all n odd, and there is
strong evidence that it fails also for all n even.

I would like to thank V. Balasubramanian, J. de Boer and D. Minic for
interesting correspondence on these issues.

2 Asymptotic Analytic Continuation.

Let M be the interior of a compact manifold M̄ with boundary ∂M . A
complete Riemannian metric g on M is conformally compact if there is a
defining function ρ : M̄ → R such that the compactified metric

(1) ḡ = ρ2g

extends smoothly to a Riemannian metric on ∂M. A defining function ρ
satisfies ρ ≥ 0, ρ−1(0) = ∂M and dρ 6= 0 on ∂M. The induced metric
γ = ḡ|∂M is called a boundary metric for g. Since defining functions are
unique only up to multiplication by positive functions, only the conformal
class [γ] is an invariant of (M, g) and [γ] is called the conformal infinity of
(M, g). we will always assume that M is connected, although the boundary
∂M may be connected or disconnected.
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If g is an Einstein metric on M , so that

(2) Ricg − R

2
g + Λg = 0,

then it is easy to see that if Λ > 0, or Λ = 0, then (M, g) cannot be
conformally compact; in the former case ∂M = ∅ while in the latter case
one has at best ∂M = {pt}. Thus, Λ < 0 and such metrics are called
asymptotically hyperbolic (AH) or asymptotically Euclidean anti de Sitter
(EAdS) Einstein metrics. As usual, define the length scale l by Λ = −n(n−
1)/2l2.

A compactification ḡ = ρ2g as in (2.1) is geodesic if ρ(x) = distḡ(x, ∂M).
Such compactifications are especially useful for computational purposes, and
for the remainder of the paper we work only with geodesic compactifications.
Each choice of boundary metric γ ∈ [γ] determines a unique geodesic defining
function ρ. If l 6= 1, it is convenient to work with the dimensionless function
ρ = distḡ(∂M, ·)/l.

The Gauss Lemma gives the splitting

(3) ḡ = l2(dρ2 + gρ), g = (
l

ρ
)2(dρ2 + gρ),

where gρ is a curve of metrics on ∂M . In the following, it is convenient to
work in the scale l = 1, (which can always be achieved by rescaling (2.3).
The Ricatti equation associated to the splitting (2.3) then states

A′ +A2 +RT = 0,

where A is the 2nd fundamental form of the level sets S(ρ) of ρ, A′ = ∇TA
with T = ∇ρ and RT (V ) = 〈R(T, V )V, T 〉; all computations here are with
respect to ḡ. Using this and the Gauss equations for S(ρ) ⊂ (M, ḡ) together
with standard formulas for the curvatures of conformally equivalent metrics,
one obtains for geodesic compactifications the relation

(4) ρg̈ρ− (n− 1)ġρ− 2Hgρ = ρ[2Ricρ−Hġρ + (ġρ)2− 2(Ricg +n|dρ|2g)T ],

where ġρ = LT gρ = 1
2A, Ricρ is the intrinsic Ricci curvature of the level sets

S(ρ) of ρ, H = trA is the mean curvature of S(ρ) in (M, g) and T denotes
orthogonal projection onto the level sets S(ρ).

In particular, when g is Einstein, Ricg + n|dρ|2g = 0 and (2.4) gives

ρg̈ρ − (n− 1)ġρ − 2Hgρ = ρ[2Ricρ −Hġρ + (ġρ)2],(5)

ρḢ −H = ρ|A|2,
δA = −dH,

where the latter two equations arise from the trace of the Ricatti equation
and the Gauss-Codazzi equations respectively.
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Setting g0 = g(0) = γ, one has g(1) = ġρ|ρ=0 = 0. By differentiating (2.5)
with respect to ρ inductively, one obtains a formal series expansion for the
curve gρ; this is the Fefferman-Graham expansion [21]. The exact form of
the expansion depends on whether n is odd or even. If n is odd, then

(6) gρ ∼ g(0) + ρ2g(2) + ....+ ρn−1g(n−1) + ρng(n) + ρn+1g(n+1) + ...

This expansion is even in powers of ρ up to order n − 1. The coefficients
g(2k), k ≤ (n−1)/2 are locally determined by the boundary metric γ = g(0);
they are explicitly computable expressions in the curvature of γ and its
covariant derivatives. The last two equations in (2.5) imply that the term
g(n) is transverse-traceless, i.e.

(7) trγg(n) = 0, δγg(n) = 0,

but g(n) is otherwise undetermined by γ; it depends on the global structure
of the AH Einstein metric (M, g). For k > n, terms g(k) occur for both k
even and odd; the term g(k) depends on two boundary derivatives of g(k−2).

If n is even, one has

(8) gρ ∼ g(0) + ρ2g(2) + ....+ ρn−2g(n−2) + ρng(n) + ρn log ρ h(n) + ...

Again the terms g(2k) up to order n− 2 are explicitly computable from the
boundary metric γ, as is the transverse-traceless coefficient h(n) of the first
log ρ term. The term h(n) is an important term for the corresponding CFT
on ∂M ; up to a constant, it is the metric variation of the conformal anomaly,
cf. [14], (or also [22]). The term g(n) satisfies

(9) trγg(n) = τ, δγg(n) = δ,

where τ and δ are explicitly determined by the boundary metric γ and its
derivatives, but again g(n) is otherwise undetermined by γ. The series (2.8)
is even in powers of ρ, and terms of the form ρk(log ρ)l appear at order
k > n. Again the coefficients g(k) and h(k) depend on two derivatives of
g(k−2) and h(k−2). The expansions (2.6) and (2.8) of course depend on the
choice of boundary metric γ ∈ [γ]. However, transformation properties of the
coefficients g(n) and h(n) under conformal changes are readily computable,
cf. [14], [23].

Mathematically, the expansions (2.6) and (2.8) are formal, obtained by
compactifiying the Einstein equations and taking iterated Lie derivatives of
ḡ at ρ = 0. If ḡ ∈ Cm,α(M̄), then the expansions hold up to order m + α.
However, boundary regularity results are needed to ensure that if an AH
Einstein metric g with boundary metric γ satisfies γ ∈ Cm,α(∂M), then
the compactification ḡ ∈ Cm,α(M̄). These have recently been established
in general in [24] for n = 3, and in [25] for n ≥ 3 in case of C∞ boundary
metric γ.
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In sum, an AH Einstein metric is formally determined near ∂M by g(0)

and g(n). The term g(0) corresponds to Dirichlet boundary data on ∂M,
while g(n) corresponds to Neumann boundary data, (in analogy with the
scalar Laplace operator). Thus, for global AH Einstein metrics defined on
a compact manifold with boundary M̄ = M ∪ ∂M , the correspondence

(10) g(0) → g(n)

is analogous to the Dirichlet-to-Neumann map for harmonic functions. As
discussed in §5, the term g(n) is essentially the (renormalized) Brown-York
quasilocal stress-energy tensor of (M, g) and corresponds to the expectation
value of the stress-energy tensor of the dual CFT on ∂M in all known cases.
However, the map (2.10) per-se is only well-defined if there is a unique AH
Einstein metric with boundary data γ = g(0). This occurs in some situations,
but fails in others.

On the other hand, the expansions (2.6) and (2.8) are completely local,
both in the distance to the boundary ρ, and tangentially on ∂M . If one
restricts only to local considerations, then the free data in the expansion
are g(0) and g(n), subject to the constraint equations (2.7) and (2.9). Of
course arbitrarily given g(0) and g(n) will not correspond to globally smooth
solutions on a compact manifold M̄ .

Next we turn to Lorentzian metrics. The definition of a conformal com-
pletion for Lorentz metrics is similar, although more subtle, than the Rie-
mannian case due to the causal structure and the common occurence of
singularities. Note however that for local considerations, such as the com-
putation of the coefficients g(k) in the expansions (2.6) or (2.8), global issues
are irrelevant.

As is well-known, the structure of the boundary of a conformal completion
depends on the sign of Λ. If Λ < 0, the AdS case, then ∂M = R × ∂Σ,
with γ a Lorentz metric. For simplicity, we will always assume that ∂Σ
is compact and, abusing notation slightly, call (M, g) conformally compact
if the definition (2.1) holds with ∂M of the form above. Thus, ∂Σ is the
conformal boundary of a space-like slice Σ in (M, g), while ∂M = I is
timelike. Note that I is not necessarily connected, as is the case for instance
for the AdS Schwarzschild metric.

If Λ > 0, the dS case, then (∂M, γ) is a Riemannian manifold, represent-
ing the spatial behavior at future or past infinite times. Thus, ∂M may have
two space-like components I+, I− representing future and past conformal
infinity respectively, or possibly only one component, I+ or I−. The defini-
tion (2.1) holds without change in this situation. However, the compactness
of ∂M precludes the existence of (most) singularities in (M, g), and so many



MICHAEL T. ANDERSON 867

important solutions are not conformally compact. We will say that (M, g)
is partially conformally compact if ∂M is open and non-empty. Note that
γ ∈ [γ] may then either be complete or incomplete.

If Λ = 0, the flat or Minkowski case, then (∂M, γ) is null (degenerate),
of the form ∂M = R × ∂Σ. Usually ∂Σ is taken to be compact, and repre-
sents the boundary at infinity of a null-hypersurface in (M, g). The R fac-
tor parametrizes null geodesics, and again ∂M may have two components,
I+, I−.

Consider now the expansions (2.6) or (2.8) in these situations.

I. Suppose Λ < 0, the AdS case. Then (M, g) is spatially non-compact
and conformal infinity (∂M, γ) is Lorentzian; the vector field ∂ρ = ∇ρ is
space-like. All of the discussion (2.3)-(2.9) above holds without change in
this setting; the only difference is that gρ is curve of Lorentz metrics on
S(ρ).

II. Suppose Λ > 0, the dS case. Then conformal infinity (∂M, γ) has
components I+, I− or both. There is no geodesic defining function ρ for
both I+ and I− simultaneously; instead one has ρ = ρ+ or ρ = ρ−. In both
situations, ∂ρ is time-like, and ∂ρ = −∇ρ. Thus ∂ρ is past directed near I+

and future directed near I−.

Since |dρ|2 = −1, (or −l−2), (2.5) changes to its negative, i.e.

(11) ρg̈ρ − (n− 1)ġρ − 2Hgρ = −ρ[2Ricρ −Hġρ + (ġρ)2].

This leads to an expansion of the form (2.6) or (2.8) exactly as in the AH
or EAdS case; for n = 3 this expansion is due to Starobinsky [26], predating
the work of Fefferman-Graham. To compare these expansions, suppose

(12) gdS(0) = gAH(0) .

Then (2.5) and (2.12) immediately give gdS(1) = gAH(1) = 0, while gdS(2) = −gAH(2) ,
(when n > 2). Similarly, for 2k < n,

(13) gdS(2k) = (−1)kgAH(2k).

Recall that the transverse-traceless part of the term g(n) is undetermined;
this occurs on both the AH and dS sides. The natural relation between gAH(n)

and gdS(n) is to set

(14) gdS(n) = ±gAH(n) .

However, there appears to be no compelling reason to choose one sign over
the other. The continuation of pure hyperbolic space to pure de Sitter space,
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(in static coordinates), requires

(15) gdS(2) = −gAH(2) , for n = 2, and gdS(4) = gAH(4) , for n = 4,

but imposes no restrictions for other n. Based on the examples discussed in
§4, we choose

(16) gdS(n) = ±gAH(n) ,

where + is chosen if n ≡ 0, 1 (mod 4), while − is chosen if n ≡ 2, 3 (mod 4);
see also Remark 2.2 for the opposite choice. The coefficients of the AH and
dS expansions are then related by

(17) gdS(k) = ±gAH(k) and hdS(n) = (−1)n/2hAH(n) ,

for k > n, where again + occurs if k ≡ 0, 1 (mod 4), while − occurs if
k ≡ 2, 3 (mod 4); see the Appendix for further details.

Thus, one has a formal correspondence between AH and dS solutions of
the Einstein equations, given by

(18) gAH = (
l

ρ
)2(dρ2 + gAHρ )⇐⇒ gdS = (

l

ρ
)2(−dρ2 + gdSρ ),

where the formal expansions of gAHρ and gdSρ have coefficients related by
(2.17). The metrics gAH and gdS can be formally obtained from each other
by changing ρ to iρ and l to il in gAH , and dropping all resulting i coefficients
(at odd powers of ρ) in the expansions for gdSρ . Note that a given AH metric
generates a de Sitter metric gdS with either a future conformal infinity I+

or a past conformal infinity I−, but not necessarily both simultaneously.

To actually construct or prove the existence of metrics from this corre-
spondence, one needs the formal expansions to converge to gρ.

Theorem 2.1. There is a 1-1 correspondence between Cω conformally com-
pact Riemannian AH Einstein metrics with boundary data (γ, g(n)), and Cω

conformally compact Lorentzian dS Einstein metrics with past (or future)
boundary data (γ, g(n)), given by (2.18). Thus, given any real-analytic met-
ric γ and any real-analytic symmetric bilinear form g(n) on an n-manifold
∂M , satisfying the constraint conditions (2.7) or (2.9), there exist unique
AH Einstein and dS Einstein metrics with boundary data (γ, g(n)), defined
in a thickening of ∂M , and related by the correspondence (2.18).

Proof: When n = 3, the existence and convergence of the expansions on the
AH and dS sides has been proved in [24], and the discussion above then gives
the correspondence (2.18). For general n, the existence and convergence of
the expansions has recently been proved in [27] and [28].
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This correspondence thus gives a rigorous form of “Wick rotation” be-
tween these types of Einstein metrics. The construction can be realized
geometrically by embedding the spaces (M, gAH) and (M, gdS) into a self-
similar vacuum spacetime (Λ = 0) of one higher dimension, exactly as the
embeddings of the hyperbolic and de Sitter metrics as hyperboloids in flat
Minkowski space. The transition from AH geometry to dS geometry takes
place across the future or the past light cone of a fixed point.

However, this construction is not, strictly speaking, an analytic continua-
tion of AH metrics to dS metrics. When n is odd, the compactified metrics
gAH and gdS are only Cn/2 across conformal infinity, in the generic case when
g(n) 6= 0. If n is even and the conformal anomaly stress-energy h(n) is non-
vanishing, the compactifcations gAH and gdS are Cn/2−ε across conformal
infinity.

The Einstein equations on the AH side form an elliptic system of PDE’s,
in a suitable gauge. Thus, at least formally, one has a well-defined Dirich-
let problem at infinity. For global solutions defined on a compact manifold
with boundary M̄ = M∪∂M , the stress-energy term g(n) is thus determined
(formally) by the boundary metric γ = g(0). On the dS side, the Einstein
equations form, again in suitable gauge, a hyperbolic system of PDE. Here
the terms g(0) and g(n) form initial or Cauchy data for the evolution equa-
tions. Thus, they are freely prescribed, subject to the constraints (2.7) or
(2.9) and independent of each other; of course arbitrary data g(0), g(n) may
not give rise to global solutions.

This distinction is reflected in the behavior of symmetries of the bound-
ary metrics at conformal infinity. If G is a connected group of conformal
isometries of (∂M, [γ]), then G extends to a group of isometrics of any AH
Einstein filling metric (M, g) with boundary data (∂M, [γ]), cf. [29]. This
is of course not the case on the dS side. Symmetries of γ do not necessarily
extend to symmetries of gdS ; only isometry groups preserving both γ and
g(n) extend to isometries of gdS .

Remark 2.2. As noted above in the proof of Theorem 2.1, when n is odd
and γ is real-analytic, the series (2.6) converges. Hence, one can continue
an AH Einstein metric (M, g) to the region ρ < 0, obtaining an AH Einstein
metric g̃ “on the other side” of ∂M . One then has

(19) g̃(0) = g(0) and g̃(n) = −g(n).

For example, when n = 3, and for ρ > 0, the expansion for g̃ has the form

(20) g̃ρ = g(0) + ρ2g(2) − ρ3g(3) + ρ4g(4) − ρ5g(5) + ...,
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with ρ > 0. This has the dS continuation

(21) g̃dSρ = g(0) − ρ2g(2) + ρ3g(3) + ρ4g(4) − ρ5g(5) + ...

Here, and for all n odd, one thus has the opposite signs from (2.17), for k
odd; the series for g̃dSρ is obtained from that of gAHρ by replacing ρ by −iρ,
(instead of ρ→ iρ).

However, in all known examples, if (M, g) is a globally smooth AH Ein-
stein metric, the continuation g̃ has singularities; for example the positive
mass AH Schwarzschild metrics continue in ρ < 0 to the corresponding
negative mass AH Schwarzschild metrics, cf. also [30] for other examples.

When n is even, the term log ρ cannot be continued to ρ < 0, and so one
does not obtain an analogous g̃ in this case. This also suggests that (2.16)
is the right sign choice for n even.

Remark 2.3. Theorem 2.1 also holds for the continuation of AdS, (i.e
Lorentzian) Einstein metrics. However, the continuation is then a solution
of the Einstein equations with Λ > 0, and with signature (2, n − 1), i.e.
(− − + + ...+). In some circumstances, this can be Wick rotated to a
Lorentzian metric, just as an AdS metric can sometimes be Wick rotated to
an AH metric.

Remark 2.4. The analogue of the expansion (2.6) or (2.8) when Λ = 0 is
much more complicated, and goes back to work of Bondi and Sachs; cf. [31]
for a recent discussion.

3 Global structure of dS spaces.

Let dS+ be the space of de Sitter spacetimes, i.e. vacuum solutions of the
Einstein equations with Λ > 0, which are conformally compact to the future;
thus (I+, γ+) is a compact Riemannian manifold, without boundary, with
γ+ ∈ [γ+]. The same definition holds for dS−. Let dS± be the space of de
Sitter spacetimes which are globally conformally compact. If (M, g) ∈ dS±
is globally hyperbolic, then it is easy to see that M is geodesically complete
and topologically a product of the form M = R×Σ, with Cauchy surface Σ
diffeomorphic to I+ and I−. It will always be assumed that spaces in dS±
are globally hyperbolic.

Remark 3.1. A spacetime (M, g) in dS+ ∩ dS− is necessarily globally hy-
perbolic in a neighborhood of I+ and I−, and it is natural to conjecture
that all of (M, g) is globally hyperbolic. However, this is an open problem.
Apriori, there may be singularities sandwiched between the Cauchy surfaces
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near I+ and I− which don’t propagate to either I+ or I−. Although phys-
ically unlikely to occur, mathematically such solutions have not been ruled
out, cf. [32] for further discussion.

For (M, g) ∈ dS+, one has the data at infinity (g+
(0), g

+
(n)) on I+, from

the Fefferman-Graham or Starobinsky asymptotic expansion. At least for
analytic data, and up to a natural equivalence, these uniquely determine,
up to isometry, the maximal globally hyperbolic solution (M, g). Thus, let

(1) C+ ⊂Met(I+)× S2(I+),

be the subset consisting of pairs (γ, g(n)) such that (2.7) or (2.9) holds,
depending on whether n is odd or even. Let A+ = C+/ ∼, where γ1 ∼ γ2

if there exists σ : I+ → R such that γ2 = e2σγ1, and (g1)(n) ∼ (g2)(n) if
(g2)(n) = e−nσ(g1)(n) when n is odd; see [14], [23] for the more complicated
relation on g(n) if n is even.

Then in any dimension, any real-analytic data (γ, g(n)) ∈ A+ determine
a unique solution up to isometry in dS+, by [27] or [28]. When n = 3, so
that the spacetime is 4-dimensional, a result of Friedrich [12] shows that Ck

data in A+ determine a unique solution in dS+, for k ≥ 7 for instance. Of
course the same results hold with C− and dS−.

When n = 3, a basic result of Friedrich [12] is that dS± is open in the
Ck topology, i.e. given any solution (M, g0) ∈ dS±, any sufficiently small
perturbation of the initial data in A− at I−, (or of the final data in A+ at
I+) gives rise to a global solution (M, g) in dS± near (M, g0). This applies
in particular to de Sitter space itself, so any small perturbation of the pure
dS data (γS3(1), 0) on I+ or I− gives rise to a complete solution (M, g) in
dS±.

One certainly expects Friedrich’s theorem to be true in all dimensions, but
a rigorous mathematical proof of this is lacking. It would suffice to prove
a Cauchy stability theorem for the degenerate (Fuchsian) system of PDE
obtained by conformally compactifying the Einstein equations, as in (2.5).
For analytic boundary data say at I+, Fuchsian versions of the Cauchy-
Kovalevsky theorem give the existence of the analytic or polyhomogenous
solutions (M, g) ∈ dS+ mentioned above. However, it is well-known that in
general, solutions given by the Cauchy-Kovalevsky theorem do not neces-
sarily vary continuously with the initial data.

In the opposite direction, there are two general results, valid in all di-
mensions, restricting the boundary data on I+ or I− of metrics in dS±.
First, it is proved in [33], [34] that if (M, g) ∈ dS+ has a representative
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metric γ+ ∈ [γ+] of negative scalar curvature, Rγ+ < 0, (or Rγ+ ≤ 0),
then I− = ∅, so that there is not even a partial compactification at past
infinity. In fact if γ+ is chosen to have constant negative scalar curvature
R < 0, there is an upper bound ρ0 on the distance to I+ in the geodesic
compactification,

(2) ρ ≤ ρ0 =
4n(n− 1)
|R| .

Second, the following interesting result has been proved in [33]; if (M, g) ∈
dS+ and |π1(I+)| = ∞, then again I− = ∅. When n = 3, the only known
3-manifolds with finite fundamental group are spherical space-forms S3/Γ.
Perelman’s work [35] implies that in fact these are the only such 3-manifolds.
Up to finite covering projections, it follows that one must have I+ = S3 and
M = R× S3 for spaces in dS±, regardless of the data in C+.

Consider the (gravitational) scattering map

(3) S : A− → A+,

S[γ−, g−(n)] = [γ+, g+
(n)].

Here g±(n) are taken with respect to the future normal direction; hence g+
(n)

differs in sign from the term g(n) in (2.6) or (2.8), since at I+, ∂ρ is past
directed.

When n = 3, using either the linearized conformal field equations [12]
or the linearized Bach equations, cf. [25], on the compactified (unphysical)
metric ḡ, it is straightforward to prove that DgS is an isomorphism, for any
g ∈ dS±. This is because the linearized equations at ḡ are a linear system
of wave equations, (in a suitable gauge), on a compact manifold with finite
time interval. Again, one expects such a result to be true in all dimensions,
but this remains to be proved.

For n = 3, it follows that one may locally parametrize dS± by conformal
classes of metrics (γ−, γ+) on I−×I+ instead of A− or A+. Further, ||DSg||
is bounded, with a bound depending on g. However, as will be seen below
and in §4, ||DgS|| blows up on bounded sequences of data in A− or A+, or
I− × I+.

It is of interest to examine the structure of the closure of the open set
dS±. What kind of spaces lie in ∂(dS±) = dS± \ dS±, where the closure
is taken in the smooth topology induced via (3.1)? Recall that solutions in
dS± are conformally compact, and so conformally equivalent to a smooth
bounded metric on the product I×Σ. Generically, such metrics are ”tall” in
the sense of [36], [37], in that they contain Cauchy surfaces entirely visible
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to observers at sufficiently late times. A spacetime (M, g) ∈ dS+ (or dS−)
is called “infinitely tall” if it is conformally equivalent to a complete, (but
not necessarily product), metric on [0,∞)×Σ with {0} ×Σ = I+, (or I−).

Theorem 3.2. An element in the boundary ∂dS± of dS±, for n = 3, is
given by exactly one of the following three configurations:

I. A pair of solutions (M, g+) ∈ dS+ and (M, g−) ∈ dS−, each geodesi-
cally complete and globally hyperbolic. One has I− = ∅ for (M, g+) and
I+ = ∅ for (M, g−). Both solutions (M, g+) and (M, g−) are infinitely tall,
and ”infinitely far apart”.

II. A single geodesically complete and globally hyperbolic solution (M, g) ∈
dS+, either with a partial compactification at I−, or I− = ∅.

III. A single geodesically complete and globally hyperbolic solution (M, g) ∈
dS−, either with a partial compactification at I+, or I+ = ∅.

Proof: One can work at either I+ or I−, and so we choose I+. Given data
(g+,i

(0) , g
+,i
(3) ) ∈ C+ giving solutions (M, gi) in dS±, suppose g+,i

(0) → g+
(0), and

g+,i
(3) → g+

(3) in the Ck, (k ≥ 7 for instance), topology on C+, (or analytic
topology for analytic data). The induced data on I− may either converge
to a limit, (in a subsequence), or diverge to infinity in C−.

Suppose first the data on I− converge to a limit, so that

(4) g−,i(0) → g−(0), and g−,i(3) → g−(3).

Of course, by definition, the metrics (M, gi) do not converge to a limit
(M, g) ∈ dS±.

By Friedrich’s theorem [12], there exist maximal globally hyperbolic dS+

and dS− solutions (M, g+) and (M, g−), defined at least for (T,∞) and
(−∞,−T ) respectively, which realize the limit boundary data at I+ and
I−. Here T = − log ρ0, where ρ± is the geodesic defining function for I+ or
I−, and ρ± = ρ0 is small. Further, on (ρ+)−1(T,∞) and (ρ−)−1(−∞,−T ),
the metrics gi → g+ and gi → g− respectively. (This fact is the only place
in the proof where the condition n = 3 is needed).

Let Si(T+) be the T+ level set of t+ = − log ρ+ with respect to gi and
similarly Si(T−) the T− level set of t− = log ρ−. We claim that the geodesic
distance between Si(T−) and Si(T+) diverges to ∞, as i → ∞, i.e. all
timelike maximal geodesics joining Si(T−) to Si(T+) have length diverging
to ∞ as i → ∞. To see this, the Cauchy data of gi at Si(T−) and Si(T+)
converge to the Cauchy data of g− at S(T−) and the Cauchy data of g+
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at S(T+) respectively. Since the solutions gi exist from time T− to T+,
(and much further), the Cauchy stability theorem for the vacuum Einstein
equations implies that the limit solution g exists between S(T−) and S(T+)
if the distance between Si(T−) and Si(T+) remains uniformly bounded, (at
all points). Hence, g+ and g− are part of a global solution (M, g) ∈ dS±,
giving a contradiction. It follows that the limit solutions g+ and g− are
infinitely far apart.

Exactly the same reasoning, choosing suitable T− or T+, proves that each
maximal globally hyperbolic spacetime (M, g+) and (M, g−) is geodesically
complete.

Next, we need to show that g+ has I− = ∅. (The argument that I+ = ∅
for g− is the same). This will also prove that g+ is infinitely tall. Suppose
instead I− 6= ∅, so that there is a least a partial compactification I− of g+

at past infinity.

For i sufficiently large, the metrics gi are (arbitrarily) close to the limit
g+ on (arbitrarily) large regions of g+. Of course, by the analysis above,
the metrics gi extend ”much further” to the past of g+. Fix i large for the
moment, and let ρ = ρ−i be the geodesic defining function for past infinity
(I−, g−,i(0),) of (M, gi). Let H be the mean curvature of the level sets of ρ
with respect to gi. By [34], the ratio

(5)
3−H
ρ2

=
H̄

ρ

is monotone decreasing in ρ. Here H̄ is the mean curvature of the same level
sets with respect to the compactified metric ḡ = ḡi as in (2.1); H is taken
with respect to the future, while H̄ is taken with respect to the past unit
normal, so H > 0 corresponds to expansion to the future. Let S(ρ) denote
the levels sets of ρ.

Now choose T = Ti large enough so that S(T ) ⊂ (M, gi) is partially close
to a domain in g+ near past infinity I− in g+. Thus there is a domain
U ⊂ S(T ) ⊂ (M, gi) such that (U, ḡ+) is close to a domain U∞ ⊂ (I−, g−(0)).
Since ρ is extremely large on S(T ), the ratio in (3.5) is very small. However,
(3.5) holds for any geodesic compactification and one can renormalize ρ by
sending ρ → ερ = ρ̃. This change of compactification makes the metric
g−,i(0) on I− very small; g̃−,i(0) = ε2g−,i(0) . Setting ε = T−1 then gives ρ̃ = 1 on
S(T ). The numerator 3 −H in (3.5) is of course “scale-invariant”; it does
not depend on scale of ρ.
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It follows now from the choice of T that the ratio

(6)
3−H
ρ̃2

in (3.5) is very small; it can be made arbitrarily small by choosing i suffi-
ciently large and T sufficiently large so that U ⊂ S(T ) is sufficiently close
to U∞. Now the monotonicity of (3.5), (applied on each gi), implies that as
ρ̃ increases, the ratio (3.6) becomes even smaller.

It follows that in the limit, the domain in g+ formed by ρ-curves between
I− and I+ has H ≡ (n−1). Via standard arguments with the Raychaudhuri
equation, it follows that this region is isometric to pure de Sitter space. Since
g+ is globally hyperbolic and geodesically complete, it then follows that g+

is globally isometric to pure de Sitter space. Hence, the limit data (g+
(0), g

+
(3))

equals the data (γ0, 0) of pure de Sitter space, a contradiction.

Next suppose (3.4) fails, so that either gi,−(0) or gi,−(3) diverges to ∞ on
I−. The same reasoning as before shows that the limit (M, g) ∈ dS+ is
geodesically complete and globally hyperbolic. In this setting, one then has
only a partial past infinity I−, given by the domain (possibly empty) on
which both gi,−(0) and gi,−(3) converge to the limit (g−(0), g

−
(3)). This situation

then gives Case II. Case III is obtained in the same way, by interchanging
I− with I+.

Exactly the same proof holds in all dimensions if an openness or Cauchy
stability result holds, as in the case n = 3.

Examples discussed in §4, (the Taub-NUT curve) show that the configura-
tion in Case I does occur. On the other hand, there are no known examples
where the configuration in Case II or III above occurs, and it would be
interesting to know if such configurations can actually arise or not.

It would also be interesting to prove that the completion dS± is compact
in the topology on A+ for instance, i.e. if the final data (γ+, g+

(n)) on I+

are sufficiently large, then the corresponding solution cannot be in dS±. The
condition that (M, g) ∈ dS± implies Rγ+ > 0, (and Rγ− > 0), is one measure
of this. Finally, one would like to know if the space dS± is connected, as a
domain in A+ for instance.

These questions correspond to the picture that dS± is given by a con-
nected, bounded domain in A+, (or A−), with a wall or boundary described
by Theorem 3.1. For initial data on A− for instance, one expects the for-
mation of black holes and big bang type singularities outside the wall.
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Finally, consider limits (M, g) ∈ dS+ of dS± which have I− = ∅. For sim-
plicity, assume n = 3, so that M is then topologically of the form R × S3,
(in a finite cover). Thus, as T → −∞, the Cauchy surfaces S(T ) degenerate
when compactified. The simplest example of a diverging curve metrics on
S3 is a collapsing family, where the lengths of the circle fibers S1 in the
Hopf fibration S3 → S2 have length converging to 0. This type of degen-
eration occurs with uniformly bounded curvature tensor, and is illustrated
concretely on the Taub-NUT curve, discussed below.

4 Examples.

In this section, we discuss several classes of examples illlustrating the work
in §3.

Example 4.1. Let gTN be the curve of AH (or EAdS) Taub-NUT metrics
on the 4-ball B4, cf. [38] for instance, given by

(1) gTN = l2E[
(r2 − 1)
F (r)

dr2 +
F (r)

(r2 − 1)
θ2

1 +
(r2 − 1)

4
gS2(1)],

where E ∈ (0,∞) is any constant, r ≥ 1, and
(2)
F (r) = Er4+(4−6E)r2+(8E−8)r+4−3E = (r−1)2{E(r+1)2+4(1−E)} > 0.

Here θ1 ∈ [0, 2π] parametrizes the circle S1 in the Hopf fibration S3 → S2.
The nut charge description of gTN , cf. [39] for instance, given by

(3) gTN = V −1dr2 + V θ2
1 + (r2 − n2)gS2 ,

where

V (r) =
(r2 + n2)− 2mr + l−2(r4 − 6n2r2 − 3n4)

(r2 − n2)
,

is equivalent to (4.1) under the substitution r → nr, with n2 = l2E
4 , with

mass parameter m given by

(4) m =
l

2
E1/2(1− E).

The AH Taub-NUT metric is self-dual Einstein and has conformal infinity γ
given by the “Berger sphere” with S1 fibers of length β = 2πE1/2 ∈ (0,∞)
over S2(1

2). The scalar curvature Rγ of the boundary metric γ satisfies

R = 8− 2E.

Clearly γ is real-analytic, as is the geodesic compactification with boundary
metric γ. Since g is self-dual, [40] implies that the g(3) term in the expansion
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(2.6), (see also (5.3) below), is given by

(5) g(3) = 1
3 ∗ dRic,

wher Ric = Ricγ is viewed as a vector valued 1-form, d is the exterior
derivative and ∗ the Hodge ∗ operator, all with respect to γ. When E = 1,
gTN is the Poincaré metric.

The de Sitter continuation of gTN at I+ is the dS Taub-NUT metric on
R× S3, cf. [41] for instance, given by

(6) gTN = l2E[−(τ2 + 1)
A(τ)

dτ2 +
A(τ)

(τ2 + 1)
θ2

1 +
(τ2 + 1)

4
gS2 ],

where τ ∈ (−∞,∞) and

(7) A(τ) = Eτ4 − (4− 6E)τ2 − (8E − 8)τ + 4− 3E.

Again when E = 1, gdS is the (exact) de Sitter metric. Changing n → in,
r → iτ transforms (4.3) into the nut form of gTN .

The dS Taub-NUT metric gTN is complete and globally hyperbolic, with-
out singularities, exactly when A(τ) > 0, for all τ . A straightforward but
lengthy calculation shows this is the case if and only if

(8) E ∈ [
2
3
,
1
3

(2 +
√

3)].

For E in the range (4.8), there are no closed time-like curves, in contrast
to the AdS (or Λ = 0) Taub-NUT metric, which always have such curves.
(Friedrich’s theorem [12] also guarantees the existence of some interval |E−
1| < ε which has the same overall global structure of pure de Sitter space).

Consider first the situation E ∈ (2
3 ,

1
3(2 +

√
3)). Then both I+ and I−

are well-defined and gTN = gTN (E) ∈ dS±. Observe from the explicit form
of (4.6) that

(9) γ− = γ+ and g+
(3) = −g−(3);

here g+
(3) is taken with respect to the past timelike direction ∂ρ, while g−(3)

is taken with respect to the future timelike direction ∂ρ, Thus, even though
gTN is not time-symmetric when E 6= 1, there is no gravitational scattering
from past to future conformal infinity; from (3.3), one has

S = id,

on the Taub-NUT curve. The AH continuation of the dS Taub-NUT metric
at I− is the anti self-dual AH Taub-NUT metric (4.3), (due to the change
in orientation), with n replaced by −n, changing m to −m; this metric has
an isolated cone-like singularity at the origin {r = n}.
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Next consider the extreme values E− = 2
3 and E+ = 1

3(2 +
√

3), and
let τ− = −1, τ+ = (2 − √3). At E = E−, A(τ) ≥ 0 for all τ , with
A(τ) = 0 only at τ−. Moreover, τ− is a degenerate zero in that A′(τ−) =
0. Exactly the same remarks hold at E+ and τ+. At the extreme values
E±, the metric gTN = gTN (E±) is still geodesically complete and globally
hyperbolic. However, neither of these two metrics is in dS±. At E− for
instance, there are two solutions gTNp and gTNf , parametrized by (−∞, τ−)
and (τ−,∞) respectively, each complete and globally hyperbolic, with gTNp ∈
dS−, gTNf ∈ dS+, with same conformal infinities γ+ = γ− = γ(E−) on each
end. This situation corresponds of course to Case I in Theorem 3.1.

As one goes to future infinity in gTNp , or past infinity in gTNf , the spatial
metric degenerates, by collapsing the S1 fiber in the Hopf fibration to a
point, while the radius of the base S2 converges to (E−(τ2− + 1)/4)1/2. The
curvature of these metrics is uniformly bounded. Exactly the same structure
holds at E+.

The two extreme metrics gTNp and gTNf are analogous to extreme black
hole solutions. For E outside the range (4.8), A(τ) acquires up to 4 zeros, so
as τ ranges over all R, one has several copies of the Taub-NUT metrics glued
along horizons by analytic continuation; cf. [19] for a detailed description.

One expects that exactly the same behavior holds for all dS Bianchi IX
metrics, and it would be interesting to see if this is the case. The correspond-
ing AdS Bianchi IX metrics are also self-dual, and have been described in
detail in [30].

There are Taub-NUT metrics in higher (even) dimensions, cf. [19], [42],
and the discussion above holds in essentially the same form.

As a final remark, as E → ∞, the AH Taub-NUT metrics limit on the
Bergmann or complex hyperbolic metric on the unit ball in C2; the corre-
sponding conformal infinity is degenerate, cf. [43] for example. This limit
corresponds to taking Rγ → −∞, and hence by (3.2), there is no dS contin-
uation of the Bergmann metric.

Examples 4.2. The AH Schwarzschild metrics are a curve of metrics on
M = R2 × Sn−1 given by

(10) gSch = V −1dr2 + V dθ2 + (
r

l
)2gSn−1(l),

where

(11) V (r) = 1 + (
r

l
)2 − µ

rn−2
,
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Here r ∈ [r+,∞), where r+ is the largest root of V , and the circular pa-
rameter θ ∈ [0, β], β = 4πl2r+/(nr2

+ + (n− 2)l2), with µ = 2mG. It is easy
to see that the conformal infinity of gSch(m) is given by the conformal class
of the product metric γ on S1(β) × Sn−1(l). As a function of m ∈ (0,∞),
observe that β has a maximum value of β0 = 4πl2/(1 + l2)(n(n−2))1/2, and
for every m 6= m0, there are two values m± of m giving the same value of
β. Thus two distinct metrics have the same conformal infinity.

The de Sitter continuation of the AH Schwarzschild metric is not exactly
the dS Schwarzschild metric. Suppose first n = 3. Then the continuation
(at I+) is the dS Kantowski-Sachs metric on R× S1 × S2, given by

(12) gKS = −V −1dt2 + α2V dθ2 + t2gS2(l),

where

(13) V = V (t) = t2 − 1 +
µ

t
,

and we have set l = 1. Here α > 0 is a free parameter; a continuous
continuation from gSch to gKS then requires α = 1 but gKS is defined for
any α > 0; see [44] for a general discussion of these metrics.

By the result of Andersson-Galloway [33] discussed in §3, I− = ∅ for
these metrics, i.e. for the maximal globally hyperbolic developments. To
see this in detail, consider first the case µ = 0; note however that the AH
Schwarzschild metric gSch with µ = 0 is degenerate, i.e. not defined. The
metric gKS(0) is a quotient of a domain in pure de Sitter space by a discrete
Z-action. The Penrose diagram for pure de Sitter space is a square with the
t-level curves in (4.12) given by hyperbolas in the upper triangle when t > 1;
for t = 1, the level curves are the diagonals of the square. The Z-action is a
boost symmetry (of length determined by α ·β). Near the horizon t = 1, the
geometry is that of a round 2-sphere t2gS2(1) times the Misner spacetime,
cf. [8]. Thus, there are analytic continuations across the horizon, giving
rise to closed time-like curves. When µ > 0, these closed time-like curves
persist, but there is now in addition a singularity at t = 0. In both cases,
the maximal globally hyperbolic spacetime has I− = ∅.

The universal cover of the dS Kantowski-Sachs solutions are the dS Schwarzschild
metrics; in terms of (4.12), one just replaces the circular parameter θ ∈ [0, β]
by r ∈ R; then (4.12) becomes the usual form of the dS Schwarzschild metric
in the exterior of the cosmological horizon. When µ = 0, this gives the pure
de Sitter metric outside the horizon, while the extension inside the horizon is
de Sitter in static coordinates, given by, (interchanging t and r coordinates),

(14) gdS = −(1− r2)dt2 + (1− r2)−1dr2 + r2gS2(1).
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Future conformal infinity I+ has thus changed from the compact manifold
S1 × S2 to the universal cover R × S2. Of course, this can be conformally
changed to S3 \ {q ∪−q}, where q and −q are two antipodal points, and so
extended to S3, giving rise to the usual compactification of pure de Sitter in
global coordinates. The translation Killing field, (the analytic continuation
of the static time-like Killing field ∂t in (4.14)), then becomes a conformal
Killing field, (the dilatation field) on S3.

When µ > 0, one again has I+ = R × S2. However, the singularity
at t = 0 in (4.12) now propagates to future infinity, giving a 2-sphere of
0 radius times R at I+. Analytic continuation through horizons gives the
usual infinite Penrose diagram for the maximally extended dS Schwarzschild
metrics, cf. [1].

On the AH side, R2×S2 is simply connected, so the S1 at infinity cannot
be unwrapped. Consider however the AdS Schwarzschild metric obtained
from the AH Schwarzschild metric (4.10) by replacing θ by it;

(15) gSch = −V dt2 + V −1dr2 + r2gS2(1).

This static metric has conformal infinity of the form I+ = R × S2, so its
continuation across I+ is the dS Schwarzschild metric.

Now consider the same situation with n > 3. The continuation of an AH
Schwarzschild metric is again a Kantowski-Sachs metric of the form (4.12),
(with Sn−1(1) in place of S2(1)), and with V of the form

(16) V = V (t) = t2 − 1 +
µ

tn−2
.

The terms µ/rn−2 in (4.11) and µ/tn−2 in (4.16) essentially determine the
g(n) term in the Fefferman-Graham-Starobinsky expansion, or more precisely
its deviation from the g(n) term for pure AH or dS space. The relation (2.17)
of the g(n) terms in the AH and dS expansions then requires that

µdS = ±µAH ,
where + occurs if n ≡ 2, 3 (mod 4) and − occurs if n ≡ 0, 1 (mod 4). Thus,
the masses µ agree, and are both positive, only when n ≡ 2, 3 (mod 4). When
n = 4 for example, the positive mass AH Schwarzschild metric continues to
the negative mass Kantowski-Sacks metric and vice versa. These negative
mass metrics of course have (naked) curvature singularities; cf. §5 for further
discussion.

The discussion above generalizes easily to higher genus black holes, by
replacing the constant 1 by k, k = 0 or −1, and S2 with the torus T 2 or
a surface of higher genus Σg respectively. Moreover, these spaces may be
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replaced by Einstein metrics on any (n− 1)-dimensional manifold, cf. [39],
[45].

5 Holographic Renormalization.

Einstein metrics (2.2) are critical points of the Einstein-Hilbert action. For
Riemannian (i.e Euclidean) metrics, the action is usually taken to be

(1) I = − 1
16πG

∫

M
(R− 2Λ)dv − 1

8πG

∫

∂M
HdA,

where H is the mean curvature of the boundary. (The sign conventions are
based on path integral considerations, cf. [46]). However, both terms in
(5.1) are infinite on AH Einstein metrics. The main idea in the method
of holographic renormalization is that one may find natural counterterms,
depending only on the intrinsic geometry of the boundary metric γ, (or the
metric on the cutoff at t = ε), such that if I is renormalized by subtraction
of these counterterms, the renormalized action Iren is finite, cf. [13], [14].
(Very briefly, the counterterms are obtained from the expansion of the action
determined by (2.6) or (2.8)). If n is odd, Iren depends only on (M, g), and
not on any particular choice of compactification. However, if n is even,
Iren does depend on the compactification, i.e. on boundary metric γ, and
not just on the conformal class [γ]. This behavior is closely related to the
absence or presence of the conformal anomaly in odd and even dimensions
respectively.

The variation of Iren at a given AH Einstein metric g is given by

(2) dIren(h) =
d

dt
Iren(g + th),

where h is tangent to the space E of AH Einstein metrics; (this is a smooth
manifold, cf. [25]). The differential dIren is the holographic stress-energy
tensor; it is a 1-form on E and corresponds to the renormalization of the
quasi-local Brown-York stress-energy [47]. Via the AdS/CFT correspon-
dence, T = 2dIren gives the expectation value of the stress-energy tensor of
the CFT on ∂M , in all known cases.

Since Einstein metrics are critical points of I or Iren, it is clear that dIren

must be supported on ∂M. If n is odd, it is proved in [14], cf. also [40], that

(3) T = 2dIren = − n

16πG
g(n),

while if n is even,

(4) T = 2dIren = − n

16πG
(g(n) + r(n)),
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where r(n) is explicitly determined by γ and covariant derivatives of its
curvature; it depends only on the lower order terms in the FG expansion.
Thus

(5) 〈T, h〉 = − n

16πG

∫

∂M
〈g(n) + r(n), h(0)〉dvγ ,

where h(0) is the variation of the boundary metric γ induced by h. The
complexity of the term r(n) grows rapidly in n; explicit expressions for n =
2, 4, 6 are given in [14]. (The sign in (5.3) or (5.4) differs from that in [14],
but agrees with the signs in [13], [39], [40]. With this choice of sign, the mass
of pure AH5 = EAdS5 is positive in static coordinates (∂M = S1 × S3)).

For Lorentzian metrics, the action has the form

(6) I =
1

16πG

∫

M
(R− 2Λ)dv +

1
8πG

∫

∂M
HdA.

Note that this has the opposite sign to (5.1). For general AdS metrics,
this action cannot be renormalized to a finite expression as in the AH case,
since such metrics are not conformally compact, and in general are time
dependent, with t ∈ R. The action can be renormalized to a finite value
however for stationary AdS metrics.

In any case, for general AdS metrics one does have a renormalized stress-
energy tensor Tµν . This is again given by (5.3), (5.4) but with the opposite
sign. The stress-energy tensors TAdS of a static AdS metric (M, g), M =
R × Σ, and the corresponding TAH of the AH metric (M, g) obtained by
setting θ = it are then related by

(7) TAdStt = TAHθθ , TAdSΣ = −TAHΣ .

To illustrate on a concrete example, let gAHSch and gAdSSch be the AH and
AdS Schwarzschild metrics respectively, with static compactification. Then
the definitions above give

(8) TAHSch = − 1
16πG

(
µ

ln−2
+

2cn
n− 1

)((1− n)dθ2 + gSn−1(1)),

while

(9) TAdSSch =
1

16πG
(
µ

ln−2
+

2cn
n− 1

)(−(1− n)dt2 + gSn−1(1)),

where cn = 0 if n is odd and cn = (−1)n/2 (n−1)!!2

n! if n is even, cf. [39] and
[45].

On the de Sitter side, since spatial infinity is compact, the action (5.6) can
be holographically renormalized in exactly the same way as on the AH side,
and the same renormalization procedure gives a holographic stress-energy
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tensor T dS = 2dIren. Because the AH action (5.1) and dS action (5.6) are
both positive, one thus has

(10) T dS(gdS) = TAH(gAH),

and T dS is given by (5.3) or (5.4), with the de Sitter terms gdS(k) in place of
the AH terms gAH(k) .

If now gdS is the analytic continuation of gAH in the sense of Theorem
2.1, the formula (2.17) implies

(11) T dS = −TAH , if n ≡ 3(mod4), and T dS = TAH , if n ≡ 1(mod4).

Similarly,

(12) T dS = TAH , if n = 4, and T dS = −TAH , if n = 2.

Curiously, it is not clear if analogous formulas hold in general for n even,
n ≥ 6, since the term r(n) does not seem to have a definite sign change under
the correspondence (2.18) in this range, according to [14].

We now turn to a discussion of conserved quantities of AH and dS metrics
associated with conformal Killing fields at conformal infinity, following [13]-
[15]. First, it should be noted that a generic conformal infinity (∂M, [γ])
has no conformal Killing fields, and so the discussion applies at the outset
only to a restricted class of spaces.

We begin in the AH setting. Let (M, g) be an AH Einstein metric with
conformal infinity (∂M, γ). One may define a conserved quantity associated
with any conformal Killing field K on (∂M, γ) by

(13) Q =
∫

S
〈T (K), ν〉,

where T is the holographic stress-energy tensor, S is a slice to the orbits of
the Killing field on (∂M, γ), and ν is the unit normal to S, in the direction
K. The integral (5.13) is independent of S, since T is transverse-traceless.
If n is odd, Q depends only on the Einstein metric (M, g) and choice of
Killing field K on (∂M, γ). However, if n is even, Q depends on the choice
of boundary metric γ ∈ [γ].

As mentioned in §2, any conformal Killing field at conformal infinity ex-
tends to a Killing field of any (globally smooth) AH Einstein bulk metric
(M, g). Furthermore, at least in many circumstances, if K is static, i.e.
hypersurface orthogonal on ∂M , then K is also static on (M, g), cf. [48].

The same definition (5.13) holds for AdS metrics (M, g). In particular, if
(M, g) is stationary in a neighborhood of infinity, then the (holographically
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renormalized) mass of (M, g) is given by

(14) m =
∫

S
〈T (K), ν〉,

where S is a spacelike slice for the Lorentz metric γ on ∂M and K is the
timelike Killing field. Again, the value of m depends on the choice of bound-
ary metric γ in [γ] when n is even.

In particular, if the AdS metric (M, g) is globally static (near ∂M), then
(M, g) can be Wick rotated to an AH Einstein metric, (t→ it = θ). The AH
mass and the AdS mass are then equal by (5.7). While in general stationary
AdS metrics cannot be Wick rotated to stationary AH metrics, this can be
done in many interesting concrete cases, such as the AdS Taub-NUT and
Kerr metrics. In such a situation, the masses again agree by (5.7).

Conserved quantities can be defined in same way as (5.13) for metrics
(M, g) in dS+ or dS− having Killing fields at I+ or I−. Since I is spacelike,
it is not immediately clear which of these quantities should correspond to
mass, and which to angular momentum-type quantities. A natural proposal
due to Balasubramanian, de Boer and Minic [15], is that Q in (5.13) gives
the mass of (M, g) at I+ when the Killing field is the “analytic continu-
ation” of a timelike vector field of (M, g), which is asymptotically Killing
and static near I+. In more detail, since the metric (locally) asympotically
approaches the de Sitter geometry, one can write the metric near I+ in an
approximately static chart, as in (4.14), and then continue the approximate
timelike Killing field into the exterior region of the cosmological horizon to
obtain an approximate spacelike Killing field. When this process leads to a
Killing field on I+, then the associated conserved quantity is defined to be
the mass. One difficulty in general is that if the data (g(0), g(n)) at I+ are not
analytic, it is not clear how to actually carry out an analytic continuation;
there may be no coordinates in which the metric is analytic.

Consider first the case of pure de Sitter spacetime. The exterior of the
static chart leads to (I+, γ) given by the round product metric on R ×
Sn−1(1), with Killing field given by translation along the R-direction. In
general, if K = ∂s is a non-vanishing conformal Killing field on I+, then
locally the topology of I+ is I × S, with metric of the form

(15) γ = eφs[N2ds2 + hij(dxi + nids)(dxj + njds)],

where h is a metric on S, N , ni and hij are independent of s and φ : S → R.

Suppose that K is static, so that ni = 0. Then I+ is topologically of the
form R × S, and the representation (5.15) holds globally over all R. The
continuation of (M, g) ∈ dS+ across I+ gives an AH Einstein metric, with
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static Killing field K, defined at least in a neighborhood of conformal infinity
∂M = I+. By Wick rotation, this is equivalent to a static AdS Einstein
metric, for which one has the natural mass definition given by (5.14). Thus,
K on I+ is time-like with respect to the naturally associated AdS metric.
This notion of mass agrees with the BBM mass [15] discussed above.

Suppose next the Killing field K on I+ is stationary and not static. Then
the metric γ on I+ either has the global form (5.15) on R × S, or I+ is
a non-trivial S1 bundle over S, with the fiber S1 trivial, or of finite order,
in π1(I+). In the latter case, one cannot unwrap the orbits of the Killing
field to R by passing to a covering space. The AH Einstein continuation
will also be stationary, and as mentioned above, in certain circumstances
this can again be Wick rotated to a stationary AdS metric having the same
mass. Note that in general the resulting AdS metric then has closed time-
like curves at conformal infinity. For example, the dS Taub-NUT metric
continues to the AH Taub-NUT metric which can be rotated to the AdS
Taub-NUT metric.

The following result relates the mass of these two metrics.

Proposition 5.1. Let mdS be the holographic mass of the de Sitter-type
metric (M, g) ∈ dS+, with static or stationary Killing field K on I+, and
let mAdS be the mass of the associated AdS metric (M, g). If n is odd, then

(16) mdS = −mAdS , if n ≡ 3(mod4), and mdS = mAdS , if n ≡ 1(mod4).

Also,

(17) mdS = mAdS , if n = 2, and mdS = −mAdS , if n = 4.

Proof: This follows immediately from the discussion above, together with
(5.11)-(5.12).

We use these results to discuss the maximal mass conjecture proposed in
[15], that if (M, g) ∈ dS+ has mass greater than the mass of pure de Sitter
space, then M has a cosmological singularity. A reasonable definition here
is that (M, g) ∈ dS+ has a cosmological singularity if either (M, g) contains
a naked singularity, (as for instance the negative mass dS Schwarzschild
metric), or

(18) I− = ∅,
i.e. there is no partial conformal completion at past infinity for the glob-
ally hyperbolic spacetime (M, g). As a very special case, the conjecture
implies that among all spaces in dS±, the mass of the pure de Sitter space
is maximal. In particular, in dimension 4,

(19) mdS± ≤ 0 = m0,
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where m0 is the mass of pure de Sitter. This conjecture has been verified
in a number of cases [15], [17]; see also [18]-[20] for a discussion of possible
counterexamples.

Consider the family of dS Taub-NUT metrics gTN analysed in §4. For E
in the range (4.8), gTN ∈ dS±. On the other hand, (4.4), (4.5), (5.3) and
(5.16) show that the mass of gTN is given by

(20) m(gTN ) = −m(gTN ) = c
l

2
E1/2(E − 1),

for a fixed numerical constant c. Hence, when E > 1, the mass is greater
than that of pure de Sitter.

One might consider strengthening the conjecture to require that γ+ is the
round metric γ0 on S3, so that g is strongly dS+. The conformal Killing
field giving the mass is thus fixed to be the dilatation field (with south
pole to north pole flow), as are all the quantities in (5.13)-(5.14) except
T . However, as discussed in §3, Friedrich’s theorem [12] implies that the
data (γ0, g(3)) determine a unique solution (M, g) ∈ dS±, for any sufficiently
small transverse-traceless form g(3). Since T ∼ g(3), T is freely specifiable
as long as it is small, and so from (5.14) it is clear that there exists ε0 > 0
such that m may assume any value in

(21) m ∈ (−ε0, ε0),

within the class of spaces in dS±. We recall also that in dimension 4, the
mass is independent of the choice of representative γ ∈ [γ], so that (5.21)
also holds if I+ is given by static coordinates, I+ = R × S2, with γ0 the
round product metric.

There are well-known positive mass theorems in AdS or AH spaces, cf.
[49] for recent work and references. However, these require that (M, g) is
strongly AH in that the conformal infinity is the round product metric on
R × Sn−1 or the round metric on Sn. The only globally smooth Einstein
spaces with such conformal infinity are hyperbolic n + 1-space, or AdSn+1

and so these results are uninteresting in this context. The proper context
for the positive mass results is that (M, g) is a strongly AH initial data set
in a Λ < 0 vacuum spacetime of one higher dimension, so that (M, g,K)
satisfies the constraint equations, not the Einstein equations. On the other
hand, for any boundary metric γ on S3 or Sn close to the round metric,
there are global AH Einstein metrics with boundary metric γ, cf. [50], and
for such spaces, the holographic mass will also satisfy (5.21).

In general even dimensions, the Taub-NUT metrics on M = R × Sn, n
odd, within dS± again have mass satisfying (5.21), and so also violate (5.19).
Moreover, one also expects that Friedrich’s theorem holds in all dimensions,
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especially in the case where (I+, γ) = (Sn, γ0), where γ0 is the round metric
on Sn so that there are no log terms in the expansion, (the variation of the
conformal anomaly vanishes). Note also that although the mass depends on
the choice of representative γ ∈ [γ0] on Sn, the relations

m > m0, or m < m0,

are independent of this choice; if either inequality holds for one choice of
γ ∈ [γ0], then it holds for all choices in [γ0].

Appendix

In this Appendix, we carry out the computations verifying (2.17). The
equation (2.5) states that

(1) ρg̈ρ − (n− 1)ġρ − 2Hgρ = ρL,

where L = [2Ricρ − Hġρ + (ġρ)2]. Also, the Gauss-Codazzi equations for
S(ρ) ⊂ (M, ḡ) and the trace of the Riccati equation give

(2) Ric(T,X) = (δA+ dH)(X) = 0,

(3) H ′ + |A|2 + 2nR = 0,

where R is the scalar curvature of S(ρ). Equivalently, in local geodesic
coordinates,

ρg̈ij − (n− 1)ġij − gklġklgij = ρ(2Ricij − 1
2
gklg′klg

′
ij + gklg′ikg

′
jl),

gkl(∇lġik −∇iġkl) = 0,
1
2
gklġkl +

1
4
gikġij ġjk + 2nR = 0.

We need to divide into the cases n odd or n even.

Case I. n odd.

Suppose first n = 3. Differentiating (A.1) once gives

(4) ρg(3)
ρ − g(2)

ρ − 2(Hgρ)(1) = (ρL)(1).

Hence, at ρ = 0,

(5) −g(2) = H ′ +Ricγ = Ricγ − Rγ
4
γ.

Differentiating again gives

(6) ρg(4)
ρ − 2(Hgρ)(2) = (ρL)(2).

The term Ricρ involves two tangential derivatives of gρ. Since g(1) = 0 at
ρ = 0, the right side of (A.6) vanishes at ρ = 0. Further, since (Hgρ)(2) =
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ctrg(3)g, (A.6) implies trg(3) = 0. Here and below c denotes a non-zero
numerical constant, which may change from line to line. The Gauss-Codazzi
equation (A.2) then gives δg(3) = 0. However, the transverse-traceless part
of g(3) is undetermined by (A.6).

Differentiating further gives

ρg(5)
ρ + g(4)

ρ − 2(Hgρ)(3) = (ρL)(3),

so that at ρ = 0,

(7) g(4) − trg(4)g(0) + ctrg(2)g(2) = L(2).

This determines the coefficient g(4) in terms of g(2) and its 2nd tangential
derivatives. Taking the next derivative at ρ = 0 gives,

(8) 2g(5) − trg(5)g(0) = L(3),

so that g(5) depends on g(3) and its 2nd tangential derivatives. Finally, a
further differentiation gives

(9) 3g(6) − trg(6)g(0) = L(4) + l.o.t.,

where l.o.t. denotes lower order terms already determined. This determines
the trace-free part of g(6) in terms of g(4) and its 2nd tangential derivatives.
The trace of (A.9) is 0. However, taking the ρ-derivative of (A.3) 4 times also
shows that trg(6) is determined by g(4) and its 2nd tangential derivatives.
Continuing this process inductively, one thus sees that the higher coefficients
g(k) are uniquely determined and depend on the 2nd tangential derivatives
of g(k−2).

Consider next the dS side. Here the equation (2.5) is replaced by (2.11),
giving

(10) ρg̈ρ − (n− 1)ġρ − 2Hgρ = −ρL,
We assume now

(11) gdS(0) = gAH(0) .

The same arguments as above then give the relation

(12) gdS(2) = −gAH(2) .

As before gdS(3) is transverse-traceless, but is otherwise undetermined, and so
may be specified arbitrarily. Thus, we choose

(13) gdS(3) = −gAH(3) .

It then follows from (A.10), (A.13) and formulas as in (A.7)-(A.9) that

(14) gdS(4) = gAH(4) , gdS(5) = gAH(5) ,



MICHAEL T. ANDERSON 889

while

(15) gdS(6) = −gAH(6) , gdS(7) = −gAH(7) ,

and so on.

The same analysis and pattern as above holds for arbitrary n odd, with
g(n) in place of g(3). This verifies (2.17) when n is odd.

Now suppose n = 4. Differentiating (A.1) once gives

(16) ρg(3)
ρ − 2g(2)

ρ − 2(Hgρ)(1) = (ρL)(1),

so that at ρ = 0,

(17) −g(2) =
1
2

(Ricγ − Rγ
6
γ).

Differentiating again gives

(18) ρg(4)
ρ − g(3)

ρ − 2(Hgρ)(2) = (ρL)(2).

As above, the right side of (A.18) vanishes at ρ = 0. Taking the trace of the
left-side of (A.18) implies trg(3) = 0, and hence g(3) = 0. At the next level,
one has

(19) ρg(5)
ρ − 2(Hgρ)(3) = (ρL)(3).

Setting ρ = 0, the left side is ctrg(4)+ l.o.t. and hence trg(4) is determined
by 2nd derivatives of g(2). Similarly δg(4) is determined via (A.3). However,
the right side of (A.19) is not pure trace in general. To obtain a consistent
expansion, one needs to introduce log terms in the expansion for gρ. Thus,
set

(20) gρ = g(0) + ρ2g(2) + ρ4g(4) + ρ4 log ρ h(4).

Since (ρ4 log ρ)(5) = 24ρ−1, (A.19) gives

(21) 24h− 2(Hgρ)(3) = (ρL)(3).

It follows that trh(4) = 0, and by (A.3), δh(4) = 0 also. The equation
(A.21) thus determines the transverse-traceless part of h, in terms of the
2nd tangential derivatives of g(2).

However, the transverse-traceless part of g(4) is undetermined. Next, set-
ting

(22) gρ = g(0) + ρ2g(2) + ρ4g(4) + ρ4 log ρ h(4) + ρ5g(5),

gives

(23) ρg(6)
ρ + g(5)

ρ − 2(Hgρ)(4) = (ρL)(4).
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Observe that ρ(ρ4 log ρ)(6)+(ρ4 log ρ)(5) = 0, leaving the term g
(5)
ρ −ctrg(5)g(0)+

l.o.t. on the left equal to the right side of (A.23). But the right side vanishes,
and hence g(5) = 0. Thus set

(24) gρ = g(0) + ρ2g(2) + ρ4g(4) + ρ4 log ρ h(4) + ρ6g(6) + ρ6 log ρ h(6).

Differentiating again gives

(25) ρg(7)
ρ + 2g(6)

ρ − 2(Hgρ)(5) = (ρL)(5).

For the ρ4 log ρh(4) term, one has ρ(ρ4 log ρ)(7) + 2(ρ4 log ρ)(6) = 0, while for
the ρ6g(6) term ρ(ρ6 log ρ)(6)h(6) = ch(6) + c log ρh(6). Expanding out the
right side of (A.25), one finds that h(6) and g(6) depend on two tangential
derivatives of g(4) and h(4), and lower order terms.

Continuing in this way inductively shows that the expansion (2.8) is even
in powers in ρ, with (log ρ)k terms appearing at higher orders. Each co-
efficient g(k) and h(k) depends on two derivatives of the lower order terms
g(k−2) and h(k−2).

The dS side when n = 4 is analysed exactly as in the case n = 3. Thus,
(A.10) holds and assuming (A.11), (A.12) holds just as before. The odd
coefficients vanish on both dS and AH sides. Setting

(26) gdS(4) = gAH(4) ,

one finds
gdS(2k) = (−1)kgAH(2k), and hdS(4) = hAH(4) .

The same arguments and patterns hold for any even n, and give (2.17).
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Cartan et les Mathematiques d’Aujourd’hui, Astérisque, (1985),
numero hors serie, Soc. Math. France, Paris, 95-116.

[22] C.R. Graham and K. Hirachi, The ambient obstruction tensor and
Q-curvature, math.DG/0405068.

[23] C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Dif-
feomorphisms and holographic anomalies, Class. Quantum Grav.
17, (2000), 1127-1138, hep-th/9910267.

[24] M. Anderson, Some results on the structure of conformally com-
pact Einstein metrics, math.DG/0402198
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[31] P. Chruściel, M. MacCallum and D. Singleton, Gravitational waves
in general relativity XIV, Bondi expansions and the “polyhomo-
geneity” of I, Proc. Roy. Soc. Lond, A436, (1992), 299-316, gr-
qc/9305021.

[32] M. Anderson, Cheeger-Gromov theory and applications to general
relativity, gr-qc/0208079.

[33] L. Andersson and G. Galloway, dS/CFT and spacetime topology,
Adv. Theor. Math. Phys. 6, (2003), 307-327, hep-th/0202161.

[34] M. Anderson, Geometric aspects of the AdS/CFT correspondence,
hep-th/0403087.

[35] G. Perelman, The entropy formula for the Ricci flow and its geo-
metric applications, math.DG/0211159], Ricci flow with surgery
on three-manifolds, math.DG/0303109.



MICHAEL T. ANDERSON 893

[36] S. Gao and R.M. Wald, Theorems on gravitational time delay
and related issues, Class. Quant. Grav., 17, (2000), 4999-5008,
gr-qc/0007021.

[37] F. Leblond, D. Marolf and R.C. Myers, Tall tales from de Sitter
space I: renormalization group flows, JHEP, 0206, (2002), 052,
hep-th/0202094.

[38] S.W. Hawking, C.J. Hunter and D.N. Page, Nut charge, anti-
de Sitter and entropy, Phys. Rev. D 59, (1999), 044033, hep-
th/9809035.

[39] R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as
counterterms in the AdS/CFT correspondence, Phys. Rev. D 60,
(1999), 104001, hep-th/9903238.

[40] M. Anderson, L2 curvature and volume renormalization for AHE
metrics on 4-manifolds, Math. Res. Lett, 8, (2001), 171-188,
math.DG/0011051.

[41] D. Brill and F. Flaherty, Maximizing properties of extremal sur-
faces in General Relativity, Ann. Inst. Henri Poincaré, 28, (1978),
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